Complex numbers, beginnings of function theory

Introduction of complex numbers and their representation in the Gaussian number plane. Description of geometric entities in the Gaussian number plane. Complex functions and differentiability.

Concrete examples:
Möbius transformations, exponential function and Joukowski function.

Applications:

  • Discussion of electrical networks
  • Construction of airfoils for airplanes

The program

09.30 - 09.45Welcome Prof. Dr. W. Klotz
09.45 - 10.45Complex numbers, complex functions (basic properties) (Prof. Dr. H.- H. Kairies)
10.45 - 11.15Coffee break
11.15 - 12.15Möbius transformations, exponential function (Prof. Dr. H.- H. Kairies)
12.15 - 13.30Lunch break
13.30 - 14.45Application of complex numbers in the solution of differential equations for modeling oscillating systems (Prof. Dr. U. Mertins)
14.45 - 15.15Coffee break
15.15 - 16.00Conformal mappings with application in the design of airfoils (Joukowski function) (Prof. Dr. H.- H. Kairies)
16.00 - 16.30Discussion and closing remarks