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Kapitel 0

Vorwort

An der Technischen Universität Clausthal sind die Vorlesungen Stochastik III und IV bzw.
Angewandte Stochastische Prozesse I und II Bestandteile der neuen Master-Studiengänge An-
gewandte Mathematik und Operations Research. Im Fokus stehen die Markovschen Prozesse
und ihre Verallgemeinerungen (Semi-Markovprozesse und semi-regenerative Prozese). Für das
Verständnis vorausgesetzt werden Grundkenntnisse in Wahrscheinlichkeitstheorie, wie sie an
der TU Clausthal in den Vorlesungen Stochastik I und II vermittelt werden.

In der Vorlesung Stochastik III bzw. Angewandte Stochastische Prozesse I werden allgemeine
Methoden zur Analyse stochastischer Prozesse bereitgestellt, die später auf konkrete Fra-
gestellungen z.B. in der Warteschlangen- oder der Risikotheorie angewandt werden sollen.
Da die Berechnungen von Kenngrößen von Markovprozessen und ihren Verallgemeinerungen
häufig auf die Lösung von Differenzen- und Differentialgleichungen hinauslaufen, werden im
Anhang einige grundsätzliche damit zusammenhängende Vorgehensweisen erläutert.

Das Skriptum Stochastik III ist aus Vorlesungen hervorgegangen, die ich an den Universitäten
Mainz, Kaiserslautern und Clausthal abgehalten habe. Bei der Zusammenstellung und Aus-
gestaltung des Lehrstoffs haben mich mein ehemaliger Mitarbeiter Dr. Michael Mederer und
sein Nachfolger Dipl. Math. Hendrik Baumann tatkräftig unterstützt. Korrektur gelesen hat
außerdem Dipl. Math. Alexander Herzog. Ihnen allen möchte ich hiermit meinen herzlichsten
Dank aussprechen.

Dank der finanziellen Unterstützung durch die ELAN-Initiative des Landes Niedersachsen
(elearning academic network Niedersachsen) steht dieses Skriptum auch als Online-Version
zur Verfügung:

http://www.stochastik.tu-clausthal.de/Stochastik3Skript/

Thomas Hanschke Clausthal, August 2008
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Kapitel 0. Vorwort

0.1 Mit der Stochastik III zusammenhängende Vorlesungen

Die Stochastik III Vorlesung ist Bestandteil einer Reihe aufeinander aufbauender Veranstal-
tungen, die man der nachstehenden Grafik entnehmen kann.

(Siehe auch PowerPoint-Präsentation zum Stochastik–Vorlesungsplan.)
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Kapitel 21

Markovketten in diskreter Zeit

In diesem Kapitel werden Markovketten in diskreter Zeit behandelt. Sehr viele praktische Fra-
gestellungen lassen sich als Markovketten in diskreter oder stetiger Zeit modellieren. Markov-
ketten treten aber auch eingebettet in anderen Prozessen auf und bieten somit eine Handhabe
zur Analyse allgemeinerer Prozesse. In diesem Kapitel werden Methoden zur Berechnung der
endlich-dimensionalen Verteilungen und der Grenzverteilungen von Markovketten behandelt.

Schlüsselwörter: Homogene Markovkette, Markov–Eigenschaft, Übergangswahr-
scheinlichkeit, (gegenseitige) Erreichbarkeit, Irreduzibilität, Rekurrenz, Transienz,
Grenzverteilung, Absorptionswahrscheinlichkeit, Aussterbewahrscheinlichkeit, peri-
odische Markovketten, Ergodensätze.
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Kapitel 21. Markovketten in diskreter Zeit

21.1 Homogene Markovketten

Markovketten stellen ein wichtiges Werkzeug zur Untersuchung stochastischer Prozesse dar.
Sie verallgemeinern das von der Exponentialverteilung her bekannte Phänomen der Gedächt-
nislosigkeit auf Folgen von Zufallsvariablen.

21.1 Definition (Markovkette):
Ein stochastischer Prozess (Ω,A, P, (Xn)n∈N0) mit Werten in einem abzählbaren Zustands-
raum E heißt Markovkette, wenn für alle Zeitpunkte 0 ≤ t0 < t1 < · · · < tn+1 und Zustände
i0, . . . , in+1

P (Xtn+1 = in+1|Xtn = in, Xtn−1 = in−1, . . . , Xt0 = i0) = P (Xtn+1 = in+1|Xtn = in) (21.1)

erfüllt ist.

21.2 Bemerkung (Markov–Eigenschaft, homogene Markovketten):
• Die Eigenschaft (21.1), die auch (elementare) Markov–Eigenschaft genannt wird, besagt,

dass in jedem Zeitschritt die Wahrscheinlichkeit für den neuen Zustand nur vom letzten
Zustand, nicht aber von der Vorgeschichte des Prozesses abhängt. Aus diesem Grund
werden Markovketten auch als stochastische Prozesse ohne Gedächtnis bezeichnet.

• Aus (21.1) folgt insbesondere:

P (Xn+1 = in+1|Xn = in, Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = in+1|Xn = in).

• In diesem Kapitel werden ausschließlich solche Markovketten behandelt, bei denen die
Übergangswahrscheinlichkeiten

Pij := P
(1)
ij := P (Xn+1 = j|Xn = i)

nicht von n abhängen (sogenannte homogene Markovketten). In diesem Fall ist

Pij = P (Xn+1 = j|Xn = i) = P (X1 = j | X0 = i) ∀n ∈ N0.

21.3 Definition (endlich–dimensionale Verteilung):
Die endlich–dimensionalen Verteilungen eines Prozesses sind definiert als

P (Xtn = in, Xtn−1 = in−1, . . . , Xt0 = i0)

für beliebige Zeitpunkte 0 ≤ t0 < t1 < . . . < tn und Zustände i0, i1, . . . , in, n ∈ N. Unter der
absoluten Zustandswahrscheinlichkeit versteht man

pi(n) := P (Xn = i).

21.4 Satz:
Es seien (Xn)n∈N0 eine Markovkette und 0 ≤ t0 < t1 < . . . < tn Zeitpunkte. Dann gilt:

P (Xtn = in, . . . , Xt0 = i0) = P (Xt0 = i0) ·
n∏
`=1

P (Xt` = i`|Xt`−1
= i`−1). (21.2)
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21.1. Homogene Markovketten

Beweis:
Unter Zuhilfenahme des Multiplikationssatzes (siehe Stochastik I) folgert man

P (Xtn = in, . . . , Xt0 = i0)

= P (Xt0 = i0) · P (Xt1 = i1|Xt0 = i0) · P (Xt2 = i2|Xt1 = i1, Xt0 = i0) · . . .
. . . · P (Xtn = in|Xtn−1 = in−1, . . . , Xt0 = i0)

(21.1)
= P (Xt0 = i0) · P (Xt1 = i1|Xt0 = i0) · P (Xt2 = i2|Xt1 = i1) · . . .

. . . · P (Xtn = in|Xtn−1 = in−1)

= P (Xt0 = i0) ·
n∏
`=1

P (Xt` = i`|Xt`−1
= i`−1).

�

21.5 Definition (n–Schritt–Übergangswahrscheinlichkeit):
Für homogene Markovketten nennt man

P
(n)
ij := P (Xn = j|X0 = i) (n ∈ N; i, j ∈ E)

die n–Schritt–Übergangswahrscheinlichkeit vom Zustand i in den Zustand j.

21.6 Satz (Gleichung von Chapman und Kolmogorov):
Für homogene Markovketten gilt

a) P (Xn+ν = j|Xν = i) = P
(n)
ij

b) ∀ i, j ∈ E : P
(n+m)
ij =

∑
k∈E

P
(n)
ik · P

(m)
kj .

(Gleichung von Chapman und Kolmogorov).

Beweis:
a) Der Beweis erfolgt per Induktion über n. Es werden

P
(0)
ij := δij =

{
1 , i = j
0 , i 6= j

und P
(1)
ij = Pij

gesetzt; nun erfolgt der Schritt von n auf n+ 1.

P (Xn+1+ν = j|Xν = i) =
∑
k∈E

P (Xn+ν+1 = j,Xn+ν = k|Xν = i)

=
∑
k∈E

P (Xn+ν = k|Xν = i) · P (Xn+ν+1 = j|Xν = i,Xn+ν = k)

(21.1)
=

∑
k∈E

P (Xn+ν = k|Xν = i) · P (Xn+ν+1 = j|Xn+ν = k)

I.V.
=

∑
k∈E

P
(n)
ik · P

(1)
kj = P

(n+1)
ij .
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Kapitel 21. Markovketten in diskreter Zeit

b) Auch in diesem Fall wird der Beweis per Induktion, diesmal über m, geführt. Der Induk-

tionsanfang P
(n+0)
ij =

∑
k∈E δikP

(n)
kj =

∑
k∈E P

(0)
ik P

(n)
kj ist trivial, der Induktionsschritt

lautet

P
(n+m+1)
ij

a)
=

∑
k∈E

P
(n+m)
ik · P (1)

kj

I.V.
=

∑
k∈E

(∑
`∈E

P
(n)
i` · P

(m)
`k

)
· P (1)

kj

=
∑
`∈E

∑
k∈E

P
(n)
i` · P

(m)
`k · P (1)

kj

=
∑
`∈E

P
(n)
i` ·

(∑
k∈E

P
(m)
`k · P (1)

kj

)
=

∑
`∈E

P
(n)
i` · P

(m+1)
`j .

�

21.7 Satz:
Für die absoluten Zustandswahrscheinlichkeiten pi(n) := P (Xn = i) einer homogenen Mar-
kovkette gilt

pi(n) =
∑
k∈E

P (X0 = k) · P (n)
ki

für alle i ∈ E.

Beweis:

pi(n) =
∑
k∈E

P (Xn = i,X0 = k) =
∑
k∈E

P (X0 = k) · P (Xn = i|X0 = k)

=
∑
k∈E

P (X0 = k) · P (n)
ki .

�

21.8 Bemerkung:
• Zur Berechnung der endlich–dimensionalen Verteilungen und der absoluten Zustands-

wahrscheinlichkeiten einer homogenen Markovkette benötigt man also lediglich die Start-
verteilung {P (X0 = k)}k∈E und die Übergangswahrscheinlichkeiten (Pij)i,j∈E . Mit der
Vereinbarung

P (n) :=
(
P

(n)
ij

)
i,j∈E

folgt aus Satz 21.6:

P (n+m) = P (n) · P (m) =⇒ P (n) = Pn.
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21.1. Homogene Markovketten

• Nimmt man an, dass der Zustandsraum E := {1, . . . ,m} endlich ist, und die Eigenwerte
λ1, . . . , λm der Übergangsmatrix alle paarweise verschieden sind, so erhält man

P = XΛX−1 mit Λ :=

λ1 0
. . .

0 λm

 ,

woraus durch schrittweise Multiplikation Pn = XΛnX−1 für die n–Schritt–Übergangs-
wahrscheinlichkeiten entsteht.

21.9 Beispiel:
Eine Übergangsmatrix mit den Eigenwerten λ1 := 1 und λ2 := −1/2 sei gegeben durch

P :=

(
0 1
1
2

1
2

)
= XΛX−1 =

(
1 1
1 −1

2

)(
1 0
0 −1

2

)(
1
3

2
3

2
3 −2

3

)
.

Die n–Schritt Übergangsmatrix hat demnach die Gestalt

Pn = XΛnX−1 =

(
1
3 + 2

3

(
−1

2

)n 2
3 −

2
3

(
−1

2

)n
1
3 −

1
3

(
−1

2

)n 2
3 + 1

3

(
−1

2

)n) n→∞−→
(

1
3

2
3

1
3

2
3

)
.

21.10 Beispiel (Anwendungen):
• Irrfahrtprobleme und Glücksspiele:

Auf einem Zahlenstrahl mit den ganzen Zahlen geht man mit Wahrscheinlichkeit p einen
Schritt nach links, mit Wahrscheinlichkeit q einen Schritt nach rechts und mit Wahr-
scheinlichkeit r := 1− p− q verharre man auf der Position. Diese Dynamik bezeichnet
man als Irrfahrt. Ist p = q = 1/2, so spricht man von einer symmetrischen Irrfahrt.

Fragestellungen, die hier von Interesse sind, sind zum Beispiel: Mit welcher Wahrschein-
lichkeit landet man wieder im Ursprung? Besteht hier eine positive Wahrscheinlichkeit,
so handelt es sich um eine sogenannte rekurrente Irrfahrt. Wie ist die Rückkehrwahr-
scheinlichkeit zum Ursprung abhängig von dem gewählten Startpunkt ?

Das Problem von Irrfahrten lässt sich für Glücksspiele spezialisieren. So sei Xn das
Spielkapital zum Zeitpunkt n. Das Startkapital sei N ∈ N, also X0 = N . Wie groß ist
die Wahrscheinlichkeit der Absorption, d.h. die Ruinwahrscheinlichkeit?

Die Übergangsmatrix hat bei diesen Problemen die Gestalt:

Pij =


r p 0 0
q r p 0
0 q r p · · ·
0 0 q r

...
. . .

 .

• Verzweigungsprozesse:
Es wird eine Menge von Individuen betrachtet, von denen jedes eine gewisse Nachkom-

menschaft haben kann. Die Nachkommenschaft sei für jedes Individuum eine diskrete
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Kapitel 21. Markovketten in diskreter Zeit

Zufallsvariable ξ mit Werten in N0. Die Anzahl der Individuen zur Zeit n werde mit Xn

bezeichnet (sogenannte n–te Generation). Dann gilt, wenn ξk die Nachkommenschaft
des k–ten Individuums bezeichnet:

Xn+1 =

Xn∑
k=1

ξk (n ∈ N0; X0 = 1).

Folglich stellt (Xn)n∈N0 eine homogene Markovkette mit Einschritt–Übergangsmatrix

Pij = P (Xn+1 = j|Xn = i) = P

(
i∑

k=1

ξk = j

)
(i, j ∈ N0)

dar. In diesem Zusammenhang kann man fragen: Wie groß ist die Aussterbewahrschein-
lichkeit p und, falls p = 1 ist, wieviel Zeit vergeht bis zur Absorption?

Markovketten können durch bewertete gerichtete Graphen veranschaulicht werden. Allgemein
besteht ein gerichteter Graph G aus einer abzählbaren Menge J und einer geordneten Teil-
menge K ⊆ J×J . Wir schreiben [J,K] und nennen G vollständig, falls K = J×J gilt. Die Ele-
mente von J werden als Punkte oder Knoten bezeichnet, die geordneten Paare k = (i, j) ∈ K
als gerichtete Kanten oder Pfeile. Die jeder Kante k ∈ K zugeordneten Punkte i und j
heißen Endpunkte der Kante. Genauer sagt man, dass k = (i, j) mit i positiv und mit j
negativ inzident ist. Eine Folge kα1 , . . . , kαn von Pfeilen kαr ∈ K wird gerichtete Kantenfolge
oder Pfeilfolge von G genannt, wenn eine Folge von Punkten exisitiert, etwa jβ0 , . . . , jβr , so

dass kαr =
(
jβr−1 , jβr

)
(r = 1, . . . , n) gilt. jβ0 ist der Anfangs– und jβn der Endpunkt der

Pfeilfolge. Gibt es in G eine Pfeilfolge mit dem Anfangspunkt i und dem Endpunkt j, dann
heißt j von i aus erreichbar. Wir sagen, i und j sind miteinander verbunden, wenn sowohl j
von i aus als auch i von j aus erreichbar ist. Stark zusammenhängende gerichtete Graphen
sind solche, in denen je zwei Punkte miteinander verbunden sind.
Eine Abbildung ζ der Kantenmenge K in die reellen Zahlen R,

ζ : K → R, (i, j) 7→ ζ(i, j),

nennen wir eine Bewertung des Graphen. Bewerteten gerichteten Graphen gibt man das Sym-
bol G = [J,K, ζ].

21.11 Definition:
(Xn)n∈N0 sei eine homogene Markovkette mit abzählbarem Zustandsraum E und Übergangs-
matrix P = (Pij)i,j∈E. Der bewertete gerichtete Graph M = [J, k, ζ] mit J = E, K = {(i, j) ∈
E × E | Pij 6= 0} und ζ(i, j) = Pij heißt Markovgraph der Markovkette.

21.2 Klassifikation von Zuständen

21.12 Definition ((gegenseitig) erreichbar, kommunizieren miteinander, irreduzibel):
a) Ein Zustand j heißt vom Zustand i erreichbar, wenn es ein n ∈ N0 gibt mit P

(n)
ij > 0,

d.h. mit positiver Wahrscheinlichkeit findet der Prozess nach endlich vielen Schritten
nach j, wenn er in i gestartet ist. In Zeichen i→ j.

b) Die Zustände i, j ∈ E heißen gegenseitig erreichbar oder kommunizieren miteinander,
wenn i→ j und j → i gelten. In diesem Fall schreibt man i↔ j.

12



21.2. Klassifikation von Zuständen

c) E heißt irreduzibel, wenn i↔ j für alle i, j ∈ E gilt.

21.13 Satz:
Die Relation

”
↔“ definiert eine Äquivalenzrelation auf E.

Beweis:
Die Reflexivität i ↔ i ist wegen P

(0)
ij := δij klar. Die Symmetrie ergibt sich unmittelbar aus

der Definiton von↔. Bleibt die Transitivität zu zeigen, d.h. aus i↔ j und j ↔ k folgt i↔ k.

Vorausgesetzt wird also, dass n,m ∈ N0 existieren mit P
(n)
ij > 0 und P

(m)
jk > 0. Es folgt mit

Anwendung der Gleichung von Chapman und Kolmogorov

P
(n+m)
ik =

∑
r∈E

P
(n)
ir P

(m)
rk ≥ P (n)

ij P
(m)
jk > 0.

�

21.14 Definition (abgeschlossene Klasse, absorbierender Zustand):
a) Durch die Äquivalenzrelation ↔ zerfällt der Zustandsraum E in Äquivalenzklassen, die

als Kommunikationsklassen bezeichnet werden.

b) Eine Menge C von Zuständen heißt abgeschlossen, wenn kein Zustand in der Menge
E \ C von C aus erreichbar ist.

c) Ein Zustand i heißt absorbierender Zustand, wenn {i} eine abgeschlossene Klasse ist.

21.15 Beispiel:
Es wird der Zustandsraum E := {a, b, c, d, e, f} mit der Übergangsmatrix

P :=



1
2 0 1

2 0 0 0
0 1

4 0 3
4 0 0

0 0 1
3 0 2

3 0
1
4

1
2 0 1

4 0 0
1
3 0 1

3 0 1
6

1
6

0 0 0 0 0 1


betrachtet. Die Äquivalenzklassen ermittelt man mit Hilfe des korrespondierenden Markov-
graphen, der in diesem Fall wie folgt aussieht:

Man erhält demnach die Klassen C1 := {b, d}, C2 := {a, c, e} und C3 := {f}. Die Klassen C1

und C2 sind nicht abgeschlossen. Der Zustand f ist ein absorbierender Zustand.
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Kapitel 21. Markovketten in diskreter Zeit

21.16 Bemerkung:
Offensichtlich sind folgende Aussagen äquivalent:

• E ist irreduzibel,

• der Markovgraph ist stark zusammenhängend.

21.17 Bemerkung (zum eingebetteten Erneuerungsprozess):
Im Folgenden werden die Rückkehrzeiten in einen bestimmten Zustand j betrachtet. Dazu
soll zunächst eine homogene Markovkette (Xn)n∈N0 , die in einem beliebigen Zustand X0 = i
startet, veranschaulicht werden. j sei ein von i erreichbarer Zustand der Kette.

T2
(j)T1

(j)

j

Abbildung 21.1: Rückkehrverhalten von Markovketten

Es sei

T
(j)
0 := 0 und T (j)

n := inf{k > T
(j)
n−1|Xk = j}, n = 1, 2, . . . .

T
(j)
1 beschreibt also den Zeitpunkt, an dem die Markovkette zum ersten Mal den Zustand j

erreicht, T
(j)
2 den Zeitpunkt der zweiten Rückkehr, usw. Aufgrund der Markoveigenschaft von

(Xn)n∈N0 handelt es sich bei
(
T

(j)
n

)
n∈N0

um einen modifizierten Erneuerungsprozess. Man

spricht auch von einem eingebetteten Erneuerungsprozess.

21.18 Definition (mittlere Rückkehrzeit):
a) Die Wahrscheinlichkeit, in genau n Schritten von i nach j zu gelangen, ohne zwischen-

durch j schon einmal erreicht zu haben, wird mit

f
(n)
ij := P

(
T

(j)
1 = n|X0 = i

)
bezeichnet.

b) Die Wahrscheinlichkeit, dass die im Zustand i startende Markovkette den Zustand j
überhaupt erreicht, notiert man als

f∗ij :=

∞∑
n=1

f
(n)
ij .

14



21.2. Klassifikation von Zuständen

c) Die mittlere Rückkehrzeit von i nach j ist definiert durch

µij :=

∞∑
n=1

n · f (n)
ij .

21.19 Definition (Zustandsklassifikationen):
Ein Zustand i ∈ E heißt

a) periodisch bzw. aperiodisch, falls T
(j)
2 −T (j)

1 arithmetisch–verteilt ist mit der Gitterkon-
stanten d 6= 1 bzw. d = 1.

b) rekurrent bzw. transient, falls f∗ii = 1 bzw. f∗ii < 1 ist.

c) ergodisch oder auch positiv rekurrent, falls f∗ii = 1 ist und µii <∞ ist.

d) null–rekurrent, falls f∗ii = 1 ist und µii =∞ ist.

Um Aussagen über das Grenzverhalten von Markovketten teffen zu können, soll jetzt P
(n)
ij in

Abhängigkeit von f
(n)
ij dargestellt weden. Unter Ausnutzung der Homogenität gilt für n ≥ 1

P
(n)
ij =

n∑
k=1

P
(
T

(j)
1 = k,Xn = j

∣∣∣X0 = i
)

=
n∑
k=1

P
(
T

(j)
1 = k

∣∣∣X0 = i
)
· P (Xn−k = j|X0 = j)

=

n∑
k=1

f
(k)
ij · P

(n−k)
jj . (21.3)

Mit den erzeugenden Funktionen

Pij(z) :=
∞∑
n=0

P
(n)
ij zn, |z| ≤ 1, und Fij(z) :=

∞∑
n=0

f
(n)
ij zn, |z| ≤ 1,

gilt dann aufgrund von (21.3) und wegen f
(0)
ij = 0:

Pij(z) = P
(0)
ij︸︷︷︸

=δij

+
∞∑
n=1

P
(n)
ij zn

= δij +
∞∑
n=1

(
n∑
k=1

f
(k)
ij P

(n−k)
jj

)
zn

= δij +
∞∑
n=0

(
n∑
k=0

f
(k)
ij P

(n−k)
jj

)
zn

= δij +
∞∑
k=0

f
(k)
ij z

k
∞∑
n=k

P
(n−k)
jj zn−k

= δij +

( ∞∑
n=0

f
(n)
ij zn

)
·

( ∞∑
n=0

P
(n)
jj z

n

)
= δij + Fij(z) · Pjj(z), |z| ≤ 1. (21.4)
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Kapitel 21. Markovketten in diskreter Zeit

Stellt man diese Gleichung für i = j nach Pjj(z) um, so erhält man

Pjj(z) =
1

1− Fjj(z)
, |z| ≤ 1.

Verwendet man diesen Wert für Pjj(z) in (21.4), so ergibt sich für i 6= j:

Pij(z) =
Fij(z)

1− Fjj(z)
, |z| ≤ 1.

Mit diesen Vorüberlegungen lässt sich nun der folgende Satz beweisen:

21.20 Satz:
a) Ein Zustand j ∈ E ist genau dann rekurrent, wenn

∞∑
k=0

P
(k)
jj =∞ gilt.

b) Ist j ∈ E transient, so folgt für alle i ∈ E, dass

∞∑
k=1

P
(k)
ij <∞ gilt.

Beweis:
a) Es gilt

∞∑
n=0

P
(n)
jj = lim

z→1−
Pjj(z) = lim

z→1−

1

1− Fjj(z)
=

1

1− f∗jj
.

Aus der Tatsache, dass f∗jj = 1 genau dann gilt, wenn j rekurrent ist, folgt nun die
Behauptung.

b) Ist j transient, dann gilt f∗jj < 1 und damit

lim
z→1−

Pjj(z) = lim
z→1−

1

1− Fjj(z)
=

1

1− f∗jj
<∞

∞∑
k=1

P
(k)
ij = lim

z→1−
Pij(z) = f∗ij · lim

z→1−
Pjj(z) <∞.

�

Es sollen nun noch Zusammenhänge zwischen Rekurrenz, Periodizität und Erreichbarkeit
gezeigt werden.

21.21 Satz:
Rekurrenz ist eine Klasseneigenschaft, d.h. gilt i ↔ j und ist i rekurrent, dann ist auch j
rekurrent.

Beweis:
Aus i↔ j folgt laut Definition die Existenz natürlicher Zahlen n und m mit den Eigenschaften

P
(m)
ij > 0 und P

(n)
ji > 0. Sei ν > 0.

P
(m+ν+n)
jj =

∑
k∈E

P
(m+ν)
jk · P (n)

kj =
∑
k∈E

(∑
`∈E

P
(m)
j` · P

(ν)
`k

)
P

(n)
kj

k=`=i
≥ P

(m)
ji · P

(ν)
ii · P

(n)
ij

=⇒
∞∑
ν=0

P
(m+ν+n)
jj ≥ P (m)

ji · P
(n)
ij ·

∞∑
ν=0

P
(ν)
ii .
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21.2. Klassifikation von Zuständen

Ist i rekurrent, so ist
∑∞

ν=0 P
(ν)
ii = ∞. Somit hat auch die Gesamtsumme den Wert ∞. Der

Zustand j ist also rekurrent. �

21.22 Satz:
Ist i rekurrent und i → j (j 6= i), so gilt f∗ji = 1, insbesondere ist auch j → i und somit
f∗ij = 1.

Beweis:
Da i rekurrent ist, gilt f∗ii = 1. Setze g

(k)
ij = P (Xk = j,Xν 6= i, 0 < ν < k | X0 = i), so folgt

unter Verwendung der Markoveigenschaft für k ≥ 1

0 =1− f∗ii = P (Xn 6= i, n ∈ N | X0 = i) ≥ P (Xk = j,Xn 6= i, n ∈ N | X0 = i)

=P (Xn 6= i, n > k | X0 = i,Xk = j,Xν 6= i, 0 < ν < k)

· P (Xk = j,Xν 6= i, 0 < ν < k | X0 = i)

=P (Xn 6= i, n > 0 | X0 = j) · g(k)
ij =

(
1− f∗ji

)
g

(k)
ij .

Da i→ j vorausgesetzt ist, ist g
(k)
ij > 0 für ein k ∈ N und es folgt f∗ji = 1.

Damit gilt j → i, nach Satz 21.21 ist auch j rekurrent und aus Symmetriegründen folgt
f∗ij = 1. �

21.23 Satz:
Periodizität mit Periode d ist eine Klasseneigenschaft, d.h. gilt i↔ j und ist i periodisch mit
Periode d, so auch j.

Beweis:
Es wird verwendet, dass für d–periodische Zustände i der Fall P

(n)
ii > 0 höchstens für d | n

eintreten kann. Wegen i ↔ j gibt es m,n ∈ N, so dass β := P
(m)
ij · P (n)

ji > 0 ist. Dann ist
(nach der Gleichung von Chapman–Kolmogorov)

P
(m+n)
ii ≥ β,

und da d nach Definition die kleinste Periode ist, folgt d | (m+n). Wiederum nach Chapman–
Kolmogorov gilt für alle k ∈ N

P
(m+k+n)
ii ≥ βP (k)

jj

und es folgt

P
(k)
jj > 0 ⇒ P

(m+k+n)
ii > 0 ⇒ d|(m+ k + n) ⇒ d|k.

Für die Periode d′ von j gilt daher d|d′. Wegen der Symmetrie von i↔ j kann die Argumen-
tation auch umgekehrt werden und es folgt d′|d und somit d = d′.
Der Fall d = 1 ist im Beweis erlaubt, insbesondere ist Aperiodizität eine Klasseneigenschaft.�
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Kapitel 21. Markovketten in diskreter Zeit

21.24 Beispiel:
Für die homogene Markovkette (Xn)n∈N0 mit dem Zustandsraum E = N0 habe die Über-
gangsfunktion die Form

P =


p0 1− p0

p1 0 1− p1

p2 0 0 1− p2
...

. . .

 .

Dabei möge 0 < pi < 1 für alle i ∈ N0 gelten.
Von jedem Zustand j ∈ N0 ist der Zustand 0 in einem Schritt erreichbar, von dort ist der
Zustand m in m Schritten erreichbar, d.h. die Markovkette ist irreduzibel. Unabhängig vom

Startzustand i ist P
(m)
i0 > 0 für alle m ∈ N und insbesondere ist der Zustand 0 aperiodisch.

Wegen der Irreduzibilität sind dann auch alle anderen Zustände aperiodisch.
Da (Xn)n∈N0 irreduzibel ist, genügt es, den Zustand 0 auf Rekurrenz zu untersuchen; d.h. es
muss getestet werden, unter welchen Voraussetzungen

f∗00 =
∞∑
n=1

f
(n)
00 = 1 mit f

(n)
00 = P (Xn = 0, Xi 6= 0 (1 ≤ i ≤ n− 1) | X0 = 0)

gilt. Offensichtlich ist

f
(1)
00 = p0 = 1− (1− p0).

Für n ≥ 2 gilt

f
(n)
00 =

(
n−2∏
i=0

(1− pi)

)
pn−1 =

(
n−2∏
i=0

(1− pi)

)
(1− (1− pn−1)) =

n−2∏
i=0

(1− pi)−
n−1∏
i=0

(1− pi),

so dass sich für die zugehörige Partialsumme eine Teleskopsumme ergibt:

m+1∑
n=1

f
(n)
00 = 1−

m∏
i=0

(1− pi).

Nach einem Satz aus der Analysis strebt das Produkt
m∏
i=0

(1 − pi) für m → ∞ (unter der

Voraussetzung 0 < pi < 1) genau dann gegen 0, wenn
∞∑
i=0

pi =∞.

Zusammenfassend können wir deshalb feststellen:

• (Xn)n∈N0 ist irreduzibel,

• (Xn)n∈N0 ist aperiodisch und

• (Xn)n∈N0 ist genau dann rekurrent, wenn
∞∑
i=0

pi divergiert.
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21.3. Grenzverhalten von Markovketten

21.3 Grenzverhalten von Markovketten

Ziel dieses Abschnittes ist die Berechnung der Grenzwerte πi := limn→∞ P
(n)
ii bzw. πji :=

limn→∞ P
(n)
ji . Die Existenz der Grenzwerte kann auf den Fundamentalsatz der Erneuerungs-

theorie (vergleiche Stochastik II, Kapitel 17) zurückgeführt werden.

Um zunächst eine diskrete Erneuerungsgleichung für P
(n)
ji zu erhalten, summiere man über

den größten Zeitpunkt k < n mit Xk = i. Unter Verwendung der Markoveigenschaft erhält
man dann

P
(n)
ji = f

(n)
ji +

n−1∑
k=0

P (Xk = i,Xk+1 6= i, . . . ,Xn−1 6= i,Xn = i | X0 = j)

= f
(n)
ji +

n−1∑
k=0

P (Xk+1 6= i, . . . ,Xn−1 6= i,Xn = i | Xk = i,X0 = j) · P (Xk = i | X0 = j)

= f
(n)
ji +

n−1∑
k=0

P (X1 6= i, . . . ,Xn−k−1 6= i,Xn−k = i | X0 = i) · P (k)
ji

= f
(n)
ji +

n−1∑
k=0

f
(n−k)
ii P

(k)
ji

bzw.

P
(n)
ji = f

(n)
ji +

n∑
k=0

f
(n−k)
ii P

(k)
ji (j, i ∈ E),

wenn man f
(0)
ij := 0 vereinbart. Diese diskrete Erneuerungsgleichung wird durch

fji +Rii ∗ fji (j, i ∈ E)

gelöst; dabei istRii die Erneuerungsfunktion des eingebetteten Erneuerungsprozesses
(
T

(i)
n

)
n∈N0 .

21.25 Satz:
a) Ist i ∈ E positiv rekurrent mit Gitterkonstante d, so gilt: lim

n→∞
P

(nd)
ii = d

µii
.

b) Ist i ∈ E null–rekurrent mit Gitterkonstante d, so gilt: lim
n→∞

P
(nd)
ii = 0.

c) Ist i ∈ E transient, so gilt: lim
n→∞

P
(n)
ji = 0 für alle j ∈ E.

d) Ist i ∈ E rekurrent mit Gitterkonstante d, so existiert ein cji ∈ N, so dass lim
n→∞

P
(cji+nd)
ji =

f∗ji · d
µii

für alle j ∈ E gilt.

Beweis:
Punkt c) folgt aus Satz 21.20, wonach

∑∞
n=1 P

(n)
ji <∞ und somit P

(n)
ji eine Nullfolge ist. Die

Aussagen a), b) und d) folgen aus dem Fundamentalsatz der Erneuerungstheorie (arithmeti-
scher Fall), demzufolge für alle c = 0, 1, . . . , d− 1

lim
n→∞

Rii ∗ fji(c+ nd) =


d
µii

∑
n∈N0

f
(c+nd)
ji , µii <∞

0 , µii =∞
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gilt. Da d als kleinste Gitterkonstante vorausgesetzt ist, kann c = cji (eindeutig) so gewählt

werden, dass P
(m)
ji > 0 höchstens für m ≡ cji mod d gilt. Damit gilt auch f

(m)
ji > 0 höchstens

für m ≡ cji mod d und da f
(m)
ji eine Nullfolge ist (die Reihe konvergiert), folgt im Fall µii <∞

lim
n→∞

P
(cji+nd)
ji =

d

µii

∑
n∈N0

f
(cji+nd)
ji =

d

µii

∑
m∈N0

f
(m)
ji =

d

µii
f∗ji.

Im Fall j = i muss cji = 0 gewählt werden, wegen der vorausgesetzten Rekurrenz ist f∗ii = 1,
und damit folgt die Behauptung. �

21.26 Bemerkung:
Der Satz hat großen praktischen Nutzen: Es wird eine Markovkette, deren Werte zu berech-
nen nicht möglich oder zu aufwendig ist, betrachtet. Durch Simulation ist es möglich, die
Aufenthaltswahrscheinlichkeit im Zustand i zu bestimmen. Diese wird nach der Aussage des
Satzes gegen d

µii
konvergieren. Man kann den Wert µii also durch Simulation annähern.

In Erweiterung von Satz 21.21 gilt

21.27 Satz:
Null–Rekurrenz (und damit auch positive Rekurrenz) ist eine Klasseneigenschaft, d.h. falls
i↔ j und i null–rekurrent, so ist auch j null–rekurrent.

Beweis:
Ist i rekurrent, so ist nach Satz 21.21 auch j rekurrent. Wegen i ↔ j gibt es m,n ∈ N, so

dass β := P
(m)
ij · P (n)

ij > 0 ist. Dann ist (nach Chapman–Kolmogorov) für alle k ∈ N0

P
(m+k+n)
ii ≥ βP (k)

jj

und es folgt

lim
k→∞

P
(k)
jj ≤

1

β
lim
k→∞

P
(k)
ii .

Für einen null–rekurrenten Zustand i verschwindet nach Satz 21.25 die rechte und damit auch
die linke Seite. Da j rekurrent ist, folgt erneut mit Satz 21.25, dass j null–rekurrent ist. �

21.28 Bemerkung:
Die Sätze 21.21, 21.23 und 21.27 besagen, dass Rekurrenz, Transienz, positive Rekurrenz,
Null–Rekurrenz, Periodizität mit Periode d ≥ 1 und Aperiodizität Klasseneigenschaften dar-
stellen.

21.29 Beispiel (Symmetrischer Random Walk auf R):
Wir symmetrisieren das Irrfahrtproblem aus Beispiel 21.10, d.h. wir wählen E = Z und es sei p

die Wahrscheinlichkeit für den Übergang von n nach n+1 und q = 1−p die Wahrscheinlichkeit
für den Übergang von n nach n− 1. Dann gilt

P
(2n+1)
00 = 0 (n = 0, 1, 2, . . . ),

P
(2n)
00 =

(
2n

n

)
pnqn (n = 1, 2, . . .).
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Mit Hilfe der Stirlingschen Formel

n! ≈ nn+0.5e−n
√

2π

folgt

P
(2n)
00 ≈ (p · q)n22n

√
πn

=
(4pq)n√
πn

.

Die Reihe konvergiert also für 4pq < 1 und divergiert für 4pq ≥ 1. Damit gilt

∞∑
n=0

P
(n)
00 =∞ ⇐⇒ p = q =

1

2
.

Intuitiv wird für p 6= q klar: Wenn eine Irrfahrt in der Null startet, so strebt sie für p > q
mit positiver Wahrscheinlichkeit gegen +∞ und für p < q gegen −∞, ohne je zur Null
zurückzukehren.

21.30 Beispiel (Symmetrischer Random Walk im R2):
Beim symmetrischen zweidimensionalen Random Walk im R2 sind die Wahrscheinlichkeiten
für eine Bewegung um 1 nach rechts, links, oben und unten jeweils 1/4. Es wird wieder der
Zustand 0 auf Rekurrenz untersucht.
Dazu werden alle Pfade, in denen das Teilchen während der Irrfahrt i Einheiten nach rechts, i
Einheiten nach links und je j Einheiten nach oben oder unten bewegt wird (mit 2i+2j = 2n),
untersucht. Dann ist

P
(2n+1)
00 = 0 (n = 0, 1, 2, . . . ),

P
(2n)
00 =

∑
i+j=n

(2n)!

i!i!j!j!

(1

4

)2n
(n = 1, 2, . . . ).

Erweitert man P
(2n)
00 mit (n!)2, so erhält man

P
(2n)
00 =

(
1

4

)2n(2n

n

) n∑
i=0

(
n

i

)(
n

n− i

)
=

(
1

4

)2n(2n

n

)2

und mit der Stirlingschen Formel schließlich P
(2n)
00 ≈ 1

nπ . Da

∞∑
n=0

P
(n)
00 =∞,

ist 0 ein rekurrenter Zustand.

21.31 Beispiel (Symmetrischer Random Walk im R3):
Beim symmetrischen Random Walk im R3 sind die Wahrscheinlichkeiten für eine Bewegung
um 1 nach rechts, links, oben, unten, vorne und hinten jeweils 1/6. Wie im ein- bzw. zwei-
dimensionalen Fall wird der Zustand 0 auf Rekurrenz untersucht. Dazu werden alle Pfade
betrachtet, in denen das Teilchen während der Irrfahrt i Einheiten nach rechts, i Einheiten
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nach links, j Einheiten nach oben, j Einheiten nach unten, n − i − j Einheiten nach vorne
und n− i− j Einheiten nach hinten bewegt wird (i+ j ≤ n). Es folgt

P
(2n+1)
00 = 0, (n = 0, 1, 2, . . . ),

P
(2n)
00 =

∑
0≤i+j≤n

(2n)!

i!i!j!j!(n− i− j)!(n− i− j)!

(
1

6

)2n

(n = 1, 2, . . .).

Erweitern mit (n!)2 und Ausklammern von (1/2)2n ergibt

P
(2n)
00 =

1

22n

(
2n

n

) ∑
0≤i+j≤n

[
n!

i!j!(n− i− j)!

]2(1

3

)2n

(n = 1, 2, . . .)

P
(2n)
00 ≤ cn

1

22n

(
2n

n

)
1

3n
mit cn := max

0≤i+j≤n

[
n!

i!j!(n− i− j)!

]
(n = 1, 2, . . .)

unter Verwendung von ∑
0≤i+j≤n

n!

i!j!(n− i− j)!

(
1

3

)n
= 1.

Für große n wird das Maximum in cn angenommen für i = j ≈ n/3. Dann ist

P
(2n)
00 ≤ n!(

n
3

)
!
(
n
3

)
!
(
n
3

)
!22n3n

(
2n

n

)
≈ 3

√
3

2π3/2n3/2
.

Der Zustand 0 ist also nicht rekurrent, da

∞∑
n=1

3
√

3

2π3/2n3/2
<∞ =⇒

∞∑
n=1

P
(2n)
00 <∞.

Es gibt also eine positive Wahrscheinlichkeit, mit der ein Teilchen einen verlassenen Zustand
nicht mehr erreicht.

21.32 Satz:
Es sei E eine aperiodische positiv-rekurrente Klasse mit πj = lim

n→∞
P

(n)
ij für alle i, j ∈ E.

Dann hat das Gleichungssystem

ui =
∑
k∈E

uk · Pki (i ∈ E) (21.5)

genau eine Lösung (ui)i∈E mit ui ≥ 0 für alle i ∈ E und
∑
i∈E

ui = 1, nämlich ui = πi.

Beweis:
Aufgrund der Gleichung von Chapman und Kolmogorov gilt:

P
(n+1)
ij =

∑
k∈E

P
(n)
ik · Pkj (i ∈ E).
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Indem man auf beiden Seiten den Grenzübergang n → ∞ durchführt und das Lemma von
Fatou heranzieht, erhält man

πj = lim
n→∞

P
(n+1)
ij = lim

n→∞

∑
k∈E

P
(n)
ik · Pkj ≥

∑
k∈E

lim
n→∞

P
(n)
ik · Pkj

=
∑
k∈E

πk · Pkj (j ∈ E).

Um die Beziehung

πj =
∑
k∈E

πk · Pkj (j ∈ E)

nachzuweisen, wird angenommen, dass für mindestens einen Index j∗

πj∗ >
∑
k∈E

πk · Pkj∗

gilt. Würde man nun die Ungleichung πj ≥
∑

k∈E πk · Pkj über alle j summieren, so bekäme
man ∑

j∈E
πj >

∑
j∈E

∑
k∈E

πk · Pkj =
∑
k∈E

πk
∑
j∈E

Pkj =
∑
k∈E

πk,

was aber nicht sein kann. Deshalb muss

πj =
∑
k∈E

πk · Pkj (j ∈ E)

sein. Iteriert man diese Gleichung, erhält man zunächst

πj =
∑
k∈E

πk · Pkj =
∑
k∈E

(∑
`∈E

π` · P`k

)
· Pkj

=
∑
`∈E

π`
∑
k∈E

P`k · Pkj =
∑
`∈E

π` · P
(2)
`j (j ∈ E).

Indem man in dieser Weise fortfährt, ergibt sich schließlich

πj =
∑
k∈E

πk · P
(n)
kj (j ∈ E).

Da
∣∣∣P (n)
ij

∣∣∣ ≤ 1 für alle n ist und
∑

j∈E πj < ∞ ist, kann der Satz von der majorisierten

Konvergenz angewandt werden:

πj = lim
n→∞

∑
k∈E

πk · P
(n)
kj =

∑
k∈E

πk · lim
n→∞

P
(n)
kj

=

(∑
k∈E

πk

)
· πj .

Aus dieser Gleichung aber folgt zusammen mit der Beziehung πj > 0 für alle j ∈ E (E ist
eine positiv rekurrente Klasse), dass

∑
i∈E πi = 1 sein muss.
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Zum Nachweis der Eindeutigkeit wird angenommen, dass es eine zweite Lösung (xi)i∈E mit
xi ≥ 0 für alle i ∈ E und

∑
i∈E xi = 1 gibt. Genauso wie oben schließt man, dass dann auch

xj =
∑
i∈E

xi · P (n)
ij (j ∈ E)

gelten muss. Nach dem Satz von der majorisierten Konvergenz gilt:

xj = lim
n→∞

∑
i∈E

xi · P (n)
ij =

∑
i∈E

xi

(
lim
n→∞

P
(n)
ij

)
=
∑
i∈E

xi · πj (j ∈ E).

Wegen der Voraussetzung
∑
i∈E

xi = 1 muss dann aber xj = πj für alle j ∈ E gelten. �

21.33 Definition:
Allgemein heißt u = (ui)i∈E stationäres Maß für die Markovkette (Xn)n∈N0, falls ui ≥ 0
und ui =

∑
k∈E uk · Pki für alle i ∈ E erfüllt ist. Es wird dann auch kurz in Zeilenvektor-

schreibweise u = uP geschrieben. Gilt zusätzlich
∑

i∈E ui = 1, so spricht man von einer
stationären Verteilung.

21.34 Beispiel (Eindimensionale Irrfahrt):
Als Anwendungsbeispiel für Satz 21.32 greifen wir wieder auf das Irrfahrtproblem aus Beispiel
21.10 zurück. Es sei also (Xn)n∈N0 eine homogene Markovkette mit Zustandsraum E := N0

und Einschritt–Übergangswahrscheinlichkeit

P :=


1− p p 0 · · · · · ·
q 1− p− q p · · · · · ·
0 q 1− p− q p · · ·
...

. . .
. . .

. . .
...

. . .
. . .

 ,

wobei 0 < p+ q < 1 gilt.
Da nur Übergänge zu den Nachbarzuständen erlaubt sind, reduziert sich das System der
stationären Gleichungen

πj =

∞∑
k=0

πk · Pkj (j = 0, 1, 2, . . .)

auf eine lineare Rekursion zweiter Ordnung

π0 = (1− p)π0 + qπ1

π1 = pπ0 + (1− p− q)π1 + qπ2

...

πj = pπj−1 + (1− p− q)πj + qπj+1

...
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21.4. Berechnung von Absorptionswahrscheinlichkeiten

bzw.

qπ1 = pπ0

qπj+1 = (p+ q)πj − pπj−1 (j = 1, 2, . . .).

Wir zeigen πj =
(
p
q

)j
π0 (j = 1, 2, . . .) mittels Induktion. Für j = 0 und j = 1 ist die Aussage

evident. Wir schließen nun von j − 1 und j auf j + 1:

πj+1 =
1

q

(
(p+ q)

pj

qj
π0 − p

pj−1

qj−1
π0

)
=

1

q

(
pj+1

qj
+

pj

qj−1
− pj

qj−1

)
π0 =

pj+1

qj+1
π0.

Damit ist für p < q die Existenz einer nichtnegativen summierbaren Lösung der stationären
Gleichungen nachgewiesen. Folglich ist (Xn)n∈N0 für p < q positiv rekurrent. π0 berechnet
man mit Hilfe der Normierungsbedingung

∑∞
j=0 πj = 1, d.h. es muss

1 =
∞∑
j=0

πj = π0 ·
∞∑
j=0

(
p

q

)j
=

π0

1− p
q

gelten, woraus π0 = 1− p
q folgt. Zusammenfassend erhält man als Grenzverteilung:

πj =

(
1− p

q

)(
p

q

)j
(j = 0, 1, 2, . . . ).

21.4 Berechnung von Absorptionswahrscheinlichkeiten

Es werden im Folgenden diese Bezeichnungen benutzt:

• αi(R) bezeichne die Wahrscheinlichkeit, dass die im transienten Zustand i startende
Markovkette (Xn)n∈N0 in der Menge R absorbiert wird.

• αni (R) bezeichne die Wahrscheinlichkeit, dass die im transienten Zustand i startende
Markovkette (Xk)k∈N0 nach genau n Schritten in der Menge R absorbiert wird.

Ferner sei T die Menge aller transienten Zustände. Zunächst lässt sich damit feststellen:

(i) αi(R) =
∑∞

n=1 α
n
i (R) ≤ 1 (i ∈ T ),

(ii) α1
i (R) =

∑
j∈R Pij (i ∈ T ),

(iii) αni (R) =
∑

j∈T Pij · α
n−1
j (R) (i ∈ T, n ≥ 2).
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Kapitel 21. Markovketten in diskreter Zeit

Mit diesen Beziehungen erhält man:

αi(R)
(i)
=

∞∑
n=1

αni (R)

= α1
i (R) +

∞∑
n=2

αni (R)

(iii)
= α1

i (R) +
∞∑
n=2

∑
j∈T

Pij · αn−1
j (R)

= α1
i (R) +

∑
j∈T

Pij

∞∑
n=2

αn−1
j (R)

(i)
= α1

i (R) +
∑
j∈T

Pij · αj(R)

(ii)
=
∑
j∈R

Pij +
∑
j∈T

Pij · αj(R).

Unter Verwendung der Bezeichnungen

α := (α1(R), α2(R), . . . , αN (R))T

β :=

∑
j∈R

P1j ,
∑
j∈R

P2j , . . . ,
∑
j∈R

PNj

T

kann man das obige Gleichungssystem auch in Matrixform notieren:

α = β + Pα bzw. α(I − P ) = β,

wobei I die Einheitsmatrix bedeutet.

21.35 Beispiel (Gambler’s Ruin):
Als Anwendungsbeispiel wird das folgende Glücksspiel betrachtet: Ein Spieler beginnt das
Spiel mit einem Startkapital von i Geldeinheiten. Mit Wahrscheinlichkeit p gewinnt er auf
jeder Stufe eine Einheit hinzu, mit Wahrscheinichkeit q := 1− p verliert er eine Einheit. Das
gemeinsame Kapital von Bank und Spieler beträgt n Einheiten. Es soll die Wahrscheinlichkeit
αi(0), i ∈ T := {1, 2, . . . , n − 1}, berechnt werden, dass der mit dem Kapital i beginnende
Spieler ruiniert wird. Die zu diesem Spiel gehörende Übergangsmatrix hat die Ordnung n+ 1
und lautet:

P =



1 0 0 · · · 0
q 0 p 0 · · · 0

q 0 p
...

. . .
. . .

. . . 0
q 0 p

0 0 · · · 0 0 1


.

Da nur Übergänge zu den Nachbarzuständen erlaubt sind, reduziert sich das Gleichungssystem
für die Berechnung der αi := αi(0), i = 1, . . . , n− 1, auf die Gleichung

αi = qαi−1 + pαi+1 (2 ≤ i ≤ n− 2)
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21.4. Berechnung von Absorptionswahrscheinlichkeiten

mit den Randbedingungen

α1 = q + pα2,

αn−1 = qαn−2.

(Beachte: Es wird nur die Absorptionswahrscheinlichkeit in der Null betrachtet, also n /∈ R.)
Die zur Differenzengleichung gehörende charakteristische Gleichung (siehe Anhang A) lautet

x = q + px2.

Wegen p+ q = 1 sind die zugehörigen Wurzeln

x1 = 1 und x2 =
q

p
.

Im Fall p 6= q lautet deshalb die allgemeine Lösung

αi = c1 + c2 ·
(
q

p

)i
(i = 1, 2, . . . , n− 1)

und im Fall p = q
αi = c1 + c2 · i (i = 1, 2, . . . , n− 1).

Die Konstanten c1 und c2 bestimmt man mit Hilfe der Randbedingungen.

1. Fall (p 6= q):

α1 = q + pα2 ⇐⇒ c1 + c2
q

p
= q + p

(
c1 + c2

q2

p2

)
⇐⇒ c1 + c2

q

p
= q + (1− q)c1 + c2

q

p
(1− p)

⇐⇒ c2 = 1− c1.

αn−1 = qαn−2 ⇐⇒ c1 + c2

(
q

p

)n−1

= q ·

(
c1 + c2

(
q

p

)n−2
)

⇐⇒
(
q

p

)n−1

(1− p)c2 = (q − 1)c1

⇐⇒ pnc1 + qnc2 = 0

⇐⇒ c1 =
qn

qn − pn
und c2 =

−pn

qn − pn
.

Damit wird

αi =

(
q
p

)n
−
(
q
p

)i(
q
p

)n
− 1

(i = 1, . . . , n− 1).
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2. Fall (p = q = 0.5):

α1 = q + pα2 ⇐⇒ c1 + c2 = q + p · (c1 + 2c2)

⇐⇒ c1(1− p) = q + (2p− 1)c2

⇐⇒ c1 =
q

1− p
= 1.

αn−1 = qαn−2 ⇐⇒ c1 + (n− 1)c2 = q · (c1 + (n− 2)c2

⇐⇒ 1 + (n− 1)c2 =
1

2
· (1 + (n− 2)c2)

⇐⇒
(

(n− 1)− 1

2
(n− 2)

)
c2 =

1

2
− 1

⇐⇒ c2 = − 1

n
.

Damit ergibt sich

αi = c1 + c2 · i = 1− i

n
=
n− i
n

(i = 1, 2, . . . , n− 1).

Dies bedeutet, dass bei einem fairen Spiel (p = q = 1
2) die Ruinwahrscheinlichkeit für denje-

nigen (Bank oder Spieler) größer ist, der mit weniger Startkapital anfängt.

21.36 Beispiel (Grenzverhalten eines Verzweigungsprozesses):
In der Einleitung wurde festgestellt, dass sich die Dynamik eines Verzweigungsprozesses durch
die Rekursion

Xn+1 =

Xn∑
i=1

ξi (n = 0, 1, 2, . . .), X0 ≡ 1,

beschreiben lässt (vgl. Beispiel 21.10), wobei die Größen ξ1, ξ2, . . . eine Folge stochastisch
unabhängiger, identisch verteilter Zufallsgrößen bilden mit

P (ξi = k) =: pk (k = 0, 1, 2, . . .) und
∞∑
k=0

pk = 1.

Es soll zunächst untersucht werden, wie sich die mittlere Population E[Xn] für n→∞ verhält.
Dazu werden die erzeugenden Funktionen

G(z) :=
∞∑
k=0

pkz
k = E

[
zξ1
]
, |z| ≤ 1,

und

Gn(z) :=

∞∑
k=0

P (Xn = k) · zk = E
[
zXn

]
(n = 0, 1, 2, . . .)

eingeführt. Wegen X0 ≡ 1 ist

G0(z) = P (X0 = 1) · z = z

und wegen P (X1 = k) = P (ξ1 = k) ist

G1(z) = G(z).
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Es gilt

Gn+1(z) =
∞∑
k=0

P (Xn+1 = k) · zk

=

∞∑
k=0

∞∑
j=0

P (Xn+1 = k | Xn = j) · P (Xn = j) · zk

=

∞∑
j=0

P (Xn = j)

∞∑
k=0

P (ξ1 + ξ2 + . . .+ ξj = k) · zk︸ ︷︷ ︸
erzeugende Funktion von ξ1+ξ2+...+ξj

=
∞∑
j=0

P (Xn = j) · [G(z)]j

= Gn(G(z)) (n = 0, 1, 2, . . .).

Es soll nun der Erwartungswert von Xn , n = 1, 2, . . ., berechnet werden. Dazu wird

E[X1] = E[ξ1] := m

gesetzt. Beachte dabei

E[Xn] = G′n(1) (n = 1, 2, . . .).

Um E[Xn] = G′n(1) zu berechnen, wird die Rekursion

Gn+1(z) = Gn(G(z)) (n = 0, 1, 2, . . .)

benutzt. Durch Differentation erhält man:

G′n+1(z) = G′n(G(z)) ·G′(z) (n = 0, 1, 2, . . .).

Hieraus folgt wegen G(1) = 1:

G′n+1(1) = G′n(1) ·G′(1) (n = 0, 1, 2, . . .).

Damit wird

G′n+1(1) = G′n(1) ·G′(1) = G′n−1(1) · [G′(1)]2 = G′n−2(1) · [G′(1)]3

= . . . = G′1(1) · [G′(1)]n = [G′(1)]n+1

und folglich

E[Xn+1] = mn+1 =⇒ E[X∞] =


0 , m < 1
1 , m = 1
∞ , m > 1.

Abschließend soll nun die Aussterbewahrscheinlichkeit

qn := P (Xn = 0)
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Kapitel 21. Markovketten in diskreter Zeit

berechnet werden. Es wird sich zeigen, dass sich diese mit Hilfe der erzeugenden Funktion
berechnen lässt. Ausgangspunkt der Untersuchung sind die Gleichungen:

Gn+1(z) = Gn(G(z)) (n = 0, 1, 2, . . .), (21.6)

G0(z) = z, (21.7)

G1(z) = G(z). (21.8)

Damit ergibt sich:

Gn+1(z)
(21.6)

= Gn(G(z))
(21.6)

= Gn−1(G(G(z)))
(21.8)

= Gn−1(G1(G(z)))
(21.6)

= Gn−1(G2(z))

Gn+1(z)
(21.6)

= Gn−2(G(G(G(z))))
(21.6)

= Gn−2(G2(G(z)))
(21.6)

= Gn−2(G3(z)).

Allgemein gilt folglich

Gn+1(z) = Gn−k(Gk+1(z))

und speziell für k := n− 1

Gn+1(z) = G(Gn(z)) (n = 0, 1, 2, . . .).

Mit qn := P (Xn = 0) = Gn(0) folgt

qn+1 = G(qn) (n = 0, 1, 2, . . .).

Es sei nun 0 < p0 = P (kein Nachkomme) < 1. Die Folge (qn)∞n=1 ist monoton wachsend, da
G(z) für z > 0 monoton wächst (Potenzreihe mit ausschließlich nichtnegativen Koeffizienten).

q1 = G1(0) = p0 > 0

q2 = G(q1) ≥ G(0) = P (X1 = 0) = q1

...

qn = G(qn−1)
I.V.
≥ G(qn−2) = qn−1.

Da die Folge (qn)∞n=1 nach oben durch die 1 beschränkt ist, konvergiert sie mit Grenzwert
α := limn→∞ qn, wobei sich α als Lösung der Gleichung

α = G(α)

herausstellt (Satz von der monotonen Konvergenz). Dabei gilt

α ∈ (0, 1) für G′(1) = m > 1 und α = 1 für G′(1) = m < 1.

21.5 Periodische Markovketten

In diesem Abschnitt wird allgemein vorausgesetzt, dass (Xn)n∈N0 eine über dem Zustands-
raum E irreduzible, d–periodische Markovkette mit d ≥ 2 ist. (In Satz 21.23 wurde gezeigt,
dass d–Periodizität eine Klasseneigenschaft ist.) Da nach Definition d die minimale Periode

aller Zustände ist, gibt es für alle i, j ∈ E ein solches cij ∈ {0, 1, . . . , d− 1}, dass P
(m)
ij = 0 für
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alle m 6= cij mod d gilt. Für die cij gilt offensichtlich cii = 0 sowie cji = d− cij . Es sei daran
erinnert, dass nach Satz 21.25

lim
n→∞

P
(nd+cij)
ij =

d

µjj

gilt, falls E rekurrent ist (dann ist f∗ij = 1 für alle i, j). Es soll nun zunächst die spezielle

Blockstruktur der Übergangsmatrix analysiert werden.

21.37 Satz:
Es gibt derartige Teilmengen E0, E1, . . . , Ed−1 von E mit Ei ∩ Ej = ∅ für alle i 6= j und

E =
d−1⋃
i=0

Ei, dass Pij > 0 höchstens für i ∈ Ek−1 und j ∈ Ek (k < d) oder i ∈ Ed−1 und

j ∈ E0 gilt. Bei geeigneter Anordnung ergibt sich

P =


0 B01

0 B12

. . .
. . .

Bd−2,d−1

Bd−1,0 0


mit gegebenenfalls unendlich großen Blockmatrizen Bk−1,k (k < d) und Bd−1,0.

Beweis:
Man fixiere einen Zustand i und setze Er = {j ∈ E : cij = r} für alle r = 0, 1, . . . , d − 1.
Da jedem Zustand j genau ein Wert cij zugeordnet wurde, ergibt sich so eine Partition von
E. Aus der Definition der cij wird sofort klar, dass es sich dabei um eine Partition mit den
geforderten Eigenschaften handelt. �

Es wird nun πj = 1
µjj

für positiv rekurrente Zustände und πj = 0 im Übrigen gesetzt, wobei

µjj wie üblich die mittlere Rückkehrzeit in den Zustand j bezeichnet. In Satz 21.32 wurde
für aperiodische Markovketten gezeigt, dass π = (πj)j∈E die einzige normierte Lösung von
u = uP ist. Dieser Sachverhalt gilt jedoch auch für periodische Ketten.

21.38 Satz:
Es sei (Xn)n∈N0 eine über dem Zustandsraum E irreduzible, d–periodische Markovkette mit
d ≥ 2. Für jede nichtnegative, summierbare Lösung u = (ui)i∈E von

ui =
∑
k∈E

ukPki (i ∈ E),

kurz u = uP , gilt ui = cπi (i ∈ E) mit einer Konstanten c.
Ist E null–rekurrent oder transient, so ist ui = 0 für alle i; ist E positiv rekurrent, so definiert
(πi)i∈E eine stationäre Verteilung. Es gilt dann∑

i∈Er

πi =
1

d
(r = 0, 1, . . . , d− 1) und

∑
i∈E

πi = 1.

Dabei sind die Mengen E0, E1, . . . , Ed−1 wie in Satz 21.37 zu wählen.
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Beweis:
Die Definition der Mengen Er im Beweis von Satz 21.37 ist von i abhängig, zur genaueren
Betrachtung werden sie hier mit Er(i) bezeichnet. Da Pki > 0 höchstens dann eintreten kann,
wenn k ∈ Ed−1(i) ist, gilt nach der Gleichung von Chapman–Kolmogorov

P
(nd)
ii =

∑
k∈E

P
(nd−1)
ik Pki =

∑
k∈Ed−1(i)

P
(nd−1)
ik Pki.

Das Lemma von Fatou und Satz 21.25 über das Grenzverhalten von Markovketten liefern nun

dπi = lim
n→∞

P
(nd)
ii ≥

∑
k∈Ed−1(i)

lim
n→∞

P
(nd−1)
ik Pki =

∑
k∈E

dπkPki,

also

πi ≥
∑
k∈E

πkPki (21.9)

für alle i ∈ E. Nach dem Lemma von Fatou gilt auch für alle r = 0, 1, . . . , d− 1

1 = lim
n→∞

∑
j∈Er(i)

P
(nd+r)
ij ≥

∑
j∈Er(i)

lim
n→∞

P
(nd+r)
ij =

∑
j∈Er(i)

dπj ,

also ∑
j∈Er(i)

πj ≤
1

d
und

∑
j∈E

πj ≤ 1.

Somit konvergiert die Summe der πj und Summation von (21.9) liefert∑
i∈E

πi ≥
∑
i∈E

∑
k∈E

πkPki =
∑
k∈E

πk
∑
i∈E

Pki =
∑
k∈E

πk.

Da beide Seiten gleich und endlich sind, muss für alle i ∈ E in (21.9) Gleichheit bestehen.
Somit ist ui = πi eine Lösung des Gleichungssystems u = uP .
Es soll nun gezeigt werden, dass alle summierbaren Lösungen konstante Vielfache von π sind.
Es sei also (ui)i∈E eine Lösung von u = uP mit ui ≥ 0 und

∑
i∈E ui < ∞. Für alle n ∈ N0

folgt durch Iteration u = uP (n) und für jedes r = 0, 1, . . . , d− 1 gilt

ui =
∑

k∈Ed−r(i)

ukP
(nd+r)
ki .

Da (uk) summierbar ist, folgt mit dem Satz von der majorisierten Konvergenz

ui =

 ∑
k∈Ed−r(i)

uk

 dπi. (21.10)

Die eingeklammerte Summe hängt offensichtlich nicht mehr von r ab, damit auch nicht von
i (Änderung von i liefert lediglich eine Umnummerierung der Er) und es folgt ui = cπi.
Insbesondere ist für nullrekurrentes oder transientes E u = 0 die einzige nichtnegative sum-
mierbare Lösung von u = uP .
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Im Fall positiver Rekurrenz ist ui = πi > 0 eine summierbare Lösung. Einsetzen in (21.10)
und Division durch πi liefern

d
∑

k∈Ed−r(i)

πk = 1

bzw. ∑
k∈Er

πk =
1

d
und

∑
k∈E

πk = 1.

21.39 Bemerkung:
Die Sätze 21.32 und 21.38 liefern zusammen ein einfaches Kriterium für positive Rekurrenz.
Genau dann ist eine irreduzible Markovkette (Xn)n∈N0 positiv rekurrent, wenn das Glei-
chungssystem u = uP eine strikt positive und summierbare Lösung u besitzt.
Im Fall positiver Rekurrenz ist stets π = (πi)i∈E mit πi = 1

µii
die einzige durch

∑
πi = 1 nor-

mierte Lösung, d.h. die einzige stationäre Verteilung für (Xn)n∈N0 . Der Unterschied zwischen
periodischen und aperiodischen Ketten besteht in der Grenzverteilung, d.h. den Werten

gj := lim
n→∞

P
(n)
ij .

Im aperiodischen Fall ist die stationäre Verteilung auch die Grenzverteilung, im periodischen
Fall existiert keine Grenzverteilung, es existieren nur Grenzwerte von Teilfolgen.

21.40 Beispiel (Eindimensionale Irrfahrt):
Als Anwendungsbeispiel für Satz 21.38 wird die eindimensionale Irrfahrt auf der Menge N0

mit der Besonderheit p+ q = 1 betrachtet. Es sei (Xn)n∈N0 eine homogene Markovkette mit
Zustandsraum E := N0 und Einschritt–Übergangswahrscheinlichkeit

P :=


0 1 0 · · · · · ·
q 0 p · · · · · ·
0 q 0 p · · ·
...

. . .
. . .

. . .
...

. . .
. . .

 ,

wobei p+ q = 1 gilt. Der zugehörige Markovgraph hat die Form

Offensichtlich ist die Markovkette irreduzibel und 2–periodisch. Da nur Übergänge zu den
Nachbarzuständen erlaubt sind, reduziert sich das System der stationären Gleichungen

πj =
∞∑
k=0

πk · Pkj (j = 0, 1, 2, . . .)
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auf eine lineare Rekursion zweiter Ordnung

π0 = qπ1

π1 = π0 + qπ2

π2 = pπ1 + qπ3

...

πj = pπj−1 + qπj+1

...

Dieses System lässt sich rekursiv lösen, es gilt (durch Induktion)

π1 =
1

q
· π0

π2 =
1

q
· [π1 − π0] =

1

q
·
[

1

q
· π0 − π0

]
=

1

q
·
[

1− q
q

]
· π0 =

p

q2
· π0

...

πj+1 =
1

q
·
[
pj−1

qj
· π0

]
− p

q
·
[
pj−2

qj−1
· π0

]
=

(
1

q
− 1

)
·
(
pj−1

qj

)
· π0 =

(
pj

qj+1

)
· π0.

...

π0 berechnet man mit Hilfe der Normierungsbedingung
∑∞

k=0 πk = 1, es muss also

1 =

∞∑
k=0

πk = π0 ·

[
1 +

1

q
·
∞∑
k=1

(
p

q

)k−1
]

= π0 ·

1 +
1

q
· 1

1−
(
p
q

)


=
2q

q − p
· π0,

gelten, woraus

π0 =
q − p

2q

folgt. Diese Beziehung zeigt, dass genau im Fall q > p eine stationäre Verteilung existiert.

21.6 Kriterien für Rekurrenz und Transienz

Ein wichtiges Kriterium für positive Rekurrenz wurde bereits gezeigt: Genau dann liegt posi-
tive Rekurrenz vor, wenn das Gleichungssystem u = uP eine nichtnegative, von Null verschie-
dene und summierbare Lösung besitzt. Es gibt jedoch weitere einfache Kriterien für Rekurrenz
bzw. Transienz. Zunächst werden zwei Hilfsaussagen gezeigt.

21.41 Lemma:
Es sei E irreduzibel und i ∈ E beliebig. Genau dann ist E rekurrent, wenn f∗ji = 1 für alle
j 6= i ist.
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Beweis:
Ist E rekurrent, so folgt die Aussage unmittelbar aus Satz 21.22. Ist umgekehrt f∗ji = 1 für
alle j 6= i, so gilt

f∗ii = Pii +
∑
j 6=i

Pijf
∗
ji =

∑
j∈E

Pij = 1,

d.h. i ist rekurrent. �

21.42 Lemma:
Es sei A ⊂ E und q(i) = P (Xn ∈ A ∀n ≥ 1 | X0 = i) für alle i ∈ A. Dann wird das
Gleichungssystem

hi =
∑
j∈A

Pijhj , 0 ≤ hi ≤ 1, i ∈ A,

durch hi = q(i) gelöst und für jede weitere Lösung des Systems gilt hi ≤ q(i) für alle i ∈ A.

Beweis:
Definiere die |A| × |A|–Matrix Q als Q = P |A×A sowie

qn(i) = P (X1 ∈ A,X2 ∈ A, . . . ,Xn ∈ A | X0 = i)

=
∑

j1,...,jn∈A
P (X1 = j1, . . . , Xn = jn | X0 = i)

=
∑

j1,...,jn∈A
P (X1 = j1 | X0 = i) · . . . · P (Xn = jn | Xn−1 = jn−1)

=
∑

j1,...,jn∈A
Qi,j1 · . . . ·Qjn−1,jn

=
∑
j∈A

Qnij .

Offensichtlich fallen die qn monoton in n, d.h. qn+1(i) ≤ qn(i) und es gilt wegen der Stetigkeit
von oben

lim
n→∞

qn(i) = lim
n→∞

P (X1 ∈ A,X2 ∈ A, . . . ,Xn ∈ A | X0 = i)

= P

( ∞⋂
n=0

{X1 ∈ A, . . . ,Xn ∈ A}

∣∣∣∣∣X0 = i

)
= P (Xn ∈ A ∀n ≥ 1 | X0 = i) = q(i).

Der Satz von der monotonen Konvergenz zeigt nun, dass∑
j∈A

Qijq(j) =
∑
j∈A

Qij lim
n→∞

qn(j) = lim
n→∞

∑
j∈A

Qij
∑
k∈A

Qnjk

= lim
n→∞

∑
k∈A

Qn+1
ik = lim

n→∞
qn+1(i) = q(i), i ∈ A,
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gilt, d.h. {q(i)} ist eine Lösung des Gleichungssystems. Natürlich gilt auch 0 ≤ q(i) ≤ 1 für
alle i ∈ A.
Sei nun h irgendeine weitere Lösung mit 0 ≤ hi ≤ 1. Durch wiederholtes Einsetzen ergibt sich

hi =
∑
j∈A

Qijhj =
∑
j∈A

Qnijhj ≤
∑
j∈A

Qnij = qn(i), i ∈ A,

für alle n ∈ N und damit auch hi ≤ q(i). �

21.43 Satz (Rekurrenz– und Transienzkriterium):
Es sei (Xn)n∈N0 eine Markovkette mit irreduziblem Zustandsraum E. Betrachte das Glei-
chungssystem

hi =
∑
j 6=i0

Pijhj , 0 ≤ hi ≤ 1, i ∈ E \ {i0}. (21.11)

a) Gibt es ein solches i0, dass (21.11) nur die Lösung h ≡ 0 besitzt, so ist E rekurrent.

b) Gibt es ein solches i0, dass (21.11) eine von Null verschiedene Lösung h besitzt, so ist
E transient.

Beweis:
Nach Lemma 21.42 ist q(i) stets die punktweise größte Lösung des Gleichungssystems. Hier
gilt A = E \ {i0}, also

q(i) = P (Xn ∈ A ∀n ≥ 1 | X0 = i) = P (Xn 6= i0 ∀n ≥ 1 | X0 = i) = 1− f∗i,i0 .

Daher ist h ≡ 0 genau dann die einzige Lösung, wenn f∗i,i0 = 1 für alle i 6= i0 ist. Dies ist
wiederum nach Lemma 21.41 genau dann der Fall, wenn Rekurrenz vorliegt. �

21.44 Beispiel:
Betrachte wieder das Beispiel der eindimensionalen Irrfahrt aus Beispiel 21.40, also

P :=


0 1 0 · · · · · ·
q 0 p · · · · · ·
0 q 0 p · · ·
...

. . .
. . .

. . .
...

. . .
. . .

 .

Es wurde bereits gezeigt, dass genau für q > p eine stationäre Verteilung existiert, also positive
Rekurrenz vorliegt. Es soll nun gezeigt werden, dass für q = p Null–Rekurrenz und für q < p
Transienz vorliegt. Dazu betrachte man das Gleichungssystem (21.11) für i0 = 0, also

hi =
∞∑
j=1

Pijhj , i = 1, 2, . . . . (21.12)
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Es folgt h1 = ph2 sowie hk = qhk−1 + phk+1 für k ≥ 2 bzw.

h2 =
1

p
h1

hn =
1

p
(hn−1 − qhn−2) (n ≥ 3).

Wegen q = 1− p folgt h2 − h1 = 1
ph1 − h1 = q

ph1 und für n ≥ 3

hn − hn−1 =
1

p
(hn−1 − qhn−2)− hn−1 =

1

p
((1− p)hn−1 − qhn−2) =

q

p
(hn−1 − hn−2),

durch Induktion folgt

hn − hn−1 =

(
q

p

)n−1

h1 (n ≥ 2)

und Summation liefert schließlich

hn = h1

n∑
j=1

(
q

p

)j−1

(n ≥ 1).

Für h1 6= 0 und q = p wächst hn damit unbeschränkt. Die einzige beschränkte Lösung des
Gleichungssystems (21.12) ist also h ≡ 0 und es folgt Rekurrenz (da positive Rekurrenz nur
für q > p vorliegt, handelt es sich hier um Null–Rekurrenz). Für q < p hingegen konvergiert
hn offensichtlich und ist daher beschränkt. Durch geeignete Wahl von h1 6= 0 kann so eine
nichttriviale Lösung von (21.12) gefunden werden und es folgt Transienz.

Das nächste Kriterium scheint Satz 21.43 sehr ähnlich, der Unterschied bei der Summation
ist allerdings wesentlich.

21.45 Satz (Transienzkriterium):
Genau dann ist die über E irreduzible Markovkette (Xn)n∈N0 transient, wenn es ein solches
i0 ∈ E gibt, dass das Gleichungssystem

hi =
∑
j∈E

Pijhj , i 6= i0 (21.13)

eine beschränkte nichtkonstante Lösung besitzt.

Beweis:
Wir definieren eine neue Markovkette mit Übergangsmatrix P̃ vermöge P̃i0,j = δi0,j und

P̃ij = Pij für i 6= i0, d.h. bei entsprechender Anordnung ist

P̃ =


1 0 0 . . .

Pi1,i0 Pi1,i1 Pi1,i2 . . .
Pi2,i0 Pi2,i1 Pi2,i2 . . .

...
. . .

 .

Sei die ursprüngliche Kette (Xn)n∈N0 zunächst transient. Nach Lemma 21.41 gibt es dann
mindestens ein j mit f∗j,i0 < 1. In der neuen Kette sind alle Zustände außer i0 immer noch
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transient, i0 ist nun ein absorbierender Zustand. Wie in Abschnitt 21.4 bezeichnen wir mit
αj(i0) die Wahrscheinlichkeit, dass die in j startende (modifizierte) Markovkette in i0 absor-
biert wird. Dort wurde auch gezeigt, dass für i /∈ R

αi(R) =
∑
j∈R

P̃ij +
∑
j∈T

P̃ijαj(R)

gilt, falls R die Menge der absorbierenden und T die Menge aller transienten Zustände ist.
Hier gilt speziell R = {i0} und T = E \ {i0} und wegen αi0(i0) = 1 folgt

αi(i0) =
∑
j∈E

P̃ijαj(i0) =
∑
j∈E

Pijαj(i0)

für alle i 6= i0. Die Absorptionswahrscheinlichkeiten αi(i0) lösen also das Gleichungssystem
(21.13) und sind wegen αi0(i0) = 1 und αj(i0) = f∗j,i0 < 1 für ein j ∈ E nicht konstant.
Sei nun umgekehrt {hi} eine nichtkonstante beschränkte Lösung von (21.13). Da jedes Viel-
fache von h = (hi)i∈E ebenfalls eine Lösung ist und da jeder konstante Vektor eine triviale
Lösung darstellt, ist auch

h′i = ahi + b

für alle a, b ∈ R eine (nichtkonstante) Lösung von (21.13). Für geeignete a, b gilt h′i0 = 1 und
0 ≤ h′i ≤ 2 für alle i ∈ E, so dass von nun an hi0 = 1 und 0 ≤ hi ≤ 2 gelten möge. Ferner
sei stets hk < 1 für mindestens ein k 6= i0 (hk = 1 für alle k ist ausgeschlossen, da h nicht
konstant ist; sind alle hk ≥ 1, so betrachte die Lösung h′k = 2− hk).
Dann gilt nach Definition der P̃ij für alle i ∈ E, insbesondere auch für i = i0,

hi =
∑
j∈E

P̃ijhj bzw. hi =
∑
j∈E

P̃
(n)
ij hj ,

was auf
P̃

(n)
i,i0

= P̃
(n)
i,i0
hi0 ≤

∑
j∈E

P̃
(n)
ij hj = hi (21.14)

für alle i ∈ E führt. Bezeichnet wie in Abschnitt 21.4 α
(n)
i (i0) die Wahrscheinlichkeit, dass die

in i startende Markovkette genau nach n Schritten den Zustand i0 erreicht und dort absorbiert
wird, gilt

P̃
(n)
i,i0

=
n∑

m=0

α
(m)
i (i0)P̃

(n−m)
i0,i0

=
n∑

m=0

α
(m)
i (i0),

also

lim
n→∞

P̃
(n)
i,i0

=

∞∑
m=0

α
(m)
i (i0) = αi(i0)

und n→∞ in (21.14) führt auf
αi(i0) ≤ hi

für alle i ∈ E. Betrachte nun k 6= i0 mit hk < 1 (existiert, s.o.). Die Absorptionswahrschein-
lichkeit αk(i0) in der modifizierten Markovkette entspricht der Wahrscheinlichkeit, dass der
Zustand i0 von k ausgehend jemals erreicht wird, also f∗k,i0 ≤ hk < 1. Die Wahrscheinlichkeit
f∗k,i0 ist offensichtlich für die ursprüngliche Markovkette genau so groß wie für die modifizierte
Kette und mit Lemma 21.41 folgt Transienz. �
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Der nachstehende Satz beruht wieder auf dem Gleichungssystem (21.13) und liefert ein hin-
reichendes Kriterium für Rekurrenz.

21.46 Satz (Rekurrenzkriterium):
Es sei (Xn)n∈N0 eine irreduzible Markovkette über N0 und i0 ∈ N0 beliebig. Existiert für das
Ungleichungssystem

hi ≥
∑
j∈N0

Pijhj , i 6= i0 (21.15)

eine Lösung h mit hi →∞ für i→∞, so ist die Markovkette rekurrent.

Beweis:
Da mit h auch ah+ b eine Lösung des Ungleichungssystems ist, kann o.B.d.A. hi > 0 für alle
i ∈ N0 und hi0 = 1 vorausgesetzt werden. Wir nehmen i0 = 0 an, was durch Umnummerierung
stets erreicht werden kann. Mit der Übergangsmatrix P̃ aus dem Beweis von Satz 21.45 gilt
wieder für alle i ∈ N0

hi ≥
∑
j∈N0

P̃ijhj und weiter hi ≥
∑
j∈N0

P̃
(n)
ij hj .

Zu gegebenem ε > 0 wähle nun M = M(ε) so, dass 1
hi
≤ ε für alle i ≥ M ist. Unter

Verwendung von
∑

j∈N0
P̃

(m)
ij = 1 folgt

hi ≥
M−1∑
j=0

P̃
(m)
ij hj +

∞∑
j=M

P̃
(m)
ij hj ≥

M−1∑
j=0

P̃
(m)
ij hj + min

k≥M
{hk}

∞∑
j=M

P̃
(m)
ij

≥
M−1∑
j=0

P̃
(m)
ij hj +

1

ε

1−
M−1∑
j=0

P̃
(m)
ij

 .

Da in der modifierten Markovkette alle Zustände außer 0 transient sind (der absorbierende Zu-
stand 0 ist von allen Zuständen aus erreichbar), folgt mit Satz 21.25 über das Grenzverhalten
von Markovketten sowie den Überlegungen aus dem Beweis von Satz 21.45

lim
n→∞

P̃
(n)
ij = 0, j 6= 0, und lim

n→∞
P̃

(n)
i0 = αi(0).

Der Grenzübergang m→∞ liefert also

hi ≥ αi(0)h0 +
1

ε
(1− αi(0)) ≥ 1

ε
(1− αi(0))

bzw.

1− αi(0) ≤ εhi

für alle i ∈ N0. Da ε > 0 beliebig war und αi(0) ≤ 1 ist, folgt αi(0) = 1 für alle i ∈ N0. Da
(wie im vorangegangenen Beweis zu Satz 21.45) αi(0) = f∗i0 für i 6= 0 gilt, folgt f∗i0 = 1 und
mit Lemma 21.41 Rekurrenz. �
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21.47 Bemerkung:
Die Voraussetzung E = N0 in Satz 21.46 ist nötig, um den Grenzübergang i→∞ formulieren
zu können. Da die Zustände jedes abzählbar unendlichen Raumes entsprechend durchnum-
meriert werden können, handelt es sich um keine echte Einschränkung.

Die Rekurrenz– und Transienzkriterien sollen nun noch anhand einiger Beispiele erläutert
werden.

21.48 Beispiel (Diskrete Warteschlange I):
Es wird ein Bediensystem mit einer deterministischen, getakteten Bedienung betrachtet, d.h.
in jedem Zeitintervall [n, n+1) wird genau ein Kunde bedient, sofern mindestens einer wartet.
Währenddessen kommen Yn Kunden an; die Zufallsgrößen Y0, Y1, . . . seien i.i.d. Es sei P (Yn =
k) = ak > 0 für alle k ∈ N0 und

∑∞
k=0 ak = 1. Zählt Xn die wartenden Kunden zum

Zeitpunkt n (unmittelbar vor Beginn der Bedienung), so ist (Xn)n∈N0 eine diskrete homogene
Markovkette mit der Einschritt-Übergangswahrscheinlichkeit

P =


a0 a1 a2 a3 . . .
a0 a1 a2 a3 . . .
0 a0 a1 a2 . . .
0 0 a0 a1 . . .
...

...
. . .

. . .
. . .

 .

Offensichtlich ist (Xn)n∈N0 irreduzibel und aperiodisch. Zur besseren Übersicht wird die er-
zeugende Funktion

A(x) =
∞∑
k=0

akx
k

eingeführt, die zumindest auf [−1, 1] konvergiert. Auf (−1, 1) darf dann auch beliebig oft
(gliedweise) differenziert werden. Da alle Koeffizienten positiv sind, folgt A′(ξ) > 0 und
A′′(ξ) > 0 für alle ξ ∈ (0, 1), d.h. A ist auf [0, 1] monoton wachsend und konvex. Existiert
A′(1), so gilt

A′(1) =

∞∑
k=0

k · ak = E[Y1] =: µ,

insbesondere ist dann µ <∞.
Zur Untersuchung auf Transienz wenden wir Satz 21.45 mit i0 = 0 an, d.h. wir betrachten
das Gleichungssystem

hi =
∞∑
j=0

Pijhj , i = 1, 2, . . . . (21.16)

Existiert eine nichtkonstante beschränkte Lösung h, so liegt Transienz vor. Der Ansatz hj = ξj

führt für i ≥ 1 zu dem System

ξi =

∞∑
j=0

Pijξ
j =

∞∑
j=i−1

aj−i+1ξ
j ,

bzw. zu der Fixpunktgleichung

ξ =

∞∑
j=i−1

aj−i+1ξ
j−i+1 =

∞∑
k=0

akξ
k = A(ξ).
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Mit anderen Worten, der Ansatz hj = ξj liefert eine nichtkonstante beschränkte Lösung,
falls A einen Fixpunkt ξ ∈ (0, 1) besitzt. Wegen A(0) = a0 ∈ (0, 1) und A(1) = 1 und
der Konvexität von A existiert ein solcher Fixpunkt für µ ∈ (1,∞]. In diesem Fall ist die
Markovkette also transient.
Obwohl das Kriterium aus Satz 21.45 eine

”
genau dann, wenn“–Aussage darstellte, lässt sich

mit diesen Überlegungen nicht zeigen, dass für µ ∈ (0, 1] Rekurrenz vorliegt, da die Wahl
hj = ξj nicht notwendig war. Zum Nachweis der Rekurrenz wird nun das Rekurrenzkriterium
aus Satz 21.46 verwendet. Es werden deshalb unbeschränkt wachsende Lösungen von

hi ≥
∞∑
j=0

Pijhj , i = 1, 2, . . .

gesucht (wie oben wird i0 = 0 gewählt), dabei sei µ =
∑
kak ≤ 1. Dann führt der Ansatz

hj = j auf eine Lösung der gewünschten Form. Denn es gilt

∞∑
j=0

Pijhj =

∞∑
j=i−1

aj−i+1 · j =

∞∑
j=i−1

aj−i+1 · (j − i+ 1) +

∞∑
j=i−1

aj−i+1 · (i− 1)

=
∞∑
k=0

kak + (i− 1)
∞∑
k=0

ak ≤ 1 + i− 1 = i

für alle i = 1, 2, . . ..
Die hier beschriebene Markovkette wird im Rahmen der Markovschen Erneuerungstheorie
noch einmal aufgegriffen (M/G/1–System, Kapitel 23.6). Dort wird gezeigt, dass für µ = 1
Nullrekurrenz und für µ < 1 sogar positive Rekurrenz vorliegt.

21.49 Beispiel (Diskrete Warteschlange II):
Es soll nun ein Bediensystem mit umgekehrter Taktung untersucht werden. In jeder Zeiteinheit
kommt ein Kunde an, währenddessen werden k Kunden mit Wahrscheinlichkeit ak > 0,∑∞

k=0 ak = 1 bedient. Warten weniger als k Kunden, werden alle Kunden bedient. Die Anzahl
Xn der zum Zeitpunkt n wartenden Kunden bildet wieder eine irreduzible und aperiodische
Markovkette mit der Einschritt-Übergangswahrscheinlichkeit

P =



∞∑
i=1

ai a0

∞∑
i=2

ai a1 a0

∞∑
i=3

ai a2 a1 a0

...
. . .


.

Zunächst soll die Markovkette (Xn)n∈N0 auf positive Rekurrenz untersucht werden, d.h. es
wird das Gleichungssystem

uj =
∑
i∈N0

uiPij , j ∈ N0,

betrachtet. Der Ansatz ui = ξi führt für j ≥ 1 auf

ξj =
∞∑

i=j−1

ξiai−j+1 = ξj−1
∞∑

i=j−1

ai−j+1ξ
i−j+1 = ξj−1A(ξ),
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wobei

A(x) =

∞∑
k=0

akx
k

wie im vorangegangenen Beispiel. Division durch ξj−1 liefert wieder die Fixpunktgleichung
A(ξ) = ξ, die für µ =

∑
kak ∈ (1,∞] einen Fixpunkt ξ ∈ (0, 1) besitzt. In diesem Fall ist

auch die zu j = 0 gehörende Gleichung des Systems erfüllt, denn es gilt

∞∑
i=0

ξiPi0 =
∞∑
i=0

∞∑
k=i+1

akξ
i =

∞∑
k=1

ak

k−1∑
i=0

ξi =
∞∑
k=1

ak
1− ξk

1− ξ

=
1

1− ξ

( ∞∑
k=0

ak −
∞∑
k=0

akξ
k

)
=

1

1− ξ
(1−A(ξ)) = 1.

Für µ ∈ (1,∞] liegt also positive Rekurrenz vor. Für µ ≤ 1 liegt hingegen keine positive
Rekurrenz vor, denn hätte das System

uj =
∑
i∈N0

uiPij =
∑
i∈N0

uiai−j+1, j ≥ 1

eine strikt positive und summierbare Lösung u, so wäre u auch beschränkt und nicht konstant.
Dann hätte das Gleichungssystem (21.16) aus dem vorangegangenen Beispiel auch in diesem
Fall eine beschränkte Lösung gehabt und es müsste Transienz vorliegen; dort wurde jedoch
Rekurrenz nachgewiesen.
Es soll nun gezeigt werden, dass für µ = 1 noch Rekurrenz vorliegt und für µ < 1 Transienz.
Nach Satz 21.45 wird das System

hi =

∞∑
j=0

Pijhj , i 6= 0

untersucht und die Existenz einer beschränkten nichtkonstanten Lösung genau für µ < 1
gezeigt. Da jede Konstante das System ebenfalls löst, gibt es im Existenzfall auch eine Lösung
mit h0 = 0. Mit dieser zusätzlichen Festlegung kann der Koeffizient vor h0 dann beliebig
verändert werden, etwa kann Pi0 im Gleichungssystem durch ai+1 ersetzt werden. Es folgt

hi =
i+1∑
j=0

ai+1−jhj , i ≥ 1.

Multiplikation aller Gleichungen mit si+1 und Summation ergibt

s ·
∞∑
i=1

his
i =

∞∑
i=1

i+1∑
j=0

ai+1−jhjs
i+1 =

∞∑
i=0

i+1∑
j=0

ai+1−js
i+1−jhjs

j − sa0h1

=
∞∑
j=0

hjs
j
∞∑

i=j−1

ai+1−js
i+1−j − sa0h1 =

∞∑
j=0

hjs
j
∞∑
i=0

ais
i − sa0h1.

Für die erzeugenden Funktionen

H(s) =
∞∑
k=0

hks
k und A(s) =

∞∑
k=0

aks
k
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folgt

sH(s) = H(s)A(s)− sa0h1 bzw. H(s) =
sa0h1

A(s)− s
. (21.17)

Nach den vorangegangenen Überlegungen folgt aus µ ≤ 1, dass A(s)− s 6= 0 für alle s ∈ [0, 1)
ist. Setze nun

wn =

∞∑
i=n+1

ai > 0 und W (s) =

∞∑
n=0

wns
n,

ferner

U(s) =
∞∑
k=0

(W (s))k =
∞∑
n=0

uns
n mit un ≥ 0

und schließlich

vn =
n∑
k=0

uk und V (s) =
∞∑
n=0

vns
n.

Es gilt dann

V (s)(1− s) =
∞∑
n=0

vns
n −

∞∑
n=0

vns
n+1 = v0 +

∞∑
n=1

(vn − vn−1)sn =
∞∑
n=0

uns
n = U(s).

Zunächst folgt wegen A(1) = 1

A(s)− s = (1− s)
(

1− 1−A(s)

1− s

)
= (1− s)

1−

1−
∞∑
j=0

ajs
j

 ∞∑
k=0

sk


= (1− s)

1−A(1)

∞∑
n=0

sn +

∞∑
j,k=0

ajs
j+k

 = (1− s)

(
1−

∞∑
n=0

(
A(1)−

n∑
i=0

ai

)
sn

)

= (1− s)

(
1−

∞∑
n=0

∞∑
i=n+1

ais
n

)
= (1− s)

(
1−

∞∑
n=0

wns
n

)
= (1− s)(1−W (s)).

Setzt man diesen Ausdruck in (21.17) ein, bekommt man

H(s) =
sa0h1

(1− s)(1−W (s))
=
sa0h1

1− s

∞∑
k=0

(W (s))k

=
sa0h1

1− s
U(s) = sa0h1V (s).

Wegen

W (1) =

∞∑
n=0

wn =

∞∑
n=0

∞∑
i=n+1

ai =

∞∑
k=0

kak = µ

folgt

U(1) =
∞∑
k=0

(W (1))k =
∞∑
k=0

µk <∞

genau für µ < 1. Die Koeffizienten vn wachsen monoton und konvergieren gegen U(1), d.h.
sie sind genau dann beschränkt, wenn U(1) < ∞ ist. Da die Koeffizienten von H und V
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die gleichen Wachstumseigenschaften haben, ist damit gezeigt, dass die Koeffizienten hi von
H(s) genau dann beschränkt sind, wenn µ < 1 ist. Da sie für jede Wahl von h1 6= 0 auch
nichtkonstant sind, liegt genau für µ < 1 Transienz vor.

21.50 Bemerkung:
Die Idee hinter allen hier gezeigten Kriterien für Rekurrenz– bzw. Transienz war es, das
System h = Ph zu betrachten (für die Untersuchung auf positive Rekurrenz wurde u = uP
gelöst), dabei aber eine der Gleichungen (oder Ungleichungen) zu ignorieren. Es gibt Kriterien,
bei denen auf beliebig viele Gleichungen verzichtet wird. Das zuletzt genannte Kriterium für
Rekurrenz, Satz 21.46, zum Beispiel wurde wie folgt verallgemeinert:

Es sei h : E → R+ eine Funktion, für die jede der Mengen {i : hi ≤ n} endlich ist (auf
E = N entspricht dies der Forderung hi → ∞), sowie C ⊂ E eine Teilmenge mit endlichem
Komplement E \ C und E irreduzibel. Gilt für alle i ∈ C

hi ≥
∑
j∈E

Pijhj ,

so ist E rekurrent.

Auch beim Transienzkriterium, Satz 21.45, kann auf mehr als eine Gleichung verzichtet wer-
den. Allerdings ergeben sich dabei einige Änderungen:

Es sei E irreduzibel. Genau dann liegt Transienz vor, wenn es eine beschränkte Folge (hi) mit
Werten in R+ und eine solche Zahl r ≥ 0 gibt, dass für alle i ∈ E zumindest eine der beiden
Ungleichungen

hi ≤ r oder hi <
∑
j∈E

Pijhj

erfüllt ist.

Diese beiden Aussagen werden in
”
Markov Chains and Stochastic Stability“ von S. P. Meyn

und R. L. Tweedie in einer deutlich allgemeineren Form formuliert und bewiesen.

21.7 Ergodensätze

Unter Ergodensätzen versteht man Aussagen über zeitliche Mittelwerte, also etwa die relative
Häufigkeit von Aufenthalten in einem fixierten Zustand j,

E

[
1

n

n−1∑
k=0

1{j}(Xk)

∣∣∣∣∣X0 = i

]
.

21.51 Satz:
Es sei (Xn)n∈N0 eine irreduzible, positiv rekurrente Markovkette über E mit Gitterkonstante
d und (πj)j∈E die zugehörige stationäre Verteilung, also πj = 1

µjj
. Dann gilt

lim
n→∞

E

[
1

n

n−1∑
k=0

1{j}(Xk)

∣∣∣∣∣X0 = i

]
= πj .
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Beweis:
Es ist zunächst

E

[
1

n

n−1∑
k=0

1{j}(Xk)

∣∣∣∣∣X0 = i

]
=

1

n

n−1∑
k=0

E[1{j}(Xk)|X0 = i]

=
1

n

n−1∑
k=0

P (Xk = j|X0 = i).

Ist j zunächst aperiodisch, so konvergiert P (Xk = j|X0 = i) nach Satz 21.25 über das Grenz-
verhalten von Markovketten gegen πj . Die Konvergenz einer Folge zieht auch die Konvergenz
der Folge der arithmetischen Mittel nach sich (Cesaro’s Lemma, vgl. Stochastik II) und es
folgt die Behauptung.

Sei j nun periodisch mit Periode d ≥ 2. Wähle c = cij < d so, dass P
(m)
ij = 0 für alle m ∈ N0

mit m 6= c mod d gilt (vergleiche Abschnitt über periodische Markovketten). Es soll nun Teil
d) des Grenzwertsatzes 21.25 angewendet werden. Unter Beachtung von f∗ij = 1 folgt

lim
n→∞

1

n

n−1∑
k=0

P
(k)
ij = lim

n→∞

1

n

n−1∑
k=0

k≡c mod d

P
(k)
ij =

1

d
lim
n→∞

1
n
d

bn−1
d
c∑

m=0

P
(md+c)
ij

=
1

d
lim
n→∞

1

bn−1
d c+ 1

bn−1
d
c∑

m=0

P
(md+c)
ij =

1

d
lim
n→∞

1

n

n−1∑
m=0

P
(md+c)
ij

=
1

d

d

µjj
= πj . �

Für d = 1 kann man Satz 21.51 als
”
Zeitmittel = Raummittel“ interpretieren. Das weitere

Ziel dieses Abschnitt wird es sein, diese Aussage zu verallgemeinern.
Der nachstehende Satz lässt eine solche Interpretation zwar nicht direkt zu, ist aber von zen-
traler Bedeutung für alle sich anschließenden Ergodensätze und wird auch später im Rahmen
der Markovschen Erneuerungstheorie verwendet.

Es sei daran erinnert, dass mit T
(j)
n der n–ten Rückkehrzeitpunkt in den Zustand j bezeichnet

wird, also

T
(j)
0 = 0 und T (j)

n = inf{k > T
(j)
n−1 | Xk = j}, n = 1, 2, . . . .

21.52 Satz:
Es sei (Xn)n∈N0 eine irreduzible, positiv rekurrente Markovkette über E sowie A(i, j) die
erwartete Anzahl der Aufenthalte im Zustand j während eines Zyklus von i nach i, d.h. mit

T = inf{n ∈ N | Xn = i} = T
(i)
1 sei

A(i, j) = E
[
| {Xn : 0 ≤ n ≤ T − 1, Xn = j} |

∣∣X0 = i
]
.

Dann gilt A(i, j) =
πj
πi

, wobei π die eindeutige stationäre Verteilung der zugrunde liegenden

Markovkette (also πi = 1
µii

) ist.
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Beweis:
Offensichtlich ist A(i, i) = 1. Betrachte nun j ∈ E \ {i} und setze g

(n)
ij als Wahrscheinlichkeit,

dass die in i startende Markovkette nach genau n Schritten j erreicht, ohne zwischendurch
nach i zurückzukehren. Unter Verwendung der Markoveigenschaft folgt

A(i, j) = E

[
T−1∑
n=1

1{j}(Xn) | X0 = i

]

=

∞∑
m=1

m−1∑
n=1

P (T = m,Xn = j | X0 = i)

=
∞∑
m=1

m−1∑
n=1

P (X1 6= i, . . . ,Xn = j 6= i, . . . ,Xm−1 6= i,Xm = i | X0 = i)

=
∞∑
m=1

m−1∑
n=1

P (Xn = j,Xn−1 6= i, . . . ,X1 6= i | X0 = i)

· P (Xn+1 6= i, . . . ,Xm−1 6= i,Xm = i | Xn = j,Xn−1 6= i, . . . ,X1 6= i,X0 = i)

=

∞∑
n=1

∞∑
m=n+1

g
(n)
ij · P (T = m− n | X0 = j)

=
∞∑
n=1

g
(n)
ij

∞∑
m=1

P (T = m | X0 = j).

Die letzte Summe gibt die Wahrscheinlichkeit an, dass die in j startende Markovkette jemals i
erreicht, ist also f∗ji. Da (Xn)n∈N0 irreduzibel und positiv rekurrent ist, gilt f∗ji = 1 (vergleiche
Satz 21.22) und es wird

A(i, j) =

∞∑
n=1

g
(n)
ij .

Damit folgt (wegen A(i, i) = 1)

A(i, j) =
∞∑
n=1

g
(n)
ij = Pij +

∞∑
n=2

g
(n)
ij = Pij +

∞∑
n=2

∑
k∈E\{i}

g
(n−1)
ik Pkj

= A(i, i)Pij +
∑

k∈E\{i}

∞∑
n=1

g
(n)
ik Pkj =

∑
k∈E

A(i, k)Pkj .

Aus der Definition der A(i, j) folgt sofort, dass die Folge der (A(i, j))j∈E im positiv re-
kurrenten Fall summierbar ist (die Summe ist gerade die erwartete Zykluslänge, also die
mittlere Rückkehrzeit). Da sie aber nun für jedes feste i das Gleichungssystem (21.5) der
stationären Gleichungen erfüllt, stimmt sie bis auf einen konstanten Faktor mit πj überein,
also A(i, j) = ciπj . Wegen A(i, i) = 1 folgt ci = 1

πi
. �

Bei der Formulierung der Ergodensätze treten Kostenfunktionen f, g : E → R auf, die im
Folgenden als Spaltenvektoren aufgefasst werden. Da π als Zeilenvektor behandelt wird, gilt
insbesondere

πf =
∑
i∈E

πif(i).
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Es soll nun eine Verallgemeinerung von Satz 21.52 angegeben werden.

21.53 Satz:
Es sei f : E → R mit π|f | < ∞ für die stationäre Verteilung π der irreduziblen und positiv
rekurrenten Markovkette (Xn)n∈N0. Yf seien die Kosten während eines Zyklus von i nach i,

also mit T = T
(i)
1

Yf =

T−1∑
m=0

f(Xm).

Dann existiert E[|Yf | | X0 = i] und es gilt

E[Yf | X0 = i] =
πf

πi
.

Beweis:
Definiere für j ∈ E die Indikatorfunktion 1{j} : E → R durch

1{j}(i) = δij (i ∈ E).

Nach Satz 21.52 gilt

E[|Y1{j} | | X0 = i] = E[Y1{j} | X0 = i] = A(i, j) =
πj
πi
.

Zerlege nun

f =
∑
j∈E

f(j) · 1{j}.

Wegen der absoluten Konvergenz π|f | <∞ folgt dann

E[|Yf | | X0 = i] ≤
∑
j∈E

E[|Y1{j} | | X0 = i] · |f(j)| = π|f |
πi

<∞

und

E[Yf | X0 = i] =
∑
j∈E

E[Y1{j} | X0 = i] · f(j) =
πf

πi
.

Nun kann der erste Ergodensatz gezeigt werden.

21.54 Satz (1. Ergodensatz):
Es sei (Xn)n∈N0 eine irreduzible und positiv rekurrente Markovkette mit stationärer Verteilung
π. f, g : E → R seien Funktionen mit π|f | < ∞ und π|g| < ∞ sowie πf 6= 0 oder πg 6= 0.
Dann gilt P − f.s.

lim
n→∞

∑n
m=0 f(Xm)∑n
m=0 g(Xm)

=
πf

πg
.
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Beweis:
Wie üblich sei T

(j)
n der n–te Rückkehrzeitpunkt in den Zustand j, n = 1, 2, . . .. Sei nun

`(n) so gewählt, dass T
(j)
`(n) ≤ n < T

(j)
`(n)+1 ist. Aufgrund der Voraussetzung, dass (Xn)n∈N0

rekurrent ist, handelt es sich bei den Rückkehrzeitpunkten um einen (nicht–abbrechenden)
Erneuerungsprozess und für n→∞ strebt auch `(n)→∞. Setze weiter

Yk =

T
(j)
k+1−1∑
m=T

(j)
k

f(Xm), k = 1, 2, . . . ,

d.h. Yk gibt die Kosten im k–ten Zyklus an. (Xn)n∈N0 ist ein diskreter regenerativer Prozess

(die T
(j)
k sind die Regenerationszeitpunkte) und somit ist auch f(Xn) ein regenerativer Pro-

zess, d.h. die Werte (Yk)k≥1 sind i.i.d. und nach Satz 21.53 gilt E[Yk] = πf
πj

. Mit den (Yk)k≥1

lässt sich
n∑

m=0

f(Xm) =

T
(j)
1 −1∑
m=0

f(Xm) +

`(n)−1∑
k=1

Yk +

n∑
m=T

(j)
`(n)

f(Xm)

schreiben.
Sei zunächst f ≥ 0. Dann gilt

`(n)−1∑
k=1

Yk ≤
n∑

m=0

f(Xm) ≤
T

(j)
1 −1∑
m=0

f(Xm) +

`(n)∑
k=1

Yk.

Der erste Summand auf der rechten Seite hängt nicht von n ab und es folgt

lim
n→∞

1

`(n)

`(n)−1∑
k=1

Yk ≤ lim
n→∞

1

`(n)

n∑
m=0

f(Xm) ≤ lim
n→∞

1

`(n)

`(n)∑
k=1

Yk.

Nach dem starken Gesetz der großen Zahlen haben die Grenzwerte auf beiden Seiten den
gleichen Wert, nämlich E[Y1]. Es folgt

lim
n→∞

1

`(n)

n∑
m=0

f(Xm) = E[Y1] =
πf

πj
. (21.18)

Für nichtnegative Funktionen g folgt analog

lim
n→∞

1

`(n)

n∑
m=0

g(Xm) = E[Y1] =
πg

πj

und zusammen

lim
n→∞

∑n
m=0 f(Xm)∑n
m=0 g(Xm)

=
πf

πg
.

Setze nun f = f+ − f− mit

f+(i) = max{f(i), 0} ≥ 0 und f−(i) = max{−f(i), 0} ≥ 0

48



21.7. Ergodensätze

und entsprechend g+, g− ≥ 0 mit g = g+ − g−. Für f+, f−, g+, g− gilt (21.18) und es folgt

lim
n→∞

∑n
m=0 f(Xm)∑n
m=0 g(Xm)

= lim
n→∞

1
`(n)

∑n
m=0 f

+(Xm)− 1
`(n)

∑n
m=0 f

−(Xm)

1
`(n)

∑n
m=0 g

+(Xm)− 1
`(n)

∑n
m=0 g

−(Xm)

=

πf+

πj
− πf−

πj

πg+

πj
− πg−

πj

=
πf+ − πf−

πg+ − πg−
=
πf

πg
. �

Folgerung:
Es sei (Xn)n∈N0 eine irreduzible und positiv rekurrente Markovkette mit stationärer Vertei-
lung π sowie f : E → R eine Funktion mit π|f | <∞. Dann gilt unabhängig vom Anfangszu-
stand P–f.s.

lim
n→∞

1

n

n−1∑
m=0

f(Xm) = πf.

Beweis:
Setze in Satz 21.54 g(i) = 1 für alle i ∈ E. �

21.55 Satz (2. Ergodensatz):
Es sei (Xn)n∈N0 eine irreduzible und positiv rekurrente Markovkette mit stationärer Verteilung
π. f, g : E → R seien Funktionen mit π|f | < ∞ und π|g| < ∞ sowie πf 6= 0 oder πg 6= 0,

ferner sei T = T
(j)
1 . Dann gilt

lim
n→∞

E [
∑n

m=0 f(Xm)|X0 = i]

E [
∑n

m=0 g(Xm)|X0 = i]
=
E
[∑T−1

m=0 f(Xm)
∣∣∣X0 = j

]
E
[∑T−1

m=0 g(Xm)
∣∣∣X0 = j

] =
πf

πg
.

Beweis:
Der zweite Teil der Gleichungskette folgt unmittelbar aus Satz 21.53. Die erste Identität wird
wie Satz 21.54 gezeigt; also zerlege

E

[
n∑

m=0

f(Xm)

]
= E

T
(j)
1 −1∑
m=0

f(Xm)

+

`(n)−1∑
k=1

E[Yk] + E

 n∑
m=T

(j)
`(n)

f(Xm)


und folgere zunächst wieder für f ≥ 0

`(n)−1∑
k=1

E[Yk] ≤ E

[
n∑

m=0

f(Xm)

]
≤ E

T
(j)
1 −1∑
m=0

f(Xm)

+

`(n)∑
k=1

E[Yk].

Der erste Summand auf der rechten Seite hängt wieder nicht von n ab, und es folgt die
Beziehung

lim
n→∞

1

`(n)
E

[
n∑

m=0

f(Xm)

]
= E[Y1] =

πf

πj
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und das entsprechende Ergebnis für g. Somit ist der Satz für f, g ≥ 0 bewiesen und die
allgemeine Aussage folgt wie im Beweis von Satz 21.54 durch Zerlegung in Positiv– und
Negativteil. �

In Verallgemeinerung von Satz 21.51 gilt nun

21.56 Satz:
Es sei (Xn)n∈N0 eine irreduzible und positiv rekurrente Markovkette mit stationärer Verteilung
π sowie f : E → R eine Funktion mit π|f | <∞. Dann gilt unabhängig vom Anfangszustand

lim
n→∞

E

[
1

n

n−1∑
m=0

f(Xm)

∣∣∣∣∣X0 = i

]
= πf.

Beweis:
Setze in Satz 21.55 g(i) = 1 für alle i ∈ E. �
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Kapitel 22

Markovketten mit stetiger Zeit

In diesem Kapitel werden Markovketten in stetiger Zeit (oder auch Markovprozesse) be-
handelt. Zunächst werden die wesentlichen Begrifflichkeiten über Markovketten in diskreter
Zeit auf solche in stetiger Zeit übertragen. Ein Schwerpunkt ist die Konstruktion von Über-
gangsfunktionen aus sogenannten Q–Matrizen. Abschließend wird das Grenzverhalten von
Markovprozessen untersucht.

Schlüsselwörter: Homogener Markovprozess, Markoveigenschaft, Übergangsfunk-
tion, Q–Matrix, Kolmogorovsche Rückwärts– und Vorwärtsgleichungen, Q–Prozess,
Feller–Prozess, Regularität, Irreduzibilität, Rekurrenz, Transienz, Grenzverteilung,
Ergodensätze.
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22.1 Einführung

22.1 Definition (elementare Markov–Eigenschaft, Markovprozesse):
Ein stochastischer Prozess (Ω,A, P, (Xt)t∈R+) mit dem Zustandsraum (E,B) heißt Markovprozess,
wenn für jede Menge B ∈ B und für jedes Paar (s, t) ∈ R+ ×R+ von Zeitpunkten mit s < t
fast–sicher gilt:

P (Xt ∈ B | σ{Xu;u ≤ s}) = P (Xt ∈ B | Xs),

d.h. die Wahrscheinlichkeitsverteilungen der zukünftigen Zustände Xt mit t > s hängt nur
vom aktuellen Zustand Xs, nicht aber von den vergangenenen Zuständen Xu mit u < s ab. In
Analogie zu Markovketten spricht man von der elementaren Markov–Eigenschaft und nennt
die Markovprozesse auch Prozesse ohne Gedächtnis.

22.2 Bemerkung:
Wir beschäftigen uns hier ausschließlich mit Markovschen Prozessen mit abzählbarem Zu-
standsraum E. In diesem Fall kann man B = P(E) wählen.

22.3 Definition (Homogene Markovprozesse):
Ein Markovprozess heißt homogen, wenn die Größen P (Xt = j | Xs = i) nur von der Differenz
t− s abhängen. In diesem Fall hat man

Pij(t) := P (Xt = j | X0 = i) = P (Xt+s = j | Xs = i)

für alle s ∈ R+. P (t) = (Pij(t))i,j∈E heißt Übergangswahrscheinlichkeit, –matrix, –funktion
oder Markov-Kern.

Für die absoluten Zustandswahrscheinlichkeiten Pi(t) mit i ∈ E und t ∈ R+ eines homogenen
Markovprozesses mit abzählbarem Zustandsraum gilt:

Pi(t) := P (Xt = i) =
∑
k∈E

P (Xt = i | X0 = k) · P (X0 = k) =
∑
k∈E

Pki(t) · P (X0 = k).

Die endlichdimensionalen Verteilungen berechnen sich wie folgt: t0 < t1 < · · · < tn bezeichnen
Zeitpunkte und j0, j1, . . . , jn Zustände aus E. Dann gilt:

P (Xtn = jn, Xtn−1 = jn−1, . . . , Xt0 = j0) = P (Xtn = jn | Xtn−1 = jn−1, . . . , Xt0 = j0)

· P (Xtn−1 = jn−1 | Xtn−2 = jn−2, . . . , Xt0 = j0) · . . . · P (Xt1 =j1 | Xt0 =j0) · P (Xt0 =j0)

= P (Xtn = jn | Xtn−1 = jn−1) · P (Xtn−1 = jn−1 | Xtn−2 = jn−2) · . . .
· P (Xt1 = j1 | Xt0 = j0) · P (Xt0 = j0)

=

( n∏
k=1

Pjkjk−1
(tk − tk−1)

)
P (Xt0 = j0).
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22.1. Einführung

22.4 Satz (Eigenschaften der Übergangsmatrix P (t)):
Die Übergangswahrscheinlichkeit P (t) = (Pij(t))i,j∈E, t ≥ 0, eines homogenen Markovprozes-
ses (Xt)t∈R+ mit abzählbarem Zustandsraum E besitzt folgende Eigenschaften:

a) Pij(t) ≥ 0 für alle i, j ∈ E und t ∈ R+ sowie Pij(0) = δij =

{
1 , i = j,
0 , i 6= j.

b)
∑
j∈E

Pij(t) ≤ 1 für alle i ∈ E und t ∈ R+.

c) Es gilt die Gleichung von Chapman–Kolmogorov:

Pij(t+ s) =
∑
k∈E

Pik(t)Pkj(s) ∀i, j ∈ E und s, t ∈ R+.

Beweis:
a) Klar.

b) Es ist
∑
j∈E

Pij(t) = P (j ∈ E|X0 = i) ≤ 1.

c) Wegen der Homogenität des Markovprozesses wird

Pij(t+ s) = P (Xt+s = j | X0 = i) =
∑
k∈E

P (Xt+s = j,Xt = k | X0 = i)

=
∑
k∈E

P (Xt+s = j | Xt = k,X0 = i) · P (Xt = k | X0 = i)

=
∑
k∈E

P (Xt+s = j | Xt = k) · P (Xt = k | X0 = i)

=
∑
k∈E

Pik(t)Pkj(s) ∀i, j ∈ E und s, t ∈ R+. �

22.5 Bemerkung:
Ein Markovprozess legt die Übergangsmatrix eindeutig fest. Ist umgekehrt eine Matrixfunk-
tion P (t) = (Pij(t))i,j∈E , t ≥ 0, mit den Eigenschaften aus Satz 22.4 gegeben, dann lassen
sich ein Wahrscheinlichkeitsraum (Ω,A, P ) und ein homogener Markovprozess (Xt)t∈R+ über
E so konstruieren, dass (Xt)t∈R+ die durch Pij(t) definierten Übergangswahrscheinlichkeiten
besitzt. Dies motiviert auch die nachstehende Definition.

22.6 Definition (Übergangsfunktion):
Es sei E eine abzählbare Menge (E heißt Zustandsraum).

Eine Matrixfunktion P (t) = (Pij(t))i,j∈E , t ≥ 0, heißt Übergangsfunktion, wenn sie alle drei
Eigenschaften aus Satz 22.4 besitzt.
Man spricht von einer Standard–Übergangsfunktion, wenn sie zusätzlich (rechtsseitig) stetig
in 0 ist, d.h. wenn

lim
t→0+

Pij(t) = δij ∀i, j ∈ E

gilt.
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22.7 Bemerkung:
a) Für die Stetigkeit der Übergangsfunktion in der 0 reicht die Forderung

lim
t→0+

Pii(t) = 1 ∀i ∈ E.

Aufgrund der Ungleichung 0 ≤
∑

j∈E,j 6=i
Pij(t) ≤ 1− Pii(t) gilt dann auch schon

lim
t→0+

Pij(t) = 0

für i 6= j.

b) Die rechtsseitige Stetigkeit in der 0 ist eine sehr starke Eigenschaft. Wir werden später
zeigen, dass damit bereits die rechtsseitige Differenzierbarkeit in 0 sowie die Differen-
zierbarkeit (und damit erst recht die Stetigkeit) für jeden Zeitpunkt t > 0 folgt.

22.8 Definition:
Eine Übergangsmatrix P (t) = (Pij(t))i,j∈E heißt stochastisch, falls∑

j∈E
Pij(t) = 1 ∀i ∈ E

gilt. Ist mindestens eine Zeilensumme < 1, so heißt P (t) substochastisch. Im Vorgriff auf Satz
22.10 sei hier bereits angemerkt, dass P (t) stochastisch für alle t > 0 ist, wenn P (t) für ein
t > 0 stochastisch ist.

Im Fall einer substochastischen Matrix gibt es einen Zustand i ∈ E, von dem aus der Markov-
prozess den zulässigen Zustandsraum E mit einer positiven Wahrscheinlichkeit 1−

∑
j∈E Pij(t)

verlässt. In einigen Fällen ist es allerdings einfacher, mit einer stochastischen Übergangsfunk-
tion zu arbeiten. Dabei ist der nachstehende Satz hilfreich.

22.9 Satz:
Es sei P (t) = (Pij(t))i,j∈E eine substochastische Übergangsfunktion über E. Sei ∆ ein zusätz-
licher Zustand, der nicht in E liegt. Definiere E∆ := E ∪ {∆} und

P∆
ij (t) :=


Pij(t) , i, j ∈ E

1−
∑

k∈E Pik(t) , i ∈ E, j = ∆
0 , i = ∆, j ∈ E
1 , i = j = ∆.

Dann ist P∆
ij (t) eine stochastische Übergangsfunktin über E∆. Ist P (t) eine Standard–Über-

gangsfunktion, so auch P∆(t).

Beweis:
Die Eigenschaften P∆

ij (t) ≥ 0, P∆
ij (0) = δij sowie (im Fall einer Standard–Übergangsfunktion)

lim
t→0

P∆
ij (t) = δij sind klar, auch ∑

j∈E∆

P∆
ij (t) = 1

folgt unmittelbar aus der Definition von P∆. Damit bleibt die Gleichung von Chapman–
Kolmogorov nachzuweisen:

54



22.1. Einführung

1. Seien i, j ∈ E, dann folgt∑
k∈E∆

P∆
ik (t)P∆

kj(s) =
∑
k∈E

Pik(t)Pkj(s) + Pi∆(t)P∆j(s) = Pij(t+ s) + Pi∆(t) · 0

= Pij(t+ s) = P∆
ij (t+ s).

2. Sei i ∈ E und j = ∆ der Zielpunkt, dann ist∑
k∈E∆

P∆
ik (t)P∆

kj(s) =
∑
k∈E

Pik(t)P
∆
k∆(s) + P∆

i∆(t)P∆
∆∆(s)

=
∑
k∈E

Pik(t) ·
(

1−
∑
l∈E

Pkl(s)
)

+
(

1−
∑
k∈E

Pik(t)
)
· 1

=
∑
k∈E

Pik(t) +
(

1−
∑
k∈E

Pik(t))
)
−
∑
k∈E

∑
l∈E

Pik(t)Pkl(s)

= 1−
∑
k∈E

∑
l∈E

Pik(t)Pkl(s) = 1−
∑
l∈E

∑
k∈E

Pik(t)Pkl(s)

= 1−
∑
l∈E

Pil(t+ s) (Gleichung von Chapman–Kolmogorov)

= P∆
i∆(t+ s). �

3. Sei i = ∆ der Startpunkt (letzte Zeile in der Matrix) und j ∈ E, dann ergibt sich∑
k∈E∆

P∆
ik (t)P∆

kj(s) = P∆
∆∆(t)P∆

∆j(s) = 1 · 0 = 0 = P∆
∆j(t+ s).

4. Sei i = j = ∆, dann ist∑
k∈E∆

P∆
∆k(t)P

∆
k∆(s) = P∆

∆∆(t)P∆
∆∆(s) = 1 · 1 = P∆

∆∆(t+ s).

Es sollen nun noch weitere Eigenschaften der Übergangsfunktion angegeben werden.

22.10 Satz:
Es sei P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Übergangsfunktion.

a)
∑
j∈E

Pij(t) ist eine nichtwachsende Funktion von t für alle i ∈ E.

b) Ist P (t) stochastisch für eine bestimmtes t > 0, dann ist P (t) stochastisch für alle t > 0.

Beweis:
a) Für t, s ≥ 0 ist∑

j∈E
Pij(t+ s) =

∑
j∈E

∑
k∈E

Pik(t)Pkj(s) =
∑
k∈E

Pik
∑
j∈E

Pkj(s)︸ ︷︷ ︸
≤1

≤
∑
k∈E

Pik(t).
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Kapitel 22. Markovketten mit stetiger Zeit

b) Wir zeigen zunächst, dass P (s + t) stochastisch ist, falls P (t) und P (s) stochastisch
sind. Denn in diesem Fall gilt nach der Gleichung von Chapman–Kolmogorov∑

j∈E
Pij(s+ t) =

∑
j∈E

∑
k∈E

Pik(s)Pkj(t) =
∑
k∈E

Pik(s)
∑
j∈E

Pkj(t) =
∑
k∈E

Pik(s) = 1.

Insbesondere folgt sofort durch Induktion, dass für jede natürliche Zahl m mit P (s)
auch P (m · s) stochastich ist.
Wir kommen nun zur ursprünglichen Behauptung zurück. Ist P (t) stochastisch für ein
t > 0, so folgt aus dem ersten Teil, dass P (s) stochastisch für alle s ≤ t ist. Für s > t
wähle man n so, dass s

n < t ist. Dann ist P
(
s
n

)
stochastisch und nach der Vorüberlegung

auch P (s). �

22.11 Satz (Eigenschaften der Übergangsfunktion):
Es sei P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Standard-Übergangsfunktion.

a) Pii(t) > 0 für alle t ∈ R+ und i ∈ E. Für i, j ∈ E mit i 6= j gilt:
Ist Pij(t) > 0 für ein t > 0, dann ist Pij(s) > 0 für alle s ≥ t.

b) Ist Pii(t) = 1 für ein t > 0, dann gilt:
Pii(t) = 1 für alle t ∈ R+.

c) Für t ≥ 0 gilt:

|Pij(t+ ε)− Pij(t)| ≤ 1− Pii(|ε|)

d.h. Pij(t) ist gleichmäßig stetig.

Beweis:
a) Sei t > 0 beliebig. Da Pij(t) standard ist, existiert ein n derart, dass Pii

(
t
n

)
> 0 ist.

Aus der Gleichung von Chapman–Kolmogorov folgt

Pii(t) =
∑
j∈E

Pij

(
t

n

)
Pjk

(
(n− 1)t

n

)
≥ Pii

(
t

n

)
Pii

(
(n− 1)t

n

)

≥
(
Pii

(
t

n

))2

Pii

(
(n− 2)t

n

)
≥ . . . ≥

(
Pii

(
t

n

))n
> 0.

Sei nun Pij(t) > 0 für ein t > 0, so folgt wieder mit der Gleichung von Chapman–
Kolmogorov

Pij(t+ s) =
∑
k∈E

Pik(t)Pkj(s) ≥ Pij(t)Pjj(s) > 0,

da Pjj(s) > 0 für alle s > 0 bereits bewiesen ist.

b) Sei t > 0 so gewählt, dass Pii(t) = 1 ist. Wir betrachten die Fälle s < t und s > t
getrennt von einander.

56



22.1. Einführung

(1) s < t:
Aus

Pij(t) =
∑
k∈E

Pik(s)Pkj(t− s) ≥ Pij(s)Pjj(t− s)

folgt

0 = 1− Pii(t) ≥
∑

j∈E,j 6=i
Pij(t) ≥

∑
j∈E,j 6=i

Pij(s)Pjj(t− s) ≥ 0.

Da Pjj(t− s) > 0 ist, folgt notwendigerweise Pij(s) = 0 für alle j 6= i.
Andererseits aber gilt:

1 ≥
∑
j∈E

Pij(s) ≥
∑
j∈E

Pij(t) = 1,

woraus Pii(s) = 1 folgt.

(2) s > t:
Wir wählen ein n so, dass s

n < t ist. Dann gilt wieder:

Pii(s) ≥
[
Pii

( s
n

)]n
= 1.

c) Sei ε > 0. Mit Hilfe der Gleichung von Chapman–Kolmogorov schließen wir:

Pij(t+ ε)− Pij(t) =
∑
k∈E

Pik(ε)Pkj(t)− Pij(t)

=
∑

k∈E,k 6=i
Pik(ε)Pkj(t)− Pij(t)[1− Pii(ε)︸ ︷︷ ︸

≥0

]. (22.1)

Um eine Abschätzung für Pij(t+ε)−Pij(t) zu erhalten, betrachten wir die Ungleichung

[1− Pii(ε)] ≥ Pij(t)[1− Pii(ε)],

aus der

−[1− Pii(ε)] ≤ −Pij(t)[1− Pii(ε)]
(22.1)
≤ Pij(t+ ε)− Pij(t)

(22.1)
≤

∑
k∈E,k 6=i

Pik(ε)Pkj(t)︸ ︷︷ ︸
≤1

≤
∑

k∈E,k 6=i
Pik(ε)

≤ 1− Pii(ε), �

also
|Pij(t+ ε)− Pij(t)| ≤ 1− Pii(ε)

folgt. Der Fall ε < 0 kann auf den bereits bewiesenen Fall ε > 0 zurückgeführt werden.
Es ist

|Pij(t+ ε)− Pij(t)| = |Pij((t+ ε) + (−ε))− Pij(t+ ε))| ≤ 1− Pii(−ε).

Folglich gilt für beliebiges ε

|Pij(t+ ε)− Pij(t)| ≤ 1− Pii(|ε|).
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Kapitel 22. Markovketten mit stetiger Zeit

22.2 Q–Matrix und Kolmogorovsche Gleichungen

Von nun an seien alle Übergangsfunktionen standard. Wie bereits vorne angemerkt wurde,
zieht diese Eigenschaft die Differenzierbarkeit der Übergangsfunktion auf R+ nach sich. Wir
beginnen mit einem Hilfssatz über subadditive Funktionen.

22.12 Satz:
Es sei Φ : t −→ Φ(t) eine Abbildung von R+ \ {0} −→ R+ mit folgenden Eigenschaften:

1. Φ(s+ t) ≤ Φ(s) + Φ(t) ∀s, t > 0 (Subadditivität)

2. lim
t→0

Φ(t) = 0.

Dann existiert der Grenzwert

lim
t→0+

Φ(t)

t
= q (möglicherweise ist q =∞)

und es gilt

q = sup
t>0

Φ(t)

t
.

Beweis:
Definiere

q = sup
t>0

Φ(t)

t
=⇒ lim sup

t→0

Φ(t)

t
≤ q

Wir zeigen: lim inft→0
Φ(t)
t ≥ q. Wähle q′ mit q′ < q und s mit Φ(s)

s ≥ q
′.

Für jedes t > 0 können wir schreiben: s = nt+ h, wobei n ∈ N0 und 0 ≤ h < t ist. Aufgrund
der Subadditivität von Φ gilt

Φ(s) = Φ(nt+ h) ≤ Φ(nt) + Φ(h) ≤ . . . ≤ n · Φ(t) + Φ(h). (22.2)

Also

q′ ≤ Φ(s)

s

(22.2)

≤ nΦ(t) + Φ(h)

s
=
n · t
s
· Φ(t)

t
+

Φ(h)

s
.

Die Beziehung s = nt+ h impliziert

nt

s
−→ 1; h −→ 0 für t→ 0 und s fest.

Nach Voraussetzung strebt mit h auch Φ(h) gegen 0. Deshalb gilt

q′ ≤ lim inf
t→0+

Φ(t)

t
.

Da dies für alle q′ < q gilt, folgt die Behauptung. �
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22.13 Satz:
Es sei P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Standardübergangsfunktion. Dann gilt für alle i ∈ E:

a) qi = −qii = lim
t→0

[1− Pii(t)]
t

∈ R+ existiert,

d.h. Pii(t) ist differenzierbar an der Stelle t = 0 mit P ′ii(0) = qii = −qi.

b) qi = 0 ⇐⇒ Pii(t) = 1 ∀t ≥ 0.

c) Pii(t) ≥ e−qit ≥ 1− qit ∀t ≥ 0.

Beweis:
a) Definiere Φ(t) := − logPii(t). Da Pii(t)

t→0−→ 1 und aufgrund von Satz (22.11a) Pii(t) > 0
für alle t, ist Φ(t) wohldefiniert und endlich für alle t ≥ 0. Aus

Pii(s+ t) ≥ Pii(s) · Pii(t) ⇐⇒ logPii(s+ t) ≥ log(Pii(s)Pii(t))

⇐⇒ − logPii(s+ t) ≤ − log(Pii(s))− log(Pii(t))

⇐⇒ Φ(s+ t) ≤ Φ(s) + Φ(s)

folgt außerdem, dass Φ(t) = − logPii(t) die Voraussetzungen von Satz 22.12 erfüllt.
Deshalb existiert

lim
t→0

Φ(t)

t
= qi ≥ 0.

Es muss nun noch qi = lim
t→0+

1−Pii(t)
t gezeigt werden. Der Fall qi = 0 wird dabei auf den

Beweis von b) verschoben. Im Fall qi > 0 ist

lim
t→0+

1− Pii(t)
t

= lim
t→0+

1− e−Φ(t)

Φ(t)
· Φ(t)

t

(da Φ(t) > 0 wegen qi = −qii > 0 für alle t mit 0 < t < δ)

= lim
t→0+

1− e−Φ(t)

Φ(t)
· lim
t→0+

Φ(t)

t

= lim
t→0+

1− [1− Φ(t)
1! + (Φ(t))2

2! − (Φ(t))3

3! + . . .]

Φ(t)
· lim
t→0+

Φ(t)

t

= 1 · qi = qi.

b) Ist qi = 0, so gilt nach Satz 22.12 auch sup
t>0

Φ(t)
t = 0 und damit − logPii(t)

t = 0 bzw.

Pii(t) = 1 für alle t > 0. In diesem Fall gilt lim
t→0+

1−Pii(t)
t = 0 = qi, was den Beweis von

a) komplettiert.
Ist umgekehrt Pii(t) = 1 für alle t > 0, so folgt sofort

qi = lim
t→0+

1− Pii(t)
t

= 0.
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c) Wegen qi = sup Φ(t)
t gilt für alle t > 0

Φ(t)

t
≤ qi =⇒ −logPii(t) ≤ qit

=⇒ Pii(t) ≥ e−qit

Die Ungleichung e−qit ≥ 1 − qit für alle t > 0 ist eine Standardabschätzung aus der
Analysis. �

22.14 Satz:
Es sei P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Standardübergangsfunktion. Dann existieren für alle

i, j ∈ E mit i 6= j die Grenzwerte qij := lim
t→0+

Pij(t)
t und es gilt 0 ≤ qij <∞.

Beweis (nach Chung, S. 132-133):
Betrachtet man für ein h > 0 den Ausschnitt Xh = (Xnh)n∈N0 eines homogenen Markov-

prozesses, so stellt man fest, dass Xh eine eingebettete homogene Markovkette (mit diskreter
Zeit) darstellt. Offensichtlich gilt für ihre n–Schritt–Übergangswahrscheinlichkeit:

P
(n)
ij (h) = Pij(nh) ∀n ∈ N0.

Wir definieren weiter:

jP
(0)
ii (h) = 1; jP

(n)
ii (h) = P (Xnh = i,Xνh 6= j, 1 ≤ ν ≤ n | X0 = i).

Diese Wahrscheinlichkeiten werden als sogenannte Taboo-Wahrscheinlichkeiten bezeichnet.
Sie geben die Wahrscheinlichkeit an, dass die Kette in genau n Schritten von i nach i zurück-
kommt, ohne zwischendurch den Zustand j besucht zu haben. Die Wahrscheinlichkeiten für
einen erstmaligen Übergang von i nach j in n Schritten ist

f
(n)
ij (h) = P (Xnh = j,Xνh 6= j, 1 ≤ ν ≤ n | X0 = i).

Es gilt

Pij(nh) ≥
n−1∑
ν=0

jP
(ν)
ii (h) · Pij(h) · Pjj((n− ν − 1)h), (22.3)

wobei die rechte Seite die Summe von Wahrscheinlichkeiten irgendwelcher Pfade von i nach
j in n Schritten ist. Da jeder Zeitpunkt der eingebetteten Kette Xh Regenerationspunkt ist,
gilt außerdem

Pii(νh) ≤ jP
(ν)
ii (h) +

ν−1∑
m=1

f
(m)
ij (h) · Pji((ν −m)h). (22.4)

(Auf der rechten Seite werden die Wahrscheinlichkeiten aller Pfade von i nach imit mindestens

einem Besuch in j aufsummiert.) Da
ν−1∑
m=1

f
(m)
ij (h) ≤ 1 ist, folgt aus (22.4)

jP
(ν)
ii (h) ≥ Pii(νh)−

ν−1∑
m=1

f
(m)
ij (h) · Pji((ν −m)h)

≥ Pii(νh)− max
1≤m≤ν

Pji((ν −m)h).
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22.2. Q–Matrix und Kolmogorovsche Gleichungen

Aufgrund der Tatsache, dass P (t) standard ist, existiert zu jedem ε > 0 ein t0 mit

max
0≤t≤t0

Pji(t) < ε, min
0≤t≤t0

Pii(t) > 1− ε, min
0≤t≤t0

Pjj(t) > 1− ε.

Deshalb gilt für nh < t0 und ν = 0, 1, . . . , n− 1

jP
(ν)
ii (h) ≥ Pii(νh)− max

1≤m≤ν
Pji((ν −m)h) > 1− ε− ε = 1− 2ε.

Setzt man dieses Ergebnis in (22.3) ein, bekommt man

Pij(nh) ≥
n−1∑
ν=0

jP
(ν)
ii (h) · Pij(h) · Pjj((n− ν − 1)h)

> (1− 2ε) ·
n−1∑
ν=0

Pij(h) · (1− ε) = (1− 3ε+ 2ε2) · n · Pij(h)

≥ (1− 3ε) · n · Pij(h)

bzw.
Pij(nh)

nh
> (1− 3ε)

Pij(h)

h
für nh < t0.

Wir definieren

qij := lim sup
t→0

Pij(t)

t
.

Indem man den Grenzübergang h → 0 und nh → t durchführt, wobei 0 < t < t0 ist, erhält
man

Pij(t)

t
≥ (1− 3ε)qij ,

woraus qij <∞ folgt. Da ε > 0 beliebig gewählt war, folgt andererseits

lim inf
t→0+

Pij(t)

t
≥ qij ,

woraus lim
t→0+

Pij(t)
t = qij folgt. �

22.15 Definition:
Ein Zustand i ∈ E heißt stabil, falls qi < ∞, und instabil (bzw. flüchtig, englisch: instan-

taneous), falls qi = ∞ ist. Eine Übergangsfunktion P (t) = (Pij(t))i,j∈E, t ≥ 0, wird stabil
genannt, falls alle Zustände i ∈ E stabil sind. Ein Zustand i ∈ E heißt absorbierend, falls
qi = 0 bzw. falls Pii(t) = 1 für alle t ≥ 0 ist.

22.16 Satz:
Es sei P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Übergangsfunktion mit P ′(0) = Q = (qij)i,j∈E. Dann
ist

∑
j∈E

qij ≤ 0 für alle i ∈ E.
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Beweis:
Wegen

∑
j∈E Pij(t) ≤ 1 gilt

0 ≥ lim
t→0+

∑
j∈E

Pij(t)− 1

t
= lim

t→0+

Pii(t)− 1

t
+ lim
t→0+

∑
j∈E,j 6=i

Pij(t)

t

≥ lim
t→0+

Pii(t)− 1

t
+

∑
j∈E,j 6=i

lim
t→0+

Pij(t)

t
= qii +

∑
j∈E,j 6=i

qij =
∑
j∈E

qij . �

22.17 Definition (Begriff der Q–Matrix):
Eine Matrix Q = (qij)i,j∈E über einer endlichen oder abzählbar unendlichen Indexmenge E

mit Elementen qij ∈ R heißt Q–Matrix, wenn sie folgende Eigenschaften besitzt:

(i) 0 ≤ qij <∞ für alle i, j ∈ E mit i 6= j.

(ii)
∑

j∈E,j 6=i
qij ≤ qi ≤ ∞ für alle i ∈ E, wobei qi := −qii ist.

Q heißt konservativ, falls
∑
j∈E

qij = 0 für alle i ∈ E.

Anhand der Q–Matrix kann auch für Markovprozesse in stetiger Zeit (analog zu Definition
21.11) ein Markovgraph definiert werden.

22.18 Definition:
(Xt)t≥0 sei ein homogener Markovprozess mit abzählbarem Zustandsraum E und Q–Matrix
Q = (qij)i,j∈E. Der bewertete gerichtete Graph M = [J,K, ζ] mit J = E, K = {(i, j) ∈
E × E | qij 6= 0, i 6= j} und ζ(i, j) = qij heißt Markovgraph des Prozesses.

Die Q–Matrix einer Übergangsfunktion ist durch einfache Differentation zu ermitteln. Die
umgekehrte Aufgabenstellung besteht darin, aus einer gegebenen Q–Matrix Q sämtliche
Übergangsfunktionen P (t) mit P ′(0) = Q zu bestimmen und wird nach William Feller
Feller’sches Konstruktionsproblem genannt. Da bei vielen Anwendungen nur die Q–Matrix
bekannt ist, ist dieses Verfahren für die Praxis von besonderer Bedeutung.

22.19 Beispiel (M/M/1/m – Bediensystem):
Als Beispiel betrachten wir das Warteschlangensystem M/M/1/m, d.h. eine Warteschlange
mit exponentiell (mit Parameter λ) verteilten Zwischenankunftszeiten, exponentiell (mit Pa-
rameter µ) verteilten Bedienzeiten, einem Bediener und einer maximalen Warteraumkapazität
m. MitXt bezeichnen wir die Anzahl der Kunden im System zur Zeit t. Aufgrund der Gedächt-
nislosigkeit der Exponentialverteilung stellt der Prozess (Xt)t∈R+ der Anzahl der Kunden im
System einen homogenen Markovprozess mit abzählbarem Zustandsraum E = {0, 1, . . . ,m}
dar.
Die Anzahl der im Intervall (t+ ∆t] eintreffenden Kunden ist dann Poisson–verteilt mit dem
Parameter λt (Stochastik II, Kapitel 17). Es folgt

P (in (t, t+ ∆t] treffen genau k Kunden ein) = e−λ∆t (∆t)
k

k!

=


1− λ∆t+ o(∆t) falls k = 0
λ∆t+ o(∆t) falls k = 1

o(∆t) falls k ≥ 2.
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Sofern genügend Kunden im System sind, gilt entsprechend

P (in (t, t+ ∆t] werden genau k Kunden abgefertigt) =


1− µ∆t+ o(∆t) falls k = 0
µ∆t+ o(∆t) falls k = 1

o(∆t) falls k ≥ 2.

Für die zugehörigen Übergangswahrscheinlichkeiten folgt:

P00(∆t) = 1− λ∆t+ o(∆t)

Pii(∆t) = 1− (λ+ µ)∆t+ o(∆t) (1 ≤ i ≤ m− 1)

Pmm(∆t) = 1− µ∆t+ o(∆t)

Pi,i+1(∆t) = λ∆t+ o(∆t) (0 ≤ i ≤ m− 1)

Pi,i−1(∆t) = µ∆t+ o(∆t) (1 ≤ i ≤ m).

Die Q–Matrix lautet deshalb

q00 = lim
∆t→0

Pii(∆t)− 1

∆t
= lim

∆t→0

1− λ∆t+ o(∆t)− 1

∆t
= −λ

qii = lim
∆t→0

Pii(∆t)− 1

∆t
= lim

∆t→0

1− (λ+ µ)∆t+ o(∆t)− 1

∆t
= −(λ+ µ)

qmm = lim
∆t→0

Pmm(∆t)− 1

∆t
= lim

∆t→0

1− µ∆t+ o(∆t)− 1

∆t
= −µ

qi,i+1 = lim
∆t→0

Pi,i+1(∆t)

∆t
= lim

∆t→0

λ∆t+ o(∆t)

∆t
= λ

qi,i−1 = lim
∆t→0

Pi,i−1(∆t)

∆t
= lim

∆t→0

µ∆t+ o(∆t)

∆t
= −µ

und hat folgende Gestalt

Q =



−λ λ 0 . . . 0 0 0
µ −(λ+ µ) λ . . . 0 0 0
0 µ −(λ+ µ) . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −(λ+ µ) λ 0
0 0 0 . . . µ −(λ+ µ) λ
0 0 0 . . . 0 µ −µ



i = 0
i = 1
i = 2

...
i = m− 2
i = m− 1
i = m

Die Zeilensummen dieser Matrix verschwinden, d.h. die Matrix ist konservativ. Der zugehörige
Markovgraph hat die Form

Abbildung 22.1: Markovgraph zum M/M/1/m-Bediensystem.
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Bei der Berechnung von Übergangsfunktionen aus Q-Matrizen spielen die Kolmogorovschen
Vorwärts- und Rückwärtsgleichungen eine wichtige Rolle. Ihre Herleitung erfordert einige vor-
bereitende Sätze.
Bislang wurde gezeigt, dass Standard–Übergangsfunktionen in 0 rechtsseitig differenzierbar
sind. Es lässt sich aber auch die stetige Differenzierbarkeit in jedem t > 0 zeigen. Wir be-
ginnen mit einem Hilfssatz, der auf Doob und Chung zurückgeht, vgl. K.L. Chung: Markov
Chains with stationary transition probabilities (Springer–Verlag, 1960) oder J.L. Doob: Mar-
koff chains – denumerable case (Trans. Amer. Math. Soc. 42, 107-140).

22.20 Satz:
Es sei P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Übergangsfunktion über E.

a) Sei {f(t)|t ∈ R+ \ {0}} eine Familie von nichtnegativen Zeilenvektoren über E mit

f(s) · P (t) = f(s+ t) ∀s > 0, t ≥ 0.

Dann sind alle Komponenten fi(t) von f(t) stetig auf (0,∞) und haben endliche Grenz-
werte für t→ 0+.

b) Sei {g(t) | t ∈ R+} eine Familie von stetigen, nichtnegativen Zeilenvektoren über E mit

g(s+ t)− g(t) = g(s) · P (t) ∀s > 0, t ≥ 0.

Dann ist g(t) differenzierbar auf (0,∞) und es gilt

g′(s+ t) = g′(s) · P (t) ∀s > 0, t ≥ 0.

Außerdem ist g(t) stetig differenzierbar auf R+.

22.21 Satz:
Sei P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Übergangsfunktion und i ∈ E ein stabiler Zustand. Dann
gilt:

a) qij = P ′ij(0) existiert und ist endlich für alle j ∈ E.

b) P ′ij(t) existiert, ist endlich und stetig auf R+ für alle j ∈ E.

c) P ′ij(s+ t) =
∑
k∈E

P ′ik(s)Pkj(t) für alle s > 0, t ≥ 0 und j ∈ E.

Beweis:
a) klar.

b) Aufgrund von Satz 22.13(c) gilt zunächst

Pii(t) ≥ 1− qi · t ∀t ≥ 0.

Für 0 ≤ s < t können wir deshalb schreiben:

Pij(t)− Pij(s) =
∑
k∈E

Pik(t− s)Pkj(s)− Pij(s) (Gleichung von Chapman–Kolmogorov)

≥ Pii(t− s)Pij(s)− Pij(s) = [Pii(t− s)− 1]Pij(s)

≥ −qi · (t− s)Pij(s).
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22.2. Q–Matrix und Kolmogorovsche Gleichungen

Sei a = t0 < t1 < t2 < . . . < tn = b eine Partition des Intervalls [a, b], dann gilt

Pij(b)− Pij(a) =
n−1∑
m=0

[Pij(tm+1)− Pij(tm)] ≥ −
n−1∑
m=0

qiPij(tm)(tm+1 − tm).︸ ︷︷ ︸
untere Riemannsumme für

∫
qiPij(u) du

Da Pij(t) aufgrund von Satz 22.11(c) stetig ist, liefert der Übergang von der Riemann-
summe zum Integral

Pij(b)− Pij(a) ≥ −
b∫
a

qiPij(u) du. (22.5)

Wir definieren Zeilenvektoren g(t) = (gj(t))j∈E mit

gj(t) = Pij(t)− δij +

t∫
0

qiPij(u) du.

Der Ungleichung (22.5) entnimmt man wegen Pij(0) = δij , dass

gj(t) ≥ 0 ∀t ≥ 0.

Da Pij(t) stetig ist, ist auch gj(t) stetig. Wir zeigen weiter, dass auch die Voraussetzun-
gen von Satz 22.20(b) erfüllt sind. Denn es gilt

gj(s+ t)− gj(t) = Pij(s+ t)− Pij(t) +

∫ s+t

t
qiPij(u) du

=
∑
k∈E

Pik(s)Pkj(t)− Pij(t) +

∫ s

0
qiPij(z + t) dz

=
∑
k∈E

[Pik(s)− δik]Pkj(t) +
∑
k∈E

(∫ s

0
qiPik(z) dz

)
· Pkj(t)

=
∑
k∈E

gk(s)Pkj(t).

Folglich ist g(t) stetig differenzierbar auf R+ und der Grenzwert lim
t→0+

g′(t) existiert und

ist endlich. Wegen

Pij(t) = gj(t) + δij −
∫ t

0
qiPij(u) du

folgt

P ′ij(t) = g′j(t)− qiPij(t), (22.6)

und da die rechte Seite stetig aufR+ ist, gilt dies auch für P ′ij(t). Außerdem gilt aufgrund
von Satz 22.20(b) für alle s > 0 und t ≥ 0

g′(s+ t) = g′(s)P (t). (22.7)
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c) Wir greifen auf die Gleichung (22.6) zurück. Es folgt für s > 0 und t ≥ 0

P ′ij(s+ t) = g′j(s+ t)− qiPij(s+ t)
(22.7)

=
∑
k∈E

g′k(s)Pkj(t)−
∑
k∈E

qiPik(s)Pkj(t)

=
∑
k∈E

[g′k(s)− qiPik(s)]Pkj(t)
(22.6)

=
∑
k∈E

P ′ik(s)Pkj(t). �

22.22 Satz:
Es bezeichne P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Übergangsfunktion und j ∈ E sei ein stabiler
Zustand. Dann gilt:

a) qij = P ′ij(0) existiert und ist endlich für alle i ∈ E.

b) P ′ij(t) existiert, ist endlich und stetig auf R+ für alle i ∈ E.

c) P ′ij(s+ t) =
∑
k∈E

Pik(s)P
′
kj(t) für alle s ≥ 0, t > 0 und i ∈ E.

Beweis:
Analog zu Satz 22.21. �

Eine alternative Beweisführung für die Sätze 22.21 und 22.22 ohne Verwendung von Satz
22.20 erhalten wir unter der zusätzlichen Annahme, dass Q konservativ ist. Es gilt:

Pij(s+ t)− Pij(t) =
∑
k∈E

Pik(s)Pkj(t)− Pij(t) =
∑

k∈E,k 6=i
Pik(s)Pkj(t) + [Pii(s)− 1]Pij(t).

Zu zeigen ist, dass

lim
s→0

1

s

∑
k∈E,k 6=i

Pik(s)Pkj(t)

existiert. Mit Hilfe des Lemmas von Fatou schließen wir

lim inf
s→0+

1

s

∑
k∈E

Pik(s)Pkj(t) ≥
∑
k∈E

lim inf
s→0+

Pik(s)

s
Pkj(t) =

∑
k∈E

qikPkj(t).

Für alle N > i gilt

∑
k∈E,k 6=i

Pik(s)Pkj(t) ≤
N∑

k=1,k 6=i
Pik(s)Pkj(t) + 1− Pii(s)−

N∑
k=1,k 6=i

Pik(s),

da Pkj(t) ≤ 1 und
∑
j∈E

Pij(s) ≤ 1. Hieraus folgt

lim sup
s→0+

1

s

∑
k∈E,k 6=i

Pik(s)Pkj(t) ≤
N∑

k=1,k 6=i
qikPkj(t) + qi −

N∑
k=1,k 6=i

qik.
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Da Q konservativ ist, strebt der Ausdruck qi −
N∑

k=1,k 6=i
qik für N →∞ gegen 0. Daher wird

lim
s→0+

1

s
[Pij(s+ t)− Pij(t)] = P ′ij(t) =

∑
k∈E

qikPkj(t) (Rückwärtsgleichung). (22.8)

Es gilt weiter

P ′ij(s+ t) =
∑
k∈E

qikPkj(s+ t)

(Gleichung von Chapman–Kolmogorov)

↓
=
∑
k∈E

∑
l∈E

qikPkl(s)Plj(t) =
∑
l∈E

Plj(t)
∑
k∈E

qikPkl(s)

(22.8)
=

∑
l∈E

P ′il(s)Plj(t).

Analog (Teilen durch t und anschließender Grenzübergang) kann nun auch

P ′ij(t) =
∑
k∈E

Pik(t)qkj (22.9)

gezeigt werden, woraus Satz 22.22 entsprechend folgt.
Man beachte, dass die Gleichungen (22.8) und (22.9) nicht für den allgemeinen Fall gezeigt
wurden. Das Lemma von Fatou liefert für den Grenzübergang s→ 0 in Satz 22.21 bzw. t→ 0
in Satz 22.22 nur Ungleichungen. Der nachstehende Satz fasst diese Ergebnisse zusammen.

22.23 Satz:
Es sei P (t) = (Pij(t))i,j∈E, t ≥ 0, eine Übergangsmatrix und i ∈ E ein stabiler Zustand.

a) P ′ij(t) ≥
∑
k∈E

qikPkj(t) für alle t ≥ 0 und alle j ∈ E.

(sogenannte Kolmogorovsche Rückwärtsungleichungen)

b) P ′ij(t) ≥
∑
k∈E

Pik(t)qkj für alle t ≥ 0 und alle j ∈ E.

(sogenannte Kolmogorovsche Vorwärtsungleichungen)

c) Im Fall einer konservativen Q–Matrix Q = P ′(0) gilt
P ′ij(t) =

∑
k∈E

qikPkj(t) für alle t ≥ 0 und alle j ∈ E.

(sogenannte Kolmogorovsche Rückwärtsgleichungen)

d) Im Fall einer konservativen Q–Matrix Q = P ′(0) gilt
P ′ij(t) =

∑
k∈E

Pik(t)qkj für alle t ≥ 0 und alle j ∈ E.

(sogenannte Kolmogorovsche Vorwärtsgleichungen)
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Abbildung 22.2: Pfadverhalten der eingebetteten Sprungkette eines Markovprozesses.

Die eingebettete Sprungkette

Die Werte qij werden häufig als Übergangsraten bezeichnet. Um diesen Begriff zu veranschau-
lichen, betrachten wir das Pfadverhalten der eingebetteten Sprungkette.

22.24 Definition:
Sei i ∈ E und X0 = i. Dann heißt

Ti :=

{
inf{t ≥ 0 | Xt 6= i} , wenn das Infimum existiert

∞ , sonst

Verweildauer im Zustand i.

22.25 Bemerkung:
Ist i ∈ E ein absorbierender Zustand, d.h. qi = 0, so gilt nach Satz 22.11(b) Pii(t) = 1 für
alle t ≥ 0. In diesem Fall ist Ti =∞.

22.26 Satz:
Es sei qi 6= 0.

a) Für alle i ∈ E gilt

P (Ti > t | X0 = i) = e−qit, t ≥ 0, qi := −qii.

b) Für die Übergangswahrscheinlichkeit von i nach j 6= i am Ende der Verweilzeit Ti gilt

P (XTi = j | X0 = i) =
qij
qi
.
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Beweis:
a) Für alle s, t ≥ 0 gilt

P (Ti > t+ s | X0 = i) = P (Xu = i, 0 ≤ u ≤ t+ s | X0 = i)

= P (Xu = i, t ≤ u ≤ t+ s | Xu = i,X0 = i, 0 ≤ u ≤ t)
· P (Xu = i, 0 ≤ u ≤ t | X0 = i)

(Markoveigenschaft)

↓
= P (Xu = i, t ≤ u ≤ t+ s | Xt = i) · P (Ti > t | X0 = i)

(Homogenität)

↓
= P (Xu = i, 0 ≤ u ≤ s | X0 = i) · P (Ti > t | X0 = i)

= P (Ti > s | X0 = i) · P (Ti > t | X0 = i).

Die Funktionalgleichung
g(s+ t) = g(s) · g(t)

besitzt genau eine beschränkte, rechtsseitig stetige Lösung, nämlich g(t) = e−αt; es ist
also

P (Ti > t | X0 = i) = e−αt, t ≥ 0.

Zur Bestimmung von α benutzen wir

P (Ti > t | X0 = i) = P (Xu = i, 0 ≤ u ≤ t | X0 = i)

= lim
n→∞

P

(
Xu = i, u = 0,

t

n
,
2t

n
, . . . ,

(n− 1)t

n
, t | X0 = i

)
= lim

n→∞

[
Pii

(
t

n

)]n
.

Folglich ist

α = −1

t
log[P (Ti > t | X0 = i)] (Ausfallrate)

= −1

t
log

{
lim
n→∞

[
Pii

(
t

n

)]n}
= −1

t
log
{

lim
n→∞

en·log(Pii( tn))
}

= − lim
n→∞

log
[
Pii
(
t
n

)]
t
n

= − lim
x→0+

log[Pii(x)]

x

(l’Hospital)

↓
= − lim

x→0+

[
P ′ii(x)

Pii(x)

]
= −qii = qi. �

b) XTi ist der Zustand, in den der Markovprozess direkt von i aus übergeht. Nach Definition
ist damit P (XTi = i|X0 = i) = 0. Für j 6= i ist

P (XTi = j | X0 = i) = lim
h→0+

Rij(h) mit Rij(h) = P (Xt+h = j | Xt = i,Xt+h 6= i).

Aufgrund der Homogenität des Markovprozesses ist Rij(h) unabhängig von t. Es gilt

Rij(h) = P (Xh = j | X0 = i,Xh 6= i) =
P (Xh = j | X0 = i)

P (Xh 6= i | X0 = i)
=

Pij(h)

1− Pii(h)
,
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und daher

P (XTi = j | X0 = i) = lim
h→0+

Pij(h)

h

h

1− Pii(h)
=
qij
qi
.

22.27 Definition:
Es sei Q eine konservative Q–Matrix. Mithilfe der in Satz 22.26b) festgestellten Übergangs-
wahrscheinlichkeiten lässt sich eine diskrete Markovkette definieren, nämlich

Pij =


δij , qi = 0
0 , qi > 0, j = i
qij
qi
, qi > 0, j 6= i.

Pij ist offensichtlich stochastisch und heißt eingebettete Sprungkette.

22.28 Bemerkung:
Ein durch die Übergangsfunktion Pij(t) repräsentierter Markovprozess lässt sich in eine Folge
von exponentiell verweilten Verweildauern (vgl. Satz 22.26a)) und die eingebettete Sprung-
kette zerlegen. Auf den ersten Blick scheint es so, als würden diese beiden Komponenten, die
nur von der Q–Matrix abhängen, schon zur vollständigen Beschreibung des Markovprozesses
ausreichen. Jedoch ist diese Beschreibung im Allgemeinen nicht eindeutig – tatsächlich kann
es mehrere Q–Prozesse, d.h. Übergangsfunktionen P (t) mit P ′(0) = Q geben. Wie schon
in Zusammenhang mit der Definition von Q–Matrizen erwähnt, ist die Suche nach den Q–
Prozessen nicht einfach und wird die nächsten Kapitel beanspruchen.
Ein Grund für die Mehrdeutigkeit findet sich bei etwas genauerer Betrachtung der Folge der
Verweildauern. Ein Prozess möge nacheinander die Zustände 1, 2, 3, . . . mit den Verweilzeiten
T1, T2, T3 . . . durchlaufen. Definiert man nun Jn =

∑n
k=0 Tk und ist J∞ := limn→∞ Jn = ∞,

so ist der Prozess zu jedem endlichen Zeitpunkt eindeutig festgelegt. Ist aber J∞ < ∞, so
fehlen Informationen über den Prozess zu den Zeitpunkten t > J∞. In diesem Fall bezeichnet
man J∞ auch als Explosionspunkt.

22.3 Q–Matrizen über endlichen Zustandsräumen

Wir setzen in diesem Abschnitt generell voraus, dass Q eine konservative Q–Matrix ist, und
suchen alle Übergangsfunktionen P (t) mit P ′(0) = Q. Wir betrachten zunächst einen end-
lichen Zustandsraum E = {0, 1, . . . ,m}, und notieren die Kolmogorovschen Vorwärts- und
Rückwärtsgleichungen

P ′(t) = P (t) ·Q und P ′(t) = Q · P (t)

mit der Anfangsbedingung P (0) = I. Wir wollen zeigen, dass in diesem Fall der Q–Prozess
eindeutig bestimmt ist und einer vergleichsweise einfachen Darstellung genügt. Dazu setzen
wir

etQ =
∞∑
n=0

(tQ)n

n!
= I +

∞∑
n=1

(tQ)n

n!
mit e0 = I

und stellen fest:
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22.29 Satz:
a) etQ existiert und ist wohldefiniert für alle t ∈ R+.

b) P (t) = etQ ist eine Lösung der Kolmogorovschen Vorwärts– und Rückwärtsgleichungen.

c) P (t) = etQ ist die einzige Lösung der Kolmogorovschen Vorwärts- und Rückwärtsgleich-
ungen.

Beweis:
a) Schreibt man P (t) = etQ komponentenweise auf, erhält man

Pij(t) = δij + tqij +
t2

2!
q

(2)
ij +

t3

3!
q

(3)
ij + . . . ,

wobei Qn =
(
q

(n)
ij

)
i,j∈E

sei. Wegen

|qij | ≤ (m+ 1) max |qij | = ‖Q‖

und wegen ‖AB‖ ≤ ‖A‖ · ‖B‖ erhalten wir∣∣∣q(n)
ij

∣∣∣ ≤ ‖Qn‖ ≤ ‖Q‖n ∀i, j ∈ E.

Folglich besitzt die Potenzreihe Pij(t) eine absolut–konvergente Majorante für alle reel-
len t, nämlich

∞∑
n=0

qn
tn

n!
= eqt, q = ‖Q‖ .

Daher konvergiert auch Pij(t) absolut für alle reellen t. Da Aussagen über Matrizen
elementweise verstanden werden sollen, haben wir nachgewiesen, dass

etQ =
∞∑
n=0

(tQ)n

n!
=

( ∞∑
n=0

q
(n)
ij

tn

n!

)
i,j∈E

für alle reellen t absolut konvergiert.

b) Da man bei einer konvergenten Potenzreihe gliedweise differenzieren darf, erhält man
für P (t) = etQ, t ≥ 0:

d

dt
P (t) =

d

dt

∞∑
n=0

(tQ)n

n!
=
∞∑
n=1

ntn−1Qn

n!

=


∞∑
n=1

tn−1·Qn−1·Q
(n−1)! =

∞∑
n=0

tn·Qn
n! Q = etQ ·Q= P (t) ·Q

∞∑
n=1

Q·tn−1·Qn−1

(n−1)! =Q ·
∞∑
n=0

tn·Qn
n! =Q · etQ =Q · P (t)

Außerdem gilt P (0) = e0Q = I.

71



Kapitel 22. Markovketten mit stetiger Zeit

c) Hierzu betrachten wir die Matrixfunktion

R(t) = P (t) · e−tQ,

wobei P (t) die Kolmogorovschen Vorwärtsgleichung erfüllen möge, d.h. P ′(t) = P (t) ·Q,
P (0) = I. Offensichtlich gilt

R′(t) = P ′(t) · e−tQ + P (t) · (−Q)e−tQ = P (t) ·Qe−tQ − P (t) ·Qe−tQ = 0

und außerdem ist
R(0) = P (0) · e−0Q = I · I = I.

Da die Ableitung von R(t) gleich Null ist für alle t, sind alle Einträge von R(t) un-
abhängig von t, d.h.

I = R(0) = R(t) = P (t) · e−tQ ∀t ∈ R+.

Multiplikation von rechts mit etQ ergibt

etQ = P (t) · e−tQetQ = P (t) · e(−t+t)Q = P (t) · e0Q = P (t) · I = P (t),

d.h. jede Lösung der Kolmogorovschen Vorwärtsgleichung ist von der Form P (t) = etQ.
Entsprechend kann auch mit der Rückwärtsgleichung verfahren werden. �

22.30 Satz:
Die Lösung P (t) = etQ der Kolmogorovschen Gleichungen ist ein Q–Prozess.

Beweis:
Es sind die drei definierenden Eigenschaften von Übergangsfunktionen zu zeigen.

1. Pij(t) ≥ 0, ∀i, j ∈ E und t ∈ R+ sowie P (0) = I. (trivial)

2.
∑

j∈E Pij(t) = 1 für alle i ∈ E und t ∈ R+. Da Q konservativ ist, gilt

d

dt

∑
j∈E

Pij(t)

 =
∑
j∈E

d

dt
Pij(t) =

∑
j∈E

∑
k∈E

Pik(t) · qkj

=
∑
k∈E

Pik(t)
∑
j∈E

qkj =
∑
k∈E

Pik(t) · 0 = 0.

Weiterhin folgt aus

d

dt

∑
j∈E

Pij(t)

 = 0,

dass
∑

j∈E Pij(t) konstant für alle t ∈ R+ ist. Deshalb gilt∑
j∈E

Pij(t) =
∑
j∈E

Pij(0) =
∑
j∈E

δij = 1.
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3. P (t) = etQ erfüllt die Gleichung von Chapman und Kolmogorov. Mit Q0 := I gilt

P (t+ s) = e(t+s)Q

=

∞∑
n=0

(t+ s)n

n!
Qn =

∞∑
n=1

 ∑
i+j=n

tisj

i!j!

Qn

=

∞∑
n=0

 ∑
i+j=n

ti

i!
Qi · s

j

j!
Qj

 =

( ∞∑
i=0

ti

i!
Qi

)
·

 ∞∑
j=0

sj

j!
Qj


= etQ · esQ. �

Ein Spezialfall zur Berechnung von etQ erhält man unter der Annahme, dass Q eine (m +
1)× (m+ 1)–Matrix ist mit den Eigenwerten α0, . . . , αm. Mit x0, . . . , xm bezeichnen wir die
zugehörigen Eigenvektoren und setzen B = [x0, . . . , xm]. Dann gilt

B−1QB = D = diag(α0, . . . , αm).

Hieraus folgt (B−1QB)2 = B−1Q2B = D2 und allgemein

B−1QnB = Dn bzw. Qn = BDnB−1.

Damit wird

etQ =

∞∑
n=0

tn

n!
Qn =

∞∑
n=0

tn

n!
(BDnB−1) = B

( ∞∑
n=0

tn

n!
Dn

)
B−1

= B · diag(etα0 , etα1 , . . . , etαm)B−1.

22.31 Beispiel:
Es sei

E = {0, 1}, Q =

(
−β β
δ −δ

)
,

d.h. Q ist konservativ. Es gilt:

Q2 =

(
−β β
δ −δ

)(
−β β
δ −δ

)
=

(
β2 + βδ −β2 − βδ
−βδ − δ2 −βδ + δ2

)
= −(β + δ)

(
−β β
δ −δ

)
= −(β + δ)Q.

Allgemein folgt induktiv sofort Qn = (−1)n−1(β + δ)n−1Q. Damit wird

P (t) = etQ = I +

∞∑
n=1

(tQ)n

n!
= I +

∞∑
n=1

(−1)n−1(β + δ)n−1tnQ

n!

= I − 1

β + δ

( ∞∑
n=1

(−(β + δ)t)n

n!

)
Q = I − 1

β + δ

(
e−t(β+δ) − 1

)
Q

=
1

β + δ

(
δ + βe−(β+δ)t β − βe−(β+δ)t

δ − δe−(β+δ)t β + δe−(β+δ)t

)
, t ∈ R+.
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Natürlich gilt auch hier wieder

Pij(t) ≥ 0,
∑
j∈E

Pij(t) = 1, P (0) = I.

22.32 Bemerkung:
Offensichtlich lassen sich die bisherigen Überlegungen auch auf den Fall übertragen, dass E
abzählbar unendlich viele Zustände umfasst. Es muss lediglich sichergestellt sein, dass

sup
i,j∈E

|qij | <∞

gilt, was wegen qii = −
∑

j 6=i qij äquivalent zu

sup
i∈E
|qii| <∞.

ist. Dies ist jedoch bei praktischen Fragestellungen eine zu große Einschränkung, so dass
andere Methoden zur Lösung des Fellerschen Konstruktionsproblems benötigt werden.

22.33 Beispiel (Poissonprozess):
Der Poissonprozess (oder auch reiner Geburtsprozess) ist ein homogener Markovprozess mit
Zustandsraum E = N0 und Q-Matrix Q = (qij)i,j∈N0 , wobei

qij =


λ , j = i+ 1, i = 0, 1, 2, . . . ,
−λ , j = i, i = 0, 1, 2, . . . ,
0. , sonst

Somit hat die Q–Matrix die Gestalt

Q =


−λ λ 0

−λ λ
−λ λ

0
. . .

. . .

 .

Es gilt

q
(n)
ij =


(

n

j − i

)
(−1)n+j−iλn , 0 ≤ j − i ≤ n,

0 , sonst.

Hieraus folgt für j ≥ i und t ∈ R+:

Pij(t) = δij + tqij +
t2

2!
q

(2)
ij + · · · =

∞∑
k=0

tj−i+k

(j − i+ k)!
q

(j−i+k)
ij

=

∞∑
k=0

tj−i+k

(j − i+ k)!

(
j − i+ k

j − i

)
(−1)kλj−i+k =

∞∑
k=0

tj−i+k

(j − i+ k)!

(j − i+ k)!

(j − i)!k!
(−1)kλj−i+k

=
(λt)j−i

(j − i)!

∞∑
k=0

(−λt)k

k!
=

(λt)j−i

(j − i)!
e−λt, t ∈ R+.

Für j < i gilt Pij(t) = 0, t ∈ R+.
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22.4 Fellersches Konstruktionsproblem

In diesem Abschnitt soll nun eine Methode vorgestellt werden, die es ermöglicht, auch bei un-
beschränkten Q–Matrizen einen zugehörigen Q–Prozess zu finden. Dabei setzen wir voraus,
dass die Q–Matrix Q = (qij)i,j∈E konservativ ist, d.h. für alle i ∈ E gilt

∑
j∈E qij = 0. Die

Q–Prozesse erfüllen somit notwendigerweise die Kolmogorovsche Vorwärts– und Rückwärts-
gleichung. Bei der Bestimmung eines solchen Prozesses hilft die Umformung der beiden Glei-
chungen in Integralgleichungen.

22.34 Satz:
Es gilt für alle i, j ∈ E:

a) P ′ij(t) =
∑
k∈E

qikPkj(t), t ≥ 0 ⇔ Pij(t) = δije
−qit +

∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikPkj(s)ds, t ≥ 0.

b) P ′ij(t) =
∑
k∈E

Pik(t)qkj , t ≥ 0 ⇔ Pij(t) = δije
−qjt +

∑
k∈E
k 6=j

t∫
0

e−qj(t−s)Pik(s)qkjds, t ≥ 0.

Beweis:
a) Wegen Pij(0) = δij gilt

Pij(t)e
qit = δij +

∑
k∈E
k 6=i

t∫
0

eqisqikPkj(s) ds

⇐⇒ d

dt

[
Pij(t)e

qit
]

=
∑
k∈E
k 6=i

qikPkj(t)e
qit

⇐⇒ d

dt

[
Pij(t)

]
eqit + qie

qitPij(t) =
∑
k∈E
k 6=i

qikPkj(t)e
qit

⇐⇒ d

dt

[
Pij(t)

]
eqit =

∑
k∈E

qikPkj(t)e
qit

⇐⇒ d

dt

[
Pij(t)

]
=
∑
k∈E

qikPkj(t).

b) Analog. �

Die Idee besteht nun darin, eine der beiden Integralgleichungen als Iterationsgleichung zu
verwenden und den entsprechenden Grenzwert näher zu betrachten (Lösung der sukzessiven
Approximation). Dazu setzen wir für i, j ∈ E, n = 0, 1, 2, . . . und t ≥ 0

σ
(0)
ij (t) ≡ 0,

σ
(n+1)
ij (t) = δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n)
kj (s) ds (n = 0, 1, 2, . . .),

fij(t) = lim
n→∞

σ
(n)
ij (t).
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In den nachstehenden Sätzen wird nun gezeigt, dass F = {fij(t)} tatsächlich ein wohldefinier-
ter Q–Prozess ist und unter allen Q–Prozessen eine Minimalitätseigenschaft besitzt.

22.35 Satz:
F = {fij(t)} ist wohldefiniert und Lösung der Kolmogorovschen Vorwärts- und Rückwärts-
gleichungen.

Beweis:
Zum Beweis der Wohldefiniertheit muss die Konvergenz der Folge {σ(n)

ij (t)} für alle i, j ∈ E
nachgewiesen werden. Dazu zeigen wir, dass {σ(n)

ij (t)} als Funktion von nmonoton nichtfallend
und beschränkt ist.

(i) Monotonie: Für alle i, j ∈ E und t ≥ 0 ist

σ
(1)
ij (t) = δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(0)
kj (s) ds

= δije
−qit ≥ 0 = σ

(0)
ij (t).

Wir nehmen jetzt allgemein σ
(n)
ij (t) ≥ σ

(n−1)
ij (t) für alle i, j ∈ E und t ≥ 0 an und

schließen von n auf n+ 1:

σ
(n+1)
ij (t) = δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n)
kj (s) ds

≥ δije−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n−1)
kj (s) ds = σ

(n)
ij (t)

(aufgrund der Induktionsvoraussetzung und aufgrund der Monotonie des Integrals sowie
der Tatsache qik ≥ 0 für k 6= i).

(ii) Es bleibt zu zeigen, dass {σ(n)
ij (t)} nach oben beschränkt ist; dies erfolgt durch Induktion

über n. Es gilt

σ
(1)
ij (t) = δije

−qit ≤ 1,

für alle i, j ∈ E und t ∈ R+.
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Induktionsannahme: σ
(n)
ij (t) ≤ 1. Dann gilt

σ
(n+1)
ij (t) = δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n)
kj (s) ds

≤ δije−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qik ds = δije
−qit + e−qit ·

∑
k∈E
k 6=i

qik


t∫

0

eqis ds

= δije
−qit + e−qit · qi ·

(
1

qi
eqis
∣∣∣∣t
0

)
= δije

−qit + e−qit · qi ·
[

1

qi
eqit − 1

qi

]
= δije

−qit + 1− e−qit ≤ 1.

Da {σ(n)
ij (t)} monoton nichtfallend und beschränkt ist, existiert der Grenzwert

fij(t) = lim
n→∞

σ
(n)
ij (t).

Aufgrund des Satzes von der monotonen Konvergenz folgt aus der Definition von σ
(n)
ij (t) sofort

fij(t) = δije
−qit +

∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikfkj(s) ds (i, j ∈ E; t ∈ R+)

und nach Satz 22.34 ist damit gezeigt, dass F = {fij(t)} die Rückwärtsgleichungen erfüllt.

Zum Nachweis der Vorwärtsgleichungen reicht es zu zeigen, dass {σ(n)
ij (t)} auch die an die

Vorwärtsgleichung angepasste Iteration

σ
(n+1)
ij (t) = δije

−qjt +
∑
k∈E
k 6=j

t∫
0

e−qj(t−s)σ
(n)
ik (s)qkj ds (n = 0, 1, 2, . . . ) (22.10)

erfüllt. Dann liefert erneute Anwendung des Satzes von der monotonen Konvergenz direkt die
Vorwärtsgleichung in der integralen Version aus Satz 22.34.

Der Nachweis von (22.10) erfolgt durch Induktion. Wegen σ
(0)
ij (t) ≡ 0 ist

σ
(1)
ij (t) = δije

−qit = δije
−qjt,

d.h. für n = 0 ist (22.10) richtig. Sei (22.10) nun für ein n ∈ N0 und alle i, j ∈ E, t ≥ 0
nachgewiesen. Dann folgt unter Verwendung des Satzes von Fubini und der Definition der
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σ
(n)
ij (t)

σ
(n+1)
ij (t)

Def.
= δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n)
kj (s) ds

I.V.
= δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qik

δkje−qks +
∑
`∈E
` 6=j

s∫
0

e−qj(s−u)σ
(n−1)
k` (u)q`j du

 ds

u=v+s−t
= δije

−qjt +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikδkje
−qks ds

+
∑
k∈E
k 6=i

∑
`∈E
6̀=j

t∫
0

e−qi(t−s)qik

t∫
t−s

e−qj(t−v)σ
(n−1)
k` (v + s− t)q`j dv ds

Fubini
= δije

−qjt + δij

t∫
0

e−qi(t−s)qije
−qjs ds

+
∑
`∈E
` 6=j

∑
k∈E
k 6=i

t∫
0

e−qj(t−v)

t∫
t−v

e−qi(t−s)qikσ
(n−1)
k` (v + s− t) dsq`j dv

s=t−v
= δije

−qjt + δij

t∫
0

e−qivqije
−qj(t−v) ds

+
∑
`∈E
` 6=j

t∫
0

e−qj(t−v)
∑
k∈E
k 6=i

t∫
t−v

e−qi(t−s)qikσ
(n−1)
k` (v + s− t) dsq`j dv

s=w+t−v
= δije

−qjt +
∑
`∈E
6̀=j

t∫
0

e−qj(t−v)δi`e
−qivq`j dv

+
∑
`∈E
` 6=j

t∫
0

e−qj(t−v)
∑
k∈E
k 6=i

v∫
0

e−qi(v−w)qikσ
(n−1)
k` (w) dwq`j dv

= δije
−qjt +

∑
`∈E
6̀=j

t∫
0

e−qj(t−v)

δi`e−qiv +

v∫
0

e−qi(v−w)qikσ
(n−1)
k` (w) dw

 q`j dv

Def.
= δije

−qjt +
∑
`∈E
` 6=j

t∫
0

e−qj(t−v)σ
(n)
i` (v)q`j dv.

Damit ist (22.10) für alle n ∈ N0 gezeigt. �
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22.36 Satz:
F = {fij(t)} ist ein Q–Prozeß.

Beweis:
Es muss gezeigt werden, dass F tatsächlich eine Übergangsfunktion darstellt. (Dass f ′ij(0) = qij
gilt, folgt dann wegen fij(0) = δij direkt etwa aus der Kolmogorovschen Rückwärtsgleichung.)

(i) Es gilt σ
(n)
ij (t) ≥ 0 für alle n ∈ N und damit auch fij(t) ≥ 0 für alle i, j ∈ E und t ∈ R+.

Ferner folgt direkt aus der Definition der σ
(n)
ij (t), dass lim

t→0+
fij(t) = δij für alle i, j ∈ E

ist.

(ii) Es soll ∑
j∈E

fij(t) ≤ 1 ∀i ∈ E.

gezeigt werden, wozu natürlich
∑

j∈E σ
(n)
ij (t) ≤ 1 für alle i ∈ E und n = 0, 1, 2, . . . reicht.

Der Nachweis erfolgt wieder durch Induktion, für n = 1 ist∑
j∈E

σ
(1)
ij (t) =

∑
j∈E

δije
−qit = e−qit ≤ 1

für alle i ∈ E und alle t ≥ 0.
Es sei nun

∑
j∈E σ

(n)
ij (t) ≤ 1 für alle i ∈ E und t ≥ 0 nachgewiesen. Aus

σ
(n+1)
ij (t) = δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n)
kj (s) ds

folgt

∑
j∈E

σ
(n+1)
ij (t) = e−qit +

∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qik

∑
j∈E

σ
(n)
kj (s)

 ds

≤ e−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qik ds

= e−qit

1 +

 ∑
k∈E,k 6=i

qik

 t∫
0

e−qis ds


= e−qit

[
1 + qi

(
1

qi
eqit − 1

qi

)]
= e−qit[1 + eqit − 1] = 1.

Damit ist die Behauptung für alle n ∈ N0 gezeigt.
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(iii) F = {fij(t)} erfüllt die Gleichung von Chapman–Kolmogorov. Dazu wird

f
(n)
ij (t) = σ(n+1)(t)− σ(n)(t) (i, j ∈ E, t ≥ 0, n = 0, 1, 2, . . .)

definiert. Wegen σ
(0)
ij (t) = 0 ist dann für alle i, j ∈ E und t ≥ 0

fij(t) = lim
k→∞

σ
(k)
ij (t) = lim

k→∞

k−1∑
n=0

f
(n)
ij (t) =

∞∑
n=0

f
(n)
ij (t).

Es soll nun

f
(n)
ij (t+ s) =

n∑
ν=0

∑
k∈E

f
(ν)
ik (t)f

(n−ν)
kj (s) (22.11)

für alle n = 0, 1, 2, . . ., i, j ∈ E und t, s ≥ 0 gezeigt werden. Denn dann ist

fij(t+ s) =
∞∑
n=0

f
(n)
ij (t+ s) =

∞∑
n=0

n∑
ν=0

∑
k∈E

f
(ν)
ik (t)f

(n−ν)
kj (s)

=
∑
k∈E

∞∑
ν=0

∞∑
n=ν

f
(ν)
ik (t)f

(n−ν)
kj (s)

=
∑
k∈E

( ∞∑
ν=0

f
(ν)
ik

)( ∞∑
n=ν

f
(n−ν)
kj

)
=
∑
k∈E

fik(t)fkj(s).

Zum Nachweis von (22.11) wird zunächst eine Rekursion für die f
(n)
ij (t) angegeben. Es

ist

f
(0)
ij (t) = σ

(1)
ij (t)− σ(0)

ij (t) = δije
−qit (i, j ∈ E, t ≥ 0)

und weiter

f
(n+1)
ij (t) = σ

(n+2)
ij (t)− σ(n+1)

ij (t)

=

t∫
0

e−qi(t−s)
∑
k∈E
k 6=i

qikσ
(n+1)
kj (s) ds−

t∫
0

e−qi(t−s)
∑
k∈E
k 6=i

qikσ
(n)
kj (s) ds

=

t∫
0

e−qi(t−s)
∑
k∈E
k 6=i

qikf
(n)
kj (s) ds (i, j ∈ E, t ≥ 0, n = 0, 1, 2, . . .).

(22.11) wird nun durch Induktion über n gezeigt. Für n = 0 ist

f
(0)
ij (t+ s) = δije

−qi(t+s) =
∑
k∈E

δike
−qit · δkje−qks =

∑
k∈E

f
(0)
ik (t)f

(0)
kj (s).
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Nun erfolgt der Schritt von n auf n+ 1. Es ist

n+1∑
ν=0

∑
k∈E

f
(ν)
ik (s)f

(n+1−ν)
kj (t) =

∑
k∈E

f
(0)
ik (s)f

(n+1)
kj (t) +

n+1∑
ν=1

∑
k∈E

f
(ν)
ik (s)f

(n+1−ν)
kj (t)

=
∑
k∈E

δike
−qisf

(n+1)
kj (t) +

n+1∑
ν=1

∑
k∈E

∑
`∈E
` 6=i

s∫
0

e−qi(s−u)qi`f
(ν−1)
`k (u)

︸ ︷︷ ︸
f

(ν)
ik (s)

f
(n+1−ν)
kj (t) du

= e−qisf
(n+1)
ij (t) +

∑
`∈E
` 6=i

s∫
0

e−qi(s−u)qi`

n∑
ν=0

∑
k∈E

f
(ν)
`k (u)f

(n−ν)
kj (t)︸ ︷︷ ︸

Induktionsvoraussetzung

du.

= e−qis ·
∑
`∈E
6̀=i

t∫
0

e−qi(t−u)qi`f
(n)
`j (u) du+

∑
`∈E
`6=i

s∫
0

e−qi(s−u)qi`f
(n)
`j (u+ t) du

=
∑
`∈E
` 6=i

t∫
0

e−qi(s+t−u)qi`f
(n)
`j (u) du+

∑
`∈E
`6=i

s+t∫
t

e−qi(s+t−u)qi`f
(n)
`j (u) du

=
∑
`∈E
` 6=i

s+t∫
0

e−qi(s+t−u)qi`f
(n)
`j (u) du = f

(n+1)
ij (s+ t). �

22.37 Satz:
F = {fij(t)} ist minimal im folgenden Sinn: Für alle Lösungen {zij(t)} der Kolmogorovschen
Rückwärtsungleichungen (oder Vorwärtsungleichungen) mit zij(0) = δij und zij(t) ≥ 0 für
alle i, j ∈ E und t ≥ 0 gilt

zij(t) ≥ fij(t) ∀i, j ∈ E und t ∈ R+.

zij(t) muss dabei nicht notwendig eine Übergangsfunktion sein.

Beweis:
Die Kolmogorovschen Rückwärtsungleichungen

z′ij(t) ≥
∑
k∈E

qikzkj(t) (i, j ∈ E, t ≥ 0)

sind äquivalent (siehe Beweis von Satz 22.34)

d

dt

[
zij(t)e

qit
]
≥
∑
k∈E
k 6=i

eqitqikzkj(t) (i, j ∈ E, t ≥ 0).
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Integration liefert

zij(t)e
qit ≥ zij(0) +

∑
k∈E
k 6=i

t∫
0

eqisqikzkj(s)ds (i, j ∈ E, t ≥ 0)

und durch Multiplikation mit e−qit sowie Einsetzen von zij(0) = δij ergibt sich

zij(t) ≥ δije−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikzkj(s) ds

Es wird nun
zij(t) ≥ σ(n)

ij (t) (i, j ∈ E, t ≥ 0)

durch Induktion über n gezeigt. Für n = 0 ist

zij(t) ≥ 0 = σ
(0)
ij (t) (i, j ∈ E, t ≥ 0)

nach Voraussetzung.

Setze nun zij(t) ≥ σ(n)
ij (t) für alle i, j ∈ E und t ≥ 0 voraus. Dann ist auch

zij(t) ≥ δije−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikzkj(s) ds

I.V.
≥ δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n)
kj (s) ds

= σ
(n+1)
ij (t).

Löst {zij(t)} die Kolmogorovschen Vorwärtsgleichungen, so kann entsprechend verfahren wer-
den, im Induktionsschritt wird dann (22.10) verwendet. �

22.38 Satz:
Ist F = {fij(t)} stochastisch, d.h.∑

j∈E
fij(t) = 1 ∀i ∈ E, t ∈ R+,

dann ist F der einzige Q–Prozeß.

Beweis:
Sei {zij(t)} ein beliebiger Q–Prozess bezüglich Q. Dann ist zij(0) = δij , zij(t) ≥ 0 für alle
t ≥ 0 und {zij(t)} erfüllt die Kolmogorovschen Rückwärtsungleichungen. Satz 22.37 liefert
zij(t) ≥ fij(t) und es folgt

1 ≥
∑
j∈E

zij(t) ≥
∑
j∈E

fij(t) = 1

und damit zij(t) = fij(t). �
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22.39 Definition:
Der in diesem Abschnitt definierte Q–Prozess F = {fij(t)} heißt Fellerprozess. Ist er stocha-
stisch, so heißt die zugrunde liegende Q–Matrix Q = (qij)i,j∈E regulär.

Ist der Fellerprozess der einzige Q-Prozess, kann er mit Methoden der Theorie der Differenti-
algleichungen oder der numerischen Mathematik direkt aus den Kolomogorovschen Vorwärts-
und Rückwärtsgleichungen bestimmt werden. Deswegen ist es für praktische Anwendungen
wichtig, ein Regularitätskriterium zu haben.

22.40 Definition:
Es sei für alle i, j ∈ E und n = 0, 1, 2, . . .

ϕ
(n)
ij (λ) :=

∞∫
0

σ
(n)
ij (t)e−λt dt.

die Laplace–Transformierte von σ
(n)
ij (t), und

ϕij(λ) :=

∞∫
0

fij(t)e
−λt dt

die Laplace–Transformierte von fij.

Wir leiten nun aus der Iterationsvoschrift für σ
(n)
ij (t) eine Iterationsvorschrift für ϕ

(n)
ij (λ) her.

Zunächst gilt σ
(0)
ij (t) = 0 für alle t ≥ 0, also auch ϕ

(0)
ij (λ) = 0 für alle λ ≥ 0.

Ferner war

σ
(n+1)
ij (t) = δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n)
kj (s) ds (n = 0, 1, 2, . . .).

Somit folgt

ϕ
(n+1)
ij (λ) =

δij
λ+ qi

+
∑
k∈E
k 6=i

∞∫
0

t∫
0

e−qi(t−s)qikσ
(n)
kj (s)e−λt ds dt

=
δij

λ+ qi
+
∑
k∈E
k 6=i

∞∫
0

t∫
0

e−(λ+qi)(t−s)qikσ
(n)
kj (s)e−λs ds dt

=
δij

λ+ qi
+
∑
k∈E
k 6=i

∞∫
0

∞∫
s

e−(λ+qi)(t−s)qikσ
(n)
kj (s)e−λs dt ds,

t=u+s
=

δij
λ+ qi

+
∑
k∈E
k 6=i

∞∫
0

∞∫
0

e−(λ+qi)u du qikσ
(n)
kj (s)e−λs ds

83



Kapitel 22. Markovketten mit stetiger Zeit

=
δij

λ+ qi
+

1

λ+ qi

∑
k∈E
k 6=i

qik

∞∫
0

σ
(n)
kj (s)e−λs ds

=
δij

λ+ qi
+

1

λ+ qi

∑
k∈E
k 6=i

qikϕ
(n)
kj (λ) (n = 0, 1, 2, . . .)

bzw.

(λ+ qi)ϕ
(n+1)
ij (λ) = δij +

∑
k∈E
k 6=i

qikϕ
(n)
kj (λ) (n = 0, 1, 2, . . .).

22.41 Definition:
Es sei

di(t) = 1−
∑
j∈E

fij(t)

für alle i ∈ E der sogenannte Defekt.

22.42 Bemerkung:
Offensichtlich ist F = {fij(t)} genau dann stochastisch, wenn di(t) = 0.

Um di(t) näher zu untersuchen, betrachtet man zunächst die Transformierte zi(λ).

zi(λ) = λ

∞∫
0

di(t)e
−λt dt = λ

∞∫
0

(
1−

∑
j∈E

fij(t)
)
e−λt dt

=

∞∫
0

λe−λt dt−
∑
j∈E

λ

∞∫
0

fij(t)e
−λt dt = 1− λ

∑
j∈E

ϕij(λ)

= lim
n→∞

(
1− λ

∑
j∈E

ϕ
(n)
ij (λ)

)
= lim

n→∞
z

(n)
i (λ),

wobei

z
(n)
i (λ) = 1− λ

∑
j∈E

ϕ
(n)
ij (λ) (n = 0, 1, 2, . . .).

22.43 Bemerkung:
Man beachte, dass zi(λ) ≤ 1 für |di(t)| ≤ 1.
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22.44 Satz:
Sei Q eine konservative Q–Matrix. Dann gilt

(λ+ qi)z
(n+1)
i =

∑
k∈E
k 6=i

qikz
(n)
k (n = 0, 1, 2, . . . ) (22.12)

mit der Anfangsbedingung z
(0)
i = 1 für alle i ∈ E.

Beweis:
Für alle i ∈ E ist

z
(0)
i = 1− λ

∑
j∈E

ϕ
(0)
ij (λ) = 1− λ

∑
j∈E

∞∫
0

e−λtσ
(0)
ij (t) dt = 1− 0 = 1.

Weiterhin gilt

(λ+ qi)ϕ
(n+1)
ij (λ) = δij +

∑
k∈E
k 6=i

qikϕ
(n)
kj (λ)

=⇒ λϕ
(n+1)
ij (λ) =

λ · δij
λ+ qi

+
λ

λ+ qi

∑
k∈E
k 6=i

qikϕ
(n)
kj (λ)

=⇒ λ
∑
j∈E

ϕ
(n+1)
ij (λ) =

λ

λ+ qi
+

1

λ+ qi

∑
k∈E
k 6=i

qikλ
∑
j∈E

ϕ
(n)
kj (λ)

=⇒ 1− λ
∑
j∈E

ϕ
(n+1)
ij (λ) = 1− λ

λ+ qi
− 1

λ+ qi

∑
k∈E
k 6=i

qikλ
∑
j∈E

ϕ
(n)
kj (λ)

=⇒ (λ+ qi)z
(n+1)
i (λ) = λ+ qi − λ−

∑
k∈E
k 6=i

qikλ
∑
j∈E

ϕ
(n)
kj (λ)

=
∑
k∈E
k 6=i

qik

(
1− λ

∑
j∈E

ϕ
(n)
kj (λ)

)

=
∑
k∈E
k 6=i

qikz
(n)
k . �

22.45 Satz:
Sei λ > 0 und ξ = {ξi} eine Lösung des Gleichungssystems

(λ+ qi)ξi =
∑
k∈E
k 6=i

qikξk ∀i ∈ E,

mit ‖ξ‖ = supi∈E |ξi| ≤ 1, dann gilt:

−zi(λ) ≤ ξi ≤ +zi(λ) ∀i ∈ E.
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Beweis:
Wir zeigen durch Induktion ξi ≤ z

(n)
i für alle n ∈ N0. Zunächst gilt ξi ≤ 1 = z

(0)
i für alle

i ∈ E und weiter

(λ+ qi)ξi =
∑
k∈E
k 6=i

qikξk
I.V.
≤
∑
k∈E
k 6=i

qikz
(n)
k (λ) = (λ+ qi)z

(n+1)
k (λ).

Entsprechend wird auch −z(n)
i (λ) ≤ ξi für alle i ∈ E gezeigt. �

22.46 Satz (Regularitätskriterium von Reuter):
Betrachte das Gleichungssystem

(λ+ qi)ξi =
∑
k∈E
k 6=i

qikξk ∀i ∈ E. (22.13)

Jede der beiden nachstehenden Bedingungen ist notwendig und hinreichend dafür, dass der
Fellerprozess stochastisch ist:

a) Für ein beliebiges λ > 0 ist ξi = 0 für alle i ∈ E die einzige beschränkte Lösung.

b) Für ein beliebiges λ > 0 ist ξi = 0 für alle i ∈ E die einzige nichtnegative, beschränkte
Lösung.

Insbesondere ist jede dieser beiden Bedingungen hinreichend dafür, dass der Fellerprozess der
einzige Q-Prozess ist.

Beweis:
Ist {fij(t)} stochastisch, so folgt di(t) = 0 für alle i ∈ E. Damit wiederum folgt, dass zi(λ) = 0
und somit nach Satz 22.45 ξi = 0 für alle i ∈ E die einzige beschränkte Lösung und erst recht
die einzige nichtnegative beschränkte Lösung ist.
Sei nun umgekehrt ξi = 0 für alle i ∈ E die einzige nichtnegative beschränkte Lösung. Da
aber zi(λ) nichtnegativ und beschränkt ist und eine Lösung von (22.13) darstellt (folgt durch
Anwendung des Satzes von der majorisierten Konvergenz auf (22.12)), wird zi(λ) = 0, somit
auch di(t) = 0 und schließlich

∑
j∈E

fij(t) = 1. �

22.47 Bemerkung:
Unter der Voraussetzung, dass Q konservativ ist, lässt sich zeigen, dass der Fellerprozess genau
dann der einzige Q-Prozess ist, wenn er stochastisch ist, vgl. W. J. Anderson: Continuous-
Time Markov Chains, Corollary 2.5. Daher sind für konservatives Q die beiden im Regula-
ritätskriterium von Reuter angeführten Bedingungen sogar notwendig und hinreichend dafür,
dass der Fellerprozess der einzige Q-Prozess ist.

In Bemerkung 22.32 wurde erwähnt, dass für beschränkte Q–Matrizen etQ der eindeutig
definierte Q–Prozess ist. Die Eindeutigkeit ergibt sich nun auch unmittelbar als Folgerung
aus dem Regularitätskriterium von Reuter.
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22.48 Satz:
Ist Q = (qij)i,j∈E konservativ mit supi∈E qi <∞, so ist Q regulär.

Beweis:
Es sei K := supi∈E qi < ∞. Ferner sei (ξi)i∈N0 eine nichtnegative und beschränkte Lösung
von (22.13). Dann folgt

ξi =
1

λ+ qi

∑
k∈E
k 6=i

qikξk ≤
1

λ+ qi

∑
k∈E
k 6=i

qik

 sup
k∈E
|ξk|

=⇒ sup
i∈E
|ξi| ≤ sup

i∈E

qi
λ+ qi

· sup
k∈E
|ξk| ≤

K

λ+K
sup
k∈E
|ξk|

=⇒ ξi = 0 ∀i ∈ E,

so dass nach dem Regularitätskriterium von Reuter Q regulär und der Felleprozess der einzige
Q-Prozess ist. �

22.5 Anwendungen

Poissonprozess

Wir kehren zum Poissonprozess aus Beispiel 22.33 zurück. Die zugrundeliegende Q-Matrix ist
Q = (qij)i,j∈N mit beliebigem λ > 0 und

qij =


−λ , i = j,
λ , j = i+ 1,
0 , sonst.

In Beispiel 22.33 wurden die Übergangsgwahrscheinlichkeiten bereits berechnet. Wir wollen
sie nun noch einmal auf eine andere Weise berechnen, nämlich aus den Kolmogorovschen
Vorwärtsgleichungen:

d

dt
Pi0(t) = −λPi0(t) (t ≥ 0)

d

dt
Pij(t) =

∑
k∈E

Pik(t)qkj = λPi,j−1(t)− λPij(t) (j = 1, 2, . . . ; t ≥ 0).

Wir setzen

Pi(z, t) :=

∞∑
j=0

Pij(t)z
j (i ∈ N0, |z| ≤ 1)

und erhalten
d

dt
Pi(z, t) = λzPi(z, t)− λPi(z, t) = λ(z − 1)Pi(z, t).

Man verifiziert unschwer, dass

Pi(z, t) = Pi(z, 0) · eλ(z−1)t =

 ∞∑
j=0

δijz
j

 · eλ(z−1)t = zi · eλ(z−1)t
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eine Lösung dieser Differentialgleichung ist. Wegen

zieλ(z−1)t = zi
∞∑
j=0

(λtz)j

j!
e−λt =

∞∑
j=0

(λt)j

j!
e−λtzj+i =

∞∑
j=i

(λt)j−i

(j − i)!
e−λtzj

folgt durch Koeffizientenvergleich

Pij(t) =


(λt)j−i

(j − i)!
e−λt , j ≥ i,

0 , sonst

folgt. Da Q konservativ und beschränkt und somit regulär ist, fällt {Pij(t)} mit F zusammen.

Der verallgemeinerte Geburts– und Todesprozeß

{λn}n∈N0 und {µn}n∈N seien zwei reellwertige Zahlenfolgen mit λ0 ≥ 0 und λn > 0 sowie
µn > 0 für alle n ∈ N. Wir betrachten eine Q–Matrix Q = (qij)i,j∈E mit E = N0 und

qij :=


−λ0 , i = j = 0,

−(λi + µi) , j = i, i ∈ N,
λi , j = i+ 1, i ∈ N0,
µi , j = i− 1, i ∈ N,
0 , sonst,

also

Q =


−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) µ2

. . .
. . .

. . .

 .

Die Parameter λn werden als Geburtsraten, die Parameter µn als Sterberaten bezeichnet. Im
Fall λ0 > 0 spricht man von einem Geburts– und Todesprozeß mit Einwanderung, anderenfalls
wird der Zustand i = 0 zum absorbierenden Zustand. Wir wollen jetzt herausfinden, unter
welchen Bedingungen Q regulär ist.

Das Gleichungssystem (22.13) nimmt jetzt die Gestalt

(λ+ λ0)ξ0 = λ0ξ1

(λ+ λn + µn)ξn = µnξn−1 + λnξn+1 (n = 1, 2, . . . )

an. Die zweite Gleichung kann umgeschrieben werden als

λn(ξn+1 − ξn) = λξn + µn(ξn − ξn−1) (n = 1, 2, . . . ). (22.14)

Wir unterscheiden zwei Fälle:

1. λ0 = 0. Es folgt ξ0 = 0, ξ1 beliebig, alle übrigen ξn sind dann eindeutig bestimmt.

2. λ0 > 0. Es folgt ξ0 beliebig, alle übrigen ξn sind eindeutig bestimmt.
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22.5. Anwendungen

Wähle nun ξ1 > 0, etwa ξ1 = 1, so folgt wegen ξ1 = (λ+ λ0)ξ0/λ0 auch ξ1 > ξ0 und induktiv
aus (22.14) wegen µn > 0 allgemein

ξ0 < ξ1 < ξ2 < . . . .

Zur Überprüfung auf Regularität benötigen wir noch den folgenden Hilfssatz.

22.49 Satz:
(an)n∈N, (bn)n∈N und (wn)n∈N0 bezeichnen reellwertige Zahlenfolgen mit an, bn > 0 für alle
n ∈ N; 0 ≤ w0 < w1 < . . . sowie

wn+1 − wn = anwn + bn(wn − wn−1) (n = 1, 2, . . . ). (22.15)

Dann gilt: (wn)n∈N0 ist genau dann beschränkt, wenn

∞∑
n=1

(an + bnan−1 + bnbn−1an−2 · · ·+ bnbn−1 . . . b2a1 + bn . . . b1) <∞.

Beweis:
Durch wiederholte Anwendung der Rekursion (22.15) erhält man

wn+1 − wn = anwn + bnan−1wn−1 + · · ·+ bnbb−1 . . . b2a1w1 + bn . . . b1(w1 − w0).

Da (wn)n∈N0 als streng monoton wachsend vorausgesetzt war, ergeben sich hieraus die beiden
Abschätzungen

wn+1 − wn ≥ (an + bnan−1 + · · ·+ bnbn−1 . . . b2a1 + bn . . . b1)(w1 − w0)

wn+1 − wn ≤ (an + bnan−1 + · · ·+ bnbn−1 . . . b2a1 + bn . . . b1)wn

wofür wir abkürzend

ψn(w1 − w0) ≤ wn+1 − wn ≤ ψnwn (n = 1, 2, . . . )

schreiben wollen. Aus

ψ1(w1 − w0) ≤ w2 − w1 ≤ ψ1w1, ψ2(w1 − w0) ≤ w3 − w2 ≤ ψ2w2, . . .

folgt zum einen

n−1∑
k=1

ψk(w1 − w0) ≤ wn − w1 bzw. w1 + (w1 − w0)
n−1∑
k=1

ψk ≤ wn,

und zum anderen

w2 ≤ (ψ1 + 1)w1, w3 ≤ (ψ2 + 1)w2 ≤ (ψ1 + 1)(ψ2 + 1)w1, . . .

bzw. allgemein

wn ≤ w1

n−1∏
k=1

(ψk + 1).

Nach einem bekannten Satz aus der Analysis konvergiert das Produkt
∏n−1
k=1(ψk + 1) für

n→∞ aber genau dann, wenn
∑∞

k=1 ψk <∞. �
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Wir setzen nun wn = ξn, an = λ/λn und bn = µn/λn für n ∈ N. Es folgt

ψn = λ ·
(

1

λn
+

µn
λnλn−1

+ · · ·+ µn . . . µ2

λn . . . λ2λ1

)
+
µn . . . µ1

λn . . . λ1
.

Somit ist {ξi} beschränkt genau dann, wenn

R =
∞∑
n=1

(
1

λn
+

µn
λnλn−1

+ · · ·+ µn . . . µ2

λn . . . λ2λ1

)
<∞.

22.50 Satz:
Der verallgemeinerte Geburts– und Todesprozeß mit den Geburtsraten λn und den Sterberaten
µn, n = 1, 2, . . . , ist genau dann regulär, wenn R =∞.
Es gibt keine allgemeine explizite geschlossene Lösungsdarstellung .

Linearer Wachstumsprozess (Yule–Prozess)

Als eine etwas konkretere Anwendung der Reuterschen Regularitätstheorie wollen wir die Re-
produktion eines Bakteriums bzw. einer Zellkultur betrachten. Dazu treffen wir die folgenden
Annahmen. Die Anfangspopulation zum Zeitpunkt t = 0 betrage i Einheiten. Jedes Mitglied
der Population teilt sich innerhalb einer mit dem Parameter λ > 0 exponentiell–verteilten Zeit
in zwei identische neue Einheiten und zwar unabhängig von allen übrigen Mitgliedern der Po-
pulation. Bezeichnet Xt die Größe der Population zum Zeitpunkt t, dann definiert (Xt)t∈R+

einen homogenen Markovprozess mit dem Zustandsraum E = {1, 2, . . . } (Gedächtnislosigkeit
der Exponentialverteilung). Wir berechnen nun zunächst die infinitesimalen Übergangswahr-
scheinlichkeiten.

Pii(∆t) = P (
”
kein Übergang in (t, t+ ∆t]“)

= P (
”
verbleibende Reproduktionszeit zum Zeitpunkt t

ist für jedes Mitglied größer als ∆t“)

=
(
e−λ∆t

)i
= 1− iλ∆t+ o(∆t) (i = 1, 2, . . . ),

Pi,i+1(∆t) = P (
”
von i Individuen teilt sich in (t, t+ ∆t] genau eins“)

=

(
i

1

)
(1− e−λ∆t)(e−λ∆t)i−1 = i · λ∆t+ o(∆t) ,

Pi,i+k(∆t) =

(
i

k

)
(1− e−λ∆t)k(e−λ∆t)i−k = o(∆t) (k = 2, 3, . . . ).

Da es sich um einen reinen Wachstumsprozeß handelt, ist Pij(∆t) = 0 für j < i (i = 1, 2, . . . ).
Die Übergangsintensitäten qij erhält man durch die Grenzprozesse

qii = lim
∆t→0+

Pii(∆t)− 1

∆t
= −iλ (i = 0, 1, 2, . . . ),

qi,i+1 = lim
∆t→0+

Pi,i+1(∆t)− 1

∆t
= iλ (i = 0, 1, 2, . . . ).

Ansonsten gilt qij = 0 und folglich ist Q konservativ. Da es sich hier um einen Spezialfall des
verallgemeinerten Geburts– und Todesprozess handelt (λn = nλ, µn = 0), folgt wegen

R =
∞∑
n=1

1

λn
=
∞∑
n=1

1

nλ
=

1

λ

∞∑
n=1

1

n
=∞
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die Regularität von Q = (qij)i,j∈E .
Wir kommen nun zur Berechnung der Übergangswahrscheinlichkeiten. Hierfür ziehen wir die
Kolmogorovschen Rückwärtsgleichungen heran, die sich hier wegen Pij(t) = 0 für j < i etwas
vereinfachen. Es gilt

P ′ii(t) = −iλPii(t) (i = 0, 1, 2, . . . ),

P ′ij(t) = −iλPij(t) + iλPi+1,j(t) (j ≥ i+ 1).

Aus der ersten Gleichung folgt wegen Pii(0) = 1 sofort

Pii(t) = e−iλt (i = 0, 1, 2, . . . ).

Einsetzen in die untere Gleichung für j = i+ 1 führt zu

P ′i,i+1(t) = −iλPi,i+1(t) + iλPi+1,i+1(t) = −iλPi,i+1(t) + iλe−(i+1)λt

⇐⇒ P ′i,i+1(t)eiλt = −iλPi,i+1(t)eiλt + iλe−λt

⇐⇒ d

dt

(
Pi,i+1(t)eiλt

)
= iλe−λt,

bzw.

eiλtPi,i+1(t) =

t∫
0

iλe−λs ds+ c,

wobei aus Pi,i+1(0) = δi,i+1 = 0 sofort c = 0 folgt. Damit gelangen wir zu

eiλtPi,i+1(t) =

t∫
0

iλe−λs ds = i
(
−e−λs

∣∣∣t
0

)
= i(1− e−λt),

bzw.
Pi,i+1(t) = ie−iλt(1− e−λt) (i = 0, 1, 2, . . . ; t ∈ R+).

Entsprechend ergibt sich

P ′i,i+2(t) = −iλPi,i+2(t) + iλPi+1,i+2(t)

= −iλPi,i+2(t) + iλ
[
(i+ 1)e−(i+1)λt(1− e−λt)

]
⇐⇒ P ′i,i+2(t)eiλt = −iλPi,i+2(t)eiλt + iλ

[
(i+ 1)e−λt(1− e−λt)

]
⇐⇒ d

dt

(
Pi,i+2(t)eiλt

)
= iλ

[
(i+ 1)e−λt(1− e−λt)

]
⇐⇒ Pi,i+2(t) = e−iλt

t∫
0

iλ(i+ 1)e−λs(1− e−λs) ds

= i(i+ 1)e−iλt
[
(1− e−λt) +

1

2
(e−2λt − 1)

]
=
i(i+ 1)

2
e−iλt[2− 2e−λt + e−2λt − 1]

=
i(i+ 1)

2
e−iλt(1− e−λt)2,
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und schließlich mit Hilfe vollständiger Induktion

Pik(t) =
i(i+ 1) . . . (k − 1)

(k − i)!
e−iλt(1− e−λt)k−i (k > i; t ∈ R+).

t k = 2 k = 3 k = 5 k = 10

0.5 0.172 0.0381 0.0019 9.87 · 10−7

1 0.239 0.0939 0.0145 0.000137
1.5 0.249 0.1315 0.0366 0.001497
2 0.233 0.1470 0.0587 0.005928
3 0.173 0.1347 0.0813 0.022998
5 0.0753 0.0692 0.0583 0.03797
7 0.0293 0.0284 0.0267 0.0229
10 0.0067 0.0066 0.0066 0.00634
15 5.53 · 10−4 5.52 · 10−4 5.52 · 10−4 5.50 · 10−4

Übergangswahrscheinlichkeiten des Yule-Prozesses
für i = 1, k = 2, 3, 5 und 10 und λ = 0.5.

Linearer Wachstumsprozess mit Einwanderung

Der Yule–Prozess war ein reiner Geburtsprozess mit linear ansteigenden Geburtsraten. Ein
etwas allgemeinerer Prozess ist der lineare Wachstumsprozess mit Einwanderung. Darunter
versteht man einen Geburts– und Todesprozess mit λn = λ · n + a und µn = µ · n, wobei
λ, µ, a > 0. Lineare Wachstumsprozesse beschreiben die Reproduktion von Bakterien, Zellen,
Krankheiten und Bevölkerungen. Es ist

R′ =
∞∑
n=1

1

λn+ a

eine divergente Minorante von R, weshalb die zugehörige Q–Matrix regulär ist. Die Kolmo-
gorovschen Vorwärtsgleichungen lauten hier

P ′i0(t) = −aPi0(t) + µPi1(t)

P ′ij(t) = (λ(j − 1) + a)Pi,j−1(t)− ((λ+ µ)j + a)Pij(t) + µ(j + 1)Pi,j+1(t) (j = 1, 2, . . .).

Unser Ziel ist es, die mittlere Population zur Zeit t,

Mi(t) := E[Xt | X0 = i] =

∞∑
j=0

jPij(t), t ∈ R+,
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zu bestimmen (sogenannte Erwartungswertfunktion). Durch gliedweises Differenzieren und
Einsetzen der Kolmogorovschen Vorwärtsgleichungen erhält man

M ′i(t) =
∞∑
j=1

jP ′ij(t)

=
∞∑
j=1

j(λ(j − 1) + a)Pi,j−1(t)−
∞∑
j=1

j((λ+ µ)j + a)Pij(t) +
∞∑
j=1

jµ(j + 1)Pi,j+1(t)

=
∞∑
j=0

(j + 1)(λj + a)Pi,j(t)−
∞∑
j=1

j((λ+ µ)j + a)Pij(t) +
∞∑
j=2

(j − 1)µjPi,j(t)

=

∞∑
j=0

[(j + 1)(λj + a)− j((λ+ µ)j + a) + (j − 1)µj]Pi,j(t)

=

∞∑
j=0

((λ− µ)j + a)Pi,j(t)

= (λ− µ)Mi(t) + a, t ∈ R+.

Die Anfangsbedingung lautet

Mi(0) =

∞∑
j=1

jPij(0) =

∞∑
j=1

jδij = i.

Damit ergibt sich

Mi(t) =

{
at+ i , λ = µ,

a

λ− µ
(e(λ−µ)t − 1) + ie(λ−µ)t , λ 6= µ,

und wir beobachten

lim
t→∞

Mi(t) =

{
∞ , λ ≥ µ,
a

µ− λ
, λ < µ.

Speziell für den Yule–Prozess, also µ = a = 0, gilt Mi(t) = i · e−λt, t ∈ R+.

a = 1, i = 0 λ− µ
t −2 −1 0 1

0.5 0.316 0.393 0.5 0.649
1 0.432 0.632 1 1.718
2 0.491 0.865 2 6.389
3 0.499 0.950 3 19.09
5 0.499977 0.993 5 147.4
10 0.500000 0.999955 10 22025.5
100 0.500000 1.000000 100 2.69 · 1043
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a = 1, i = 10 λ− µ
t −2 −1 0 1

0.5 3.995 6.459 10.5 17.14
1 1.786 4.311 11 28.90
2 0.674 2.218 12 80.28
3 0.524 1.448 13 219.9
5 0.5004 1.061 15 1631.5
10 0.500000 1.0004 20 2.42 · 105

100 0.500000 1.000000 110 2.96 · 1044

Mi(t) in Abhängigkeit von i, λ− ν, a und t.

Bediensysteme mit unbeschränkter Kapazität (M/M/∞)

Wir betrachten ein Bediensystem mit Poissonschen Eingangsstrom der Intensität λ und expo-
nentialverteilten Bedienzeiten mit Parameter µ und nehmen an, dass unendlich viele parallele
Bediengeräte zur Verfügung stehen. Der Prozess (Xt)t∈R+ der zur Zeit t anwesenden Kunden
stellt einen homogenen Markovprozess mit dem Zustandsraum E = {0, 1, 2, . . . } dar. Für den
Ankunftsstrom gilt

P (
”
in (t, t+ ∆t] treffen k Kunden ein“) =

(λ ·∆t)k

k!
e−λ∆t

=


1− λ∆t+ o(∆t) , k = 0,
λ∆t+ o(∆t) , k = 1,

o(∆t) , k ≥ 2.

Entsprechend gilt auch für jede einzelne Bedienung

P (
”
in (t, t+ ∆t] werden k Kunden bedient“) =


1− µ∆t+ o(∆t) , k = 0,
µ∆t+ o(∆t) , k = 1,

o(∆t) , k ≥ 2,

falls sich wenigstens ein Kunde im System befindet. Da es so viele Bedienungen gibt, wie
Kunden im System sind, gilt insgesamt

P (
”
in (t, t+ ∆t] werden k Kunden bedient“) =


1− nµ∆t+ o(∆t) , k = 0,
nµ∆t+ o(∆t) , k = 1,

o(∆t) , k ≥ 2,

falls sich genau n Kunden zum Zeitpunkt t im System befinden. Es ergibt sich

Q =


−λ λ
µ −(λ+ µ) λ

2µ −(λ+ 2µ) λ
3µ −(λ+ 3µ) λ

. . .
. . .

 ,
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d.h. es handelt sich um einen allgemeinen Geburts– und Todesprozess mit λn = λ für alle
n ∈ N0 und µn = nµ für alle n ∈ N. Da

∞∑
n=1

1

λn
=
∞∑
n=1

1

λ
=∞

eine divergente Minorante von R ist, ist Q regulär.

Es sollen nun die Werte von Pij(t) berechnet werden. Die Kolmogoroschen Vorwärtsgleichun-
gen lauten

P ′i0(t) = −λPi0(t) + µPi1(t)

P ′ij(t) = −(λ+ jµ)Pij(t) + (j + 1)µPi,j+1(t) + λPi,j−1(t) (j = 1, 2, . . .).

Zur Behandlung dieses Differenzen–Differentialgleichungssystem führen wir wieder die erzeu-
gende Funktion

P (z, t) =

∞∑
j=0

Pij(t)z
j , |z| ≤ 1,

ein. Indem wir beide Seiten der Kolmogorovschen Vorwärtsgleichungen mit zj multiplizieren
und über alle j summieren, bekommen wir

∞∑
j=0

P ′ij(t)z
j = −

∞∑
j=0

(λ+ jµ)Pij(t)z
j + µ

∞∑
j=0

(j + 1)Pi,j+1(t)zj + λ

∞∑
j=1

Pi,j−1(t)zj

= −λ
∞∑
j=0

Pij(t)z
j − µz

∞∑
j=1

Pij(t)jz
j−1 + µ

∞∑
j=0

Pi,j+1(t)(j + 1)zj

+ λz
∞∑
j=1

Pi,j−1(t)zj−1.

Es gilt

∞∑
j=0

Pij(t)z
j =

∞∑
j=1

Pi,j−1(t)zj−1 = P (z, t)

∞∑
j=1

Pij(t)jz
j−1 =

∞∑
j=0

Pi,j+1(t)(j + 1)zj =
∂P (z, t)

∂z
.

Damit bekommen wir

∂P (z, t)

∂t
= −λP (z, t)− µz∂P (z, t)

∂z
+ µ

∂P (z, t)

∂z
+ λzP (z, t)

= µ(1− z)∂P (z, t)

∂z
− λ(1− z)P (z, t). (22.16)

Um diese partielle Differentialgleichung zu lösen, setzen wir

P (z, t) = G(z, t)F (z, t)
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mit G(z, t) = e%(z−1)(1−e−µt) und % = λ/µ an. Damit wird

∂P (z, t)

∂t
= G(z, t)

∂F (z, t)

∂t
+ F (z, t) ·G(z, t) · λ(z − 1)e−µt

∂P (z, t)

∂z
= G(z, t)

∂F (z, t)

∂z
+ F (z, t) ·G(z, t) · %(1− e−µt).

Setzt man diese Ergebnisse in die Differentialgleichung (22.16) ein, erhält man

0 =
∂P (z, t)

∂t
+ µ(z − 1)

∂P (z, t)

∂z
− λ(z − 1)P (z, t)

= G(z, t) ·
[
∂F (z, t)

∂t
+ F (z, t) · λ(z − 1)e−µt + µ(z − 1)

∂F (z, t)

∂z

+λ(z − 1)(1− e−µt) · F (z, t)− λ(z − 1) · F (z, t)
]

= G(z, t) ·
[
∂F (z, t)

∂t
+ µ(z − 1)

∂F (z, t)

∂z

]
.

Unter Beachtung von G(z, t) 6= 0 folgt

∂F (z, t)

∂t
+ µ(z − 1)

∂F (z, t)

∂z
= 0. (22.17)

Man überprüft unschwer, dass jede Lösung von (22.17) von der Form

F (z, t) = g((z − 1)e−µt)

ist. Mit ` = (z − 1)e−µt ergibt sich nämlich

∂F (z, t)

∂t
=
∂g(`)

∂`
· ∂`
∂t

=
∂g(`)

∂`
· (z − 1) · (−µ) · e−µt

∂F (z, t)

∂z
=
∂g(`)

∂`
· ∂`
∂z

=
∂g(`)

∂`
· e−µt.

Damit wird allgemein
P (z, t) = e%(z−1)(1−e−µt)g((z − 1)e−µt).

Die Anfangsbedingung erhalten wir aus der Modellannahme, dass wir stets mit einem leerem
System starten, d.h. es gilt anfänglich i = 0. Aus

P (z, 0) =
∞∑
j=0

P0j(0)zj =
∞∑
j=0

δ0jz
j = 1

folgt somit 1 = g(z − 1) und daher

P (z, t) = e%(z−1)(1−e−µt) = ec(z−1).

Abschließend wird

P0j(t) =
1

j!

∂jP (z, t)

∂zj

∣∣∣∣
z=0

=
1

j!
cjec(z−1)

∣∣∣∣
z=0

=
((1− e−µt)%)j

j!
e−(1−e−µt)% j ∈ N0,

was einer Poisson–Verteilung mit Parameter (1− e−µt)% entspricht. Insbesondere gilt

E[Xt|X0 = i] = (1− e−µt)%, t ∈ R+.
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µ = 1, % = 0.5 j

t 0 1 2 3 5

0.25 0.895 0.099 0.0055 0.0002 1.23 · 10−7

0.5 0.821 0.162 0.0159 0.0010 2.02 · 10−6

1 0.729 0.230 0.0364 0.0038 1.92 · 10−5

2 0.649 0.281 0.0607 0.0087 8.17 · 10−5

5 0.609 0.302 0.0751 0.0124 1.53 · 10−4

10 0.607 0.303 0.0758 0.0126 1.58 · 10−4

20 0.607 0.303 0.0758 0.0126 1.58 · 10−4

Werte für P0j(t) in Abhängigkeit von µ, % und t.

Anwendung findet dieses Modell etwa bei Problemen der Produkthaftung. Es seiXt die Anzahl
intakter Geräte zur Zeit t. Die Anzahl produzierter Teile in (0, t] sei Nt (Produktionsrate λ).
Mit Yt beschreiben wir die Anzahl ausgefallener Geräte in (0, t] (Ausfallrate µ). Dann gilt

Yt = Nt −Xt =⇒ E[Yt] = E[Nt]−E[Xt] =⇒ E[Yt] = λt− λ

µ
(1− e−µt), t ∈ R+.

Zweidimensionale Competitionprozesse

Zweidimensionale Competitionprozesse stellen eine weitere Verallgemeinerung von Geburts–
und Todesprozessen dar, das Regularitätskriterium aus Satz 22.50 soll auf diese Prozesse aus-
gedehnt werden.
Es seien E1 und E2 zwei abzählbare Mengen, o. B. d. A. entweder N0 oder {0, 1, . . . , n}; we-
nigstens eine der beiden Mengen sei abzählbar unendlich. Wir sagen, Q = (qij)i,j∈E gehört
zur Klasse ΓE1,E2 , wenn die Elemente q(u,v),(m,n) dem folgenden Schema genügen:

(m,n) q(u,v),(m,n)

(u+ 1, v) θ1
uv

(u, v + 1) θ2
uv

(u− 1, v) θ3
uv

(u, v − 1) θ4
uv

(u+ 1, v + 1) θ5
uv

(u− 1, v + 1) θ6
uv

(u− 1, v − 1) θ7
uv

(u+ 1, v − 1) θ8
uv

(u+ i, v + j), |i| ≥ 2 oder |j| ≥ 2 0

(u, v) −
8∑

k=1

θkuv.

Die Funktionen θk (k = 1, . . . , 8) sind auf E = E1×E2 definiert und haben die nichnegativen
reellen Zahlen als Wertebereich. Zusätzlich werden die Randbedingungen

θ4
u0 = θ7

u0 = θ8
u0 = 0 (u ∈ E1) θ3

0v = θ6
0v = θ7

0v = 0 (v ∈ E2)

θ2
uvσ = θ5

uvσ = θ6
uvσ = 0 (u ∈ E1; vσ = supE2) falls |E2| <∞

θ1
uσv = θ5

uσv = θ8
uσv = 0 (v ∈ E2; uσ = supE1) falls |E1| <∞
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gefordert.

22.51 Definition:
Ein Markovprozess (Xt)t≥0 mit Zustandsraum E = E1 × E2 und Q–Matrix Q ∈ ΓE1,E2 heißt
zweidimensionaler Competitionprozess.

Für einen zweidimensionalen Competitionprozess (Xt)t≥0 mit Zustandsraum E und Q–Matrix
Q sei

A =
{

(u, v) ∈ E | q(u,v),(u,v) = 0
}

die Menge seiner absorbierenden Zustände. Außerdem werden Teilmengen Tk (k ∈ N0) von
E sowie reellwertige Zahlenfolgen (Mk)k∈N0 und (mk)k∈N0 ausgezeichnet:

Tk := {(u, v) ∈ E \A | u+ v = k} (k ∈ N0),

Mk := max
(u,v)∈Tk

{
θ1
uv + θ2

uv

}
(k ∈ N0),

mk := min
(u,v)∈Tk

{
θ3
uv + θ4

uv

}
(k ∈ N0).

Für Tk = ∅ sind Mk und mk nicht definiert.
Mit diesen Bezeichnungen lässt sich nun eine Verallgemeinerung von Satz 22.50 angeben.

22.52 Satz:
(Xt)t≥0 sei ein zweidimensionaler Competitionprozess mit Zustandsraum E und Q–Matrix Q.
Existiert ein N ∈ N0 mit Tk 6= ∅ und Mk > 0 für alle k > N und gilt

∞∑
k=N+1

(
1

Mk
+

mk

MkMk−1
+ . . .+

mk . . .mN+2

Mk . . .MN+1

)
=∞, (22.18)

so ist Q regulär.

Beweis:
Für die Q–Matrix eines zweidimensionalen Competitionprozess reduziert sich das Gleichungs-
system (22.13) auf das partielle Differenzengleichungssystem(
λ+

8∑
i=1

θiuv

)
ξ(u,v) = θ1

uvξ(u+1,v) + θ2
uvξ(u,v+1) + θ3

uvξ(u−1,v) + θ4
uvξ(u,v−1) + θ5

uvξ(u+1,v+1)

+θ6
uvξ(u−1,v+1) + θ7

uvξ(u−1,v−1) + θ8
uvξ(u+1,v−1) ((u, v) ∈ E).(22.19)

Wir haben nachzuweisen, dass das System (22.19) unter den Voraussetzungen des Satzes
keine positive beschränkte Lösung zulässt. Zu diesem Zweck wird das Verhalten der Teilfolge
(nk)k∈N0 eines positiven Lösungsvektors (ξ(u,v))(u,v)∈E von (22.19) studiert, deren Glieder
durch

nk := max
(u,v)∈Tk

ξ(u,v)

festgelegt sind, und gezeigt, dass (nk)k∈N0 unbeschränkt ist. Mit (uk, vk) werden die (nicht not-
wendig eindeutig bestimmten) Stellen bezeichnet, an denen die Maxima angenommen werden.
Im Falle der Mehrdeutigkeit entscheide man sich für das Tupel mit der kleinsten u–Koordinate.
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22.6. Verweildauern und Rückkehrzeiten

Für θiuk,vk wird fortan kurz θik (i = 1, . . . , 8) geschrieben. Aus (22.19) folgt, dass (nk)k∈N0 für
k > 0 der dreigliedrigen Rekursion(

λ+
4∑
i=1

θik

)
nk =

(
θ1
k + θ2

k

)
nk+1 +

(
θ3
k + θ4

k

)
nk−1

genügt. Für k > N folgt daraus

nk+1 − nk =
λ

θ1
k + θ2

k

nk +
θ3
k + θ4

k

θ1
k + θ2

k

(nk − nk−1).

Für einen beliebigen positiven Lösungsvektor (ξ(u,v))(u,v)∈E von (22.19) sei k0 > n ein Index
mit nk0 > 0. Die Folge (nk)k≥k0−1 erfüllt dann die Voraussetzungen von Satz 22.49, wobei

ak = λ
θ1
k+θ2

k
und bk =

θ3
k+θ4

k

θ1
k+θ2

k
zu setzen ist. Satz 22.49 liefert nun: (nk)k≥k0−1 ist genau dann

beschränkt, wenn die Reihe

∞∑
k=k0

{
λ

θ1
k + θ2

k

+
λ(θ3

k + θ4
k)

(θ1
k + θ2

k)(θ
1
k−1 + θ2

k−1)
+ . . .+

λ(θ3
k + θ4

k) . . . (θ
3
k0+1 + θ4

k0+1)

(θ1
k + θ2

k) . . . (θ
1
k0

+ θ2
k0

)

+
(θ3
k + θ4

k) . . . (θ
3
k0

+ θ4
k0

)

(θ1
k + θ2

k) . . . (θ
1
k0

+ θ2
k0

)

}
(k0 > n) (22.20)

konvergiert. Da die Reihe aus (22.18) eine divergente Minorante von (22.20) ist, ist (nk)k≥k0−1

und damit auch (ξ(u,v))(u,v)∈E unbeschränkt. �

22.6 Verweildauern und Rückkehrzeiten

Wir sagen, j ist von i aus erreichbar, und schreiben i → j, wenn es ein t > 0 gibt mit
Pij(t) > 0. Gilt i → j und j → i, kurz i ↔ j, dann heißen i und j miteinander verbunden
bzw. man sagt, daß i und j miteinander kommunizieren.
Für Übergangsmatrizen definiert

”
↔“ eine Äquivalenzrelation auf E.

1. Reflexivität: Es gilt sogar Pii(t) > 0 für alle t > 0, vgl. Satz 22.11.

2. Symmetrie: Gilt nach Definition.

3. Transitivität: Ist Pij(t) > 0 und Pjk(s) > 0, so folgt mit der Gleichung von Chapman–
Kolmogorov auch Pik(t+ s) ≥ Pij(t)Pjk(s) > 0.

Ein Markovprozess, dessen Zustandsraum bzgl. der Relation
”
↔“ in genau eine Klasse zerfällt,

heißt irreduzibel.
Da die Übergangswahrscheinlichkeiten im allgemeinen nicht explizit bekannt sind, stellt sich
die Frage, ob man anhand von Q feststellen kann, ob ein Markovprozess irreduzibel ist oder
nicht. Diesem Zusammenhang dient die nachfolgende Definition.

22.53 Definition:
Eine Q–Matrix Q = (qij)i,j∈E heißt irreduzibel, wenn es zu jedem Paar (i, j) ∈ E × E mit
i 6= j eine Folge von Zuständen (i, h1, . . . , hr, j) mit r ≥ 0, hα ∈ E, α = 0, 1, . . . , r, gibt mit

qih1qh1h2 · · · · · qhrj > 0.
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22.54 Satz:
(Xt)t∈R+ sei ein homogener Markovprozess mit abzählbarem Zustandsraum E, der von einer
konservativen, regulären Q–Matrix Q = (qij)i,j∈E erzeugt werde. Dann gilt: (Xt)t∈R+ ist
genau dann irreduzibel, wenn Q irreduzibel ist.

Beweis:
(i) Wir nehmen zunächst an, daß Q irreduzibel ist. Ist q`k > 0 für ` 6= k, so folgt aufgrund

der Beziehung P`k(∆t) = q`k∆t+ o(∆t) für ∆t→ 0, dass auch P`k(s) > 0 für alle s < δ
mit einem δ > 0. Mit der Gleichung von Chapman–Kolmogorov folgt aber auch für alle
t ≥ δ

Pij(t) ≥ Pij(s)Pjj(t− s) > 0.

Aufgrund der Annahme existiert für jedes Paar (i, j) ∈ E×E eine Folge (i, h1, . . . , hr, j)
von Zuständen mit qih1qh1h2 · · · · · qhrj > 0. Hieraus folgt aber sofort

Pih1(t)Ph1h2(t) · · · · · Phrj(t) > 0

für alle t > 0. Mit Hilfe der Gleichung von Chapman und Kolmogorov kann man nun
jeweils für beliebige s, t > 0 sukzessive schließen:

Pih2(s+ t) =
∑
k∈E

Pik(s)Pkh2(t) ≥ Pih1(s)Ph1h2(t) > 0

Pih3(s+ t) =
∑
k∈E

Pik(s)Pkh3(t) ≥ Pih2(s)Ph2h3(t) > 0

...

Pij(s+ t) =
∑
k∈E

Pik(s)Pkj(t) ≥ Pihr(s)Phrj(t) > 0.

(ii) Sei (Xt)t∈R+ irreduzibel. Da Q als regulär vorausgesetzt war, muss die korrespondie-
rende Übergangsfunktion gerade der Feller–Prozess sein. Dieser lässt sich bekanntlich
durch

fij(t) = lim
n→∞

σ
(n)
ij (t), t ∈ R+,

darstellen, wobei

σ
(0)
ij (t) = 0 (t ∈ R+),

σ
(n+1)
ij (t) = δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qi(t−s)qikσ
(n)
kj (s) ds (n = 0, 1, 2, . . . ; t ∈ R+).

(22.21)

Ist fij(t) > 0 für i 6= j und alle t > 0, dann gibt es einen Index n0 ∈ N mit σ
(n0)
ij (t) > 0.

In diesem Fall garantiert die Gleichung (22.21) die Existenz mindestens eines Zustandes
hn0−1 mit

qihn0−1 > 0 und σ
(n0−1)
hn0−1,j

(t) > 0,
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denn andernfalls würde die rechte Seite von Gleichung (22.21) verschwinden, was nicht

sein kann. Wenn nicht schon hn0−1 = j feststeht, leitet man aus σ
(n0−1)
hn0−1,j

(t) > 0 wiederum

die Existenz eines Zustandes hn0−2 ab, für den

qhn0−1hn0−2 > 0 und σ
(n0−2)
hn0−2,j

(t) > 0

gilt. Nach einer endlichen Anzahl von Iterationen gelangt man zu einer Ungleichung der
Form

qihn0−1qhn0−1hn0−2 · · · · · qhn0−k−1hn0−k
> 0

mit hn0−k = j oder bekommt

qihn0−1qhn0−1hn0−2 · · · · · qh2h1 > 0 und σ
(1)
h1j

(t) > 0.

Aber

σ
(1)
h1j

(t) = δh1je
−qh1

t > 0

bedingt h1 = j. �

Wir kommen jetzt auf das Rückkehrverhalten von homogenen Markovprozessen zu sprechen.
Definiere

T
(0)
ij := 0, T

(n+1)
ij := inf

{
t > T

(n)
ij | Xt = j,X0 = i,∃s : T

(n)
ij < s < t, Xs 6= j

}
.

Abbildung 22.3: Eingebetteter Erneuerungsprozeß

Offensichtlich bilden die Größen
(
T

(n)
ij

)
n∈N die Erneuerungszeitpunkte eines modifizierten

Erneuerungsprozesses. Für die zugehörigen Lebensdauerverteilungen wählen wir die Bezeich-
nungen

Fij(t) := P (T
(1)
ij ≤ t) (t ∈ R+)

Fj(t) := P (T
(n+1)
ij − T (n)

ij ≤ t) (n = 1, 2, . . . ; t ∈ R+)

und setzen noch Fi := lim
t→∞

Fi(t) sowie Fij = lim
t→∞

Fij(t).

22.55 Definition:
• Ein nichtabsorbierender Zustand i eines homogenen Markovprozesses heißt rekurrent,

wenn Fi = 1, transient, wenn Fi < 1 ist.
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• Ein rekurrenter Zustand heißt positiv rekurrent, wenn

µi :=

∞∫
0

t dFi(t) <∞

gilt, andernfalls nullrekurrent.

• Ein homogener Markovprozess mit lauter positiv rekurrenten Zuständen heißt ergodisch.

22.56 Satz:
Für homogene Markovprozesse gilt

P (Xt = j, T
(1)
ij > t | X0 = i) = δije

−qit (t ∈ R+),

d.h. für j = i ist die Aufenthaltsdauer des Markovprozesses im Zustand i mit dem Parameter
qi > 0 exponentiell verteilt.

Beweis:
Für i 6= j ist die Behauptung klar, für i = j handelt es sich lediglich um eine Umformulierung
von Satz 22.26. �

Der nachstehende Satz beantwortet nun noch die Frage, wie oft ein Markovprozess einen
bestimmten Zustand annimmt.

22.57 Satz:
Es bezeichne Ni die Anzahl der Aufenthalte in einem nicht absorbierenden Zustand i.

a) Es ist P (Ni = m | X0 = i) = Fm−1
i (1− Fi) für m = 1, 2, . . . (geometrische Verteilung).

b) Für i 6= j ist P (Nj = m|X0 = i) =

{
1− Fij , m = 0

FijF
m−1
j (1− Fj) , m = 1, 2, . . .

c) Es ist P (Ni <∞ | x0 = i) =

{
1 , Fii < 1
0 , Fii = 1.

d) Es gilt E[Ni | X0 = i] = 1
1−Fi , falls Fi < 1.

e) Für j 6= i und Fj < 1 gilt E[Nj | X0 = i] =

{
0 , Fij = 0
Fij

1−Fj , Fij 6= 0.

Beweis:
a) Das Ereignis {Ni = m | X0 = i} tritt genau dann ein, wenn T

(1)
ii <∞, T

(2)
ii −T

(1)
ii <∞,

. . . , T
(m−1)
ii − T (m−2)

ii < ∞, T
(m)
ii − T (m−1)

ii = ∞ gilt. Die Wahrscheinlichkeit für jedes
der ersten m− 1 Ereignisse ist Fi, die für das letzte ist 1− Fi.
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b) Mit Wahrscheinlichkeit 1 − Fij erreicht der in i startende Markovprozess niemals den
Zustand j; mit Wahrscheinlichkeit Fij erreicht er ihn irgendwann, anschließend erfolgen
noch soviele Aufenthalte wie bei einem in j startenden Markovprozess.

c) Unter Verwendung von a) ergibt sich die Behauptung aus

P (Ni <∞) =
∞∑
m=1

P (Ni = m|X0 = i) =
∞∑
m=0

Fmi (1− Fi).

d) Die Behauptung folgt direkt aus der Formel für den Erwartungswert einer geometrisch
verteilten Zufallsvariable.

e) Der Fall Fij = 0 ist trivial. Für Fij > 0 wird der Erwartungswert aus d) nur durch den
Faktor Fij modifiziert. �

22.7 Grenzverhalten

Die Zustände sollen nun anhand der Übergangsfunktion auf Rekurrenz und Transienz unter-
sucht werden, d.h. es soll ein Kriterium hergeleitet werden, dass Satz 21.25 entspricht.

22.58 Satz (Grenzverhalten von Markovprozessen):
Es sei P (t) = (Pij(t))i,j∈E, t ≥ 0, die Übergangsfunktion einer Markovkette (Xt)t∈R+.

a) i ∈ E ist genau dann rekurrent oder absorbierend, wenn
∞∫
0

Pii(t) = ∞ ist. Umgekehrt

ist i ∈ E genau dann transient, wenn das Integral konvergiert.

b) i ∈ E ist genau dann positiv rekurrent, wenn lim
t→∞

Pii(t) > 0 ist. Insbesondere gilt im

Fall positiver Rekurrenz

πi := lim
t→∞

Pii(t) =
1

qiµi
.

c) Ist die Markovkette irreduzibel und i ∈ E positiv rekurrent, so gilt für alle k ∈ E

lim
t→∞

Pki(t) = πi =
1

qiµi
,

d.h. die Grenzwerte der Aufenthaltswahrscheinlichkeiten im Zustand i sind unabhängig
vom Anfangszustand k.

Beweis:
a) Bezeichnet Ni die Anzahl der Aufenthalte im Zustand i und Ti die Verweildauer im

Zustand i, so gilt nach dem Satz von Fubini und Satz 22.57

∞∫
0

Pii(t)dt =

∞∫
0

E [δXt,i|X0 = i] dt = E

 ∞∫
0

δXt,idt|X0 = i


= E[Zeit im Zustand i] = E[Ni|X0 = i] · E[Ti] =

E[Ti]

1− Fi
.

Das Integral divergiert also genau dann, wenn E[Ti] =∞ (absorbierendes i) oder Fi = 1
ist (rekurrentes i).
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b) Wie schon im Fall diskreter Markovketten werden die Grenzwertaussagen aus der Er-
neuerungstheorie (vgl. Stochastik II) verwendet. Zunächst gilt für alle i, j ∈ E und t ≥ 0
unter Verwendung der Homogenität

Pij(t) = P (Xt = j | X0 = i)

= P (Xt = j, T
(1)
ij > t | X0 = i) + P (Xt = j, T

(1)
ij ≤ t | X0 = i)

= P (Xt = j, T
(1)
ij > t | X0 = i) + P (X

t−T (1)
ij

= j | X0 = j)

= δije
−qit +

t∫
0

Pjj(t− s) dFij(s), t ∈ R+. �

Speziell für i = j ergibt sich die Erneuerungsgleichung

Pii(t) = e−qit +

t∫
0

Pii(t− s) dFi(s), t ∈ R+.

In der Erneuerungstheorie wurde gezeigt, dass dann

Pii(t) = e−qit +

t∫
0

e−qi(t−s)dRi(s), t ∈ R+,

gilt, wobei Ri(s) =
∞∑
n=1

(Fi)
n∗(s) die Erneuerungsfunktion von Fi ist. Da e−qit direkt

Riemann–integrierbar ist (vgl. Stochastik II), folgt aus dem Fundamentalsatz der Er-
neuerungstheorie

Pii(t) −−−→
t→∞

1

µi

∞∫
0

e−qis ds =
1

qiµi
,

also

πi := lim
t→∞

Pii(t) =


1

qiµi
, falls i positiv rekurrent,

0 , falls i null–rekurrent.

Der Grenzwert 0 für transientes i folgt aus der Konvergenz des Integrals
∞∫
0

Pii(t)dt.

c) Für einen irreduziblen Markovprozess ist Fki = lim
t→∞

Fki(t) = 1 für alle k, i ∈ E und es

folgt mit dem Satz von der majorisierten Konvergenz

lim
t→∞

Pki(t) = lim
t→∞

t∫
0

Pii(t− s) dFki(s) = lim
t→∞

Pii(t)

t∫
0

dFki(s) = πiFki = πi.

22.59 Satz:
Es sei i↔ j. Genau dann ist i transient bzw. positiv rekurrent, wenn j transient bzw. positiv
rekurrent ist. Insbesondere sind für irreduzible Markovketten entweder alle Zustände transient
oder alle Zustände null–rekurrent oder alle Zustände positiv rekurrent.
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Beweis:
Es werden die Kriterien aus Satz 22.58 verwendet. Aufgrund der Voraussetzung existieren
s > 0 und u > 0 mit Pji(s) > 0 und Pij(u) > 0 und aufgrund der Gleichung von Chapman–
Kolmogorov folgt

Pjj(s+ t+ u) ≥ Pji(s)Pii(t)Pij(u).

Es sei nun zunächst i transient. Dann divergiert
∫
Pii(t) dt und es folgt

∞∫
0

Pjj(t) dt ≥
∞∫

0

Pjj(s+ t+ u) dt ≥ Pji(s)Pij(u)

∞∫
0

Pii(t) dt =∞,

also ist auch j transient.
Nun sei i positiv rekurrent. Dann ist limPii(t) > 0 und es folgt

lim
t→∞

Pjj(t) = lim
t→∞

Pjj(s+ t+ u) ≥ Pji(s)Pij(u) lim
t→∞

Pii(t) > 0

und damit die positive Rekurrenz von j. Die Umkehrungen folgen aus der Symmetrie von
i↔ j. �

In Satz 22.58 wurden Kriterien für Rekurrenz und Transienz formuliert, die auf der Übergangs-
funktion Pij(t) basieren. In vielen Anwendungsfällen ist es jedoch bei gegebener Q–Matrix
sehr aufwendig, den Feller–Prozess zu berechnen. Daher ist der nachstehende Satz von großer
Bedeutung, da mit seiner Hilfe direkt aus den Werten der Q–Matrix ermittelt werden kann,
ob Zustände positiv rekurrent sind oder nicht, und gegebenenfalls sogar die Grenzwerte πi
direkt berechnet werden können.

22.60 Satz:
Es sei Q = (qij)i,j∈E eine konservative, reguläre und irreduzible Q–Matrix. Dann gilt: Der
zugehörige Fellerprozess {fij(t)} ist genau dann ergodisch, wenn das Gleichungssystem∑

k∈E
ykqkj = 0 (j ∈ E) (22.22)

eine positive, summierbare Lösung besitzt. In diesem Fall gilt

πj = lim
t→∞

fij(t) =
yj∑
i∈E

yi
∀j ∈ E.

Beweis:

(i) Wir setzen zunächst voraus, dass {fij(t)} ergodisch ist. {fij(t)} genügt den Kolmogo-
rovschen Vorwärtsgleichungen

f ′ij(t) =
∑
k∈E

fik(t)qkj ∀i ∈ E.

Das Grenzverhalten von limt→∞ fij(t) studieren wir anhand der zugehörigen Laplace–
Transformierten

fij(s) :=

∞∫
0

fij(t)e
−st dt (i, j ∈ E),
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die wegen |fij(t)| ≤ 1 für s > 0 stets existieren. Nach einem bekannten Satz über
Laplace–Transformierte gilt

lim
t→∞

fij(t) = lim
s→0

sfij(s) (∀i, j ∈ E).

Durch partielle Integration erhält man

∞∫
0

f ′ij(t)e
−st dt = lim

τ→∞

τ∫
0

f ′ij(t)e
−st dt

= lim
τ→∞

e−stfij(t)∣∣τ0 +

τ∫
0

se−stfij(t) dt


= lim

τ→∞

e−sτfij(τ)− fij(0) + s

τ∫
0

e−stfij(t) dt


= sfij(s)− δij ∀i, j ∈ E.

Wendet man die Ergebnisse auf die Kolmogorovschen Vorwärtsgleichungen an, bekommt
man

sfij(s)− δij =
∑
k∈E

fik(s)qkj

bzw.

s[sfij(s)− δij ] =
∑
k∈E

sfik(s)qkj .

Da sfik(s)→ πik für s→ 0, folgt zunächst mit dem Lemma von Fatou:

0 ≥
∑
k∈E

πikqkj .

Indem man beide Seiten dieser Ungleichung über j summiert und dabei
∑

j∈E qkj = 0
ausnützt, erhält man

0 =
∑
k∈E

πikqkj (j ∈ E).

(ii) Sei nun (yk)k∈E eine positive summierbare Lösung des Gleichungssystems∑
k∈E

ykqkj = 0 (j ∈ E).

Mit

σ
(0)
ij (t) = 0,

σ
(n+1)
ij (t) = δije

−qit +
∑
k∈E
k 6=i

t∫
0

e−qj(t−s)σ
(n)
ik (s)qkj ds (n = 0, 1, 2, . . . ; t ∈ R+)
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bezeichnen wir wieder die Approximanten der Fellerschen Minimallösung (es handelt
sich dabei um die Vorwärts–Integral–Rekursion (22.10), vgl. den Beweis von Satz 22.35),
d.h.

lim
n→∞

σ
(n)
ij (t) = fij(t) ∀i, j ∈ E, t ∈ R+.

Wir behaupten ∑
i∈E

yiσ
(n)
ij (t) ≤ yj ∀n ∈ N.

Offensichtlich ist ∑
i∈E

yiσ
(0)
ij (t) = 0 ≤ yj

für alle j ∈ E und auch∑
i∈E

yiσ
(1)
ij (t) =

∑
i∈E

yiδije
−qit = yje

−qjt ≤ yj

für alle j ∈ E. Wir kommen zum Schritt von n auf n+ 1:

∑
i∈E

yiσ
(n+1)
ij (t) = yje

−qjt +
∑
k∈E
k 6=i

t∫
0

∑
i∈E

yiσ
(n)
ik (s)qkje

−qj(t−s) ds

≤ yje−qjt +
∑
k∈E
k 6=i

ykqkj

t∫
0

e−qj(t−s) ds

= yje
−qjt + yjqje

−qjt
(

1

qj
eqjt − 1

qj

)
= yj

(
e−qjt + e−qjt

(
eqjt − 1

))
= yj .

Nun folgt unmittelbar∑
i∈E

yifij(t) =
∑
i∈E

yi

(
lim
n→∞

σ
(n)
ij (t)

)
≤ lim

n→∞

∑
i∈E

yiσ
(n)
ij (t) ≤ yj .

für alle j ∈ E. Wegen∑
j∈E

∑
i∈E

yifij(t) =
∑
i∈E

yi
∑
j∈E

fij(t) =
∑
i∈E

yi =
∑
j∈E

yj

ist bereits ∑
i∈E

yifij(t) = yj

für alle j ∈ E und alle t > 0 bewiesen. Da unabhängig von t∑
i∈E

yifij(t) ≤
∑
y∈E

yi <∞
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gilt, liefert nun der Satz von der majorisierten Konvergenz

yj = lim
t→∞

∑
i∈E

yifij(t) =
∑
i∈E

yiπj ,

woraus

πj =
yj∑
i∈E

yi
(j ∈ E)

folgt. �

22.8 Anwendungen

Geburts– und Todesprozess mit konstanten Raten

Beim Geburts– und Todesprozess mit konstanten Raten gilt λn = λ für n = N0 und µn = µ
für n ∈ N. Das zugehörige System für die stationären Zustandswahrscheinlichkeiten (22.22)
lautet hier

0 = −λπ0 + µπ1,

0 = −(λ+ µ)πn + µπn+1 + λπn−1 (n = 1, 2, . . . ).

Nach Division durch µ nimmt die zweite Gleichung die Form

πn+1 − (%+ 1)πn + %πn−1 = 0 (n = 1, 2, . . .)

mit % := λ
µ an. Offensichtlich handelt es sich hier um eine lineare Differenzengleichung zweiter

Ordnung mit konstanten Koeffizienten (siehe Anhang A). Die Nullstellen des zugehörigen
charakteristischen Polynoms

x2 − (%+ 1)x+ %

sind x1 = 1 und x2 = %. Die konstante Funktion πn = 1 für n = 0, 1, 2, . . . kann nicht zu einer
Wahrscheinlichkeitsverteilung normiert werden und ist auch nicht mit der Anfangsbedingung

0 = −λπ0 + µπ1

kompatibel. Die gesuchte Lösung ist deshalb

πn = c · %n für n = 0, 1, 2, . . . ,

wobei allerdings % < 1 zu fordern ist, da die Folge (πn)n∈N0 sonst nicht summierbar ist. In
diesem Fall ist

1 = c ·
∞∑
n=0

%n =
c

1− %
⇐⇒ c = 1− %.

Auf die Voraussetzung, dass Q regulär ist, kann in Satz 22.60 nicht verzichtet werden, wie
das nachfolgende Beispiel zeigt.
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22.61 Beispiel:
Betrachte einen verallgemeinerten Geburts– und Todesprozess mit den Übergangsintensitäten

qn,n+1 = λn = 4n für n = 0, 1, 2, . . .

qn,n−1 = µn =
4n

2
für n = 1, 2, . . .

Zur Überprüfung auf Regularität verwenden wir Satz 22.50. Dieser liefert wegen

R =
∞∑
n=1

(
1

λn
+

µn
λnλn−1

+ · · ·+ µn · . . . · µ2

λn · . . . · λ1

)

=

∞∑
n=1

(
1

4n
+

4n

2

4n · 4n−1
+

4n · 4n−1 · 1
22

4n · 4n−1 · 4n−2
+ · · ·+

4n · . . . · 42 · 1
2n−1

4n · . . . · 42 · 4

)

=
∞∑
n=1

(
1

4n
+

1

2

1

4n−1
+

1

22

1

4n−2
+ · · ·+ 1

2n−1

1

4

)

=
∞∑
n=1

1

4n
·
(

20 + 2 + 22 + . . .+ 2n−1
)

=

∞∑
n=1

1

4n
· 1− 2n

1− 2
=

∞∑
n=1

(
1

2

)n
−
∞∑
n=1

(
1

4

)n
<∞,

dass Q nicht regulär ist. Die zugehörigen stationären Gleichungen

0 = −(λn + µn)πn + µn+1πn+1 + λn−1πn−1 für n = 1, 2, . . .

⇐⇒ 0 = −
(

4n +
4n

2

)
πn +

4n+1

2
πn+1 + 4n−1πn−1 für n = 1, 2, . . .

⇐⇒ 0 = −(4 + 2)πn + 8πn+1 + πn−1 für n = 1, 2, . . .

besitzen aber trotzdem eine nichtnegative Lösung, nämlich

πn =

(
1

2

)n+1

für n = 0, 1, 2, . . . ,

die sich auch mit der Anfangsbedingung

λ0π0 = µ1π1 ⇐⇒ π0 = 2π1 ⇐⇒ 1

2
= 2 · 1

4

verträgt. Da aber die Geburtsraten größer als die Sterberaten sind, explodiert der Prozess
und besitzt keine Grenzverteilung.

Ein Warteschlangenmodell für Telekommunikationssysteme

Bereits zu Beginn des 20. Jahrhunderts hat der dänische Ingenieur und Mathematiker A.
K. Erlang ein stochastisches Modell für Bediensysteme ohne Warteraum entwickelt, das seit-
dem für die Beschreibung des Telefonverkehrs herangezogen wird. Anrufe fallen nach einer
vorgegebenen Wahrscheinlichkeitsverteilung an einer Vermittlungsstelle ein. Sie passieren die
Stelle, wenn das abgehende Leitungsbündel frei ist, anderenfalls gehen sie ohne Nachwirkung
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auf das Netz verloren. Das Erlangsche Modell beschreibt den Telefonverkehr auf eine sehr ver-
einfachte Weise. Denn aus eigener Erfahrung weiß man, dass ein erfolgloser Anruf mit einer
gewissen Wahrscheinlichkeit wiederholt wird und dass sowohl die Wiederholwahrscheinlichkeit
als auch der Wiederholabstand von der Art des Misserfolgs abhängen. Um die Auswirkungen
von Anrufwiederholungen auf ein Fernsprechsystem zu untersuchen, wird eine Verkehrsmodell
definiert, das das Verhalten der Teilnehmer nach erfolglosen Anrufversuchen beschreibt.

Wir betrachten eine Vermittlungsstelle mit s ≥ 1 Abnehmerleitungen und voller Erreichbar-
keit, d.h. ein Anruf wird nur dann vom System blockiert, wenn alle s Abnehmerleitungen
belegt sind. Die Einfallabstände der neuen Anrufe seien unabhängige, exponentiell verteilte
Zufallsvariablen mit dem Parameter λ > 0. Ein Teilnehmer, der bei seiner Ankunft nicht
sofort bedient werden kann, wiederholt seinen Anruf mit Wahrscheinlichkeit p1, 0 < p1 ≤ 1.
Jeder weitere Anruf wird unabhängig von der Anzahl der vorangegangenen Versuche mit
Wahrscheinlichkeit p2, 0 < p2 ≤ 1, wiederholt. Mit Wahrscheinlichkeit 1 − p1 bzw. 1 − p2

gibt der Kunde auf. Die Abstände zwischen den einzelnen Wiederholungen eines Teilnehmers
werden als unabhängige, identisch verteilte Zufallsvariablen angenommen. Die Wiederholrate
bezeichnen wir mit δ. Die aufeinanderfolgenden Belegdauern bilden eine Folge unabhängiger,
exponentiell verteilter Zufallsvariablen mit Parameter µ > 0. (siehe Abb. 22.4)

Zur Beschreibung des Systems wählen wir den Prozess (Xt)t∈R+ mit Xt = (Lt, Qt), t ∈ R+,
wobei Lt die Anzahl der zur Zeit t belegten Leitungen und Qt die Anzahl der zur Zeit t
wartenden Teilnehmer bezeichne. Aufgrund der Gedächtnislosigkeit der Exponentialverteilung
definiert (Xt)t∈R+ einen homogenen Markovprozess mit Zustandsraum E = {0, 1, 2, . . . , s} ×
N0 und Übergangswahrscheinlichkeiten

P(k,l)(m,n)(t) = P (Xt = (m,n) | X0 = (k, l)), (k, l), (m,n) ∈ E, t ∈ R+.

Der Einfachheit halber setzen wir s = 1 und p1 = p2 = p und stellen zunächst die Q–Matrix
auf:

q(0,n)(1,n) = λ, n = 0, 1, 2, . . .

q(0,n)(1,n−1) = nδ, n = 1, 2, . . .

q(0,n)(0,n) = −(λ+ nδ), n = 0, 1, 2, . . .

q(1,n)(0,n) = µ, n = 0, 1, 2, . . .

q(1,n)(1,n+1) = λp, n = 0, 1, 2, . . .

q(1,n)(1,n−1) = nδ(1− p), n = 1, 2, . . .

q(1,n)(1,n) = −(µ+ λp+ nδ(1− p)), n = 0, 1, 2, . . . .

(Xt)t∈R+ stellt einen zweidimensionalen Competitionprozess dar. Mithilfe von Satz 22.52 kann
man zeigen, dass (Xt)t∈R+ regulär ist. Wir wollen nun

π(m,n) := lim
t→∞

P(k,l)(m,n)(t), (m,n), (k, l) ∈ E,

berechnen. Die zu (Xt)t∈R+ gehörenden stationären Gleichungen (22.22) lauten

0 = −(λ+ nδ) · π(0,n) + µ · π(1,n) für n = 0, 1, 2, . . .

0 = −
(
λp+ µ+ nδ(1− p)

)
· π(1,n) + λ · π(0,n) + λp · π(1,n−1) + (n+ 1)δ · π(0,n+1)

+ (n+ 1)δ(1− p) · π(1,n+1) für n = 0, 1, 2, . . . ,
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Abbildung 22.4: Verkehrsmodell für Anrufwiederholungen

wobei π(1,−1) := 0 vereinbart wird. Zur weiteren Behandlung dieses Differenzengleichungssy-
stems führen wir die erzeugenden Funktionen

G0(z) =
∞∑
n=0

π(0,n)z
n, |z| ≤ 1,

G1(z) =

∞∑
n=0

π(1,n)z
n, |z| ≤ 1,

ein. Multiplikation der stationären Gleichungen mit zn und anschließendes Aufsummieren
liefert

0 = −λG0(z)− δzG′0(z) + µG1(z), (22.23)

0 = −(λp+ µ) ·G1(z)− δ(1− p) · zG′1(z) + λ ·G0(z) + λp · zG1(z) + δ ·G′0(z)

+ δ(1− p) ·G′1(z).
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Addiert man diese Gleichungen, erhält man

δ(1− p)(1− z) ·G′1(z) + δ(1− z) ·G′0(z)− λp(1− z) ·G1(z) = 0

bzw.
δ(1− p) ·G′1(z) + δ ·G′0(z)− λp ·G1(z) = 0. (22.24)

Um das Differentialgleichungssystem (22.23) – (22.24) zu lösen, verfolgen wir zunächst die
Separation der Variablen. Aus (22.23) folgt sukzessive

µG1(z) = δzG′0(z) + λG0(z) bzw.

µG′1(z) = δzG′′0(z) + (λ+ δ)G′0(z)

Indem wir diese Ausdrücke in (22.24) einsetzen, bekommen wir:

δ(1− p)µ ·G′1(z) + δµ ·G′0(z)− λpµ ·G1(z) = 0

⇐⇒ δ(1− p) ·
(
δzG′′0(z) + (λ+ δ)G′0(z)

)
+ δµ ·G′0(z)− λp

(
δzG′0(z) + λG0(z)

)
= 0

⇐⇒ δ2(1− p)z ·G′′0(z) +
(
δ(1− p)(λ+ δ) + δµ− λpδz

)
·G′0(z)− λ2p ·G0(z) = 0

⇐⇒ zG′′0(z) +

(
λ

δ
+ 1 +

µ

δ(1− p)
− λp

δ(1− p)
z

)
·G′0(z)− λ2p

δ2(1− p)
G0(z) = 0.

(22.25)

Zur weiteren Behandlung dieser Differentialgleichung führen wir die Transformation

z = z(x) =
δ(1− p)
λ · p

· x (22.26)

durch und setzen
F0(x) := G0

(
z(x)

)
.

Unter Berücksichtigung der Kettenregel(
G0

(
z(x)

))′
= G′0(z) · z′(x)

ergibt sich

G0(z) = F0(x), G′0(z) =
λp

δ(1− p)
F ′0(x), G′′0(z) =

λ2p2

δ2(1− p)2
F ′′0 (x).

Wenden wir die Transformation (22.26) auf die Gleichung (22.25) an, bekommen wir

δ(1− p)
λ · p

· x · (λp)2

δ2(1− p)2
· F ′′0 (x)

+

(
λ

δ
+

µ

δ(1− p)
+ 1− λ · p

δ(1− p)
· δ(1− p)

λ · p
· x
)
· λ · p
δ(1− p)

· F ′0(x)

− λ2p

δ2(1− p)
· F0(x) = 0

⇐⇒ λ · p
δ(1− p)

· x · F ′′0 (x) +

(
λ

δ
+

µ

δ(1− p)
+ 1− x

)
· λ · p
δ(1− p)

· F ′0(x)

− λ2p

δ2(1− p)
· F0(x) = 0

⇐⇒ x · F ′′0 (x) +

(
λ

δ
+

µ

δ(1− p)
+ 1− x

)
· F ′0(x)− λ

δ
· F0(x) = 0.
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Diese Gleichung ist vom Typ der konfluenten hypergeometrischen Differentialgleichung

xy′′ + (b− x)y′ − ay = 0, x ∈ C

für die die Funktionen

y1 = c1 · Φ(a, b, x), x ∈ C,
y2 = c2 · x−b+1 · Φ(1 + a− b, 2− b, x), x ∈ C,

ein Fundamentalsystem bilden, wobei Φ die sogenannte konfluente hypergeometrische Funk-
tion bezeichnet:

Φ(a, b, x) = 1 +
∞∑
k=1

a(a+ 1) · . . . · (a+ k − 1)

b(b+ 1) · . . . · (b+ k − 1)
· x

k

k!
, x ∈ C. (22.27)

Aufgrund des Quotientenkriteriums konvergiert die konfluente hypergeometrische Reihe für
alle x ∈ C, denn es gilt

ak+1

ak
=

a(a+ 1) · . . . · (a+ k)

b(b+ 1) · . . . · (b+ k)
· xk+1

(k + 1)!

a(a+ 1) · . . . · (a+ k − 1)
b(b+ 1) · . . . · (b+ k − 1)

· x
k

k!

=
a+ k

b+ k
· x

k + 1
< 1 für fast alle k.

Im vorliegenden Fall ist

a =
λ

δ
und b =

λ

δ
+

µ

δ(1− p)
+ 1.

y2 scheidet als Lösung des Problems aus, weil sie wegen b− 1 > 0 keine wahrscheinlichkeits–
erzeugende Funktion darstellt (y2 hat an der Stelle 0 eine Polstelle). Die gesuchte Lösung ist
folglich

F0(x) = c1 · Φ
(
λ

δ
,
λ

δ
+

µ

δ(1− p)
+ 1, x

)
, x ∈ C,

bzw. wenn wir zurücktransformieren

G0(z) = c1 · Φ
(
λ

δ
,
λ

δ
+

µ

δ(1− p)
+ 1,

λ · p
δ(1− p)

· z
)
, z ∈ C.

Eine entsprechende Rechnung für G1(z) führt zu

G1(z) = c2 · Φ
(
λ

δ
+ 1,

λ

δ
+

µ

δ(1− p)
+ 1,

λ · p
δ(1− p)

· z
)
, z ∈ C.

Die Konstanten c1 und c2 haben eine anschauliche Bedeutung, es ist

c1 = π(0,0) und c2 = π(1,0).

Unter Berücksichtigung der Gleichung

0 = −(λ+ nδ)π(0,n) + µπ(1,n) für n = 0, 1, 2, . . .
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erhalten wir

π(1,0) =
λ

µ
π(0,0) bzw. c2 =

λ

µ
c1.

Aus
G0(1) +G1(1) = 1

folgt

c1 ·
[
Φ

(
λ

δ
,
λ

δ
+

µ

δ(1− p)
+ 1,

λ · p
δ(1− p)

)
+
λ

µ
Φ

(
λ

δ
+ 1,

λ

δ
+

µ

δ(1− p)
+ 1,

λ · p
δ(1− p)

)]
= 1

bzw.

c1 =

[
Φ

(
λ

δ
,
λ

δ
+

µ

δ(1− p)
+ 1,

λ · p
δ(1− p)

)
+
λ

µ
Φ

(
λ

δ
+ 1,

λ

δ
+

µ

δ(1− p)
+ 1,

λ · p
δ(1− p)

)]−1

.

Die Einzelwahrscheinlichkeiten ergeben sich unmittelbar aus (22.27):

π(0,n) = c1 ·
λ
δ
·
(
λ
δ

+ 1
)
· . . . ·

(
λ
δ

+ n− 1
)

(
λ
δ

+
µ

δ(1− p) + 1

)
· . . . ·

(
λ
δ

+
µ

δ(1− p) + n

) · (
λ · p

)n
δn(1− p)n · n!

für n = 0, 1, 2, . . .

π(1,n) = c1 ·
λ

µ
·

λ
δ
·
(
λ
δ

+ 1
)
· . . . ·

(
λ
δ

+ n
)

(
λ
δ

+
µ

δ(1− p) + 1

)
· . . . ·

(
λ
δ

+
µ

δ(1− p) + n

) · (
λ · p

)n
δn(1− p)n · n!

für n = 0, 1, 2, . . .

Insbesondere besitzen die stationären Gleichungen für p < 1 eine positive summierbare
Lösung, d.h. alle Zustände sind positiv rekurrent.

Wir wollen nun noch die mittlere Anzahl wartender Teilnehmer

E[Q] =
∞∑
n=1

n ·
(
π(0,n) + π(1,n)

)
=

∞∑
n=1

n · π(0,n) +
∞∑
n=1

n · π(1,n) = G′0(1) +G′1(1)

berechnen. Dazu können wir die Gleichungen

µG1(z) = δz ·G′0(z) + λ ·G0(z)

0 = δ(1− p) ·G′1(z) + δ ·G′0(z)− λp ·G1(z)

heranziehen. Die erste Gleichung führt zu

G′0(1) =
µ

δ
·G1(1)− λ

δ
·G0(1),

die zweite liefert

G′1(1) =
λ · p

δ(1− p)
·G1(1)− 1

1− p
·G′0(1)

=
λ · p

δ(1− p)
·G1(1)− 1

1− p
µ

δ
·G1(1) +

1

1− p
λ

δ
·G0(1)

=
λp− µ
δ(1− p)

·G1(1) +
λ

δ(1− p)
·G0(1).
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Damit wird

E[Q] = G′0(1) +G′1(1) =
µ

δ
·G1(1)− λ

δ
·G0(1) +

λp− µ
δ(1− p)

·G1(1) +
λ

δ(1− p)
·G0(1)

=
(λ− µ)p

δ(1− p)
·G1(1) +

λp

δ(1− p)
·G0(1).

22.9 Transienz– und Rekurrenzkriterien

Die Rekurrenz– und Transienzkriterien für Markovprozesse ergeben sich im Wesentlichen
aus den Kriterien für Markovketten in diskreter Zeit. Zentral dabei ist der nachstehende
Zusammenhang.

22.62 Satz:
Es sei Q konservativ, regulär und irreduzibel. Genau dann ist i ∈ E für den durch Q eindeutig

definierten Q–Prozess (Xt)t∈R+ rekurrent, wenn i in der durch die Übergangswahrscheinlich-
keiten

Pij =

{
0 , j = i
qij
qi
, j 6= i

definierten diskreten Markovkette (Yn)n∈N0 rekurrent ist.

´

Beweis:
Nach Satz 22.26 ist (Yn)n∈N0 gerade die Sprungkette von (Xt)t∈R+ , d.h. (Xt)t∈R+ und
(Yn)n∈N0 haben das gleiche Pfadverhalten ((Yn)n∈N0 ignoriert lediglich die Verweildauern).
Kehrt die in i startende Kette (Yn)n∈N0 mit Wahrscheinlichkeit 1 nach i zurück, so gilt das
auch für den Prozess (Xt)t∈R+ und umgekehrt. �

Damit lassen sich nun die Kriterien aus der Theorie der diskreten Markovketten direkt über-
tragen.

22.63 Satz:
Es sei Q konservativ, regulär und irreduzibel.

a) Gibt es ein i0 ∈ E derart, dass das Gleichungssystem∑
j∈E\{i0}

qijhj = 0, 0 ≤ hj ≤ 1 (i 6= i0)

nur die triviale Lösung h ≡ 0 besitzt, so ist E rekurrent.

b) Gibt es ein i0 ∈ E derart, dass das Gleichungssystem∑
j∈E\{i0}

qijhj = 0, 0 ≤ hj ≤ 1 (i 6= i0)

eine Lösung h 6≡ 0 besitzt, so ist E transient.
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c) Genau dann ist E transient, wenn es ein solches i0 ∈ E gibt, dass das Gleichungsystem∑
j∈E

qijhj = 0 (i 6= i0)

eine nichtkonstante beschränkte Lösung hat.

d) Sei E = N0. Gibt es ein i0 ∈ N0 und h mit hi →∞ für i→∞ und∑
j∈N0

qijhj ≤ 0 (i 6= i0),

so ist N0 rekurrent.

Beweis:
Der Satz beruht auf den diskreten Kriterien aus den Sätzen 21.43, 21.45 und 21.46. Dort
wurden Systeme der Form

hi
(>)
=
∑
j∈E′

Pijhj , i 6= i0

mit E′ = E \ {i0} oder E′ = E betrachtet. Einsetzen der Übergangswahrscheinlichkeiten der
eingebetteten Sprungkette liefert

qihi
(>)
=

∑
j∈E′\{i}

qijhj , i 6= i0

und wegen qi = −qii folgt

0
(>)
=
∑
j∈E′

qijhj , i 6= i0.

Damit sind die Rekurrenz– und Transienzaussagen für die eingebettete Sprungkette bereits
gezeigt und mit Satz 22.62 folgen die Behauptungen. �

Ein wichtiges Kriterium für positive Rekurrenz wurde bereits in Satz 22.60 angegeben. Für Q
konservativ, regulär und irreduzibel liegt genau dann positive Rekurrenz vor, wenn das System
der stationären Gleichungen yQ = 0 eine strikt positive und summierbare Lösung besitzt. Es
kann nun noch eine Beziehung zwischen den stationären Maßen des Markovprozesses und
seiner eingebetteten Markovkette gezeigt werden.

22.64 Satz:
Es sei Q konservativ, regulär und irreduzibel und die eingebettete Sprungkette (Yn)n∈N0 sei
wie üblich durch

Pij =

{
0 , j = i
qij
qi
, j 6= i

definiert. Für u = (uk)k∈E und y = (yk)k∈E möge die Beziehung yk = uk
qk

für alle k ∈ E
gelten. Genau dann ist u ein stationäres Maß für die eingebettete Sprungkette (Yn)n∈N0, also∑

k∈E
ukPkj = uj (j ∈ E),

wenn y die stationären Gleichungen für Q, also yQ = 0 löst.
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Beweis:
Betrachte das Gleichungssystem uP = u bzw. u(P − I) = 0. Die Matrix P − I besteht im Fall
der eingebetteten Markovkette aus den Einträgen

Pij − δij =

{
−1 = qii

qi
, j = i

qij
qi

, j 6= i.

u ist genau dann Lösung von u(P − I) = 0, wenn für alle j ∈ E∑
k∈E

uk
qkj
qk

= 0

gilt. Dies ist wegen yk = uk
qk

genau dann der Fall, wenn yQ = 0 besteht. Ist u strikt positiv,
so ist auch y strikt positiv. �

22.65 Bemerkung:
Satz 22.64 gibt nur eine Beziehung zwischen den stationären Maßen für den Markovprozess
und seine eingebettete Sprungkette an; die gegebenenfalls vorliegende strikte Positivität bleibt
dabei erhalten. Allerdings ist dadurch nicht gezeigt, dass der Begriff der positiven Rekurrenz
für den Markovprozess und seine eingebettete Sprungkette zusammenfallen – diese Ausssage
ist im Allgemeinen sogar falsch. Wegen der Beziehung yk = uk

qk
folgt aus der Summierbarkeit

der yk nicht die der uk und auch die umgekehrte Schlussweise ist nicht möglich.

22.10 Ergodensätze

Ergodensätze für Markovprozesse in stetiger Zeit können auf dieselbe Weise bewiesen werden
wie solche für Markovketten in diskreter Zeit. Zentral ist dabei wieder eine Aussage über die
mittlere Zeit, die der Prozess während eines Zyklus von i nach i im Zustand j verbringt.

22.66 Satz:
Es sei Q konservativ, regulär, irreduzibel und positiv rekurrent mit zugehöriger stationärer

Verteilung π. Dann gilt mit T = T
(1)
ii (erster Rückkehrzeitpunkt)

M(i, j) = E

[∫ T

0
1{j}(Xs)ds

∣∣∣∣X0 = i

]
=

πj
qiπi

.

Beweis:
M(i, j) berechnet sich als Produkt der mittleren Anzahl der Aufenthalte im Zustand j
während eines Zyklus von i nach i und der mittleren Verweilzeit im Zustand j.
Die Verweilzeit im Zustand j ist exponentiell verteilt mit dem Parameter qj , d.h. die mittlere
Verweilzeit ist 1

qj
, die mittlere Anzahl von Aufenthalten im Zustand j wurde im entsprechen-

den Satz aus der diskreten Theorie 21.52 mit A(i, j) bezeichnet. Im Beweis wurde dort gezeigt,
dass A(i, j) für jedes feste i das stationäre Gleichungssystem uP = u erfüllt. Nach Satz 22.64

erfüllt daher M(i, j) = A(i,j)
qj

für jedes feste i das stationäre Gleichungssystem yQ = 0. Es

folgt M(i, j) = ciπj und wegen M(i, i) = 1
qi

die Behauptung. �
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Mit analogen Beweisen wie im Kapitel über Ergodensätze für diskrete Markovketten (lediglich
die Summen sind durch Integrale zu ersetzen) folgt nun

22.67 Satz:
Es sei Q konservativ, regulär, irreduzibel und positiv rekurrent mit stationärer Verteilung π.
Ferner seien f, g : E → R Kostenfunktionen mit π|f | < ∞, π|g| < ∞ sowie πf 6= 0 oder

πg 6= 0. Der erste Rückkehrzeitpunkt zum Zustand i wird mit T = T
(1)
ii bezeichnet.

a) Für die mittleren Kosten in einem Zyklus gilt

E

[∫ T

0
f(Xs)ds

∣∣∣∣X0 = i

]
=

πf

qiπi
bzw.

E
[∫ T

0 f(Xs)ds
∣∣∣X0 = i

]
E
[∫ T

0 g(Xs)ds
∣∣∣X0 = i

] =
πf

πg
.

b) P–f.s. gilt

lim
t→∞

∫ t
0 f(Xs)ds∫ t
0 g(Xs)ds

=
πf

πg
und lim

t→∞

1

t

∫ t

0
f(Xs)ds = πf.

c) Für die entsprechenden Erwartungswerte gilt

lim
t→∞

E
[∫ t

0 f(Xs)ds
∣∣∣X0 = i

]
E
[∫ t

0 g(Xs)ds
∣∣∣X0 = i

] =
πf

πg
und lim

t→∞
E

[
1

t

∫ t

0
f(Xs)ds

∣∣∣∣X0 = i

]
= πf.
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Birkhäuser, Boston, 1992.
ISBN:0817635912

• K.L. Chung:
Markov Chains with stationary transition probabilities,
Springer–Verlag, 1960.

• J.L. Doob:
Markoff chains – denumerable case,
Trans. Amer. Math. Soc. 42, 107-140.

• E. Cinlar:
Introduction to stochastic processes,
Prentice–Hall, 1975.

118



22.10. Ergodensätze

• W.J. Anderson:
Continuous–Time Markov Chains,
Springer Verlag, Berlin, 1991.
ISBN: 3540973699

• D. W. Stroock:
An Introduction to Markov Processes,
Springer-Verlag, Berlin, 2005.
ISBN: 3540234993

119



Kapitel 22. Markovketten mit stetiger Zeit

120



Kapitel 23

Markovsche Erneuerungstheorie

In diesem Kapitel werden Markovsche Erneuerungsprozesse behandelt. Sie verallgemeinern
sowohl Markov– als auch Erneuerungsprozesse; daher lassen sich sehr viele real existierende
stochastische Prozesse als Markovsche Erneuerungsprozesse darstellen. Es werden zunächst
die Markovsche Erneuerungsfunktion und die Markovsche Erneuerungsgleichung eingeführt,
anschließend wird das Grenzverhalten Markovscher Erneuerungsprozesse analysiert. Zum Ab-
schluss werden diese Ergebnisse auf verwandte Prozesse, nämlich Semi–Markov– und semire-
generative Prozesse angewendet.

Schlüsselwörter: Markovscher Erneuerungsprozess, Semi–Markov–Prozess, semi-
regenerativer Prozess, Markovsche Erneuerungsfunktion, Markovsche Erneuerungs-
gleichung, Grenzverhalten.
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23.1 Markovsche Erneuerungsprozesse

Markovsche Erneuerungsprozesse verbinden die Eigenschaften von Erneuerungsprozessen und
Markovprozessen miteinander. Letztere können in zwei Komponenten zerlegt werden – in eine
diskrete Markovkette, d.h. eine Folge (Xn)n∈N0 (mit Werten in einer diskreten Menge E), bei
der die Verteilung von Xn+1 nur von Xn abhängt, und in eine Folge (Tn)n∈N von Verweildau-
ern aus R+, die nur vom aktuellen Zustand abhängen und exponentiell verteilt sind.
Wird nun zugelassen, dass die Verweildauern beliebig verteilt sind und neben dem aktuellen
Zustand auch vom Folgezustand abhängen dürfen, so entstehen Markovsche Erneuerungspro-
zesse bzw. Semi – Markovprozesse.

23.1 Definition:
a) Es sei (X,S) = ((Xn)n∈N0 , (Sn)n∈N0) ein Paar von stochastischen Prozessen, wobei die

Werte von (Xn) in der diskreten Menge E und die von (Tn)n∈N mit Tn = Sn−Sn−1 in
R+ liegen (S0 := 0). Gilt für alle j, i, i1, . . . , in−1 ∈ E, t, t1, . . . , tn ∈ R+ und n ∈ N

P (Xn+1 = j, Tn+1 ≤ t|X0 = i0, . . . , Xn−1 = in−1, Xn = i, T1 = t1, . . . , Tn = tn)

= P (Xn+1 = j, Tn+1 ≤ t|Xn = i) =: Qij(t),

sowie
P (Tn+1 = 0|Xn = i) < 1

so heißt (X,S) (homogener) Markovscher Erneuerungsprozess und Q(t) = (Qij(t))i,j∈E
wird als Übergangskern von (X,S) bezeichnet.

b) Es sei (X,S) ein Markovscher Erneuerungsprozess. Ein Zustand i aus dem Zustands-
raum E heißt positiv rekurrent bzw. nullrekurrent bzw. transient, wenn i im Sinne der
Markovkette (Xn)n∈N0 positiv rekurrent bzw. nullrekurrent bzw. transient ist.

c) Der Prozess (Yt)t∈R+, der durch

Yt =

∞∑
n=0

Xn1[Sn,Sn+1)(t), t < sup
n∈N

Sn =: J

erklärt und im Fall J < ∞ durch den leeren Zustand Yt = ∆ /∈ E für t ≥ J fortgesetzt
wird, heißt der (minimale) Semi– Markovprozess zu (X,S).

d) Es sei (Zt)t≥0 ein zeitstetiger Prozess über dem Maßraum (A,A) sowie (X,S) ein Mar-
kovscher Erneuerungsprozess. Unterteilen die Zeitpunkte Sn den Prozess derart, dass

P (ZSm+t1 ∈ A1, . . . , ZSm+tk ∈ Ak | Xm = i, {Zs, s ≤ Sm})
= P (ZSm+t1 ∈ A1, . . . , ZSm+tk ∈ Ak | Xm = i)

= P (Zt1 ∈ A1, . . . , Ztk ∈ Ak | X0 = i)

gilt (also die Zukunft des Prozesses zum Zeitpunkt Sm nur vom Zustand Xm abhängt),
so heißt (Zt)t≥0 semiregenerativer Prozess.

Die Übergangswahrscheinlichkeiten der Markovkette (Xn)n∈N0 erhält man einfach durch den
Grenzübergang t→∞, also

P (Xn+1 = j|Xn = i) = Qij(∞) := lim
t→∞

Qij(t).
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Folglich gilt für die bedingten Verweildauern

P (Tn+1 ≤ t|Xn = i,Xn+1 = j) =
Qij(t)

Qij(∞)

sowie für die unbedingten Verweildauern im Zustand i

P (Tn+1 ≤ t|Xn = i) =
∑
j∈E

Qij(t).

Die Bedingung P (Tn+1 = 0|Xn = i) < 1 kann daher auch als∑
j∈E

Qij(0) < 1

beschrieben werden; sie entspricht der Bedingung F (0) < 1 aus der Erneuerungstheorie, die
erforderlich war, um die Konvergenz der Erneuerungsfunktion zu sichern (vergleiche Stocha-
stik II, Kapitel 17).

23.2 Bemerkung:
Im Gegensatz zu Erneuerungsprozessen kann in der Tat mit positiver Wahrscheinlichkeit
J < ∞ sein. Wie bei Markovprozessen legen die Markovsprungkette und die Folge der Ver-
weildauern den Prozess dann nur bis zum Explosionspunkt J eindeutig fest, die Wahl von
Yt = ∆ für t ≥ J führt daher nur auf einen möglichen zeitstetigen Prozess, sodass der Zusatz

”
minimal“ in der Definition der Semi–Markovprozesse berechtigt ist.

Einige wichtige stochastische Prozesse treten als Spezialfälle der Markovschen Erneuerungs-
prozesse bzw. Semi–Markovprozesse auf.

• Wählt man E mit nur einem Zustand, etwa E = {1}, so bilden die (Sn)n∈N0 einen
einfachen Erneuerungsprozess mit F (t) = Q11(t).

• Wird E = {0, 1} und

Qij(t) = Fi(t), i, j = 0, 1, i 6= j, t ≥ 0

gewählt, so ensteht der sogenante alternierende Erneuerungsprozess. Der Zustand 1
kann als

”
Bauteil in Betrieb“ interpretiert werden, der Zustand 0 als

”
Bauteil in Repa-

ratur“. Die Funktionen F1(t) bzw. F0(t) geben dann die Verteilungen der Lebensdauer
bzw. der Reparaturdauer an.

• Ignoriert man die Verweildauern durch die Festlegung Tn = 0, also

Qij(t) = P (X1 = j|X0 = i)

unabhängig von t ≥ 0, so erhält man eine diskrete Markovkette.

• Unter der Voraussetzung, dass der Explosionspunkt J bei ∞ liegt, wird der Semi –
Markovprozess zu (X,S) zu einem Markovprozess, indem die Verweilzeiten als expo-
nentiell verteilt gewählt werden; ist P̂ (i, j) die Übergangsfunktion der eingebetteten
Markovkette, so ist Qij(t) = P̂ (i, j)(1− e−qit) zu setzen.

123



Kapitel 23. Markovsche Erneuerungstheorie

23.2 Markovsche Erneuerungsgleichung

Es sei (X,S) ein Markovscher Erneuerungsprozess mit Übergangskern Q(t).

Nun werden die Eintrittszeiten in einen Zustand j mit M
(j)
n bezeichnet, also M

(j)
0 := 0 und

M
(j)
n+1 = min{m ∈ N | m > M

(j)
n , Xm = j}. Die bis dahin vergangene Zeit sei S

(j)
n , also

S
(j)
n = T1 + . . . + T

M
(j)
n

= S
M

(j)
n

. Dann sind die Zeiten S
(j)
n+1 − S

(j)
n (für n ≥ 1) unabhängig

und identisch verteilt, für jedes j ∈ E bilden die
(
S

(j)
n

)
n∈N

einen (je nach Startzustand)

gegebenenfalls modifizierten Erneuerungsprozess.
Von Interesse ist wie in der Erneuerungstheorie die mittlere Anzahl Rij(t) von Erneuerungen
dieses eingebetteten Erneuerungsprozesses, also die mittlere Anzahl von Eintritten in den
Zustand j im Zeitraum [0, t], ausgehend vom Startzustand i (in Analogie zur Theorie der
Erneuerungsprozesse wird für den Fall i = j die 0–te Erneuerung nicht mitgezählt). R(t) =
(Rij(t))i,j∈E wird als Markovscher Erneuerungskern bezeichnet. Es gilt

R(i; j, t) = E

[ ∞∑
n=1

1{j}(Xn)1[0,t](Sn)|X0 = i

]

=
∞∑
n=1

E
[
1{j}(Xn)1[0,t](Sn)|X0 = i

]
=

∞∑
n=1

P (Xn = j, Sn ≤ t|X0 = i)

Wird Qn∗ij (t) = P (Xn = j, Sn ≤ t | X0 = i) gesetzt, so folgt zum einen

Rij(t) =
∞∑
n=1

Qn∗ij (t)

und zum anderen

Q
(n+1)∗
ij (t) =

∑
k∈E

∫ t

0
Qn∗kj (t− s)dQik(s).

für n ≥ 1, i, j ∈ E, t ≥ 0 und Q1∗ = Q.
Die hier an Faltungen erinnernde Schreibweise verlangt eine allgemeinere Definition von Fal-
tungen mit einem Übergangskern Q(t). Dazu sei B die Menge aller in der ersten Komponente
global und in der zweiten Komponente lokal beschränkten Funktionen f : E × [0,∞) → R,
d.h. für jede beschränkte Menge K ⊆ [0,∞) gibt es eine Konstante C mit f(i, t) ≤ C für alle
i ∈ E und alle t ∈ K. Dann werden Faltungen von Q mit f ∈ B durch

(Q ∗ f)(i, t) =
∑
j∈E

∫ t

0
f(j, t− s)dQij(s)

definiert. Wegen Q·k ∈ B (Wertebereich ist [0, 1]) für jedes k ist obige Schreibweise Qn∗ legitim.

23.3 Bemerkung:
Es sei Fij(t) die Wahrscheinlichkeit, dass der in i startende Erneuerungsprozess bis zum Zeit-
punkt t den Zustand j erreicht hat. Aus dem Kapitel über modifizierte Erneuerungsprozesse
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(Stochastik II) ist bekannt, dass dann

Rij(t) =
∞∑
n=1

(
Fij ∗ F (n−1)∗

jj

)
(t)

besteht. Ist j rekurrent, so handelt es sich tatsächlich um einen modifzierten Erneuerungs-
prozess, insbesondere gilt

lim
t→∞

Rij(t) =∞.

Ist j jedoch transient, so ist Fjj keine Verteilungsfunktion, da F ∗jj := limt→∞ Fjj(t) < 1 ist.
Es folgt dann nach dem Satz von der majorisierten Konvergenz

lim
t→∞

Rij(t) =
∞∑
n=1

lim
t→∞

Fij(t) · lim
t→∞

F
(n−1)
jj (t) = F ∗ij

∞∑
n=1

F
(n−1)
jj =

F ∗ij
1− F ∗jj

<∞.

Man spricht von einem abbrechenden Erneuerungsprozess.

Eine wichtige Hilfe zur Behandlung des Grenzverhaltens von Markovschen Erneuerungs-
prozessen ist wie in der Erneuerungstheorie die Kenntnis des Lösungverhaltens von Glei-
chungen der Form h = g + Q ∗ h. Den Grundstein für die Theorie dieser sogenannten
Markovschen Erneuerungsgleichungen bildet

23.4 Lemma:
Es gilt R = Q+Q ∗R.

Beweis:
Die kompakte Konvergenz von R(i; j, t) für alle i, j ∈ E (Erneuerungsfunktion eines Erneue-
rungsprozesses) und der Satz von der majorisierten Konvergenz erlauben die Vertauschung
von Summation und Faltungsintegral in

Q+Q ∗R = Q+Q ∗
∞∑
n=1

Qn∗ = Q+

∞∑
n=1

Q(n+1)∗ =

∞∑
n=1

Qn∗ = R.

Der erste große Unterschied zur ursprünglichen Erneuerungstheorie besteht darin, dass die
Lösungen von Markovschen Erneuerungsgleichungen nicht eindeutig sein müssen. Ohne wei-
tere Voraussetzungen gilt nur

23.5 Lemma:
Es sei

h = g +Q ∗ h (23.1)

mit einer Funktion g ∈ B+ := {f ∈ B | f ≥ 0} und einem Markovschen Übergangskern Q.
Dann hat jede Lösung h ∈ B+ die Form

h = g +R ∗ g + d,

wobei d ∈ B+ die Faltungsgleichung
d = Q ∗ d

erfüllt.

125



Kapitel 23. Markovsche Erneuerungstheorie

Beweis:
Iteration von (23.1) führt auf

h = g +Q ∗ g +Q2∗ ∗ g + . . .+Qn∗ ∗ g +Q(n+1)∗ ∗ h

für ale n ∈ N. Da g ≥ 0 vorausgesetzt war, konvergiert die rechte Seite gegen g+R ∗ g, wenn
man vom letzten Summanden absieht. Dieser konvergiert gegen eine Funktion d ∈ B+, für die

d = lim
n→∞

Q(n+1)∗ ∗ h = Q ∗ lim
n→∞

Qn∗ ∗ h = Q ∗ d

gilt. �

Die Lösung g + R ∗ g ist also eine minimale Lösung. Eindeutig ist sie genau dann, wenn
d = Q ∗ d in B+ nur die triviale Lösung besitzt. Das nachstehende Lemma vereinfacht die
Suche nach derartigen Funktionen d etwas.

23.6 Lemma:
Existiert eine von 0 verschiedene Lösung d ∈ B+ von d = Q∗d, so existiert auch eine Lösung
d′ ∈ B+ mit 0 6= d′ ≤ 1.

Beweis:
Sei d = Q ∗ d mit d 6= 0. Dann existiert ein b > 0, so dass es ein i ∈ E und ein t < b mit
d(i, t) > 0 gibt; somit ist

β := sup{d(i, t); i ∈ E, t ≤ b} > 0.

Definiere nun zunächst die Funktion k ∈ B+ mit k ≤ 1 durch

k(i, t) =

{
d(i,t)
β , t < b,

1, t ≥ b

}
≤ 1.

Dann gilt für t < b sofort k = Q ∗ k und für t ≥ b noch

(Q ∗ k)(i, t) ≤
∑
j∈E

Qij(t) ≤ 1 = k(i, t).

Zusammen folgt also k ≥ Q ∗ k und somit die Ungleichungskette

1 ≥ k ≥ Q ∗ k ≥ Q2∗ ∗ k ≥ . . . ≥ lim
n→∞

Qn∗ ∗ k =: d′.

Offensichtlich ist nun d′ ∈ B+, d′ ≤ 1 und wegen der Monotonie der Konvergenz ist

d′ = lim
n→∞

Q(n+1)∗ ∗ k = Q ∗ lim
n→∞

Qn∗ ∗ k = Q ∗ d′.

Für t < b gilt wegen k = Q ∗ k auch d′ = k und daher ist d′ nicht die Nullfunktion. �

Damit lässt sich nun das nachstehende Ergebnis zeigen, dass das wichtigste Kriterium zur
eindeutigen Lösbarkeit der Markovschen Erneuerungsgleichung bildet.
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23.7 Lemma:
Genau dann ist die Markovsche Erneuerungsgleichung (23.1) in B+ eindeutig lösbar, wenn
J = supSn =∞ P–f.s.

Beweis:
Es bezeichne

fn(i; t) = P (Sn ≤ t | X0 = i) =
∑
j∈E

Qn∗ij (t).

Wegen S0 ≤ S1 ≤ . . . fällt fn monoton für n→∞ und der Grenzwert ist

f(i; t) := lim
n→∞

P (Sn ≤ t | X0 = i) = P (J ≤ t | X0 = i).

Wegen fn+1 = Q ∗ fn folgt mit dem Satz von der monotonen Konvergenz

f = Q ∗ f.

Ist 0 die einzige Lösung von d = Q ∗ d, so folgt f = 0, also P (J ≤ t) = 0 für jedes endliche
t ∈ R+, d.h. J =∞ P–f.s.
Sei nun umgekehrt J = ∞ P–f.s. gegeben, so folgt f = 0. Für jede weitere Lösung d von
d = Q ∗ d mit 0 ≤ d ≤ 1 gilt jedoch

d = Q ∗ d = Qn∗ ∗ d ≤ Qn∗ ∗ 1 = fn

für alle n ∈ N, und damit auch d ≤ f = 0. Nach Lemma 23.6 folgt damit, dass d = 0 auch die
einzige Lösung aus B+ von d = Q∗d ist. Nach Lemma 23.5 ist dies äquivalent zur eindeutigen
Lösbarkeit der Markovschen Erneuerungsgleichung. �

Ein einfaches hinreichendes Kriterium für die eindeutige Lösbarkeit bildet

23.8 Satz:
Es sei Q der Übergangskern eines Markovschen Erneuerungsprozesses über dem Zustandsraum
E, der ausschließlich rekurrente Zustände enthält. Dann besitzt die Markovsche Erneuerungs-
gleichung h = g +Q ∗ h für jedes g ∈ B+ nur eine Lösung h ∈ B+, nämlich h = g +R ∗ g.

Beweis:
Betrachte den Erneuerungsprozess Rjj(t). Da j rekurrent ist, handelt es sich um einen nicht–
abbrechenden Erneuerungsprozess. Insbesondere divergiert Rjj(t) und somit wachsen auch die

Erneuerungszeitpunkte S
(j)
n über alle Schranken. Da sie aber eine Teilfolgen von (Sn)n∈N0 dar-

stellen, folgt J = supSn =∞ und mit den Lemmata 23.5 und 23.7 die eindeutige Lösbarkeit
der Markovschen Erneuerungsgleichung. Auf die Voraussetzung, dass alle Zustände rekur-
rent sind, kann nicht verzichtet werden, da ein rekurrenter Zustand mit Wahrscheinlichkeit 1
erreicht werden muss. �
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23.3 Das Markovsche Erneuerungstheorem

Ziel dieses Abschnittes ist eine Verallgemeinerung des Fundamentalsatzes der Erneuerungs-
theorie, also eine Aussage über Faltungen R ∗ g mit dem Markovschen Erneuerungskern R(t)
und g aus einer geeigneten Funktionenklasse. Um Entartungen des mit der Erneuerungsfunk-
tion Rij(t) assoziierten Erneuerungsprozesses zu verhindern, fordern wir, dass der Zustands-
raum E irreduzibel rekurrent ist. Dann sind die Funktionen Fij(t) aus Bemerkung 23.3 echte
Verteilungsfunktionen.
Wie im Kapitel über Markovketten gezeigt, existiert für einen irreduzibel rekurrenten Zu-
standsraum E ein stationäres Maß der eingebetteten Markovkette, d.h. eine Folge (πi)i∈E
mit ∑

j∈E
πiQij(∞) = πj ;

im Fall positiver Rekurrenz gilt πj > 0 und die Folge kann normiert werden, so dass∑
j∈E

πj = 1

gilt.
Auf den eingebetteten Erneuerungsprozess sollen nun das Blackwell’sche Erneuerungstheorem
bzw. der Fundamentalsatz der Erneuerungstheorie angewendet werden. In beiden kommt da-
bei der Erwartungswert der Zeitdifferenz der Erneuerungspunkte, also der Dauer eines Zyklus
von i nach i, vor. Das nachstehende Lemma gibt an, wie diese anhand der Grenzverteilung
berechnet werden kann.

23.9 Satz:
Es sei (X,S) ein Markovscher Erneuerungsprozess über dem irreduzibel rekurrenten Zustands-
raum E; die eingebettete Markovkette (Xn) möge die stationäre Verteilung (πi)i∈E besitzen.
Mit

µi := E[T1|X0 = i] =

∞∫
0

1−
∑
j∈E

Qij(t)

 dt

gilt

νi := E
[
S

(i)
1 |X0 = i

]
=

∑
j∈E

µjπj

πi
.

Im null–rekurrenten Fall ist νi =∞.

Beweis:
Es seien Ei := E \ {i},

µjk := E[Tn+1|Xn = j,Xn+1 = k]

sowie N = inf{n ≥ 1;Xn = i} = M
(i)
1 . Es soll nun eine Darstellung der Form

νi =
∑
j∈E

∑
k∈E

ajkµjk

gefunden werden, d.h. ajk ist die erwartete Anzahl von Übergängen von j nach k während
eines Zyklus von i nach i.
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Betrachte zunächst aik für k ∈ E. Ein Sprung von i nach k kann während eines Zyklus von
i nach i nur einmal auftreten, die Wahrscheinlichkeit dafür beträgt Qik(∞). Vom Zustand k
kehrt der Prozess wegen der Voraussetzung, dass E irreduzibel rekurrent ist, mit Wahrschein-
lichkeit 1 in den Zustand i zurück. Für alle k ∈ E ist daher

aik = Qik(∞).

Seien nun j, k ∈ Ei. Das Problem bei der Bestimmung von ajk besteht nun darin, dass der
Sprung von j nach k in einem Zyklus von i nach i gegebenenfalls mehrfach auftritt. Es ist also
über die Anzahl r+ 1 aller Sprünge während eines Zyklus von i nach i und die Nummer n+ 1
des Sprungs zu summieren, bei dem der Übergang von j nach k stattfinden soll. Da j, k 6= i
vorausgesetzt ist, gilt r ≥ 2 und es ergibt sich unter Ausnutzung der Markoveigenschaft

ajk =

∞∑
r=2

r−1∑
n=1

P (Xn = j,N > n | X0 = i)Qjk(∞)P (N = (r + 1)− (n+ 1) | X0 = k)

= Qjk(∞)
∞∑
n=1

P (Xn = j,N > n | X0 = i)
∞∑

r=n+1

P (N = r − n | X0 = k)

= Qjk(∞)A(i, j)

∞∑
r=1

P (N = r | X0 = k).

Die letzte Summe gibt die Wahrscheinlichkeit an, dass der in k startende Prozess irgendwann
i erreicht. Aufgrund der Irreduzibilität und Rekurrenz von E hat sie den Wert 1, es wird

ajk = Qjk(∞)A(i, j).

Dieses Ergebnis ist auch für k = i gültig, da für j ∈ Ei offensichtlich

aji =
∞∑
n=1

P (Xn = j,N > n | X0 = i)Qji(∞)

ist. Die Summe

A(i, j) :=

∞∑
n=1

P (Xn = j,N > n|X0 = i)

gibt genau die erwartete Anzahl von Aufenthalten in j während eines Zyklus von i nach i an;
in Satz 21.52 wurde gezeigt, dass sie sich durch

πj
πi

berechnet. Damit folgt insgesamt

νi =
∑
k∈E

Qik(∞)µik +
∑
j∈Ei

∑
k∈E

πj
πi
Qjk(∞)µjk =

∑
j,k∈E

πj
πi
Qjk(∞)µjk.

Unter Beachtung von∑
k∈E

Qjk(∞)µjk =
∑
k∈E

E[T1|X0 = j,X1 = k]P (X1 = k | X0 = j) = E[T1|X0 = j] = µj

wird
νi =

∑
j∈E

πj
πi
µj .
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Damit folgt für feste h > 0, i, j ∈ E direkt in Verallgemeinerung des Blackwell’schen Erneue-
rungstheorems

lim
t→∞

(Rij(t+ h)−Rij(t)) =
h

νj
=

h · πj∑
k∈E πkµk

.

Das Ziel dieses Abschnittes ist es allerdings, den Fundamentalsatz der Erneuerungstheorie zu
verallgemeinern, d.h. eine Aussage der Form

lim
t→∞

(R ∗ g)(t) = lim
t→∞

∑
j∈E

t∫
0

g(j, t− s)dRij(s) =

∞∫
0

∑
j∈E

g(j, s)

νj
ds

für g aus einer geeigneten Funktionenklasse zu zeigen. Es wäre naheliegend zu verlangen,
dass g(j, ·) für alle j ∈ E direkt Riemann–integrierbar ist. Dann müssten allerdings, um
den Fundamentalsatz anwenden zu können, Grenzwert und Summe vertauscht werden. Dies
ist nur für endliches E einfach möglich. Um das Markovsche Erneuerungstheorem auch für
unendliche Zustandsräume formulieren zu können, wird der Begriff der direkten Riemann –
Integrierbarkeit etwas verallgemeinert.

23.10 Definition:
Es sei (ψi)i∈E ein positives Maß auf E und g ∈ B+. Konvergieren die Reihen

σ(δ) = δ
∑
n∈N0

∑
j∈E

ψj sup
t∈Iδn

g(j, t) und σ(δ) = δ
∑
n∈N0

∑
j∈E

ψj inf
t∈Iδn

g(j, t)

mit Iδn = [nδ, (n + 1)δ) für alle δ > 0 und strebt ihre Differenz für δ → 0+ gegen 0, so heißt
g direkt Riemann–integrierbar bezüglich (ψi)i∈E.

Im nachstehenden Satz werden einige Ergebnisse zur direkten Riemann – Integrierbarkeit
bezüglich eines Maßes zusammengefasst. Die Beweise sind etwa in dem im Literaturverzeichnis
angegebenen Buch von Cinlar zu finden.

23.11 Satz:
Es sei (ψi)i∈E ein positives Maß auf E und g ∈ B+.

(i) Ist g direkt Riemann – integrierbar bezüglich (ψi)i∈E, so ist∑
j∈E

ψjg(j, t)

direkt Riemann – integrierbar (im ursprünglichen Sinne) und σ und σ konvergieren
beide gegen

∞∫
0

∑
j∈E

ψjg(j, t)dt.

(ii) Ist g(j, t) monoton nichtwachsend in t für alle j ∈ E und gelten

∑
j∈E

ψjg(j, 0) <∞ sowie

∞∫
0

∑
j∈E

ψjg(j, t)dt <∞,

so ist g direkt Riemann – integrierbar bezüglich (ψi)i∈E.
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(iii) Es sei f ∈ B+ mit 0 ≤ f ≤ g und f(i, ·) sei Riemann – integrierbar für jedes i ∈ E. Ist
g direkt Riemann – integrierbar bezüglich (ψi)i∈E, so auch f .

(iv) Sind Fj (j ∈ E) Verteilungsfunktionen, die auf (−∞, 0) verschwinden und ist h ∈ B+

durch

h(j, t) =

t∫
0

g(j, t− s)dFj(s) (j ∈ E, t ∈ R+)

definiert und ist g direkt Riemann – integrierbar bezüglich (ψi)i∈E, so ist auch h direkt
Riemann – integrierbar bezüglich (ψi)i∈E.

23.12 Satz (Markovsches Erneuerungstheorem):
Es sei (X,S) ein Markovscher Erneuerungsprozess mit Übergangskern Q über einem irreduzi-
bel positiv rekurrenten diskreten Zustandsraum E; für mindestens ein j sei Qij(t) nicht arith-
metisch. (πi)i∈E sei ein positives stationäres Maß für X und g direkt Riemann–integrierbar
bezüglich (πi)i∈E. Dann gilt

lim
t→∞

(R ∗ g)(i, t) =
1∑

k∈E
πkµk

∞∫
0

∑
j∈E

πjg(j, s)ds.

Im Fall eines nullrekurrenten Zustandes i ∈ E und sonst unverändert gelassenen Vorausset-
zungen gilt

lim
t→∞

(R ∗ g)(i, t) = 0.

Beweis:
Die wesentliche Beweisidee besteht darin, den

”
Rückwärtsprozess“ Q̃ durch

Q̃ij(t) =
πj
πi
Qji(t)

zu definieren. Im ersten Schritt werden dann Beziehungen zwischen Q und Q̃ hergeleitet. Diese
ermöglichen es im zweiten Schritt, das Faltungsprodukt R ∗ g mithilfe einer gewöhnlichen
Faltung auszudrücken, wie sie in der Erneuerungstheorie verwendet wurde. Im dritten Schritt
wird auf diese Faltung dann der Fundamentalsatz der Erneuerungstheorie angewendet.

1. Wegen ∑
j∈E

Q̃ij(∞) =
1

πi

∑
j∈E

πjQji(∞) =
πi
πi

= 1

ist auch Q̃ wieder Übergangskern eines Markovschen Erneuerungsprozesses, R̃ =
∑
Q̃n∗

sei der zugehörige Markovsche Erneuerungskern. Dann gelten

• πiQ̃
n∗
ij (t) = πjQ

n∗
ji (t) für alle n ∈ N,

• πiR̃ij(t) = πjRji(t) und

• R̃ii(t) = Rii(t).
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2. In dem durch Q̃ definierten Markovschen Erneuerungsprozess sei F̃ji(t) die Wahrschein-
lichkeit, dass ausgehend vom Startzustand j der erste Eintritt in den Zustand i bis t
erfolgt, also

F̃ji(t) = P (S
M̃

(i)
1

≤ t|X0 = j).

Dann ist

R̃ji(t) =

t∫
0

(1 + R̃ii(t− s))dF̃ji(s)

= F̃ji(t) +

t∫
0

F̃ji(t− s)dRii(s),

oder kurz R̃ji = F̃ji +Rii ∗ F̃ji (im Sinne der ursprünglichen Faltung). In

πi(R ∗ g)(i, t) = πi
∑
j∈E

t∫
0

g(j, t− s)dRij(s)

gilt nun für j 6= i

t∫
0

πig(j, t− s)dRij(s) =

t∫
0

πjg(j, t− s)dR̃ji(s)

=

t∫
0

πjg(j, t− s)dF̃ji(s) +

t∫
0

πjg(j, t− s)d(Rii ∗ F̃ji)(s)

=

t∫
0

πjg(j, t− s)dF̃ji(s) + πj

t∫
0

t−s∫
0

g(j, t− (r + s))dF̃ji(r)dRii(s),

also

πi(R ∗ g)(i, t) =
∑
j 6=i

πj

t∫
0

t−s∫
0

g(j, t− (r + s))dF̃ji(r)dRii(s)

+πi

t∫
0

g(i, t− s)dRii(s) +
∑
j 6=i

t∫
0

πjg(j, t− s)dF̃ji(s)

=
(
Rii ∗ f̂(i, ·)

)
(t) + f̂(i, t)− πig(i, t)

mit

f̂(i, t) :=
∑
j 6=i

πj

∫ t

0
g(j, t− s)dF̃ji(s) + πig(i, t).

3. Da g nach Voraussetzung direkt Riemann–integrierbar bezüglich (πi)i∈E ist, folgt mit
den Punkten (i) und (iv) aus Satz 23.11 die direkte Riemann–Integrierbarkeit von f̂(i, ·)
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für jedes feste i. Daher kann aufRii∗f̂(i, ·)) der Fundamentalsatz der Erneuerungstheorie
angewendet werden. Wegen

∞∫
0

t∫
s=0

g(j, t− s)dF̃ji(s)dt =

∞∫
s=0

∞∫
t=s

g(j, t− s)dtdF̃ji(s)

=

∞∫
s=0

dF̃ji(s)

∞∫
t=0

g(j, t)dt

=

∞∫
0

g(j, t)dt

folgt unter Verwendung von Satz 23.9 (und dem Satz von der majorisierten Konvergenz)

lim
t→∞

πi(R ∗ g)(i, t) = lim
t→∞

(Rii ∗ f̂(i, ·))(t) =
1

E
[
S

(i)
1

] ∞∫
0

f̂(i, s)ds

=
1

νi

 ∞∫
0

∑
j 6=i

πj

∫ t

s=0
g(j, t− s)dF̃ji(s)dt+ πi

∞∫
0

g(i, t)dt


=

1

νi

∑
j∈E

πj

∞∫
0

g(j, t)dt =
πi∑

k∈E
πkµk

∑
j∈E

πj

∞∫
0

g(j, t)dt

=
πi∑

k∈E
πkµk

∞∫
0

∑
j∈E

πjg(j, t)dt.

Die Voraussetzung, dass mindestens ein Qij(t) nichtarithmetisch ist, garantiert dabei, dass
Rii die Erneuerungsfunktion eines nichtarithmetischen Erneuerungsprozesses ist, d.h. das
tatsächlich die Variante des Fundamentalsatzes der Erneuerungstheorie für nichtarithmeti-
sche Lebensdauern verwendet werden kann.
Der Zusatz für nullrekurrente Zustände ist klar, da bei der Anwendung des Fundamentalsatzes
durch die mittlere Lebensdauer geteilt wird, die in diesem Fall ∞ ist. �

Obige Verallgemeinerung des Blackwell’schen Erneuerungstheorems erhält man wieder durch
die Wahl

g(i, t) = 1[0,h)(t) · 1{j}(i),

den Fundamentalsatz der Erneuerungstheorie etwa durch E = {i}.

23.4 Grenzverhalten semiregenerativer Prozesse

In diesem Abschnitt soll nun das Grenzverhalten semiregenerativer Prozesse (Zt)t≥0, die be-
reits in Definition 23.1 erklärt wurden, untersucht werden. Besitzt der eingebettete Markov-
sche Erneuerungsprozess (X,S) den Zustandsraum E = {i}, so ergibt sich ein regenerativer
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Prozess; insofern bilden semiregenerative Prozesse eine Verallgemeinerung regenerativer Pro-
zesse.
Entsprechend der Behandlung regenerativer Prozesse in Stochastik II wird zunächst eine
Markovsche Erneuerungsgleichung für semiregenerative Prozesse angegeben, auf die dann an-
schließend das Markovsche Erneuerungstheorem angewendet wird.

23.13 Lemma:
Zusätzlich zu den Bezeichnungen aus Definition 23.1 sei der Zustandsraum E des eingebette-
ten Markovschen Erneuerungsprozesses (X,S) irreduzibel rekurrent und für i ∈ E und t ≥ 0
sowie B ∈ A seien

PB(i, t) = P (Zt ∈ B|Z0 = i) und KB(i, t) = P (Zt ∈ B, T1 > t|Z0 = i)

Dann besteht

PB(i, t) = KB(i, t) + (R ∗KB)(i, t) = KB(i, t) +
∑
j∈E

∫ t

0
KB(j, t− s)dRij(s). (23.2)

Beweis:
Unter Beachtung der Regenerationseigenschaft zum Zeitpunkt T1 wird

PB(i, t) = KB(i, t) + P (Zt ∈ B, T1 ≤ t|X0 = i)

= KB(i, t) +
∑
j∈E

t∫
s=0

P (Zt ∈ B | X1 = j, T1 = s,X0 = i)dP (X1 = j, T1 = s | X0 = i)

= KB(i, t) +
∑
j∈E

t∫
0

P (Zt−s ∈ B | X0 = j)dQij(s) = KB(i, t) + (Q ∗ PB)(i, t).

Da irreduzible Rekurrenz vorliegt, ist die Lösung dieser Markovschen Erneuerungsgleichung
eindeutig und es folgt (23.2). �

Anders als bei regenerativen Prozessen liefert die Regenerationseigenschaft alleine noch nicht
die Existenz einer Grenzverteilung. Da es nur zustandsabhängige Zyklen geben muss, besteht
zumindest bei unendlichem Zustandraum E des eingebetteten Markovschen Erneuerungspro-
zesses die Möglichkeit, dass jeder Zustand aus E nur endlich oft angenommen wird. Zum
Beispiel ist mit geeigneten Zustandräumen (etwa N0) auch Zt = t als semiregenerativer
Prozess realisierbar. Daher muss wie auch bei der Formulierung des Markovschen Erneue-
rungstheorems zusätzlich positive Rekurrenz der Zustände vorausgesetzt werden.

23.14 Satz (Grenzverteilung semiregenerativer Prozesse):
Es sei (Zt)t≥0 ein semiregenerativer Prozess über dem Maßraum (A,A) mit dem eingebet-
teten nichtarithemtischen Markovschen Erneuerungsprozess (X,S) mit dem irreduzibel po-
sitiv rekurrenten Zustandsraum E und dem strikt positiven stationären Maß (πi)i∈E; für
µi = E[T1|X0 = i] sei ∑

k∈E
πkµk <∞.
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Weiter sei B ∈ A und die in Lemma 23.13 definierte Funktion KB(i, ·) für jedes i ∈ E
uneigentlich Riemann–integrierbar. Dann gilt

lim
t→∞

P (Zt ∈ B | X0 = i) =
1∑

k∈E
µkπk

∑
j∈E

πj

∞∫
0

P (Zt ∈ B, T1 > t|X0 = j)dt. (23.3)

Ist die Funktion KB(i, ·) für alle B ∈ A und alle i uneigentlich Riemann–integrierbar, so
existiert eine Zufallsvariable Z∗, so dass für t→∞

Zt
i.V.−→ Z∗.

Beweis:
KB(i, t) ist für alle i ∈ E monoton nichtwachsend in t. Wegen KB(i, t) ≤ 1 gelten ferner∑

i∈E
πiKB(i, 0) ≤

∑
i∈E

πi = 1 <∞

sowie
∞∫

0

∑
i∈E

πiKB(i, t)dt ≤
∑
i∈E

∫ ∞
0

(1− P (T1 ≤ t | Z0 = i))dt =
∑
i∈E

πiµi <∞.

Nach Satz 23.11 (ii) ist KB somit direkt Riemann–integrierbar bezüglich (πi)i∈E und es kann
das Markovsche Erneuerungstheorem 23.12 mit g = KB angewendet werden. Damit folgt

lim
t→∞

P (Zt ∈ B | X0 = i) = lim
t→∞

PB(i, t) = lim
t→∞

KB(i, t) + lim
t→∞

(R ∗KB)(i, t)

= 0 +
∑
j∈E

1

νj

∞∫
0

KB(j, s)ds.

Die Darstellung (23.3) folgt unmittelbar mit Satz 23.9; die schwache Konvergenz gegen ein
Grenzmaß ist damit auch bereits bewiesen. Dabei wird durch

P (Z∗ ∈ B) = lim
t→∞

P (Zt ∈ B | X0 = i)

wegen

lim
t→∞

P (Zt ∈ A | X0 = i) =
∑
j∈E

1

νj

∞∫
0

P (T1 > t | X0 = j)dt

=
∑
j∈E

E[T1 | X0 = j]

νj
=

∑
j∈E

πjµj∑
k∈E

πkµk
= 1

eine (von i unabhängige) Wahrscheinlichkeitsverteilung definiert. �
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23.15 Bemerkung:
Um die Grenzverteilung in konkreteren Situationen zu berechnen, hilft

KB(j, s) = P (Zs ∈ B, T1 > s | X0 = j) = E
[
1B(Zs) · 1[0,T1)(s) | X0 = j

]
was mit dem Satz von Fubini auf

lim
t→∞

P (Zt ∈ B | X0 = i) =
1∑

k∈E
µkπk

∑
j∈E

πjE

[∫ T1

0
1B(Zs)ds

∣∣∣∣X0 = j

]

führt.
Sind alle Zustände des irreduziblen Zustandraums E nullrekurrent, so liefert das Markovsche
Erneuerungstheorem die Konvergenz von P (Zt ∈ B) gegen 0.

23.5 Grenzverhalten von Semi–Markovprozessen

Semi–Markovprozesse stellen einerseits eine Verallgemeinerung von Markovprozessen, ande-
rerseits aber auch spezielle semiregenerative Prozesse dar. Es liegt daher nahe, mithilfe von
Satz 23.14 ein Transienz– bzw. Rekurrenzkriterium zu zeigen, das Satz 22.58 über das Grenz-
verhalten von Markovprozessen entspricht. Das Kriterium für positive Rekurrenz folgt dabei
direkt aus Satz 23.14.

23.16 Satz:
Es sei (X,S) ein nichtarithmetischer Markovscher Erneuerungsprozess über dem irreduziblen
Zustandsraum E. (Yt)t≥0 sei der damit assoziierte minimale Semi–Markovprozess. Im Fall
positiver Rekurrenz gilt dann

lim
t→∞

P (Yt = j | Y0 = i) =
πjµj∑

k∈E
πkµk

,

bei Nullrekurrenz wird

lim
t→∞

P (Yt = j | Y0 = i) = 0.

Beweis:
Nach Bemerkung 23.15 zu Satz 23.14 gilt

lim
t→∞

P (Yt ∈ B | X0 = i) =
1∑

k∈E
µkπk

∑
i∈E

πiE

[∫ T1

0
1B(Ys)ds

∣∣∣∣X0 = i

]
.

Wähle nun B = {j}, so folgt wegen

E

[∫ T1

0
1{j}(Ys)ds

∣∣∣∣X0 = i

]
= E[δijT1 | X0 = i] = δijµi

die Behauptung. �

136



23.5. Grenzverhalten von Semi–Markovprozessen

Um die komplette Aussage von Satz 22.58 auf Semi–Markovprozesse zu übertragen, fehlt noch
die Untersuchung des Integrals

∞∫
0

P (Yt = j | X0 = i)dt.

Dazu definiere

Zij(t) =

t∫
0

P (Ys = j | X0 = i)ds = E

[∫ t

0
1{j}(Ys)ds

∣∣∣∣X0 = i

]
.

Von Interesse ist also das Verhalten von Zij(t) für t→∞. Dazu zeige zunächst

23.17 Lemma:
Es sei

r(j, t) := 1−
∑
k∈E

Qjk(t), j ∈ E, t ≥ 0.

Dann gilt für alle i, j ∈ E und t ≥ 0

P (Yt = j | Y0 = i) = δijr(j, t) +

t∫
0

r(j, t− s)dRij(s).

Beweis:
Unterscheide die Fälle J =∞ und J <∞. Für J =∞ zerlege

P (Yt = j | Y0 = i) = P (Yt = j, T1 > t | Y0 = i) + P (Yt = j, T1 ≤ t | Y0 = i).

Der erste Summand verschwindet für i 6= j und für i = j hat er den Wert r(i, t). Ist k der
Zustand, in den der Prozess zum Zeitpunkt T1 springt und T1 = s, so vereinfacht sich der
zweite Summand wegen der Markovschen Erneuerungseigenschaft zu P (Yt−s = j | Y0 = k).
Summation und Integration liefert

P (Yt = j | Y0 = i) = δijr(i, t) +
∑
k∈E

t∫
0

P (Yt−s = j | Y0 = k)dQik(s).

Mit den Bezeichnungen h(i, t) = P (Yt = j | Y0 = i) und g(i, t) = δijr(i, t) ergibt sich
damit h = g +Q ∗ h. Diese Markovsche Erneuerungsgleichung wird nach Lemma 23.5 durch
h = g +R ∗ g, also

P (Yt = j | Y0 = i) = δijr(j, t) +
∑
k∈E

∫ t

0
δkjr(k, t)dRik(s)

gelöst. Wegen J = ∞ ist dies nach Lemma 23.7 die einzige Lösung und die Behauptung ist
bewiesen.
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Für J < ∞ muss nach Lemma 23.5 in der Lösung ein zusätzlicher Summand dj ∈ B+

berücksichtigt werden, dessen Verschwinden gezeigt werden muss. Aus

P (J > t | X0 = i) = 1− P (Yt = ∆ | X0 = i) = P (Yt ∈ E | X0 = i) =
∑
j∈E

P (Yt = j | X0 = i)

folgt zunächst

P (J > t|X0 = i) =
∑
j∈E

δijr(j, t) +

t∫
0

r(j, t)dRij(s)

+
∑
j∈E

dj(t)

= r(i, t) + (R ∗ r)(i, t) +
∑
j∈E

dj(t).

Im Beweis von Lemma 23.7 wurde gezeigt, dass

lim
n→∞

∑
j∈E

Qn∗ij (t) = P (J ≤ t | Y0 = i)

gilt und somit folgt mit der Definition von r = 1−Q ∗ 1

(r +R ∗ r)(i, t) = r(i, t) + lim
n→∞

n−1∑
m=1

(Qm∗ ∗ r)(i, t)

= 1− (Q ∗ 1)(i, t) + lim
n→∞

n−1∑
m=1

(
Qm∗ ∗ 1−Q(m+1)∗ ∗ 1

)
(i, t)

= 1− lim
n→∞

∑
j∈E

Qn∗ij (t) = P (J > t | Y0 = i).

Folglich ist ∑
j∈E

dj(t) = 0

und wegen dj ≥ 0 folgt dj(t) = 0 für alle j ∈ E. �

Unmittelbar ergibt sich nun

23.18 Satz:
Mit der Funktion r aus Lemma 23.17 und zugehöriger Integralfunktion

Ir(i, t) =

t∫
0

r(i, u)du

gilt

Zij(t) = δijIr(i, t) +

t∫
0

Ir(j, t− s)dRij(s).
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Beweis:
Folgt direkt durch Integration aus Lemma 23.17. �

Für das Grenzverhalten gilt somit

23.19 Satz:
Es sei E ein irreduzibler Zustandsraum und

µj = E[T1 | X0 = j] =

∞∫
0

(
1−

∑
k∈E

Qik(t)

)
dt

sei die mittlere Verweildauer im Zustand j. Genau dann konvergiert Zij(t) für t→∞, wenn
j transient und µj <∞ ist.

Beweis:
Wegen r = 1−

∑
kQ·k ist

lim
t→∞

Zij(t) =

∞∫
0

P (Ys = j | Y0 = i)ds

=

∞∫
0

δijr(j, t) +

t∫
0

r(j, t− s)dRij(s)

 dt

= δijµj +

∞∫
0

 ∞∫
s

r(j, t− s)dt

 dRij(s) = (δij +Rij(∞))µj .

Das Produkt ist genau dann endlich, wenn beide Faktoren endlich sind; dabei ist Rij(∞)
genau dann endlich, wenn j transient ist (vgl. Bemerkung 23.3). �

Die Ergebnisse aus diesem Abschnitt sollen nun noch einmal zusammengefasst werden.

23.20 Satz (Grenzverhalten von Semi–Markovprozessen):
Es sei (X,S) ein nichtarithmetischer Markovscher Erneuerungsprozess über dem irreduziblen
Zustandsraum E mit den Verweildauern µi = E[T1|X0 = i] und einem stationären Maß
(πi)i∈E. Für den assoziierten Semi–Markovprozess (Yt)t≥0 mit

Yt =

∞∑
n=0

Xn1[Sn,Sn+1)(t), t < J = sup
n∈N

Sn

gilt dann:

• Genau dann konvergiert ∫ ∞
0

P (Yt = j | X0 = i)dt,

wenn j transient und µj <∞ ist.
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• Ist j transient oder nullrekurrent, so gilt

lim
t→∞

P (Yt = j | X0 = i) = 0.

• Ist j (und damit auch jeder andere Zustand aus E) positiv rekurrent und
∑
πkµk <∞,

so gilt

lim
t→∞

P (Yt = j|X0 = i) =
πjµj∑
k∈E πkµk

,

sofern (πi)i∈E strikt positiv gewählt wird.

23.21 Bemerkung:
Wird zusätzlich µi <∞ für alle i ∈ E gefordert, so ergeben sich genau die in Satz 22.58 formu-
lierten Rekurrenz– und Transienzkriterien. Bei Markovprozessen war µi = 1

qi
< ∞ für nicht

aborbierende Zustände stets sichergestellt. Die durch den Fall µj =∞ nötige Einschränkung
dieser Kriterien ist auch intuitiv klar. Zij(t) stellt die mittlere Zeit dar, die der in i startende
Semi–Markovprozess bis zum Zeitpunkt t im Zustand j verbringt. Wird j erreicht und ist die
mittlere Verweildauer µj =∞, so muss auch Zij(t) für t→∞ divergieren – unabhängig von
der Rekurrenz oder Transienz von j.

23.22 Beispiel:
Wir kommen auf den alternierenden Erneuerungsprozess aus Bemerkung 23.2 zurück. Der
Zustandsraum besteht aus zwei Zuständen, also E = {0, 1}, die

”
Bauteil in Reparatur“ bzw.

”
in Betrieb“ bedeuten. Der Übergangskern hat die Form Qij(t) = Fi(t) für i 6= j, d.h. F0

stellt die Verteilung der Reparaturdauer und F1 die Verteilung der Lebensdauer des Bauteils
dar; µ0 bzw. µ1 seien die zugehörigen Erwartungswerte.

Die eingebettete Markovkette besitzt die Übergangsmatrix

(
0 1
1 0

)
und es folgt sofort π0 =

π1 = 1
2 und somit nach Satz 23.20

lim
t→∞

P (Yt = j | X0 = i) =
µj

µ0 + µ1
.

23.6 Das M/G/1 – Warteschlangenmodell

M/G/1 als Markovscher Erneueurungsprozess.

Es wird ein Kunden–Bedien–System mit den nachstehenden Eigenschaften betrachtet.

• Der Strom der ankommenden Kunden formt einen Poissonprozess, d.h. die Zeiten zwi-
schen zwei Kundenankünften sind exponentiell verteilt mit dem Parameter λ; die zu-
gehörige Verteilungsfunktion wird im Folgenden mit Λ bezeichnet.

• Die Bedienzeiten sind alle identisch und unabhängig verteilt, die gemeinsame Vertei-
lungsfunktion sei F , der gemeinsame Erwartungswert sei µ ∈ (0,∞).

• Es gibt einen Bediener; die Kunden werden alle einzeln bedient.

• Es steht unbegrenzt viel Raum für die Warteschlange zur Verfügung.
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Die Tatsache, dass die Zwischenankunftszeiten exponentiell verteilt sind, hat zur Folge, dass
zu jedem Zeitpunkt, zu dem die Bedienung eines Kunden abgeschlossen wird, der weitere
Verlauf des Prozesses nur von der Anzahl der aktuell wartenden Kunden abhängt. Diese
Zeitpunkte bilden also die Regenerationspunkte eines semiregenerativen Prozesses. Wird nun
mit Sn derjenige Zeitpunkt bezeichnet, zu dem der n–te Kunde bedient worden ist (zusätzlich
sei S0 = 0), und zählt Xn die Kunden, die zu diesem Zeitpunkt noch im System verbleiben, so
bildet (X,S) den zugehörigen Markovschen Erneuerungsprozess; der Zustandsraum ist N0.
Es soll nun der Markovsche Übergangskern Q(t) = (Qij(t))i,j∈N0

bestimmt werden. Dazu
seien

qn(t) :=

∫ t

0

e−λs(λs)n

n!
dF (s) und qn := lim

t→∞
qn(t).

Zur Berechung von Qij(t) = P (X1 = j, T1 ≤ t|X0 = i) beachte, dass die Anzahl der ankom-
menden Kunden in [0, s] für s ≥ 0 mit Parameter λs Poisson–verteilt ist. Da zum Zeitpunkt
T1 ein Kunde das System verlässt, müssen, um X1 = j zu erreichen, bis T1 genau j − i + 1
Kunden ankommen. Integration über T1 = s liefert für i ≥ 1 und j ≥ i− 1

Qij(t) =

∫ t

0
P (X1 = j|X0 = i, T1 = s)dF (s) =

∫ t

0

e−λs(λs)j−i+1

(j − i+ 1)!
dF (s) = qj−i+1(t).

Für i = 0 muss Qij(t) etwas anders berechnet werden, da nicht sofort die Bedienung des ersten
Kunden beginnen kann. Stattdessen muss über den Zeitpunkt s integriert werden, zu dem der
erste Kunde ankommt, mit dessen Bedienung dann sofort begonnen wird; anschließend liegt
die Situtation wie bei Q1j(·) vor, allerdings bleibt nur noch die Zeit t − s übrig. Es ist also
für alle j ∈ N0

Q0j(t) =

∫ t

0
Q1j(t− s)dΛ(s) =

∫ t

0
qj(t− s)λe−λsds =: pj(t).

Mit den Sätzen von Fubini und von der majorisierten Konvergenz folgt für das Grenzverhalten
der pn

lim
t→∞

pn(t) = lim
t→∞

t∫
0

t−s∫
0

e−λu(λu)n

n!
dF (u)dΛ(s)

= lim
t→∞

t∫
0

qndΛ(s)− lim
t→∞

∫ t

0

∞∫
t−s

e−λu(λu)n

n!
dF (u)dΛ(s)

= qn − lim
t→∞

∞∫
0

t∫
t−u

dΛ(s)
e−λu(λu)n

n!
dF (u)

= qn −
∞∫

0

lim
t→∞

(Λ(t− u)− Λ(t))
e−λu(λu)n

n!
dF (u) = qn.

Zusammenfassend ergibt sich
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23.23 Satz:
Im M/G/1–Warteschlangenmodell seien λ, µ, F , qn, qn(t) und pn(t) wie oben defininiert.
Der oben beschriebene eingebettete Markovsche Erneuerungsprozess (X,S) besitzt dann den
Übergangskern

Q(t) =


p0(t) p1(t) p2(t) . . .
q0(t) q1(t) q2(t) . . .

q0(t) q1(t) . . .

0
. . .

. . .

 ,

die Markovkette X wird durch die Übergangsmatrix
q0 q1 q2 . . .
q0 q1 q2 . . .

q0 q1 . . .

0
. . .

. . .


beschrieben.

Das Grenzverhalten der eingebetteten Markovkette.

Es soll nun auf das Grenzverhalten der Markovkette X eingegangen werden. Dazu definiere
Pij = Qij(∞) und P = (Pij)i,j∈N0 als Übergangsmatrix von X und setze weiter r = λµ und
rk = 1− q0 − . . .− qk.

23.24 Lemma:
Es gilt r =

∞∑
k=0

rk =
∞∑
j=0

jqj.

Beweis:
Wegen

∞∑
j=0

qj = 1 ist rk =
∞∑

j=k+1

qj und es folgt

∞∑
k=0

rk =
∞∑
k=0

∞∑
j=k+1

qj =
∞∑
j=1

jqj =

∞∫
0

e−λs
∞∑
j=1

(λs)j

(j − 1)!
dF (s)

=

∞∫
0

e−λsλs
∞∑
j=0

(λs)j

j!
dF (s) = λ

∞∫
0

sdF (s) = λµ = r.

Mit dieser Vorüberlegung kann nun gezeigt werden, dass wie auch beim M/M/1–Modell genau
für r < 1 positive Rekurrenz vorliegt.

23.25 Satz:
X ist aperiodisch und irreduzibel. Genau für r < 1 liegt positive Rekurrenz vor.
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Beweis:
Aus der Definition folgt sofort qk > 0 (und auch rk > 0) für alle k ∈ N0. Die Struktur

der Übergangsmatrix impliziert somit die Aperiodizität und die Irreduzibilität. Zum Nach-
weis positiver Rekurrenz muss die Existenz einer stationären Verteilung (πk)k∈N0 , d.h. die
Erfüllbarkeit der Bedingungen

πk =
∞∑
j=0

πjPjk (k ∈ N0) und
∞∑
k=0

πk = 1

für nichtnegative πk gezeigt werden. Die erste Bedingung führt nach Satz 23.23 auf

πk = π0P0k +

k+1∑
j=1

πjPjk = π0P0k +

k+1∑
j=1

πjqk−j+1 = π0qk +

k∑
j=0

πj+1qk−j

und Summation liefert

m∑
k=0

πk = π0

m∑
k=0

qk +

m∑
k=0

k∑
j=0

πj+1qk−j = π0(1− rm) +
m∑
j=0

πj+1

m∑
k=j

qk−j

= π0(1− rm) +
m∑
j=0

πj+1

m−j∑
k=0

qk = π0(1− rm) +
m−1∑
j=0

πj+1(1− rm−j) + πm+1q0;

und es folgt die Rekursionsvorschrift

πm+1q0 = π0rm +
m−1∑
j=0

πj+1rm−j , (23.4)

die für festes π0 ≥ 0 eindeutig eine Lösung der ersten Bedingung π = πP liefert. Um die
Summierbarkeitsbedingung zu überprüfen, summiere (23.4) über m. Unter Verwendung von
Lemma 23.24 wird

q0

∞∑
m=0

πm+1 = π0

∞∑
m=0

rm +
∞∑
j=0

πj+1

∞∑
m=j+1

rm−j = π0r + (r − r0)
∞∑
j=0

πj+1,

und wegen q0 = 1− r0 folgt

(1− r)
∞∑
j=1

πj = rπ0.

Für r ∈ (0, 1) konvergiert die Reihe also, und mit der Wahl π0 = 1− r wird auch

∞∑
j=0

πj =

(
1 +

r

1− r

)
π0 = 1.

Für r ≥ 1 ist entweder die Reihe divergent oder π0 = 0 und damit πk = 0 für alle k ∈ N. �

Für die Grenzverteilung gilt
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23.26 Satz:
Für r = λµ ≥ 1 ist πj := limn→∞ P

n
ij = 0 für alle i, j ∈ N0. Ist r < 1, so folgt

π0 = 1− r, π1 = (1− r)r0

q0
und πj+1 = (1− r)

j∑
k=1

1

qk+1
0

sjk (j ≥ 1) (23.5)

mit
sjk :=

∑
α1+α2+...+αk=j,αi≥1

rα1rα2 . . . rαk .

Beweis:
Die Darstellungen für π0 und π1 folgen direkt aus der Wahl von π0 = 1−r aus dem Beweis von

Satz 23.25 und der Rekursion (23.4) für m = 0. Damit wird dann π0 +π1 = (1−r)
(

1 + r0
q0

)
=

1−r
q0

und erneut nach (23.4) folgt

π2 =
1

q0
(π0r1 + π1r1) =

(1− r)r1

q2
0

.

Um den Rest der Behauptung per Induktion zu beweisen, beachte

sj+1,k+1 =

j+1−k∑
β=1

sj+1−β,krβ =

j∑
m=k

sm,krj+1−m.

Für j ≥ 1 folgt nun nach (23.4) und Induktionvoraussetzung

q0πj+2

1− r
=

rj+1(π0 + π1)

1− r
+

j∑
m=1

rj+1−mπm+1

1− r
=
rj+1

q0
+

j∑
m=1

m∑
k=1

1

qk+1
0

smkrj+1−m

=
rj+1

q0
+

j∑
k=1

1

qk+1
0

j∑
m=k

smkrj+1−m =
sj+1,1

q0
+

j∑
k=1

1

qk+1
0

sj+1,k+1

=

j+1∑
k=1

1

qk0
sj+1,k.

23.27 Bemerkung:
In Beispiel 21.48 wurde gezeigt, dass genau für r ≤ 1 Rekurrenz vorliegt, d.h. genau für r = 1
ist das System null–rekurrent, für r > 1 ist es transient.

Die zeitabhängige Beschreibung des M/G/1–Modells.

Es sei Zt die Anzahl der Kunden im System zum Zeitpunkt t. Dann stellt (Zt)t≥0 einen
semiregenerativen Prozess dar. Unter der zeitabhängigen Beschreibung des M/G/1–Modells
versteht man die Untersuchung der Wahrscheinichkeiten P (Zt = k) für t ≥ 0 und k ∈ N0. Die
explizite Darstellung dieser Wahrscheinlichkeiten ist bereits im einfacheren M/M/1–Modell
sehr schwierig, für wenig kompliziertere Modelle bereits nicht mehr möglich. Die Markovsche
Erneuerungstheorie ermöglicht es immerhin, diese zeitabhängigen Wahrscheinlichkeiten unter
Rückgriff auf die Markovsche Erneuerungsfunktion R(t) anzugeben.
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23.28 Satz:
Es gilt

P (Zt = k|X0 = i) = Kk(i, t) +

k∑
j=0

∫ t

0
Kk(j, t− s)dRij(s)

mit

Kk(j, t) :=


e−λt, j = k = 0,∫ t

0 λe
−λ(t−s)(1− F (s)) e

−λs(λs)k−1

(k−1)! ds, j = 0, k > 0,

(1− F (t)) e
−λt(λt)k−j

(k−j)! , j > 0, k ≥ j,
0, sonst.

Beweis:
In Anbetracht von Lemma 23.13 reicht es zu zeigen, dass Kk(j, t) = P (Zt = k, S1 > t|X0 = j)
gilt; aufgrund des letzten Falls in der Definition von Kk braucht die Summe nur bis k erstreckt
werden. Für j > k ist P (Zt = k, S1 > t|X0 = j) = 0; für 0 < j ≤ k gibt 1 − F (t) die

Wahrscheinlichkeit an, dass S1 > t ist, und der Term e−λt(λt)k−j

(k−j)! gibt die Wahrscheinlichkeit
für genau k − j Ankünfte bis t an. Zur Nachvollziehung des Falles für j = 0 und k > 0
betrachte den Zeitpunkt s, zu dem der erste Kunde das System betritt. Integration liefert in
diesem Fall

Kk(0, t) =

t∫
0

Kk−1(1, t− s)dΛ(s) =

t∫
0

Kk−1(1, s)dΛ(t− s),

und die bereits bewiesene Darstellung für den dritten Fall sowie die Substitution u = t − s
liefern die Behauptung.
Der erste Fall schließlich folgt daraus, dass e−λt = 1 − Λ(t) die Wahrscheinlichkeit ist, dass
bis zum Zeitpunkt t kein Kunde ankommt. �

Das Grenzverhalten des M/G/1–Modells.

Es soll nun das Grenzverhalten der Wahrscheinlichkeiten P (Zt = k|X0 = i) für t → ∞
untersucht werden. Es wurde bereits in Satz 23.26 das asymptotische Verhalten dieser Wahr-
scheinlichkeiten eingeschränkt auf die Zeitpunkte t = Sn beschrieben. Die Markovsche Er-
neuerungstheorie ermöglicht den Nachweis, dass P (Zt = k|X0 = i) ganz allgemein die dort
angegebenen Grenzwerte besitzt.

23.29 Satz:
Für r ≥ 1 ist πj := limn→∞ P (Zt = j|X0 = i) = 0 für alle i, j ∈ N0. Ist r < 1, so folgt

π0 = 1− r, π1 = (1− r)r0

q0
und πj+1 = (1− r)

j∑
k=1

1

qk+1
0

sjk (j ≥ 1)

mit

sjk :=
∑

α1+α2+...+αk=j,αi≥1

rα1rα2 . . . rαk .
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Beweis:
Für r > 1 sind alle Zustände transient, insbesondere konvergieren die Komponenten der
Erneuerungsfunktion, d.h.

lim
t→∞

Rij(t) =: Rij(∞) <∞,

und nach Satz 23.28 wird

lim
t→∞

P (Zt = k | X0 = i) = Kk(i,∞) +

k∑
j=0

Kk(j,∞)Rij(∞) = 0,

da Kk in allen Fällen gegen 0 konvergiert (aus der Definition von Kk ist die Konvergenz für
j > 0 oder k = 0 klar, im Fall j = 0 < k gilt Kk(0, ·) = Kk(1, ·)∗Λ und wegen der Konvergenz
von Kk(1, t) und der Beschränktheit von Λ folgt auch hier die Konvergenz gegen 0).
Sei nun r ≤ 1, d.h. der Zustandsraum N0 ist irreduzibel rekurrent. Da die Verweilzeit in 0
eine exponentielle Komponente enthält, sind alle Zustände nichtarithmetisch. Ferner ist für
j, k > 0

K0(0, t) = 1− Λ(t), Kk(0, t) ≤ (Λ ∗ (1− F ))(t) und Kk(j, t) ≤ (1− F (t)),

insbesondere ist Kk(j, t) für alle j, k ≥ 0 (uneigentlich) Riemann–integrierbar. Bezeichnet
(ψj) die Grenzverteilung der Markovkette aus Satz 23.26, so folgt mit Satz 23.14 über semi-
regenerative Prozesse, dass

πk = lim
t→∞

P (Zt = k | X0 = i) =
1

∞∑
i=0

ψiµi

k∑
j=0

ψj

∞∫
0

Kk(j, t)dt

ist, sofern
∑
ψiµi <∞ ist und sonst πk = 0. Die µi = E[T1|X0 = i] können hier sehr einfach

berechnet werden, da µi = µ für i > 0 und µ0 = µ + 1
λ gilt. Im Fall r = 1 existiert kein

summierbares (von 0 verschiedenes) stationäres Maß (ψi) für die eingebettete Markovkette
und es folgt πk = 0.
Im Fall r < 1 ist

∞∑
i=0

ψiµi =
ψ0

λ
+
r

λ

∞∑
i=0

ψi =
ψ0 + r

λ
=

1

λ
,

also

πk = λ

k∑
j=0

ψj

∫ ∞
0

Kk(j, t)dt. (23.6)

Um πk = ψk für alle k ∈ N0 zu zeigen, setze

H(z) =

∞∑
k=0

πkz
k und G(z) =

∞∑
k=0

ψkz
k

und zeige H(z) = G(z) für alle z ∈ [0, 1). Für derartige z konvergieren beide Reihen absolut
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und es gilt

(1− z)H(z) = λ(1− z)
∞∑
j=0

ψj

∫ ∞
0

∞∑
k=j

Kk(j, t)z
kdt

= ψ0

λ(1− z)
∞∫

0

K0(0, t)dt+ λ(1− z)z
∞∫

0

∞∑
k=1

Kk(0, t)z
k−1dt


+

∞∑
j=1

ψjλ(1− z)zj
∞∫

0

∞∑
k=j

Kk(j, t)z
k−jdt

= ψ0

(1− z) + λ(1− z)z
∞∫

0

t∫
0

λe−λ(t−s)(1− F (s))e−λs(1−z)dsdt


+
∞∑
j=1

ψjz
j

∞∫
0

λ(1− z)e−λ(1−z)t(1− F (t))dt

= ψ0

(1− z) + z

∞∫
0

∞∫
s

λe−λ(t−s)dt(1− F (s))λ(1− z)e−λ(1−z)sds


+
∞∑
j=1

ψjz
j

∫ ∞
0

λ(1− z)e−λ(1−z)t(1− F (t))dt.

Mit

ϕ̃(z) := 1−
∫ ∞

0
λ(1− z)e−λ(1−z)t(1− F (t))dt

folgt einerseits

(1− z)H(z) = ψ0(1− z + z(1− ϕ̃(z))) +
∞∑
j=1

ψjz
j(1− ϕ̃(z))

=
∞∑
j=0

ψjz
j(1− ϕ̃(z)) + ψ0(1− zϕ̃(z)− (1− ϕ̃(z)))

= G(z)(1− ϕ̃(z)) + ψ0ϕ̃(z)(1− z).

Beachte nun, dass (mit a := λ(1− z))

ϕ̃(z) = 1−
∞∫

0

ae−at
∞∫
t

dF (u)dt =

∞∫
0

(
1−

∫ u

0
ae−atdt

)
dF (u) =

∞∫
0

e−audF (u)

und somit

∞∑
j=0

qjz
j =

∫ ∞
0

e−λt
∞∑
j=0

(λtz)j

j!
dF (t) =

∞∫
0

e−λ(1−z)tdF (t) = ϕ̃(z)
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gilt. Wegen ψ = ψP folgt nun andererseits

zG(z) =
∞∑
k=0

ψkz
k+1 =

∞∑
i=0

ψi

∞∑
k=0

Pikz
k+1 = ψ0z

∞∑
k=0

qkz
k +

∞∑
i=1

ψiz
i
∞∑

k=i−1

qk+1−iz
k+1−i

=

(
ψ0z − ψ0 +

∞∑
i=0

ψiz
i

) ∞∑
k=0

qkz
k = G(z)ϕ̃(z)− ψ0(1− z)ϕ̃(z)

und zusammen

(1− z)H(z) = G(z)(1− ϕ̃(z)) +G(z)ϕ̃(z)− zG(z) = (1− z)G(z).

Damit ist die Identität H(z) = G(z) auf dem Intervall [0, 1) gezeigt und insbesondere folgt
πk = ψk für alle k ∈ N0. �

Die in einem Zustand verbrachte Zeit.

Das Beispiel des M/G/1–Modells abschließend soll noch die Zeit berechnet werden, die das
System in einem Zustand k verbringt.

23.30 Satz:
Es sei v : N0 → R eine beschränkte Kostenfunktion der Zustände. Für die mittleren

”
Kosten“

bis zum Zeitpunkt t gilt

E

 t∫
0

v(Zs)ds|X0 = i

 =
∞∑
k=0

Vik(t)v(k)

mit

Vik(t) = δikI(i, t) +

t∫
0

I(k, t− s)dRik(s) und I(j, t) =


t∫

0

(1− (F ∗ Λ)(u))du, j = 0,

t∫
0

(1− F (u))du, j > 0.

Beweis:
Es ist

v =
∞∑
k=0

v(k)1{k} und E

[∫ t

0
1{k}(Zs)

∣∣∣∣X0 = i

]
= Zik(t)

mit der Funktion Z(i; k, t) aus dem Kapitel über Semi–Markovprozesse, die nach Lemma
23.18 berechnet werden kann; mit

r(i, t) = 1−
∞∑
k=0

Qik(t) und Ir(i, t) =

t∫
0

r(i, u)du

gilt

Zik(t) = δikIr(i, t) +

t∫
0

Ir(k, t− s)dRik(s).
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Für i > 0 ist hier

r(i, t) = 1−
∞∑
n=0

qn(t) = 1−
t∫

0

e−λs
∞∑
n=0

(λs)n

n!
dF (s) = 1− F (t),

ferner ist

r(0, t) = 1−
∞∑
n=0

pn(t) = 1−
t∫

0

∞∑
n=0

qn(t− s)dΛ(s) = 1−
t∫

0

F (t− s)dΛ(s) = 1− (F ∗ Λ)(t).

Damit ist Ir = I, Zik(t) = Vik(t) (für alle i, k ∈ E und t ∈ R+) und die Behauptung ist
gezeigt. �

Von Interesse ist noch das asymptotische Verhalten der mittleren Kosten, also eine Form
Ergodensatz.

23.31 Satz:
Es sei r < 1 und (πk)k∈N0 die Grenzverteilung aus Satz 23.29. Ferner sei v : N0 → R eine
Kostenfunktion, für die

∑∞
k=0 πk|v(k)| < ∞ ist (v muss nicht notwendig beschränkt sein).

Dann gilt unabhängig vom Startzustand i

w := lim
t→∞

1

t
E

 t∫
0

v(Zs)ds | X0 = i

 =
∞∑
k=0

πkv(k).

Beweis:
Es wird zunächst

wk := lim
t→∞

1

t
E

 t∫
0

1{k}(Zs)ds | X0 = i

 = πk

gezeigt. Nach Folgerung 23.19 (bzw. nach Satz 23.30) strebt der Erwartungswert im Zähler
für t→∞ gegen ∞. Wegen

E

 t∫
0

1{k}(Zs)ds | X0 = i

 =

t∫
0

P (Zs = k|X0 = i)ds

folgt mit der Regel von L’Hospital

wk = lim
t→∞

P (Zt = k | X0 = i)

und Satz 23.29 liefert wk = πk. Es gilt weiter

v =

∞∑
k=0

1{k}v(k)
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und mit dem Satz von der monotonen Konvergenz folgt

w = lim
t→∞

1

t
E

 t∫
0

∞∑
k=0

1{k}v(k)(Zs)ds | X0 = i


=

∞∑
k=0

lim
t→∞

1

t
E

 t∫
0

1{k}(Zs)ds | X0 = i

 v(k) =
∞∑
k=0

πkv(k).
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Anhang A

Lineare Differenzengleichungen

Allgemeine homogene lineare Differenzengleichungen

Unter einer homogenen linearen Differenzengleichung der Ordnung r, r ∈ N, versteht man
eine Rekursion der Form

a(r)
n xn+r + a(r−1)

n xn+r−1 + . . .+ a(0)
n xn = 0 (n = 0, 1, 2, . . .), (A.1)

wobei die Koeffizienten a
(i)
n , i = 0, 1, . . . , r irgendwelche komplexe Zahlen sind. Jede komplex-

wertige Zahlenfolge (xn)n∈N0 , die der Rekursion (A.1) genügt, nennt man eine Lösung der
linearen Differenzengleichung.

A.1 Satz:
Ist a

(0)
n · a(r)

n 6= 0 für alle n, so ist jede Lösung (xn)n∈N0 von (A.1) durch r beliebige aufein-
anderfolgende Werte xN , xN+1, . . . , xN+r−1 eindeutig bestimmt.

Beweis:
Aufgrund der Annahme a

(0)
n · a(r)

n 6= 0 für alle n kann man die Differenzengleichung (A.1) für
n = N bzw. n = N − 1 sowohl auf die Form

xN+r =
−a(r−1)

N xN+r−1 − . . .− a(0)
N xN

a
(r)
N

(A.2)

als auch auf die Form

xN−1 =
−a(r)

N−1xN+r−1 − a(r−1)
N−1 xN+r−2 − . . .− a(1)

N−1xN

a
(0)
N−1

(A.3)

bringen, woran man erkennt, daß die Funktion (xn)n∈N0 nicht nur für aufsteigende, sondern
auch für absteigende Indizes eindeutig bestimmt ist. �

A.2 Satz:
Es bezeichnen x

(1)
n und x

(2)
n zwei Lösungen der Differenzengleichung (A.1) und es seien α1, α2 ∈

C. Dann sind auch α1x
(1)
n und α1x

(1)
n + α2x

(2)
n Lösungen der Differenzengleichung (A.1).

Beweis:
Aus

α1

[
a(r)
n x

(1)
n+r + a(r−1)

n x
(1)
n+r−1 + . . .+ a(0)

n x(1)
n

]
= 0
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folgt sofort

a(r)
n

(
α1x

(1)
n+r

)
+ a(r−1)

n

(
α1x

(1)
n+r−1

)
+ . . .+ a(0)

n

(
α1x

(1)
n

)
= 0 .

Ebenso schließt man aus

a(r)
n

(
α1x

(1)
n+r

)
+ a(r−1)

n

(
α1x

(1)
n+r−1

)
+ . . .+ a(0)

n

(
α1x

(1)
n

)
= 0 (n = 0, 1, 2, . . .)

und

a(r)
n

(
α2x

(2)
n+r

)
+ a(r−1)

n

(
α2x

(2)
n+r−1

)
+ . . .+ a(0)

n

(
α2x

(2)
n

)
= 0 (n = 0, 1, 2, . . .)

auf

a(r)
n

(
α1x

(1)
n+r + α2x

(2)
n+r

)
+ a(r−1)

n

(
α1x

(1)
n+r−1 + α2x

(2)
n+r−1

)
+ . . .

. . .+ a(0)
n

(
α1x

(1)
n + α2x

(2)
n

)
= 0 (n = 0, 1, 2, . . .) . �

A.3 Definition:
x(1), . . . , x(m) seien Lösungen der linearen Differenzengleichung (A.1). Die Funktionen x(1),

. . . , x(m) heißen linear abhängig, falls es nicht gleichzeitig verschwindende Konstanten α1,

. . . , αm mit

α1x
(1)
n + . . .+ αmx

(m)
n = 0 (n = 0, 1, 2, . . .)

gibt. Andernfalls heißen sie linear unabhängig.

A.4 Definition:
Es seien x(1), x(2), . . . , x(r) Lösungen der linearen Differenzengleichung (A.1). Dann bezeich-
net man die Matrix

Xn =


x

(1)
n · · · x

(r)
n

x
(1)
n+1 · · · x

(r)
n+1

...
. . .

...

x
(1)
n+r−1 · · · x

(r)
n+r−1

 (n = 0, 1, 2, . . .)

als Casorati-Matrix und

Cn = det(Xn) (n = 0, 1, 2, . . .)

als Casorati-Determinante der Differenzengleichung (A.1).

A.5 Satz:
Die Casorati-Determinante der homogenen linearen Differenzengleichung (A.1) genügt der
Rekursionsformel

Cn+1 = (−1)r · a
(0)
n

a
(r)
n

· Cn (n = 0, 1, 2, . . .) . (A.4)
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Beweis:
Mit Hilfe der Matrizen

An =



0 1 0 · · · 0
... 0

. . .
...

...
...

. . . 0
0 0 · · · 0 1

−a
(0)
n

a
(r)
n

−a
(1)
n

a
(r)
n

· · · · · · −a
(r−1)
n

a
(r)
n


läßt sich die Rekursion (A.1) auf die Form

Xn+1 = AnXn (n = 0, 1, 2, . . .)

bringen, wobei die Xn wie in Definition 4 erklärt sind. Die Behauptung folgt aus den Bezie-
hungen

Cn+1 = det(Xn+1) = det(AnXn) = det(An) · Cn (n = 0, 1, 2, . . .)

und

det(An) = (−1)n · a
(0)
n

a
(r)
n

(n = 0, 1, 2, . . .).

A.6 Satz:
x(1), x(2), . . . , x(r) bezeichnen Lösungen der Differenzengleichung (A.1). Dann sind folgende
Aussagen äquivalent:

(i) Die Funktionen x(1), . . . , x(r) sind linear abhängig.

(ii) Cn = 0 für ein n ∈ N0 .

(iii) Cn = 0 für alle n ∈ N0 .

Beweis:
Wir nehmen zunächst an, daß die Funktionen x(1), . . . , x(r) linear abhängig sind. Dann exi-
stieren Konstanten α1, . . . , αr mit

α1x
(1)
n + . . .+ αrx

(r)
n = 0

α1x
(1)
n+1 + . . .+ αrx

(r)
n+1 = 0

...

α1x
(1)
n+r−1 + . . .+ αrx

(r)
n+r−1 = 0

Da dieses System aufgrund der Voraussetzung eine nichttriviale Lösung besitzt, muß die
Determinante der Koeffizientenmatrix Xn verschwinden. Aus Cn = det(Xn) = 0 aber folgt
aufgrund von Satz 5 Cn = 0 für alle n.
Sei nun CN = 0 für ein N ∈ N0 angenommen. Dann existieren Konstanten α1, . . . , αr mit

α1x
(1)
N + . . .+ αrx

(r)
N = 0

α1x
(1)
N+1 + . . .+ αrx

(r)
N+1 = 0

...

α1x
(1)
N+r−1 + . . .+ αrx

(r)
N+r−1 = 0.

(A.5)
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Da aufgrund von Satz 2 mit x(1), . . . , x(r) auch

xn =
r∑
i=1

αix
(i)
n

eine Lösung der Differenzengleichung (A.1) ist, entnehmen wir dem System (A.5)

xN = xN+1 = . . . = xN+r−1 = 0 .

Mit Hilfe der Formeln (A.2) und (A.3) schließen wir weiter, daß xn = 0 für alle n ∈ N0 .
Folglich sind die Funktionen x(1), . . . , x(r) linear abhängig. �

A.7 Definition:
Jedes System von r linear unabhängigen Lösungen der Differenzengleichung (A.1) wird Fun-
damentalsystem genannt.

A.8 Satz:
Es sei x(1), . . . , x(r) ein Fundamentalsystem der Differenzengleichung (A.1). Dann kann jede
Lösung x = (xn)n∈N0 von (A.1) als Linearkombination der Form

xn =

r∑
i=1

αix
(i)
n (n = 0, 1, 2, . . .)

dargestellt werden.

Beweis:
Da Cn = det(Xn) 6= 0 vorausgesetzt ist, hat das Gleichungssystem

xN
xN+1

...
xN+r−1

 =


x

(1)
N · · · x

(r)
N

x
(1)
N+1 · · · x

(r)
N+1

...
...

x
(1)
N+r−1 · · · x

(r)
N+r−1



α1

α2
...
αr


bzgl. α1, . . . , αr eine eindeutige Lösung. Da jede Lösung von (A.1) durch r beliebige auf-
einanderfolgender Werte xN , xN+1, . . . , xN+r−1 eindeutig festgelegt ist, ist der Satz damit
bewiesen. �

A.1 Lineare Differenzengleichungen mit konstanten Koeffizi-
enten

Als nächstes wollen wir das Lösungsverhalten der Differenzengleichung (A.1) unter der An-

nahme a
(i)
n = ai für i = 0, 1, 2, . . . , r und n ≥ 0 studieren. Dazu machen wir den Ansatz

xn = λn (n = 0, 1, 2, . . .), (A.6)

wobei λ irgendeine komplexe Zahl bedeuten soll. Setzt man (A.6) in (A.1) ein, erhält man
(nach Division durch λn) die charakteristische Gleichung

r∑
i=0

aiλ
i = 0. (A.7)
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Wir nehmen zunächst an, daß die r Wurzeln λ1, λ2, . . . , λr der Gleichung (A.7) alle verschieden
sind. Dann bilden die Funktionen

λn1 , λ
n
2 , . . . , λ

n
r

ein Fundamentalsystem der Differenzengleichung (A.1). Denn es ist

det(Xn) =

∣∣∣∣∣∣∣∣∣
λn1 · · · λnr
λn+1

1 · · · λn+1
r

...
...

λn+r−1
1 · · · λn+r−1

r

∣∣∣∣∣∣∣∣∣ =

(
r∏
i=1

λni

)
·

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
λ1 λ2 · · · λr
λ2

1 λ2
2 · · · λ2

r
...

...
...

λr−1
1 λr−1

2 · · · λr−1
r

∣∣∣∣∣∣∣∣∣∣∣
=

(
r∏
i=1

λni

)
·

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
λ1 − λ1 λ2 − λ1 · · · λr − λ1

λ2
1 − λ1 · λ1 λ2

2 − λ1 · λ2 · · · λ2
r − λ1 · λr

...
...

...

λr−1
1 − λ1 · λr−2

1 λr−1
2 − λ1 · λr−2

2 · · · λr−1
r − λ1 · λr−2

r

∣∣∣∣∣∣∣∣∣∣∣
(vorangehende Zeile mit λ1 multiplizieren und von der aktuellen abziehen)

=

(
r∏
i=1

λni

)
·

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0
0 1 1 · · · 1
0 λ2 λ3 · · · λr
...

...
...

...

0 λr−2
2 λr−2

3 · · · λr−2
r

∣∣∣∣∣∣∣∣∣∣∣
·
r∏
i=2

(λi − λ1) usw.

Bildet λ1 eine mehrfache Nullstelle mit der Vielfachheit θ1, dann sind neben λn1 auch

n · λn1 , n2 · λn1 , . . . , nθ1−1 · λn1

Lösungen der Differenzengleichung (A.1). Um dies zu erkennen, führen wir den Shift-Operator

Exn = xn+1 (A.8)

ein. Dann kann man die Differenzengleichung (A.1) für a
(i)
n = ai (i = 0, 1, 2, . . .) auch in der

Form
[arE

r + ar−1E
r−1 + . . .+ a0]xn = 0 (n = 0, 1, 2, . . .) (A.9)

bzw.
(E − λ1)θ1 · . . . · (E − λm)θmxn = 0 (n = 0, 1, 2 . . .) (A.10)

schreiben, wobei λ1, . . . , λm die m verschiedenen Wurzeln der charakteristischen Gleichung
(A.7) und θ1, . . . , θm ihre Vielfachheiten bedeuten. Aufgrund der Darstellung (A.10) genügt
es auch, sich auf einen der Faktoren (E − λi)

θi zu beschränken (o.B.d.A. i = 1) und die
Gleichung

(E − λ1)θ1xn = 0 (A.11)

zu studieren. Denn jede Lösung von (A.11) ist zwangsläufig auch eine Lösung von (A.10) bzw.
(A.9). Für xn machen wir jetzt den Ansatz

xn = λn1 · vn (n = 0, 1, 2 . . .). (A.12)
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Setzt man (A.12) in (A.11) ein, bekommt man

0 = (E − λ1)θ1 · λn1 · vn =

θ1∑
i=0

(
θ1

i

)
(−λ1)θ1−iEi(λn1 · vn)

=

θ1∑
i=0

(
θ1

i

)
(−λ1)θ1−iλn+i

1 · Eivn

= λθ1+n
1 ·

θ1∑
i=0

(
θ1

i

)
(−1)θ1−i · Eivn

= λθ1+n
1 · (E − 1)θ1 · vn

= λθ1+n
1 ·∆θ1vn ,

wobei

∆vn = vn+1 − vn (n = 0, 1, 2, . . .) .

Damit haben wir das Problem verlagert auf die Lösung der Differenzengleichung

∆θ1vn = 0 (n = 0, 1, 2, . . .). (A.13)

Bevor wir den Sachverhalt allgemein klären, einige einfache Rechnungen:

θ1 = 1 : ∆vn = vn+1 − vn = 0 (n = 0, 1, 2, . . .)

wird durch vn = 1 gelöst.

θ1 = 2 : ∆2vn = ∆(∆vn) = ∆(vn+1 − vn) = vn+2 − vn+1 − (vn+1 − vn)

= vn+2 − 2vn+1 + vn = 0 (n = 0, 1, 2, . . .) .

Zwei linear unabhängige Lösungen sind

v(1)
n = 1 und v(2)

n = n (n = 0, 1, 2, . . .) .

Probe:

1. 1− 2 + 1 = 0 ,

2. (n+ 2)− 2 · (n+ 1) + n = n+ 2− 2n− 2 + n = 0 .

Außerdem ist

det(Xn) =

∣∣∣∣1 n
1 n+ 1

∣∣∣∣ = n+ 1− n = 1 (n = 0, 1, 2, . . .) .
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A.1. Lineare Differenzengleichungen mit konstanten Koeffizienten

Allgemein gilt

∆nk = (n+ 1)k − nk

= [nk + k · nk+1 +
k · (k + 1)

2!
+ . . .]− nk

= k · nk−1 +
k · (k + 1)

2!
nk−2 + . . .

∆2nk = (n+ 2)k − 2(n+ 1)k + nk

= nk · 20 + k · nk−1 · 21 +
k · (k − 1)

2!
nk−2 · 22 + . . .

− 2 · [nk · 10 + k · nk−1 · 1 +
k · (k − 1)

2!
nk−2 · 12 + . . .] + nk

= k · (k − 1) · nk−2 + . . .

...

∆knk = k!

Mit anderen Worten:
∆k+ink = 0 für i ≥ 1.

Deshalb bilden die Funktionen

λn1 , n · λn1 , n2 · λn1 , . . . , nθ1−1λn1

Lösungen der Differenzengleichung (A.11). Ihre lineare Unabhängigkeit beweisen wir mit Hilfe
der Definition 3:

α1 · λn1 + α2 · n · λn1 + . . .+ αθ1 · nθ1−1 · λn1 = 0 (n = 0, 1, 2, . . .)

impliziert
α1 + α2 · n+ α3 · n2 + . . .+ αθ1 · nθ1−1 = 0 (n = 0, 1, 2, . . .) .

Da aber ein Polynom der Ordnung θ1−1 höchstens θ1−1 Nullstellen besitzt, muß α1 = α2 =
. . . = αθ1 = 0 gelten. Im allgemeinen Fall muß man

λn1 · [α1 + nα2 + . . .+ nθ1−1αθ1 ] + λn2 · [αθ1+1 + n · αθ1+2 + . . .+ nθ2−1 · αθ1+θ2 ] + . . . = 0

überprüfen. Dazu dividiert man sukzessive durch λn1 · nθ1−1, λn1 · nθ1−2, . . . und führt den
Grenzübergang n → ∞ durch. Unter der Annahme |λ1| > |λ2| > . . . > |λm| ergibt sich auf
diese Weise αθ1 = αθ1−1 = . . . = 0 . Zusammenfassend erhalten wir das folgende Ergebnis.

A.9 Satz:
Die charakteristische Gleichung besitze die Wurzeln λ1, . . . , λm mit den Vielfachheiten θ1,
. . . , θm. Dann besitzt die Differenzengleichung (A.1) ein Fundamentalsystem der Form

λn1 , n · λn1 , . . . , nθ1−1 · λn1 , . . . , λnm, n · λnm, . . . , nθm · λnm.

A.10 Beispiel:
Betrachte die Differenzengleichung dritter Ordnung:

xn+3 − 4xn+2 + 5xn+1 − 2xn = 0 (n = 0, 1, 2, . . .) .
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Die zugehörige charakteristische Gleichung lautet:

λ3 − 4λ2 + 5λ− 2 = (λ− 1)2 · (λ− 2) = 0 .

Die charakteristischen Wurzeln sind λ1 = 1 und λ2 = 2 mit den Vielfachheiten 2 und 1.
Deshalb bilden die Funktionen

x(1)
n = λn1 = 1n = 1

x(2)
n = n · λn1 = n · 1n = n (n = 0, 1, 2 . . .)

x(3)
n = λn2 = 2n

ein Fundamentalsystem. Die zugehörige Casorati–Determinante ist

Cn =

∣∣∣∣∣∣
1 n 2n

1 n+ 1 2n+1

1 n+ 2 2n+2

∣∣∣∣∣∣ = 2n ·

∣∣∣∣∣∣
1 n 1
1 n+ 1 2
1 n+ 2 4

∣∣∣∣∣∣ = 2n ·

∣∣∣∣∣∣
1 n 1
0 1 1
0 2 3

∣∣∣∣∣∣ = 2n 6= 0 (n = 0, 1, 2, . . .)

wie es aufgrund von Satz A.9 erwartet werden konnte.

A.11 Beispiel:
Man löse die Differenzengleichung

xn+3 − 7xn+2 + 16xn+1 − 12xn = 0 (n = 0, 1, 2, ..)

mit den Anfangswerten

x0 = 0, x1 = 1, x2 = 1.

Lösung: Die zugehörige charakteristische Gleichung lautet

λ3 − 7λ2 + 16λ− 12 = 0

und hat die Wurzeln

λ1 = λ2 = 2, λ3 = 3.

Die allgemeine Lösung lautet deshalb:

xn = α1 · 2n + α2 · n · 2n + α3 · 3n (n = 0, 1, 2, . . .) .

Folglich muß gelten:

x0 = α1 + α3 = 0 ,

x1 = 2α1 + 2α2 + 3α3 = 1 ,

x2 = 4α1 + 8α2 + 9α3 = 1 .

Wir erhalten

α1 = 3, α2 = 2, α3 = −3 .

Die gesuchte Lösung ist deshalb

xn = 3 · (2n) + 2 · n · (2n)− 3n+1 (n = 0, 1, 2, . . .).
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A.12 Beispiel (Fibonacci-Zahlen, Vermehrung von Kaninchen):
Modellannahmen: Zu Beginn ein reifes Paar. Reifezeit 2 Monate, dann jeden Monat ein neues
Paar als Nachwuchs. Leonardo d. Pisa, 1202 .

Monat n 0 1 2 3 4 5 6 · · ·
Populationsumfang xn 1 2 3 5 8 13 21 · · ·

x0 = 1 ,

x1 = 2 ,

xn+2 = xn+1 + xn (n = 0, 1, 2, . . .) .

Bestimmung der allgemeinen Lösung. Die charakteristische Gleichung lautet

λ2 − λ− 1 = 0

und hat die Wurzeln

λ1 =
1 +
√

5

2
, λ2 =

1−
√

5

2
.

Folglich lautet die allgemeine Lösung

xn = α1 ·

(
1 +
√

5

2

)n
+ α2 ·

(
1−
√

5

2

)n
(n = 0, 1, 2, . . .) ,

wobei

x0 = α1 + α2 = 1

x1 = α1 ·

(
1 +
√

5

2

)
+ α2 ·

(
1−
√

5

2

)
= 2 .

Es folgt

α2 = 1− α1

2 = α1 ·

(
1 +
√

5

2

)
+ (1− α1) ·

(
1−
√

5

2

)
was äquivalent ist zu

α1 ·
√

5 = 2− 1−
√

5

2

und

α1 =
4− 1 +

√
5

2 ·
√

5
=

3 +
√

5

2 ·
√

5
=

√
5 + 3

2 ·
√

5

α2 = 1− α1 =
2 ·
√

5− 3−
√

5

2 ·
√

5
=

√
5− 3

2 ·
√

5

Damit wird

xn =

√
5 + 3

2 ·
√

5
·

(
1 +
√

5

2

)n
+

√
5− 3

2 ·
√

5
·

(
1−
√

5

2

)n
(n = 0, 1, 2, . . .) .

159



Kapitel A. Lineare Differenzengleichungen

160



Anhang B

Zeichenerklärungen

N Menge der natürlichen Zahlen
Q Menge der rationalen Zahlen
R Menge der reellen Zahlen
C Menge der komplexen Zahlen
M Menge der maßdefinierenden Funktionen auf R, die in (−∞, 0) ver-

schwinden
B Menge der nichtnegativen reellen Funktionen, die auf jedem Intervall der

Form [0, t] beschränkt sind
In Menge der links offenen und rechts abgeschlossenen Intervalle im Rn,

n ∈ N
Bn := σ(In) “σ–Algebra der Borelschen Mengen des Rn”

R := R ∪ {−∞,+∞}
B := {B,B ∪ {−∞}, B ∪ {+∞}, B ∪ {−∞,+∞}|B ∈ B}

P(M) Potenzmenge von M
(a, b] := {x|a < x ≤ b}

”
links offenes, rechts abgeschlossenes Intervall“

n! := n · (n− 1) · . . . · 2 · 1
”
Fakultät von n“

(N)n := N !
n! = N · (N − 1) · . . . · (N − n+ 1) “n–te untere Faktorielle von N”(

n
k

)
:=

n!

k! · (n− k)! ”
n über k“

F (a− 0) meint den linksseitigen Limes von F (a)
↑ konvergiert von unten gegen

X
d
= Exp(λ) X ist exponential–verteilt

X
d
= Y X und Y sind identisch verteilt
<(x) Realteil der komplexen Zahl x
=(x) Imaginärteil der komplexen Zahl x

O(n), o(n) seien die Landau-Symbole.
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Anhang C

Literatur

Stochastik III

Folgende Bücher werden als begleitende Literatur zum Teil III des Skriptes empfohlen:

• S. I. Resnick:
Adventures in Stochastic Processes,
Birkhäuser, Boston, 1992.
ISBN:0817635912

• E. Cinlar:
Introduction to stochastic processes,
Prentice–Hall, 1975.

• S. Karlin/H.M. Taylor:
A first course in stochastic processes,
Academic Press, 1975.

• K.L. Chung:
Markov Chains with stationary transition probabilities,
Springer–Verlag, 1960.

• W.J. Anderson:
Continuous–Time Markov Chains,
Springer Verlag, Berlin, 1991.
ISBN: 3540973699

• D. W. Stroock:
An Introduction to Markov Processes,
Springer-Verlag, Berlin, 2005.
ISBN: 3540234993
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Anhang D

Historie

In der folgenden Auflistung werden einige für die Entwicklung der Stochastik bedeutende
Mathematiker mit ihren Lebensdaten und kurzen Beschreibungen ihrer Wirkungsfelder auf-
geführt. Die Liste erhebt keinen Anspruch auf Vollständigkeit. Insbesondere fehlen wichtige
Mathematiker, die nicht direkt im Bereich der Stochastik gewirkt haben, durch ihre Arbeiten
zur Maß- oder Integrationstheorie die moderne Stochastik aber erst ermöglichten.

• Thomas Bayes
(∗ 1702 in London, England; † 17. April 1761 in Tunbridge Wells, Kent, England)

Thomas Bayes studierte ab 1719 Theologie an der Universität in Edinburgh und beschäfti-
ge sich nebenbei mit Mathematik. 1733 wurde er Pfarrer der presbyterianischen Kapelle
in Tunbridge Wells, 35 Meilen südöstlich von London. 1742 ernannte man Bayes zum
Mitglied der Royal Society, obwohl der bis zu diesem Zeitpunkt noch keinerlei mathema-
tische Arbeiten veröffentlich hatte. Insgesamt publizierte Bayes selbst nur 2 Arbeiten.
Seine wichtigten Forschungsergebnisse, die unter anderem auch den später als ,,Formel
von Bayes” benannten Satz enthielten, wurden erst aus seinem Nachlass bekannt.

• Richard Ernest Bellman
(∗ 26. August 1920 in New York; † 19. März 1984 in Santa Monica, Californien)

Bellman studierte bis 1943 am Brooklyn College (B.A.) sowie an der University of
Wisconsin (M.A.) Mathematik. Danach arbeitete er 2 Jahre in Los Alamos in der theo-
retischen Physik. Seit 1965 lehrte er an der Universität von Southern California, Los
Angeles, als Professor für Mathematik, Elektroingenieurwesen und Medizin.

1953 stellte Bellman die Methode der dynamischen Programmierung auf, die für die
Entscheidungstheorie sowie für die Variationsrechnung und optimale Steuerung wesent-
lich ist. Bellman beschäftige sich auch mit der Modellierung biologischer Prozesse und
der Theorie der unscharfen Mengen.

• Familie Bernoulli
Die schweizer Gelehrtenfamilie Bernoulli hat über mehrere Generationen hinweg sehr
große Beiträge zur Mathematik geleistet.

Im Folgenden werden nur die beiden Mitglieder der Bernoulli-Familie aufgeführt, die
sich wesentlich mit stochastischen Fragestellungen beschäftigt haben. Insbesondere wer-
den Jakob Bernoulli II, Johann Bernoulli I, Johann Bernoulli II, Johann Bernoulli III,
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Niklaus Bernoulli I und Niklaus Bernoulli II, die allesamt bedeutende Mathematiker
waren, hier nicht näher erwähnt.

– Daniel Bernoulli
(∗ 8. Februar 1700 in Groningen; † 17. März 1782 in Basel)

Daniel Bernoulli interessierte sich hauptsächlich für Anwendungen der Mathema-
tik. Er entwickelte das Prinzip zur Lösung algebraischer Gleichungen mit Hilfe
von rekurrenten Reihen (,,Methode von Bernoulli”) und untersuchte Kettenbrüche.
Außerdem lieferte er wichtige Beiträge zur Wahrscheinlichkeitstheorie, die später
teilweise von Laplace in seine Theorie aufgenommen wurden.

– Jakob Bernoulli I
(∗ 27. Dezember 1654 in Basel; † 16. August 1705 in Basel)

Jakob Bernoulli I ist der erste Gelehrte in der Familie der Bernoullis und über-
haupt der erste bekannte Schweizer Mathematiker. Er befasste sich überwiegend
mit analytischen Fragestellungen (er stand u.a. mit Leibniz, der gerade eine Infini-
tesimalmethoden aufgestellt hatte, in Kontakt), sowie mit stochastischen Proble-
men. Seine Arbeit baute auf den Ergebnissen von Huygens über das Glücksspiel auf.
In einer erst nach seinem Tode durch seinen Neffen Niklaus Bernoulli I veröffent-
lichten Arbeit stellte Jakob Bernoulli I bereits das Gesetz der großen Zahlen auf
und verallgemeinerte viele kombinatorische Ansätze von Huygens.

• Emile Borel
(∗ 7. Januar 1871 Saint-Affrique; † 3. Februar 1956 in Paris)

Borel beschäftige sich zunächst mit Funktionentheorie. Nach seiner Tätigkeit als For-
schungsbeirat im Kriegsministerium von 1914–1918 übernahm er den Lehrstuhl für
Wahrscheinlichkeitsrechnung und mathematische Physik an der Sorbonne. Während
seiner Arbeit in der Funktionentheorie präge Borel den Begriff des Maßes und der
überabzählbaren Überdeckung. Ab 1905 befasste sich Borel mit den Nutzungsmöglich-
keiten seiner Maßtheorie in der Wahrscheinlichkeitstheorie. Außerdem ist Borel Mitbe-
gründer der Spieltheorie und bewies das Minimax-Theorem für 3 Spieler.

• Guido Fubini
(∗ 19. Januar 1879 in Venedig; † 6. Juni 1943 in New York)

Zu den wichtigsten Arbeiten Fubinis gehört der 1907 von ihm bewiesene und später nach
ihm benannte Satz. Darüber hinaus befasste sich Fubini mit projektiver Differentialgeo-
metrie sowie der Theorie diskontinuierlicher Gruppen und automorpher Funktionen.

• Andrej Nikolajewitsch Kolmogorov
(∗ 25. April 1903 in Tambow; 20. Oktober 1987 in Moskau)

Kolmogorov gilt als einer der bedeutensten Mathematiker der Gegenwart. Er befasste
sich vorwiegend mit Wahrscheinlichkeitstheorie, mathematischer Statistik und Logik,
Maß- und Integrationstheorie, Funktionnalanalysis sowie Informations- und Algorith-
mentheorie. Nebenbei entwarf er Lehrpläne und Schulbücher für den Mathematikunter-
richt und prägte so zu großen Teilen den Mathematikunterricht in der Sowjetunion.

Mit seiner Arbeit ,,Grundbegriffe der Wahrscheinlichkeitsrechnung” von 1933 löste er
das 6. Problem der berühmten 23 von Hilbert gestellten mathematischen Probleme.
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• Pierre Simon Marquis de Laplace
(∗ 28. März 1749 in Beaumont-en-Auge; † 5. März 1827 in Paris)

Laplace befasste sich sehr viel mit partiellen Differential– und Differenzengleichungen.
Seine Entwicklung der Laplace-Transformation diente ihm dazu, Naturerscheinungen
analytisch zu erfassen. Neben vielen Arbeiten zu physikalischen Themen befasste er sich
mit Themen der Wahrscheinlichkeitsrechnung. Seine 1812 erschienene Theorie stellte ei-
ne umfassende Darstellung der damals bekannten Wahrscheinlichkeitstheorie dar. In ihr
wurde der Begriff der Wahrscheinlichkeit definiert, sowie die mathematische Erwartung
erörtert. Zudem greift Laplace in seiner Arbeit das von J. Bernoulli gefundene Gesetz
der großen Zahlen auf.

Auf Laplace geht auch die Idee zurück, dass das Geschehen in einem physikalischen
System exakt vorherbestimmbar sei, wenn nur alle Anfangszustände bekannt sind (,,La-
placescher Determinismus”).

Laplace war neben seiner Tätigkeit als Forscher ab 1794 Vorsitzender der Kommission
für Maße und Gewichte und unter Napoleon Bonaparte Minister des Inneren.

• Henri Lebesgue
(∗ 28. Juni 1875 in Beauvais (Frankreich); † 26. Juli 1941 in Paris)

Lebesgue erkannte, dass viele zu seiner Zeit gültigen Theorien für eine Reihe von Frage-
stellungen unzureichend waren. 1902 verallgemeinerte er den Riemannschen Integralbe-
griff zu dem wesentlich leistungsfähigeren Lebesgueschen Integral. Lebesgues Resultate
wurden zunächst nur zögernd aufgenommen, stellen heute aber die Grundlage für die
moderne Analysis dar.

• Andrej Andrejewitch Markov
(∗ 14. Juni 1856 in Gouvernement Rjasan; † 20. Juli 1922 in Petrograd)

Markov studierte von 1874–1878 unter anderem bei Tschebyscheff und beschäftigte sich
zunächst hauptsächlich mit Fragestellungen der Zahlen– und Funktionentheorie. Später
befasste er sich überwiegend mit Wahrscheinlichkeitsrechnung. Dabei legte er wichtige
Grundlagen zur Entwicklung der Theorie der stochastischen Prozesse. Außerdem ent-
wickelte Markov die Theorie der später nach ihm benannten Markovschen Prozesse bzw.
Ketten.

• Pafnuti Lwowitch Tschebyscheff
(∗ 16. Mai 1821 in Okatowo; † 8. Dezember 1894 in Petersburg)

Tschebyscheff befasste sich zunächst überwiegend mit Zahlentheorie. Unter anderem
wirkte er an der Herausgabe der zahlentheoretischen Manusskripte Eulers mit. Später
beschäftige er sich dann überwiegend mit wahrscheinlichkeitstheoretischen Fragestel-
lungen. Insbesondere erarbeitete er die Gesetzmäßigkeiten von Summen unabhängiger
Summanden. Er verdeutlichte die Wichtigkeit solcher Begriffe wie Zufallsgröße oder Er-
wartungswert, verallgemeinerte das Gesetz der großen Zahlen und vereinfachte dessen
Beweis erheblich.

• Bernhard Georg Friedrich Riemann
(∗ 17. September 1826 in Breselenz bei Dannenberg; † 20. Juli 1866 in Selasca in Italien)
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Riemann studierte ab 1846 an der Universität in Göttingen zunächst Theologie und
Philosophie, wechselte dann aber bald zur Mathematik. In seiner 1854 vorgelegten Ha-
bilitationsschrift führte Riemann das später nach ihm benannte Riemann-Integral ein.
Neben der Integrationstheorie befasste er sich mit vielen weiteren mathematischen Ge-
bieten. So forschte Riemann u.a. auf dem Gebiet der partiellen Differentialgleichungen,
sowie in der Zahlentheorie und der nichteuklidischen Geometrie. Die Ideen Riemanns
sind bis heute von großer Bedeutung: Die Riemannsche Hypothese über die Nullstellen
der ζ-Funktion wird in sehr vielen Sätzen der Zahlentheorie verwendet. Beweisen lies
sich die Riemannsche Hypothese allerdings bis heute nicht.

Weitere Informationen und diverse Biographien finden sich unter:

• S. Gottwald, H.-J. Ilgauds, K.-H. Schlote:
Lexikon bedeutender Mathematiker,
Verlag Harri Deutsch, Thun, 1990.
ISBN: 3-8171-1164-9

• Turnbell Server, Biographies
http://www-groups.dcs.st-and.ac.uk/

• Mathematik.ch: Bedeutende Mathematiker
http://www.mathematik.ch/mathematiker/

• Wikipedia (Kategorie: Mathematiker)
http://de.wikipedia.org/wiki/Kategorie:Mathematiker

168

http://www-groups.dcs.st-and.ac.uk/
http://www.mathematik.ch/mathematiker/
http://de.wikipedia.org/wiki/Kategorie:Mathematiker


Kapitel D. Historie

169



Stichwortverzeichnis

Q–Matrix, 62
Q–Prozesse, 70
n–Schritt–Übergangswahrscheinlichkeit, 9
–funktion, 52
–matrix, 52
Übergangsfunktion, 53
Übergangskern, 122
Übergangsraten, 68
Übergangswahrscheinlichkeit, 52
Übergangswahrscheinlichkeiten, 8

abbrechenden Erneuerungsprozess, 125
abgeschlossen, 13
absoluten Zustandswahrscheinlichkeit, 8
absorbierend, 61
absorbierender Zustand, 13
alternierende Erneuerungsprozess, 123
Anfangs–, 12
aperiodisch, 15
aus erreichbar, 12

Bayes, Thomas, 165
Bellman, Richard Ernest, 165
Bernoulli, Daniel, 166
Bernoulli, Jakob I, 166
bewertete gerichtete Graphen, 12
Bewertung, 12
Borel, Emile, 166

Defekt, 84
direkt Riemann–integrierbar bezüglich, 130

eingebettete Sprungkette, 70
eingebetteten Erneuerungsprozess, 14
Eintrittszeiten, 124
elementaren Markov–Eigenschaft, 52
endlich–dimensionalen Verteilungen, 8
Endpunkt, 12
Endpunkte, 12
ergodisch, 15, 102

erreichbar, 12, 99
Explosionspunkt, 70

Feller’sches Konstruktionsproblem, 62
Fellerprozess, 83
flüchtig, 61
Fubini, Guido, 166

gegenseitig erreichbar, 12
gerichtete Kanten, 12
gerichtete Kantenfolge, 12
Glücksspiele, 11

homogen, 52
homogene Markovketten, 8
homogenen linearen Differenzengleichung der

Ordnung, 151

instabil, 61
irreduzibel, 13, 99
Irrfahrtprobleme, 11

Knoten, 12
Kolmogorov, Andrej Nikolajewitsch, 166
Kolmogorovsche Rückwärtsgleichungen, 67
Kolmogorovsche Rückwärtsungleichungen, 67
Kolmogorovsche Vorwärtsgleichungen, 67
Kolmogorovsche Vorwärtsungleichungen, 67
Kommunikationsklassen, 13
kommunizieren, 99
kommunizieren miteinander, 12
konservativ, 62
Kostenfunktionen, 46

Laplace, Pierre Simon Marquis de, 167
Lebesgue, Henri, 167

Markov, Andrej Andrejewitch, 167
Markov–Eigenschaft, 8
Markov-Kern, 52
Markovgraph, 12, 62
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Markovkette, 8
Markovprozess, 52
Markovschen Erneuerungsgleichungen, 125
Markovscher Erneuerungskern, 124
Markovscher Erneuerungsprozess, 122
miteinander verbunden, 12
mittlere Rückkehrzeit, 14

negativ inzident, 12
null–rekurrent, 15
nullrekurrent, 102, 122

periodisch, 15
Pfeile, 12
Pfeilfolge, 12
Poissonprozess, 74
positiv, 12
positiv rekurrent, 15, 102, 122
Prozesse ohne Gedächtnis, 52
Punkte, 12

regulär, 83
reiner Geburtsprozess, 74
rekurrent, 15, 101
rekurrente Irrfahrt, 11
Riemann, Bernhard Georg Friedrich, 167

Semi– Markovprozess, 122
semiregenerativer Prozess, 122
stabil, 61
Standard–Übergangsfunktion, 53
Stark zusammenhängende, 12
stationären Verteilung, 24
stationäres Maß, 24
stochastisch, 54
substochastisch, 54
symmetrischen Irrfahrt, 11

transient, 15, 101, 122
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