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Kapitel 0

Vorwort

An der Technischen Universitéit Clausthal sind die Vorlesungen Stochastik III und IV bzw.
Angewandte Stochastische Prozesse I und 11 Bestandteile der neuen Master-Studiengéinge An-
gewandte Mathematik und Operations Research. Im Fokus stehen die Markovschen Prozesse
und ihre Verallgemeinerungen (Semi-Markovprozesse und semi-regenerative Prozese). Fiir das
Verstidndnis vorausgesetzt werden Grundkenntnisse in Wahrscheinlichkeitstheorie, wie sie an
der TU Clausthal in den Vorlesungen Stochastik I und II vermittelt werden.

In der Vorlesung Stochastik III bzw. Angewandte Stochastische Prozesse I werden allgemeine
Methoden zur Analyse stochastischer Prozesse bereitgestellt, die spéiter auf konkrete Fra-
gestellungen z.B. in der Warteschlangen- oder der Risikotheorie angewandt werden sollen.
Da die Berechnungen von Kenngrolen von Markovprozessen und ihren Verallgemeinerungen
héufig auf die Losung von Differenzen- und Differentialgleichungen hinauslaufen, werden im
Anhang einige grundsétzliche damit zusammenhéngende Vorgehensweisen erlautert.

Das Skriptum Stochastik I1II ist aus Vorlesungen hervorgegangen, die ich an den Universitaten
Mainz, Kaiserslautern und Clausthal abgehalten habe. Bei der Zusammenstellung und Aus-
gestaltung des Lehrstoffs haben mich mein ehemaliger Mitarbeiter Dr. Michael Mederer und
sein Nachfolger Dipl. Math. Hendrik Baumann tatkriftig unterstiitzt. Korrektur gelesen hat
auBlerdem Dipl. Math. Alexander Herzog. Ihnen allen méchte ich hiermit meinen herzlichsten
Dank aussprechen.

Dank der finanziellen Unterstiitzung durch die ELAN-Initiative des Landes Niedersachsen
(elearning academic network Niedersachsen) steht dieses Skriptum auch als Online-Version
zur Verfiigung:

http://www.stochastik.tu-clausthal.de/Stochastik3Skript/

Thomas Hanschke Clausthal, August 2008



Kapitel 0. Vorwort

0.1 Mit der Stochastik III zusammenhingende Vorlesungen

Die Stochastik III Vorlesung ist Bestandteil einer Reihe aufeinander aufbauender Veranstal-
tungen, die man der nachstehenden Grafik entnehmen kann.

Stochastik Il Stochastik il Stochastik IV Stochastik-Praktikum

¢ Grundzuge der ® Zentraler Grenzwertsatz * Markovketten in diskreter * Semi-Markovprozesse ¢ Beschreibende Statistik
Wahrscheinlichkeitstheorie 3 * Bedingte Erwartung Zeit | ¢ Semi-regenerative Prozesse [ )| ® Regressionsanalyse
¢ MaB- und Integrationstheorie o Erneuerungsprzesse * Markovketten in stetiger * Martingale o Varianzanalyse
* Gesetze der groBen Zahlen * Regenerative Prozessse Zeit * Wiener Prozess  Ereignisorientierte Simulation
Grundlag_en der_ Monte-Carlo-Methoden Zuverlassigkeitstheorie Finanzmathematik
Computersimulation
® Erzeugung gleichverteilter o Simulation stochastischer o Lebensdauerverteilung * Optionspreismodelle
|y Zufallszahlen Prozesse I e Systemfunktionen || * Binomialprozess
® Erzeugung nicht- o Stochastische Approximation o Instandsetzungs- und e Wiener Prozess
gleichverteilter Zufallszahlen Instandhaltungsstrategien « Black-Scholes Optionsmodell
o Tests fur Zufallsgeneratoren  Lebensdaueranalysen o Europaische und
amerikanische Optionen

Statistische Methoden Stochastische Methoden
Warteschl
der Qualitatssicherung artescniangen der Produktionsplanung

¢ Gut-Schlecht-Priifung ¢ Markovmodelle ¢ Auslegungsplanung
¢ Messende Prifung * Matrix-geometrische Verfahren * Kanban-Systeme
Ly ¢ Qualititsregelkarten mit Ly * Zustandsabhangige | w,| ® Pufferdimensionierung
Gedachtnis Bediensysteme « Batch-Verarbeitung
* Kostenoptimale Priifplane * Methode der eingebetteten o Belastungsorientierte
Markovkette Auftragsfreigabe
 Diffusionsapproximation * Anwendungssysteme

o Offene und geschlossene
Warteschlangennetzwerke

(Siehe auch PowerPoint-Prisentation zum Stochastik—Vorlesungsplan.)




Kapitel 21

Markovketten in diskreter Zeit

In diesem Kapitel werden Markovketten in diskreter Zeit behandelt. Sehr viele praktische Fra-
gestellungen lassen sich als Markovketten in diskreter oder stetiger Zeit modellieren. Markov-
ketten treten aber auch eingebettet in anderen Prozessen auf und bieten somit eine Handhabe
zur Analyse allgemeinerer Prozesse. In diesem Kapitel werden Methoden zur Berechnung der
endlich-dimensionalen Verteilungen und der Grenzverteilungen von Markovketten behandelt.

Schliisselworter: Homogene Markovkette, Markov-Eigenschaft, Ubergangswahr-
scheinlichkeit, (gegenseitige) Erreichbarkeit, Irreduzibilitéit, Rekurrenz, Transienz,
Grenzverteilung, Absorptionswahrscheinlichkeit, Aussterbewahrscheinlichkeit, peri-
odische Markovketten, Ergodensétze.




Kapitel 21. Markovketten in diskreter Zeit

21.1 Homogene Markovketten

Markovketten stellen ein wichtiges Werkzeug zur Untersuchung stochastischer Prozesse dar.
Sie verallgemeinern das von der Exponentialverteilung her bekannte Phéinomen der Gedécht-
nislosigkeit auf Folgen von Zufallsvariablen.

21.1 Definition (Markovkette):
FEin stochastischer Prozess (Q,2, P, (Xp)nen,) mit Werten in einem abzihlbaren Zustands-
raum E heifit Markovkette, wenn fiir alle Zeitpunkte 0 <ty < t; < --+ < tpy1 und Zustinde

205 - - '77:71-1-1

P(Xt o =tnt1| Xt =n, Xty =tn—1,. .., Xgy=1%0) = P(X4, ., =ins1| X, =1n) (21.1)

n+1

erfillt ist.

21.2 Bemerkung (Markov—Eigenschaft, homogene Markovketten):

e Die Eigenschaft (21.1), die auch (elementare) Markov—Eigenschaft genannt wird, besagt,
dass in jedem Zeitschritt die Wahrscheinlichkeit fiir den neuen Zustand nur vom letzten
Zustand, nicht aber von der Vorgeschichte des Prozesses abhingt. Aus diesem Grund
werden Markovketten auch als stochastische Prozesse ohne Gedéchtnis bezeichnet.

e Aus (21.1) folgt insbesondere:

P(Xn+1 — in+1|X — inanfl — Z'nfla cee ,Xo = iO) = P(Xn+1 = in+1|Xn - Zn)

e In diesem Kapitel werden ausschliellich solche Markovketten behandelt, bei denen die
Ubergangswahrscheinlichkeiten

Py = P = P(Xp41 = j| X, = i)

nicht von n abhéngen (sogenannte homogene Markovketten). In diesem Fall ist

PZJ:P(XnJrl:]’Xn:Z)ZP(Xlzj|X0:’L) \V/TZGJN().

21.3 Definition (endlich—dimensionale Verteilung):
Die endlich—dimensionalen Verteilungen eines Prozesses sind definiert als

P(th = Z.THth,l = in_l, PN ’XtO = ZO)

fiir beliebige Zeitpunkte 0 < tg < t1 < ... < t, und Zustinde ig, i1, ..., in, n € N. Unter der
absoluten Zustandswahrscheinlichkeit versteht man

pi(n) == P(X,, =1).

21.4 Satz:
Es seien (Xp)nen, eine Markovkette und 0 < tg < t1 < ... < t, Zeitpunkte. Dann gilt:
n
P(Xy, =iny ..., Xiy = i0) = P(Xyy = i0) - [ [ P(Xe, = 1| X1,y = i0-1). (21.2)
(=1




21.1. Homogene Markovketten

Beweis:
Unter Zuhilfenahme des Multiplikationssatzes (siehe Stochastik I) folgert man

P(Xy, =in, ..., Xt, = i0)
= P(Xy, =io) P(Xy, =i| Xy, =io) - P(Xy, = 62| Xy, = i1, Xy = i0) -
P(Xy, =00 X, = a1, Xeg = 40)

21.1 . . . . .
( = ) P(th = ’Lo) . P(th = 21|Xt0 = Zo) . P(Xt2 = Z2|th = Zl) ..
- P(th = Z.n|th71 = anl)

n
=  P(Xy, =io) - HP(XtZ =g Xy, | = Gg_1).
/=1

21.5 Definition (n—Schritt—Ubergangswahrscheinlichkeit):
Fiir homogene Markovketten nennt man

P = P(X, = jXo = i) (neN; ij € E)

die n—Schritt-Ubergangswahrscheinlichkeit vom Zustand i in den Zustand j.

21.6 Satz (Gleichung von Chapman und Kolmogorov):
Fiir homogene Markovketten gilt

a) P(Xuiy = j|X, = i) = P

ij
b)VijeB: PIT=%"p. pim
keE
(Gleichung von Chapman und Kolmogorov).

Beweis:
a) Der Beweis erfolgt per Induktion iiber n. Es werden

. s _J1,i=y 1) _ p.
Pij '_5”_{0 it und Pij = P;;

gesetzt; nun erfolgt der Schritt von n auf n + 1.

P(Xni140 = jl Xy = i) = Z P(Xnyvi1 = J, Xntw = k| X, = 1)

keE
= > P(Xnpw =k|Xy =) - P(Xpypi1 = jIX, =i, Xpp0 = k)
keE
21.1 . .
( = ) Z P(Xntv = k|Xy =14) - P(Xpqv41 = j[ Xnsw = k)
keE
I.;/. Z P(l Pi(;LJrl).

keE




Kapitel 21. Markovketten in diskreter Zeit

b) Auch in diesem Fall wird der Beweis per Induktion, diesmal iiber m, gefiihrt. Der Induk-
tionsanfang P(nJrO Y okeE (5ikP,§?) =Y ker Pi(lg) P,g?) ist trivial, der Induktionsschritt

lautet
(n+m+1)  a) (n+m) (1)
P = D BBy
keE
LV Z (Z Pi(én) ) Pg(}:”)) ‘Plgjl‘)
keE ZEE
(eE kEE
= pr (Z sz g >
leE kelb
m+1
- ZPM ) j )
leE
[ |
21.7 Satz:

Fiir die absoluten Zustandswahrscheinlichkeiten p;(n) := P(X,, = i) einer homogenen Mar-

kovkette gilt
— 3" P(Xo=k)- P
keE

fiir alle i € E.

Beweis:

pi(n) = Y P(X,=i,Xo=k) =Y P(Xo=k) P(X, =i|Xo=k)

kelE keE

= Y P(Xo=k)- B
ker

21.8 Bemerkung:
e Zur Berechnung der endlich—dimensionalen Verteilungen und der absoluten Zustands-
wahrscheinlichkeiten einer homogenen Markovkette benétigt man also lediglich die Start-
verteilung { P(Xo = k)}xer und die Ubergangswahrscheinlichkeiten (Pij); jeg. Mit der

Vereinbarung
Pm = (Pﬁ”))
Y /ijeE
folgt aus Satz 21.6:

pntm) — pn)  pm) _— pn) — pn

10



21.1. Homogene Markovketten

e Nimmt man an, dass der Zustandsraum E := {1,...,m} endlich ist, und die Eigenwerte
Al, ..., A der Ubergangsmatrix alle paarweise verschieden sind, so erhélt man
A1 0

P=XAX"! mit A := ,
0 Am
woraus durch schrittweise Multiplikation P" = XA"X ~! fiir die n-Schritt-Ubergangs-
wahrscheinlichkeiten entsteht.

21.9 Beispiel:
Eine Ubergangsmatrix mit den Eigenwerten A := 1 und Ay := —1/2 sei gegeben durch

ey )= =(0 )6 WS

Die n-Schritt Ubergangsmatrix hat demnach die Gestalt

N[ =

L, 2( 1)\ 2_2(_1\» 3
PP =XA"X"!' = (if’ir:f’<_%)“ %7 E (72) > = <§
3 3( 2) 3 3 2 3

QORI N
N—

21.10 Beispiel (Anwendungen):
o Irrfahrtprobleme und Gliicksspiele:
Auf einem Zahlenstrahl mit den ganzen Zahlen geht man mit Wahrscheinlichkeit p einen
Schritt nach links, mit Wahrscheinlichkeit ¢ einen Schritt nach rechts und mit Wahr-
scheinlichkeit r := 1 — p — ¢ verharre man auf der Position. Diese Dynamik bezeichnet
man als Irrfahrt. Ist p = ¢ = 1/2, so spricht man von einer symmetrischen Irrfahrt.

Fragestellungen, die hier von Interesse sind, sind zum Beispiel: Mit welcher Wahrschein-
lichkeit landet man wieder im Ursprung? Besteht hier eine positive Wahrscheinlichkeit,
so handelt es sich um eine sogenannte rekurrente Irrfahrt. Wie ist die Riickkehrwahr-
scheinlichkeit zum Ursprung abhéngig von dem gewéhlten Startpunkt ?

Das Problem von Irrfahrten ldsst sich fiir Gliicksspiele spezialisieren. So sei X,, das
Spielkapital zum Zeitpunkt n. Das Startkapital sei N € N, also Xo = N. Wie grof} ist
die Wahrscheinlichkeit der Absorption, d.h. die Ruinwahrscheinlichkeit?

Die Ubergangsmatrix hat bei diesen Problemen die Gestalt:

r p 0 0
q r p O
pPj=10q¢ rp
00 q r

e Verzweigungsprozesse:
Es wird eine Menge von Individuen betrachtet, von denen jedes eine gewisse Nachkom-
menschaft haben kann. Die Nachkommenschaft sei fiir jedes Individuum eine diskrete

11



Kapitel 21. Markovketten in diskreter Zeit

Zufallsvariable £ mit Werten in Ng. Die Anzahl der Individuen zur Zeit n werde mit X,,
bezeichnet (sogenannte n—te Generation). Dann gilt, wenn & die Nachkommenschaft
des k-ten Individuums bezeichnet:

Xn
Xnt1 = Zik (n € No; Xo =1).
k=1
Folglich stellt (X,,)nen, eine homogene Markovkette mit Einschritt-Ubergangsmatrix

Pij:P(Xn+1:j\Xn=i)=P<Z§k=j> (4,7 € No)
k=1

dar. In diesem Zusammenhang kann man fragen: Wie grof} ist die Aussterbewahrschein-
lichkeit p und, falls p = 1 ist, wieviel Zeit vergeht bis zur Absorption?

Markovketten kénnen durch bewertete gerichtete Graphen veranschaulicht werden. Allgemein
besteht ein gerichteter Graph G aus einer abzidhlbaren Menge J und einer geordneten Teil-
menge K C JxJ. Wir schreiben [J; K| und nennen G vollsténdig, falls K = J xJ gilt. Die Ele-
mente von J werden als Punkte oder Knoten bezeichnet, die geordneten Paare k = (i, j) € K
als gerichtete Kanten oder Pfeile. Die jeder Kante k € K zugeordneten Punkte ¢ und j
heilen Endpunkte der Kante. Genauer sagt man, dass k = (4,7) mit ¢ positiv und mit j
negativ inzident ist. Eine Folge kq,, ..., kq, von Pfeilen k,, € K wird gerichtete Kantenfolge
oder Pfeilfolge von G genannt, wenn eine Folge von Punkten exisitiert, etwa jg,, ..., jg,, S0

dass kq, = (jgpl, jgr) (r=1,...,n) gilt. jg, ist der Anfangs— und jg, der Endpunkt der
Pfeilfolge. Gibt es in G eine Pfeilfolge mit dem Anfangspunkt i und dem Endpunkt j, dann
heifit j von i aus erreichbar. Wir sagen, 7 und j sind miteinander verbunden, wenn sowohl j
von ¢ aus als auch ¢ von j aus erreichbar ist. Stark zusammenhéngende gerichtete Graphen
sind solche, in denen je zwei Punkte miteinander verbunden sind.

Eine Abbildung ¢ der Kantenmenge K in die reellen Zahlen R,

¢+ K—=R, (i,4) = ¢(i,7),

nennen wir eine Bewertung des Graphen. Bewerteten gerichteten Graphen gibt man das Sym-

bol G = [J, K, (]

21.11 Definition:

(Xn)nen, sei eine homogene Markovkette mit abzihlbarem Zustandsraum E und Ubergangs-
matric P = (P;j); jer. Der bewertete gerichtete Graph M = [J, k,{] mit J = E, K = {(i,j) €
E x E| Pyj # 0} und ((i,7) = Pi; heifst Markovgraph der Markovkette.

21.2 Klassifikation von Zustidnden

21.12 Definition ((gegenseitig) erreichbar, kommunizieren miteinander, irreduzibel):
a) Ein Zustand j heifit vom Zustand i erreichbar, wenn es ein n € Ng gibt mit PZ(Jn > 0,
d.h. mit positiver Wahrscheinlichkeit findet der Prozess nach endlich vielen Schritten
nach j, wenn er in i gestartet ist. In Zeichen i — j.

b) Die Zustinde i,j € E heiflen gegenseitig erreichbar oder kommunizieren miteinander,
wenn 1 — j und j — ¢ gelten. In diesem Fall schreibt man i <> j.

12



21.2. Klassifikation von Zustéidnden

c) E heifit irreduzibel, wenn i < j fiir alle i,j € E gilt.

21.13 Satz:
Die Relation < “ definiert eine Aquivalenzrelation auf E.

Beweis:

Die Reflexivitit i <> ¢ ist wegen Pi(jo) := 0;; klar. Die Symmetrie ergibt sich unmittelbar aus
der Definiton von <. Bleibt die Transitivitat zu zeigen, d.h. aus 7 <+ j und j < k folgt 7 <> k.
Vorausgesetzt wird also, dass n,m € N existieren mit Pi(jn) > 0 und Pj(;n) > 0. Es folgt mit
Anwendung der Gleichung von Chapman und Kolmogorov

Pyt = 5" PP > PP 0.
rekl

21.14 Definition (abgeschlossene Klasse, absorbierender Zustand):
a) Durch die Aquivalenzrelation < zerfillt der Zustandsraum E in Aquivalenzklassen, die
als Kommunikationsklassen bezeichnet werden.

b) Eine Menge C von Zustinden heifit abgeschlossen, wenn kein Zustand in der Menge
E\ C von C aus erreichbar ist.

¢) Ein Zustand i heifit absorbierender Zustand, wenn {i} eine abgeschlossene Klasse ist.

21.15 Beispiel:
Es wird der Zustandsraum E := {a,b,c,d, e, f} mit der Ubergangsmatrix

1 1
0t ooo
03 02 00
00 L 0 2 0
P:11313
gz 0300
3 03035 3
0000 0 1

betrachtet. Die Aquivalenzklassen ermittelt man mit Hilfe des korrespondierenden Markov-
graphen, der in diesem Fall wie folgt aussieht:

Q)

c n
., 112 13 ]
14 1/2 2/3
Q b __;?;.. d _:.' a = c
- 34
O Om

Man erhélt demnach die Klassen Cy := {b,d}, Cs := {a, c,e} und C3 := {f}. Die Klassen C
und C sind nicht abgeschlossen. Der Zustand f ist ein absorbierender Zustand.

13



Kapitel 21. Markovketten in diskreter Zeit

21.16 Bemerkung:
Offensichtlich sind folgende Aussagen dquivalent:

e F ist irreduzibel,

e der Markovgraph ist stark zusammenhéngend.

21.17 Bemerkung (zum eingebetteten Erneuerungsprozess):

Im Folgenden werden die Riickkehrzeiten in einen bestimmten Zustand j betrachtet. Dazu
soll zunéchst eine homogene Markovkette (X, )nen,, die in einem beliebigen Zustand Xo =14
startet, veranschaulicht werden. j sei ein von ¢ erreichbarer Zustand der Kette.

: °
] ° 4
e | o
° . ee |
o o 'YX

()] 0)
L T

Abbildung 21.1: Riickkehrverhalten von Markovketten

Es sei A A
7 :=0  wd TV =inf{k>TV X, =4}, n=12,....

T l(j ) beschreibt also den Zeitpunkt, an dem die Markovkette zum ersten Mal den Zustand j
erreicht, TQ(] ) den Zeitpunkt der zweiten Riickkehr, usw. Aufgrund der Markoveigenschaft von
(Xn)nen, handelt es sich bei (Téj )) um einen modifizierten Erneuerungsprozess. Man

neNg
spricht auch von einem eingebetteten Erneuerungsprozess.

21.18 Definition (mittlere Riickkehrzeit):
a) Die Wahrscheinlichkeit, in genau n Schritten von i nach j zu gelangen, ohne zwischen-
durch j schon einmal erreicht zu haben, wird mit

15 =P (11 =l Xo = 1)
bezeichnet.

b) Die Wahrscheinlichkeit, dass die im Zustand i startende Markovkette den Zustand j
iiberhaupt erreicht, notiert man als

=Y 8
n=1

14



21.2. Klassifikation von Zustéidnden

¢) Die mittlere Riickkehrzeit von i nach j ist definiert durch
o0
pij =y - £,
n=1

21.19 Definition (Zustandsklassifikationen):
Ein Zustand i € E heifit

a) periodisch bzw. aperiodisch, falls TQ(j)

stanten d # 1 bzw. d = 1.

-T 1(j ) arithmetisch—verteilt ist mit der Gitterkon-

b) rekurrent bzw. transient, falls f}; =1 bzw. f}; <1 ist.

¢) ergodisch oder auch positiv rekurrent, falls f7; =1 ist und p;; < oo ist.

d) null-rekurrent, falls f}; =1 ist und p; = oo ist.

(n)

Um Aussagen iiber das Grenzverhalten von Markovketten teffen zu kénnen, soll jetzt P in

Abhéngigkeit von fi(]n) dargestellt weden. Unter Ausnutzung der Homogenitéat gilt fiir n > 1
Y (Tfj) — kX, :j‘Xo - z)
- Yp (Tl(j) - k’XO :i> P (X = | Xo = §)
k=1

B plnh)
= Zfij P (21.3)

k=1
Mit den erzeugenden Funktionen

ZP”) "l <1,  und Zf/”” 2] < 1,

gilt dann aufgrund von (21.3) und wegen fi(]Q) =0:

Py(z) = PSHZP@S”) "

1] P )

— 5U+i<n R S ’”)
1y

=0
o9 o
o (w ) (za@zn)
n=0 n=0
F,

= Gy +Fyl)- Pyl), 2 < 1. (21.4)
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Kapitel 21. Markovketten in diskreter Zeit

Stellt man diese Gleichung fiir ¢ = j nach Pj;(z) um, so erhdlt man

1
Pii(z) = —F— <1.
]](Z) 1_F]](Z)? ‘Z|—

Verwendet man diesen Wert fiir Pj;(z) in (21.4), so ergibt sich fiir i # j:

Pz](z) = %, ‘Z| S 1.

Mit diesen Voriiberlegungen lisst sich nun der folgende Satz beweisen:

21.20 Satz:
a) Ein Zustand j € E ist genau dann rekurrent, wenn Z = 00 gilt.
k=0

b) Ist j € E transient, so folgt fir alle i € E, dass ZPi(f) < oo gilt.

k=1
Beweis:
a) Es gilt
) 1
P = lim P;;(z) = lim = —.

7;) z—1— 77 z—1—- 1 — Fjj(z) 1-— fjj
Aus der Tatsache, dass ;‘j = 1 genau dann gilt, wenn j rekurrent ist, folgt nun die
Behauptung.

b) Ist j transient, dann gilt f; <1 und damit
1 1

21_1)1}1_ij(,2) - Zl—lgl—l—Fjj(z) 1 - JJ =
p) by g
SR = R =5y Jim () <0

Es sollen nun noch Zusammenhinge zwischen Rekurrenz, Periodizitdt und Erreichbarkeit
gezeigt werden.

21.21 Satz:
Rekurrenz ist eine Klasseneigenschaft, d.h. gilt © <+ j und ist i rekurrent, dann ist auch j
rekurrent.

Beweis:
Aus i + j folgt laut Definition die Existenz natiirlicher Zahlen n und m mit den Eigenschaften

P™ >0 und PY > 0. Sei v > 0.

(m—+v+n) o m+v) n) o m) (n)
A YA D o O O
keE keE \leE

kb=
> P(.m) P pl.(.")

— ZP m+v+n) > P(m P(n Z

16



21.2. Klassifikation von Zustéidnden

Ist ¢ rekurrent, so ist > 7 PZ.(Z.V) = 00. Somit hat auch die Gesamtsumme den Wert oo. Der
Zustand j ist also rekurrent. |

21.22 Satz:
Ist i rekurrent und i — j (j # i), so gilt f;- = 1, insbesondere ist auch j — 1 und somit
*

CLo= ]__

ij

Beweis:
Da i rekurrent ist, gilt f = 1. Setze gg.g)

=P(Xr=7X,#1,0<v <k]|Xy=1), so folgt
unter Verwendung der Markoveigenschaft fiir &

>1

0=1- ;:P(Xn#i,nelN|X0:i)ZP(Xk:j,Xn#i,TZEN’X():i)
=P(X,#i,n>k|Xo=1,Xr=75,X,#1,0<v <k)
P(Xp=4X,#i,0<v<k]|Xo=1)
=P(X,#i,n>0]Xo=7) g1 = (1-f5) gt

]
Da i — j vorausgesetzt ist, ist gi(l.c) > 0 fiir ein £ € N und es folgt f; = 1.
Damit gilt 7 — 4, nach Satz 21.21 ist auch j rekurrent und aus Symmetriegriinden folgt
*=1. |
ij

21.23 Satz:
Periodizitiat mit Periode d ist eine Klasseneigenschaft, d.h. gilt i <> j und ist i periodisch mit
Periode d, so auch j.

Beweis:
Es wird verwendet, dass fiir d—periodische Zusténde ¢ der Fall Pi(in) > 0 hochstens fiir d | n

eintreten kann. Wegen ¢ +> j gibt es m,n € N, so dass § := Pi(jm) . Pj(f) > 0 ist. Dann ist
(nach der Gleichung von Chapman—Kolmogorov)

Pt > g,

und da d nach Definition die kleinste Periode ist, folgt d | (m+n). Wiederum nach Chapman—
Kolmogorov gilt fiir alle £ € N

und es folgt

PP >0 = P00 = dmtk+n) = dk
Fiir die Periode d' von j gilt daher d|d’. Wegen der Symmetrie von i <+ j kann die Argumen-
tation auch umgekehrt werden und es folgt d’|d und somit d = d'.

Der Fall d = 1 ist im Beweis erlaubt, insbesondere ist Aperiodizitit eine Klasseneigenschaft.ll

17



Kapitel 21. Markovketten in diskreter Zeit

21.24 Beispiel:
Fiir die homogene Markovkette (X,)nen, mit dem Zustandsraum E = Ny habe die Uber-
gangsfunktion die Form

po 1—po
j 4 0 1—pm

P=1p 0 0 1-py

Dabei moge 0 < p; < 1 fiir alle ¢ € N gelten.
Von jedem Zustand j € Ny ist der Zustand 0 in einem Schritt erreichbar, von dort ist der
Zustand m in m Schritten erreichbar, d.h. die Markovkette ist irreduzibel. Unabhéngig vom

Startzustand i ist PZ-(Om) > 0 fiir alle m € N und insbesondere ist der Zustand 0 aperiodisch.
Wegen der Irreduzibilitdt sind dann auch alle anderen Zusténde aperiodisch.

Da (X,)nen, irreduzibel ist, geniigt es, den Zustand 0 auf Rekurrenz zu untersuchen; d.h. es
muss getestet werden, unter welchen Voraussetzungen

fao=Y"1=1 mit P =PX,=0,X;#£0(1<i<n-1)| Xo=0)
n=1

gilt. Offensichtlich ist
fi) =po=1-(1—po).
Fiir n > 2 gilt
n—2 n—2 n—2 n—1
5 = (Hu —pn) 1= (Hu —po) (1 —po-1)) =[] —20) - JT 0 — 1),
=0 =0 i=0 i=0
so dass sich fiir die zugehorige Partialsumme eine Teleskopsumme ergibt:
m+1 m

> £ =1- [T =p).
n=1

=0

m
Nach einem Satz aus der Analysis strebt das Produkt [[(1 — p;) fir m — oo (unter der

1=0
o0
Voraussetzung 0 < p; < 1) genau dann gegen 0, wenn » . p; = 0.
i=0
Zusammenfassend konnen wir deshalb feststellen:
o (X,)nen, ist irreduzibel,
o (X, )nen, ist aperiodisch und
o0
o (X, )nen, ist genau dann rekurrent, wenn ) | p; divergiert.
i=0

18



21.3. Grenzverhalten von Markovketten

21.3 Grenzverhalten von Markovketten
( )

Ziel dieses Abschnittes ist die Berechnung der Grenzwerte m; := lim, oo P;; ’ bzw. 7j; :=
lim,, s P]( ") Die Existenz der Grenzwerte kann auf den Fundamentalsatz der Erneuerungs-
theorie (vergleiche Stochastik 11, Kapitel 17) zuriickgefiihrt werden.

Um zunéchst eine diskrete Erneuerungsgleichung fiir P](ln ) 2u erhalten, summiere man iiber
den grofiten Zeitpunkt £ < n mit X = ¢. Unter Verwendung der Markoveigenschaft erh&lt

man dann

n—1
:f](zn)ﬂ—ZP(Xk:Z,Xk_Fl #Z7,Xn—17éZ,Xn:’L|XO:])

k=0
(”)+ZP (Xpg1 # iy X1 #0, Xy =i | Xp =14, X0 = §) - P(Xp =i | Xo =)
—f](?)ﬂLZPXl#Z Xn—k—1# 6, Xp-p=1]Xo=1)- P](k)
k

1+ Z 1R

bzw.
k) (k) .
)= fm +Zf" PP (jieB),

wenn man £\ := 0 vereinbart. Diese diskrete Erneuerungsgleichung wird durch

ij
fii+ Rix fji  (j,i€ E)

gelost; dabei ist R;; die Erneuerungsfunktion des eingebetteten Erneuerungsprozesses (T,@) neNg-

21.25 Satz:
a) Isti € E positiv rekurrent mit Gitterkonstante d, so gilt: lim Pi(,ind) =4,
n—oo

(nd)

b) Isti € E null-rekurrent mit Gitterkonstante d, so gilt: hm =0.

¢) Isti € E transient, so gilt: lim Pj(zn) =0 fir alle j € E.
n—oo

d) Isti € E rekurrent mit Gitterkonstante d, so existiert ein cj; € N, so dass h_}m P(C]‘+nd)
n—oo

i E fiir alle j € E gilt.

Beweis:

Punkt c) folgt aus Satz 21.20, wonach > ° | P(n) < 0o und somit Pj(in ) eine Nullfolge ist. Die
Aussagen a), b) und d) folgen aus dem Fundamentalsatz der Erneuerungstheorie (arithmeti-
scher Fall), demzufolge fiir alle ¢ =0,1,...,d — 1

AR f(c+”d) y
— i y Mis < OO

lim Ry * fji (c+nd) = fii neNg 7 "
e 0 y M = 00

19



Kapitel 21. Markovketten in diskreter Zeit

gilt. Da d als kleinste Gitterkonstante vorausgesetzt ist, kann ¢ = ¢j; (eindeutig) so gewahlt

werden, dass Pj(zm ) > 0 hochstens fiir m = cj; mod d gilt. Damit gilt auch fj(zn ) > 0 hochstens

fiir m = ¢;; mod d und da fj(lm ) eine Nullfolge ist (die Reihe konvergiert), folgt im Fall p;; < 0o
cii+nd (cji+nd) *
Jm PP < LS gt L 5 -
i neNo Hii meN, Hii

Im Fall j =4 muss ¢j; = 0 gewdhlt werden, wegen der vorausgesetzten Rekurrenz ist
und damit folgt die Behauptung.

.l—l

21.26 Bemerkung:

Der Satz hat grofien praktischen Nutzen: Es wird eine Markovkette, deren Werte zu berech-
nen nicht moéglich oder zu aufwendig ist, betrachtet. Durch Simulation ist es moglich, die
Aufenthaltswahrscheinlichkeit im Zustand i zu bestimmen. Diese wird nach der Aussage des
Satzes gegen % konvergieren. Man kann den Wert p;; also durch Simulation annéhern.

In Erweiterung von Satz 21.21 gilt

21.27 Satz:
Null-Rekurrenz (und damit auch positive Rekurrenz) ist eine Klasseneigenschaft, d.h. falls
1 <> j und i null-rekurrent, so ist auch j null-rekurrent.

Beweis:
Ist ¢ rekurrent, so ist nach Satz 21.21 auch j rekurrent. Wegen ¢ <> j gibt es m,n € N, so

dass 8 := PZ-(]m) : Pi(jn) > 0 ist. Dann ist (nach Chapman-Kolmogorov) fiir alle £ € Ny
(m+k+n) (k)
By > BPj;

und es folgt

(k) (k)
khﬁrgoP < — 5 lim P“

Fiir einen null-rekurrenten Zustand 7 verschwindet nach Satz 21.25 die rechte und damit auch
die linke Seite. Da j rekurrent ist, folgt erneut mit Satz 21.25, dass j null-rekurrent ist. W

21.28 Bemerkung:

Die Satze 21.21, 21.23 und 21.27 besagen, dass Rekurrenz, Transienz, positive Rekurrenz,
Null-Rekurrenz, Periodizitéit mit Periode d > 1 und Aperiodizitit Klasseneigenschaften dar-
stellen.

21.29 Beispiel (Symmetrischer Random Walk auf R):

Wir symmetrisieren das Irrfahrtproblem aus Beispiel 21.10, d.h. wir wahlen E' = Z und es sei p
die Wahrscheinlichkeit fiir den Ubergang von n nach n+1 und ¢ = 1—p die Wahrscheinlichkeit
fiir den Ubergang von n nach n — 1. Dann gilt

P =0 (m=0,1,2,...),

n 2n\ ., o,
Pég) = ( >pq (n=1,2,...).

n

20



21.3. Grenzverhalten von Markovketten

Mit Hilfe der Stirlingschen Formel
n! ~ n" 05 "/2n

folgt
pon) (-2 (4pg)”
00 VT NI

Die Reihe konvergiert also fiir 4pq < 1 und divergiert fiir 4pq > 1. Damit gilt

> 1
ZPég):oo = pP=q=y3-

n=0

Intuitiv wird fiir p # ¢ klar: Wenn eine Irrfahrt in der Null startet, so strebt sie fiir p > ¢
mit positiver Wahrscheinlichkeit gegen +oo0 und fiir p < ¢ gegen —oo, ohne je zur Null
zuriickzukehren.

21.30 Beispiel (Symmetrischer Random Walk im R?):

Beim symmetrischen zweidimensionalen Random Walk im R? sind die Wahrscheinlichkeiten
fiir eine Bewegung um 1 nach rechts, links, oben und unten jeweils 1/4. Es wird wieder der
Zustand 0 auf Rekurrenz untersucht.

Dazu werden alle Pfade, in denen das Teilchen wihrend der Irrfahrt 4 Einheiten nach rechts, ¢
Einheiten nach links und je j Einheiten nach oben oder unten bewegt wird (mit 2i+2j = 2n),
untersucht. Dann ist

P = 0 (n=0,1,2,..),
(2n) (2n)! /1\2n B
P = ) i!i!j!j!(i) (R=12...).
1+j=n

P(Qn) 2

Erweitert man By, ’ mit (n!)

= () S 00m)-() ()

und mit der Stirlingschen Formel schliefllich Pégn) ~ L. Da

nm

o
Z Pég) = 00,
n=0

, so erhilt man

ist 0 ein rekurrenter Zustand.

21.31 Beispiel (Symmetrischer Random Walk im R3):

Beim symmetrischen Random Walk im R? sind die Wahrscheinlichkeiten fiir eine Bewegung
um 1 nach rechts, links, oben, unten, vorne und hinten jeweils 1/6. Wie im ein- bzw. zwei-
dimensionalen Fall wird der Zustand 0 auf Rekurrenz untersucht. Dazu werden alle Pfade
betrachtet, in denen das Teilchen wahrend der Irrfahrt ¢ Einheiten nach rechts, ¢ Einheiten
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nach links, j Einheiten nach oben, j Einheiten nach unten, n — ¢ — j Einheiten nach vorne
und n — i — j Einheiten nach hinten bewegt wird (i + j < n). Es folgt

P = 0, (n=0,1,2,...),

PEY — Y (2n)! N 1)
o - ililjlil(n —i — )/ (n —i—5)! \ 6 T

0<i+j<n

Erweitern mit (n!)? und Ausklammern von (1/2)?" ergibt
1 [/2n n! 21\
Pégn) = 2< ) Z [} <) (n=1,2,...)
-' -' _ . _ . ‘ b b
227\ n o< <n iljl(n —i—7)! 3

I SN SIS I
Py, Cn22n<n>3n mit ¢, = dmax T —i= ) (n=1,2,...)

IN

unter Verwendung von
n! \"
) Wl —i— ) (3> =1
0<itj<n J):
Fiir groBe n wird das Maximum in ¢, angenommen fiir ¢ = j &~ n/3. Dann ist

n! <2n> 33

(2n)
Py~ < n )" 9x3/2p3/2

NGIOHOEET

Der Zustand 0 ist also nicht rekurrent, da

o0 o0
3v/3 (2n)
) 9n3/232 S =7 > Py < oo

n= n=1
Es gibt also eine positive Wahrscheinlichkeit, mit der ein Teilchen einen verlassenen Zustand
nicht mehr erreicht.

21.32 Satz:

Es sei B eine aperiodische positiv-rekurrente Klasse mit m; = P fir alle i,5 € E.

lim P
n—oo Y
Dann hat das Gleichungssystem

Uy = Z u - Pr; (Z € E) (21.5)
kel

genau eine Lisung (u;)iep mit u; > 0 fir alle i € E und Z w; = 1, namlich u; = ;.

el

Beweis:
Aufgrund der Gleichung von Chapman und Kolmogorov gilt:

n+1 n .
keE
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21.3. Grenzverhalten von Markovketten

Indem man auf beiden Seiten den Grenziibergang n — oo durchfithrt und das Lemma von
Fatou heranzieht, erhilt man

n+1 . n . n
mj = lim PV = lim 37 PR Py > Y lim Py Py
keE keE

Zzﬂk'ij (j € E).

keE

Um die Beziehung
m=> TPy  (jEE)

keE

nachzuweisen, wird angenommen, dass fiir mindestens einen Index j*

T > Zﬂ'k 'ij*
keE

gilt. Wiirde man nun die Ungleichung 7; > >, - p 7, - Py; iiber alle j summieren, so bekéme

man
Z?Tj>ZZ7Tk~ij=Z7TkZij=Z7Tk,

JEE JjEE kEE keE JjEE keE

was aber nicht sein kann. Deshalb muss

=Y m-Py  (JEE)

keE

sein. Iteriert man diese Gleichung, erhilt man zunéchst

WJ:ZWk'ij:Z <ZWZ'P£k> 'ij

keE keE \leE
:ZWgZng-Pk] ZW@ P() (jEE)
leE keE leE

Indem man in dieser Weise fortfahrt, ergibt sich schliefilich

=N m-PY (jeB).

keE

(n)
Da PZ]

Konvergenz angewandt werden:

() _ n)
= Jm 3w A= D me Jim B
keE kelE

)

Aus dieser Gleichung aber folgt zusammen mit der Beziehung 7; > 0 fiir alle j € E (F ist
eine positiv rekurrente Klasse), dass ) ;.7 = 1 sein muss.

< 1 fiir alle n ist und Zje p T < oo ist, kann der Satz von der majorisierten
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Zum Nachweis der Eindeutigkeit wird angenommen, dass es eine zweite Losung (z;)icp mit
x; > 0 fiir alle ¢ € ' und Zz‘e g T = 1 gibt. Genauso wie oben schliefft man, dass dann auch

zj=Yy @ Py (jEE)
icE

gelten muss. Nach dem Satz von der majorisierten Konvergenz gilt:

= Jim 3w = 3w (Jim 1)

i€E i€l
:Zmi-ﬂj (jEE).
i€l
Wegen der Voraussetzung Z x; = 1 muss dann aber z; = 7; fiir alle j € E gelten. ]

el

21.33 Definition:

Allgemein heifit w = (u;)ieg stationdres Maf$ fir die Markovkette (Xp)nen,, falls u; > 0
und u; = ZkeE ug - Py fir alle i € E erfillt ist. Es wird dann auch kurz in Zeilenvektor-
schreibweise u = uP geschrieben. Gilt zusditzlich ) ,cpu; = 1, so spricht man von einer
stationdren Verteilung.

21.34 Beispiel (Eindimensionale Irrfahrt):

Als Anwendungsbeispiel fiir Satz 21.32 greifen wir wieder auf das Irrfahrtproblem aus Beispiel
21.10 zuriick. Es sei also (X;,)nen, eine homogene Markovkette mit Zustandsraum E := Ny
und Einschritt-Ubergangswahrscheinlichkeit

_1—p p 0
q 1l-p—gq D
p—| 0 q lL=p—q p

wobei 0 < p+¢q < 1 gilt.
Da nur Uberginge zu den Nachbarzustéinden erlaubt sind, reduziert sich das System der
stationdren Gleichungen

(0.9]
m=Y m- Py (1=0,1,2,..)
k=0

auf eine lineare Rekursion zweiter Ordnung

7o = (1 — p)mo + qmy
m = pro+ (1 —p—q)m1 + qmo

mj=prj1+ (1 —p—q)m +qmj
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21.4. Berechnung von Absorptionswahrscheinlichkeiten

bzw.
=1,2,...).

qm1 = pmo
qrip1 = (p+ q)m; — prj_1 (j=

J
mo (j = 1,2,...) mittels Induktion. Fiir j = 0 und j = 1 ist die Aussage

Wir zeigen 7; = g
evident. Wir schlielen nun von j — 1 und j auf j + 1:
SN 1ty
o\ g T )T e

1 I
Tyl = 4 ((P + Q)EWO —PFWO
Damit ist fiir p < ¢ die Existenz einer nichtnegativen summierbaren Losung der stationéren
Gleichungen nachgewiesen. Folglich ist (X, )nen, fiir p < ¢ positiv rekurrent. my berechnet
man mit Hilfe der Normierungsbedingung Z;io m; = 1, d.h. es muss
T

1 P
q

1= m =m0 ) (2) -
j=0 i=0 \4
gelten, woraus mg = 1 — g folgt. Zusammenfassend erhilt man als Grenzverteilung

79':( 5) (];)j (j=0,1,2,...).

21.4 Berechnung von Absorptionswahrscheinlichkeiten

Es werden im Folgenden diese Bezeichnungen benutzt:
e «;(R) bezeichne die Wahrscheinlichkeit, dass die im transienten Zustand i startende
Markovkette (X, )nen, in der Menge R absorbiert wird.
e a!'(R) bezeichne die Wahrscheinlichkeit, dass die im transienten Zustand i startende

Markovkette (Xj)ren, nach genau n Schritten in der Menge R absorbiert wird.

Ferner sei T' die Menge aller transienten Zusténde. Zunéchst lasst sich damit feststellen:

(i) ai(R) =302 0 (R) <1 (ieT),
(i) o (R) = ZjeR Py (i€T),
(iii) af(R) =Y ;cp Pj-af "(R)  (i€T,n>2).
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Mit diesen Beziehungen erh&lt man:
0N~ n
ai(R) =) _al(R)
n=1
o0
=i (R)+ ) al(R)
n=2

L al(R)+ 33 Py a ()

n=2jeT
= al(B)+ Y Py Yol N (R)
JET n=2
()
=af(R)+Y_ Pj-a;(R)
JET
(i)
=2 Pyt Pi-oy(R).
JER jeT
Unter Verwendung der Bezeichnungen
a = (a1(R),az(R),...,an(R))T
T
B o= ZpljazPQja--';ZPNj
JER JER JER

kann man das obige Gleichungssystem auch in Matrixform notieren:
a=p+Pa bzw. ol —P)=p,
wobei I die Einheitsmatrix bedeutet.

21.35 Beispiel (Gambler’s Ruin):

Als Anwendungsbeispiel wird das folgende Gliicksspiel betrachtet: Ein Spieler beginnt das
Spiel mit einem Startkapital von ¢ Geldeinheiten. Mit Wahrscheinlichkeit p gewinnt er auf
jeder Stufe eine Einheit hinzu, mit Wahrscheinichkeit ¢ := 1 — p verliert er eine Einheit. Das
gemeinsame Kapital von Bank und Spieler betriagt n Einheiten. Es soll die Wahrscheinlichkeit
a;(0), 1 € T :={1,2,...,n — 1}, berechnt werden, dass der mit dem Kapital ¢ beginnende
Spieler ruiniert wird. Die zu diesem Spiel gehérende Ubergangsmatrix hat die Ordnung n + 1
und lautet:

(1 0 0 w0
g 0 0O --- 0
p_ g 0 p
’ I .0
g 0 p
o0 -+~ 0 0 1]

Da nur Ubergiinge zu den Nachbarzusténden erlaubt sind, reduziert sich das Gleichungssystem
fiir die Berechnung der «; := «;(0), i = 1,...,n — 1, auf die Gleichung

a; =qoi1 +paiyr (2<i<n-—2)

26



21.4. Berechnung von Absorptionswahrscheinlichkeiten

mit den Randbedingungen

a1 = q + pag,

On—1 = Qp_2.

(Beachte: Es wird nur die Absorptionswahrscheinlichkeit in der Null betrachtet, also n ¢ R.)
Die zur Differenzengleichung gehérende charakteristische Gleichung (sieche Anhang A) lautet

r=q+ pr.
Wegen p + ¢ = 1 sind die zugehorigen Wurzeln

z1 =1 und Ty =

Im Fall p # ¢ lautet deshalb die allgemeine Losung

i
ai261+62-<q> (i=1,2,...,n—1)
p

und im Fall p = ¢
o;=c1+cot (i=1,2,...,n—1).

Die Konstanten ¢; und co bestimmt man mit Hilfe der Randbedingungen.

1. Fall (p # q):

2
a1 = q + pag < Cl‘i‘CQ;:qu‘p(Cl‘i‘CQZQ)
q q

= 61—1-62];—q+(1—q)01+025(1—p)

<< c=1-—c¢.

q n—1 q n—2
Op—1 = (qQp—3 <= C1 +C2 <p> =q- <C1 + ¢ (p) )

n—1
— (;) (I1=p)ea=(¢—1)n
<~ p'c1+q"c2=0
n )
<~ ¢ = qnq ez und c¢g = 0 ppn

Damit wird
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2. Fall (p =¢=0.5):

cl—|—02:q+p~(61+262)
ca(l—p)=q+2p—1)cz

o] =

|
(S
+
=
Q

2o

<~
<~
Qp—1 = qQp_2 < q-(cl+(n—2)c2
1
<:*1+(”*1)02—§'(1+(n*2)02)
e (n-1)=tm-29 L
n—1)—=(n— Co)= - —
2 72
1
< Cg = ——.
n
Damit ergibt sich
di=c e i=l-—="""" G=12...,n-1).
n n

Dies bedeutet, dass bei einem fairen Spiel (p = g = %) die Ruinwahrscheinlichkeit fiir denje-
nigen (Bank oder Spieler) grofier ist, der mit weniger Startkapital anfingt.

21.36 Beispiel (Grenzverhalten eines Verzweigungsprozesses):
In der Einleitung wurde festgestellt, dass sich die Dynamik eines Verzweigungsprozesses durch
die Rekursion

Xn
Xn+1 :Z& (NZO,]_,Q,...), Xo 17
i=1

beschreiben lisst (vgl. Beispiel 21.10), wobei die Groflen &1,&a, ... eine Folge stochastisch
unabhéngiger, identisch verteilter Zufallsgrofien bilden mit

P& =k)=p (k=0,1,2,...) und Zpkzl,
k=0

Es soll zunéchst untersucht werden, wie sich die mittlere Population E[X,] fiir n — oo verhélt.
Dazu werden die erzeugenden Funktionen

G =Y met —E[], a2t
k=0

und

Gn(2) ::iP(Xn:k)~ b =E[z%"] (n=0,1,2,...)
k=0

eingefithrt. Wegen Xy =1 ist
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21.4. Berechnung von Absorptionswahrscheinlichkeiten

Es gilt
o0
Gni1(2) =Y P(Xnp1=k) 2"
k=0
o o
:ZZP(XH-H :k’Xn:j)'P(Xn:j)'zk
k=0 j=0
o0 o0
=Y P(Xn=j)) Pll+&+...+&=Fk) 2
j=0 k=0
erzeugende Funktion von §1+&2+...+§;
[e.e]
= P(X, =) [G(2))
7=0
= Gn(G(2)) (n=0,1,2,...).
Es soll nun der Erwartungswert von X,, , n =1, 2,..., berechnet werden. Dazu wird

E[Xﬂ = E[gl] =m

gesetzt. Beachte dabei
E[X,] =G, (1) (n=1,2,...).

Um E[X,,] = G/,(1) zu berechnen, wird die Rekursion
Gnt1(2) = Gp(G(2)) (n=0,1,2,...)
benutzt. Durch Differentation erhélt man:
1(2) = GL(G(2) - G'(2) (n=0,1,2,...).
Hieraus folgt wegen G(1) = 1:
(1) =Gh(1) - G'(1) (n=0,1,2,...).
Damit wird

n(1)=GL1)-G'(1) =G, (1) - [6"(D]* = G, ,(1) - [" ()P

n—1 n—2

= .. =G [ =[¢' Q)

und folglich
0, m<l1
EX,1]=m""" — E[X, ]=¢{ 1, m=1
oo, m>1.

Abschlieflend soll nun die Aussterbewahrscheinlichkeit

an == P(X,, = 0)
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Kapitel 21. Markovketten in diskreter Zeit

berechnet werden. Es wird sich zeigen, dass sich diese mit Hilfe der erzeugenden Funktion
berechnen ldsst. Ausgangspunkt der Untersuchung sind die Gleichungen:

Gnt1(z) = Gp(G(2)) (n=0,1,2,...), (21.6)
Go(2) = 2, (21.7)
Gi(z) = G(2). (21.8)

Damit ergibt sich:

( (21.6) (21.8)

G (2) "2 GG (2) B2 Gt (G(G () P Gt (G1(G(2))) P2 G (Gal(2)
G (2) "2 Goa(G(G(G(2))) P Gra(Ga(G2))) P Groa(Gi(2)).

Allgemein gilt folglich
Gn—l—l(z) = Gn—k(Gk-i-l(z))
und speziell fir k:=n —1
Gn+1(2) = G(Gr(2)) (n=0,1,2,...).
Mit ¢, := P(X,, = 0) = G,(0) folgt

an+1 = G(qn) (n=0,1,2,...).

Es sei nun 0 < pg = P(kein Nachkomme) < 1. Die Folge (¢,)52 ist monoton wachsend, da

n—=
G(z) fiir z > 0 monoton wiichst (Potenzreihe mit ausschlielich nichtnegativen Koeffizienten).

q1 =G1(0) =po >0
2 =G(q) >G0)=P(X1=0)=q

1.V.
>

dn = G(Qn—l) G(Qn—2) = 4n—1-

Da die Folge (¢,)52; nach oben durch die 1 beschrénkt ist, konvergiert sie mit Grenzwert
« = limy, o0 gn, wobei sich « als Losung der Gleichung

a=G(a)
herausstellt (Satz von der monotonen Konvergenz). Dabei gilt

ae€(0,1) fir G'1)=m>1 und a=1 fir G'(1)=m<1

21.5 Periodische Markovketten

In diesem Abschnitt wird allgemein vorausgesetzt, dass (X, )nen, eine iiber dem Zustands-
raum F irreduzible, d—periodische Markovkette mit d > 2 ist. (In Satz 21.23 wurde gezeigt,
dass d—Periodizitéit eine Klasseneigenschaft ist.) Da nach Definition d die minimale Periode

aller Zusténde ist, gibt es fiir alle 4, j € E ein solches ¢;; € {0,1,...,d—1}, dass Pijm) =0 fir
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21.5. Periodische Markovketten

alle m # ¢;; mod d gilt. Fiir die ¢;; gilt offensichtlich ¢; = 0 sowie ¢j; = d — ¢;;. Es sei daran
erinnert, dass nach Satz 21.25

lim Pdtes) — 4

n— oo v /"L,]j
gilt, falls F rekurrent ist (dann ist ;; = 1 fiir alle 7,j). Es soll nun zunichst die spezielle
Blockstruktur der Ubergangsmatrix analysiert werden.

21.37 Satz:
Es gibt derartige Teilmengen Eo, Er, ..., Eq_1 von E mit E; N E; = & fir alle i # j und

d—1

E = \J E;, dass Pjj > 0 héchstens fir i € Ey_1 und j € Ep (k < d) oder i € Eq_1 und
i=0

j € Ey gilt. Bei geeigneter Anordnung ergibt sich

0 Bo1
0 B2

Bg—24-1
Bag-1p 0

mit gegebenenfalls unendlich grofen Blockmatrizen By_1 1 (k < d) und Bgq_1y.

Beweis:

Man fixiere einen Zustand ¢ und setze E, = {j € E: ¢;; = r} fir alle r = 0,1,...,d — 1.
Da jedem Zustand j genau ein Wert ¢;; zugeordnet wurde, ergibt sich so eine Partition von
E. Aus der Definition der ¢;; wird sofort klar, dass es sich dabei um eine Partition mit den
geforderten Eigenschaften handelt. |

Es wird nun 7; = —— fiir positiv rekurrente Zustédnde und 7; = 0 im Ubrigen gesetzt, wobei
ij; wie iiblich die mlttlere Riickkehrzeit in den Zustand j bezeichnet. In Satz 21.32 wurde
fiir aperiodische Markovketten gezeigt, dass m = (7;);er die einzige normierte Losung von
u = uP ist. Dieser Sachverhalt gilt jedoch auch fiir periodische Ketten.

21.38 Satz:
Es sei (Xn)nen, eine dber dem Zustandsraum E irreduzible, d—periodische Markovkette mit
d > 2. Fir jede nichtnegative, summierbare Losung u = (u;)icp von

wi=Y wPy (i €E),
kel

kurz w = uP, gilt u; = cm; (i € E) mit einer Konstanten c.
Ist E null-rekurrent oder transient, so ist u; = 0 fiir alle i; ist E positiv rekurrent, so definiert
(mi)icr eine stationdre Verteilung. Es gilt dann

1
Zm:& (r=0,1,...,d-1) und Zﬂ'izl.
i€l i€ER

Dabei sind die Mengen Eg, En, ..., Eq_1 wie in Satz 21.37 zu wihlen.
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Kapitel 21. Markovketten in diskreter Zeit

Beweis:

Die Definition der Mengen F, im Beweis von Satz 21.37 ist von ¢ abhéngig, zur genaueren
Betrachtung werden sie hier mit E,. (i) bezeichnet. Da Py; > 0 hochstens dann eintreten kann,
wenn k € Eg_1(7) ist, gilt nach der Gleichung von Chapman—Kolmogorov

Z (nd—1) sz _ Z nd 1) sz

keE keE,_ 1( )

Das Lemma von Fatou und Satz 21.25 iiber das Grenzverhalten von Markovketten liefern nun

dm; = lim PZ(Z T> % Tim Py VP, =Y dm Py,
keEq_1 (i) kel
also
m > TP (21.9)
keE

fiir alle ¢ € E. Nach dem Lemma von Fatou gilt auch fiir alle r =0,1,...,d—1

1= lim P”‘”’” > > lim P — > dny,

n—oo n—oo Y ' '
JEE(i) JEE(1) JEE(1)

also )
'erjga und ijgl.
JEEX(1) JjEE

Somit konvergiert die Summe der 7; und Summation von (21.9) liefert

Dmi=d Y mPui=> Ty Pui=Y T

S i€E keE keE <) keE

Da beide Seiten gleich und endlich sind, muss fiir alle ¢ € E in (21.9) Gleichheit bestehen.
Somit ist u; = m; eine Losung des Gleichungssystems u = uP.

Es soll nun gezeigt werden, dass alle summierbaren Losungen konstante Vielfache von 7 sind.
Es sei also (u;)icp eine Losung von v = wP mit u; > 0 und ZieE u; < oo. Fiir alle n € N
folgt durch Iteration u = uP™ und fiir jedes r = 0,1,...,d — 1 gilt

w= > Pl

keEd—r(i)

Da (uy) summierbar ist, folgt mit dem Satz von der majorisierten Konvergenz

w=| > w|dm (21.10)
keEd*T(i)

Die eingeklammerte Summe héngt offensichtlich nicht mehr von r ab, damit auch nicht von
i (Anderung von i liefert lediglich eine Umnummerierung der E,.) und es folgt u; = cm;.
Insbesondere ist fiir nullrekurrentes oder transientes £ v = 0 die einzige nichtnegative sum-
mierbare Lésung von u = uP.
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21.5. Periodische Markovketten

Im Fall positiver Rekurrenz ist u; = m; > 0 eine summierbare Losung. Einsetzen in (21.10)
und Division durch m; liefern

bzw.

21.39 Bemerkung:

Die Sétze 21.32 und 21.38 liefern zusammen ein einfaches Kriterium fiir positive Rekurrenz.
Genau dann ist eine irreduzible Markovkette (X,,)nen, positiv rekurrent, wenn das Glei-
chungssystem v = uP eine strikt positive und summierbare Losung u besitzt.

Im Fall positiver Rekurrenz ist stets 7 = (7;)jcp mit m; = - die einzige durch > m =1 nor-
mierte Losung, d.h. die einzige stationére Verteilung fiir (X:)nEINO' Der Unterschied zwischen
periodischen und aperiodischen Ketten besteht in der Grenzverteilung, d.h. den Werten

g;j = lim p™.

n—oo Y

Im aperiodischen Fall ist die stationére Verteilung auch die Grenzverteilung, im periodischen
Fall existiert keine Grenzverteilung, es existieren nur Grenzwerte von Teilfolgen.

21.40 Beispiel (Eindimensionale Irrfahrt):

Als Anwendungsbeispiel fiir Satz 21.38 wird die eindimensionale Irrfahrt auf der Menge Ng
mit der Besonderheit p + ¢ = 1 betrachtet. Es sei (X, )nen, eine homogene Markovkette mit
Zustandsraum E := Ng und Einschritt-Ubergangswahrscheinlichkeit

1
0
q

oK O
o O

wobei p 4+ ¢ = 1 gilt. Der zugehorige Markovgraph hat die Form
1 P P P

q q q q

Offensichtlich ist die Markovkette irreduzibel und 2-periodisch. Da nur Ubergéinge zu den
Nachbarzustédnden erlaubt sind, reduziert sich das System der stationéren Gleichungen

o0
=Y m-Py  (j=012..)
k=0
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Kapitel 21. Markovketten in diskreter Zeit

auf eine lineare Rekursion zweiter Ordnung

Ty = q7m1
T = T + qT2
Ty = pm1 + q73

Tj = PTj-1+qmj41

Dieses System lésst sich rekursiv 16sen, es gilt (durch Induktion)

m = — -

q

1 1 |1 1 [1—¢ P
m=—[m—m| == |- mo—To| =~ |—— "o = —5 70

q q g q

oL ] P .
AR q

1 P! P’
o) U ) )

7o berechnet man mit Hilfe der Normierungsbedingung » 72 ;7 = 1, es muss also

> 1 & p\F! 1 1
lzzﬂ-k_ﬂ—o 1+Z<) ]:ﬂ-o. 1_’_77
k=0 1 35\ 9 1—(2)
2q
= ——— - T,
q—Dp
gelten, woraus

4P
0 2

folgt. Diese Beziehung zeigt, dass genau im Fall ¢ > p eine stationére Verteilung existiert.

21.6 Kriterien fiir Rekurrenz und Transienz

Ein wichtiges Kriterium fiir positive Rekurrenz wurde bereits gezeigt: Genau dann liegt posi-
tive Rekurrenz vor, wenn das Gleichungssystem u = u P eine nichtnegative, von Null verschie-
dene und summierbare Losung besitzt. Es gibt jedoch weitere einfache Kriterien fiir Rekurrenz
bzw. Transienz. Zunéchst werden zwei Hilfsaussagen gezeigt.

21.41 Lemma:
Es sei E irreduzibel und i € E beliebig. Genau dann ist E rekurrent, wenn f5; =1 fir alle

j#1i ist.
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21.6. Kriterien fiir Rekurrenz und Transienz

Beweis:
Ist E rekurrent, so folgt die Aussage unmittelbar aus Satz 21.22. Ist umgekehrt 5= 1 fur
alle j # i, so gilt
fi=Pi+) Pifi=) Pj=1,
i jeE

d.h. 7 ist rekurrent. |

21.42 Lemma:
Es sei A C E und q(i) = P(X,, € AVn > 1| Xo = i) fur alle i € A. Dann wird das
Gleichungssystem

hi:ZPijhju 0<h; <1, iEA,
JjEA

durch h; = q(i) geldst und fir jede weitere Lisung des Systems gilt h; < q(i) fir alle i € A.

Beweis:
Definiere die |A| x |A|-Matrix @ als @ = P|axa sowie
(i) =P(X1 € A, Xo€A,... , XpeA| Xg=1)

= Y PXi=j1,.... Xn=jn| Xo=1)
j17"'ajn€A

= Y PXi=ji|Xo=1) ... - P(Xp=jn| Xn1=jn1)
jlv"'vjneA

= Z Qigy - Qjuirjn

J1sjn€A

=> Q.

jEA

Offensichtlich fallen die g, monoton in n, d.h. g,+1(i) < ¢,(7) und es gilt wegen der Stetigkeit
von oben

lim qn(z) = lim P(Xl cA, XA, .. X, €A|X0:’i)
n—00 n—0o0

X0:i>

=P(X,€ AVn>1|Xo=1) =q(i).

:P(ﬂ{XleA,...,XneA}

n=0

Der Satz von der monotonen Konvergenz zeigt nun, dass

> Quali) = > Qu Jim au() = lim 3" Qu > @3

JEA JEA JEA keA
T ntl _ q: N .
= nlinéo];‘Qik = lim gni1(i) = q(4), i€ A,
€
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Kapitel 21. Markovketten in diskreter Zeit

gilt, d.h. {q(4)} ist eine Losung des Gleichungssystems. Natiirlich gilt auch 0 < ¢(i) < 1 fiir
alle ¢ € A.
Sei nun h irgendeine weitere Losung mit 0 < h; < 1. Durch wiederholtes FEinsetzen ergibt sich

hi= Qijhj =Y Qih; <> Qi =au(i), icA,

JjeEA JjEA JjEA

fiir alle n € N und damit auch h; < ¢(7). [ |

21.43 Satz (Rekurrenz— und Transienzkriterium):
Es sei (Xp)nen, eine Markovkette mit irreduziblem Zustandsraum E. Betrachte das Glei-
chungssystem

hi=Y_ Pjhj, 0<hi <1, i€E\/{i} (21.11)
J#io
a) Gibt es ein solches ig, dass (21.11) nur die Losung h = 0 besitzt, so ist E rekurrent.

b) Gibt es ein solches iy, dass (21.11) eine von Null verschiedene Lisung h besitzt, so ist
E transient.

Beweis:
Nach Lemma 21.42 ist ¢(i) stets die punktweise grofite Losung des Gleichungssystems. Hier
gilt A=FE\ {ip}, also

q(z):P(XneAVnZ1|X0:z):P(Xn;£zoVn21|X0:z):1—f’fm

]

Daher ist & = 0 genau dann die einzige Losung, wenn f; = 1 fiir alle ¢ =% g ist. Dies ist
wiederum nach Lemma 21.41 genau dann der Fall, wenn Rekurrenz vorliegt. ]

21.44 Beispiel:
Betrachte wieder das Beispiel der eindimensionalen Irrfahrt aus Beispiel 21.40, also

1
0
q

o O
oB o

Es wurde bereits gezeigt, dass genau fiir ¢ > p eine stationédre Verteilung existiert, also positive
Rekurrenz vorliegt. Es soll nun gezeigt werden, dass fiir ¢ = p Null-Rekurrenz und fiir ¢ < p
Transienz vorliegt. Dazu betrachte man das Gleichungssystem (21.11) fiir 7o = 0, also

hi=Y_ Pjhj, i=12.... (21.12)
j=1
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21.6. Kriterien fiir Rekurrenz und Transienz

Es folgt hy = pho sowie hy, = qhg_1 + phir1 fir k > 2 bzw.
1
ho = —hq
1
hy = *(hn—l - qhn—2) (7’L > 3)
p
Wegen q = 1 — p folgt hg—hlzéhl—m:%hl und fiir n > 3
o ot = (s — gha2) — by = (L= Pl — ghucz) = Ly — o)
n — Nn—-1 = —ln—-1 — n—2) — n—-1 — — - n—1 — n—2) — —\lln—-1 — Nn-2),
p p p
durch Induktion folgt

n—1
B — By = <q> hi (n>2)
p

und Summation liefert schliefilich

hn = hi zn: (q>j_1 (n>1).

=1 NP

Fiir hy # 0 und ¢ = p wichst h, damit unbeschréinkt. Die einzige beschrinkte Losung des
Gleichungssystems (21.12) ist also h = 0 und es folgt Rekurrenz (da positive Rekurrenz nur
fiir ¢ > p vorliegt, handelt es sich hier um Null-Rekurrenz). Fiir ¢ < p hingegen konvergiert
h,, offensichtlich und ist daher beschrinkt. Durch geeignete Wahl von h; # 0 kann so eine
nichttriviale Losung von (21.12) gefunden werden und es folgt Transienz.

Das néchste Kriterium scheint Satz 21.43 sehr dhnlich, der Unterschied bei der Summation
ist allerdings wesentlich.

21.45 Satz (Transienzkriterium):
Genau dann ist die iber E irreduzible Markovkette (X, )nen, transient, wenn es ein solches
ig € E gibt, dass das Gleichungssystem

JEE
eine beschrinkte nichtkonstante Losung besitzt.

Beweis:
Wir definieren eine neue Markovkette mit Ubergangsmatrix P vermoge Pio,j = 0j,,; und
I:’Z-j = P;; fiir ¢ # 49, d.h. bei entsprechender Anordnung ist

1 0 0
p . Pihio Pilﬂ'l Pi1,7l2
Pig,i() Rg,il ‘F)’iz,iQ

Sei die urspriingliche Kette (X,)nenN, zunéchst transient. Nach Lemma 21.41 gibt es dann
mindestens ein j mit f';© < 1. In der neuen Kette sind alle Zustdnde aufler io immer noch
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Kapitel 21. Markovketten in diskreter Zeit

transient, ig ist nun ein absorbierender Zustand. Wie in Abschnitt 21.4 bezeichnen wir mit
a;(ip) die Wahrscheinlichkeit, dass die in j startende (modifizierte) Markovkette in iy absor-
biert wird. Dort wurde auch gezeigt, dass fiir i ¢ R

=Y Pyj+) Pja(R

JER jeT

gilt, falls R die Menge der absorbierenden und 7" die Menge aller transienten Zusténde ist.
Hier gilt speziell R = {igp} und T'= E \ {io} und wegen «;,(ip) = 1 folgt

E Pl]a] i0) ZPZ]aJ i0)

JjEE JjEE

fiir alle i # ig. Die Absorptionswahrscheinlichkeiten a;(ip) 1osen also das Gleichungssystem
(21.13) und sind wegen a;, (i9) = 1 und a;(ig) = f;,;, <1 fiir ein j € E nicht konstant.
Sei nun umgekehrt {h;} eine nichtkonstante beschrankte Losung von (21.13). Da jedes Viel-
fache von h = (h;);cg ebenfalls eine Losung ist und da jeder konstante Vektor eine triviale
Losung darstellt, ist auch

hi = ah; + b

fiir alle a,b € IR eine (nichtkonstante) Losung von (21.13). Fiir geeignete a, b gilt h; =1 und
0 < hl <2 fiir alle i € E, so dass von nun an h;, = 1 und 0 < h; < 2 gelten moge. Ferner
sei stets hy < 1 fiir mindestens ein k # ig (hy = 1 fiir alle k ist ausgeschlossen, da h nicht
konstant ist; sind alle hj, > 1, so betrachte die Losung h) = 2 — hy,).

Dann gilt nach Definition der Pij fiir alle ¢ € E, insbesondere auch fiir ¢ = ig,

jeE JjEE
was auf

1,30 1,30

p™ = pWp, <Z (21.14)
(S

fiir alle ¢ € E fiihrt. Bezeichnet wie in Abschnitt 21.4 ozz(n) (i0) die Wahrscheinlichkeit, dass die
in 4 startende Markovkette genau nach n Schritten den Zustand ¢ erreicht und dort absorbiert

wird, gilt
Pl = Za 0Py = Za
also
Tim P = Za 0) = ai(io)

und n — oo in (21.14) fithrt auf
ai(io) < h;

fiir alle 7 € E. Betrachte nun k # ip mit hy < 1 (existiert, s.0.). Die Absorptionswahrschein-
lichkeit ay(ip) in der modifizierten Markovkette entspricht der Wahrscheinlichkeit, dass der
Zustand ig von k ausgehend jemals erreicht wird, also f,:’io < hj, < 1. Die Wahrscheinlichkeit
f,:’io ist offensichtlich fiir die urspriingliche Markovkette genau so grofl wie fiir die modifizierte
Kette und mit Lemma 21.41 folgt Transienz. [ |
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Der nachstehende Satz beruht wieder auf dem Gleichungssystem (21.13) und liefert ein hin-
reichendes Kriterium fiir Rekurrenz.

21.46 Satz (Rekurrenzkriterium):
Es sei (Xy)nen, eine irreduzible Markovkette iber No und iy € N beliebig. Existiert fir das
Ungleichungssystem
hi> Y Pyhy, i (21.15)
J€ENy

eine Losung h mit h; — oo fiir i — oo, so ist die Markovkette rekurrent.

Beweis:

Da mit h auch ah + b eine Losung des Ungleichungssystems ist, kann 0.B.d.A. h; > 0 fiir alle
t € No und h;, = 1 vorausgesetzt werden. Wir nehmen ¢ g = 0 an, was durch Umnummerierung
stets erreicht werden kann. Mit der Ubergangsmatrix P aus dem Beweis von Satz 21.45 gilt
wieder fiir alle i € N

h; > Z f’ijhj und weiter h; > Z P ")h
Jj€Ng j€No
Zu gegebenem ¢ > 0 wihle nun M = M(e) so, dass h% < ¢ fiir alle ¢ > M ist. Unter

Verwendung von ) P~ folgt

JE€No © ij
= 5m) — 5(m) M_l() — 5(m)
hi > Thi+ > PRy > > Bh; + poin (i} i
7=0 j=M 7=0 j=M
M-1 ~( ) M-—1 ~( )
> > Phi+ - | 1= By
j=0 j=0

Da in der modifierten Markovkette alle Zustinde aufer 0 transient sind (der absorbierende Zu-
stand 0 ist von allen Zustdnden aus erreichbar), folgt mit Satz 21.25 iiber das Grenzverhalten
von Markovketten sowie den Uberlegungen aus dem Beweis von Satz 21.45

lim P( ) — =0, j#0, und lim P( ") — a;(0).

n—oo Y n—0o
Der Grenziibergang m — oo liefert also

hi = ai(0)ho + é(l — ;(0)) = —(1 — a;(0))

™ | =

bzw.
1-— Ozi(O) < Shi

fiir alle i € Ny. Da ¢ > 0 beliebig war und «;(0) < 1 ist, folgt «;(0) = 1 fiir alle ¢ € Ng. Da
(wie im vorangegangenen Beweis zu Satz 21.45) a;(0) = f7 fiir ¢ # 0 gilt, folgt fi =1 und
mit Lemma 21.41 Rekurrenz. |
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21.47 Bemerkung:

Die Voraussetzung EF = Ny in Satz 21.46 ist notig, um den Grenziibergang i — oo formulieren
zu kénnen. Da die Zusténde jedes abzdhlbar unendlichen Raumes entsprechend durchnum-
meriert werden koénnen, handelt es sich um keine echte Einschriankung.

Die Rekurrenz— und Transienzkriterien sollen nun noch anhand einiger Beispiele erldutert
werden.

21.48 Beispiel (Diskrete Warteschlange I):

Es wird ein Bediensystem mit einer deterministischen, getakteten Bedienung betrachtet, d.h.
in jedem Zeitintervall [n,n+1) wird genau ein Kunde bedient, sofern mindestens einer wartet.
Wéhrenddessen kommen Y,, Kunden an; die ZufallsgréBen Yy, Y1, . .. seien i.i.d. Es sei P(Y,, =
k) = ap > 0 fiir alle K € No und ) ;2 ar = 1. Z#hlt X,, die wartenden Kunden zum
Zeitpunkt n (unmittelbar vor Beginn der Bedienung), so ist (X, )nen, eine diskrete homogene
Markovkette mit der Einschritt-Ubergangswahrscheinlichkeit

apg a1 ag as

apg a1 ag as

P= 0 ap a1 a2
0 0 ap ai

Offensichtlich ist (X, )nen, irreduzibel und aperiodisch. Zur besseren Ubersicht wird die er-
zeugende Funktion

A(x) = Z apz”
k=0

eingefiihrt, die zumindest auf [—1,1] konvergiert. Auf (—1,1) darf dann auch beliebig oft
(gliedweise) differenziert werden. Da alle Koeffizienten positiv sind, folgt A’(£) > 0 und
A"(&) > 0 fur alle £ € (0,1), d.h. A ist auf [0,1] monoton wachsend und konvex. Existiert
A'(1), so gilt

o
A1) =) "k-a,=EM] = p,
k=0
insbesondere ist dann pu < oo.

Zur Untersuchung auf Transienz wenden wir Satz 21.45 mit i = 0 an, d.h. wir betrachten
das Gleichungssystem

hi=Y Pyhj, i=12,.... (21.16)
=0

Existiert eine nichtkonstante beschrénkte Losung h, so liegt Transienz vor. Der Ansatz hj = &
fiithrt fiir ¢ > 1 zu dem System

£ = ZPijéj = Z aj_iy1&,
j=0 j=i—1
bzw. zu der Fixpunktgleichung

£= D auinf T =) agt = A(9).
k=0

j=i—1
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21.6. Kriterien fiir Rekurrenz und Transienz

Mit anderen Worten, der Ansatz h; = & liefert eine nichtkonstante beschrinkte Losung,
falls A einen Fixpunkt & € (0,1) besitzt. Wegen A(0) = ap € (0,1) und A(1) = 1 und
der Konvexitéit von A existiert ein solcher Fixpunkt fiir p € (1,00]. In diesem Fall ist die
Markovkette also transient.

Obwohl das Kriterium aus Satz 21.45 eine ,,genau dann, wenn“—Aussage darstellte, lésst sich
mit diesen Uberlegungen nicht zeigen, dass fiir p € (0,1] Rekurrenz vorliegt, da die Wahl
hj = &7 nicht notwendig war. Zum Nachweis der Rekurrenz wird nun das Rekurrenzkriterium
aus Satz 21.46 verwendet. Es werden deshalb unbeschrinkt wachsende Losungen von

oo
hi > Pyhj,  i=1,2,...
j=0
gesucht (wie oben wird ig = 0 gew#hlt), dabei sei p = > kap < 1. Dann fithrt der Ansatz
hj = j auf eine Losung der gewiinschten Form. Denn es gilt

oo oo [e.e] oo
S Pihi= Y aji-i= Y @i G—itD+ > aj - (i-1)
=0

j=i—1 j=i—1 j=i—1

[o.¢] [o¢]
= kap+(i-1)> ap<l4i-1=i
k=0 k=0

fir allei =1,2,....

Die hier beschriebene Markovkette wird im Rahmen der Markovschen Erneuerungstheorie
noch einmal aufgegriffen (M/G/1-System, Kapitel 23.6). Dort wird gezeigt, dass fiir p = 1
Nullrekurrenz und fiir u < 1 sogar positive Rekurrenz vorliegt.

21.49 Beispiel (Diskrete Warteschlange II):

Es soll nun ein Bediensystem mit umgekehrter Taktung untersucht werden. In jeder Zeiteinheit
kommt ein Kunde an, wihrenddessen werden k£ Kunden mit Wahrscheinlichkeit a; > 0,
> reoar = 1 bedient. Warten weniger als k Kunden, werden alle Kunden bedient. Die Anzahl
X, der zum Zeitpunkt n wartenden Kunden bildet wieder eine irreduzible und aperiodische
Markovkette mit der Einschritt-Ubergangswahrscheinlichkeit

o0

> a; ag
=1

o0

Zai ar agp
1=2

o0
Zai az aip Qo
=3

Zunichst soll die Markovkette (X, )nen, auf positive Rekurrenz untersucht werden, d.h. es
wird das Gleichungssystem

uj = Z u; Py, j € N,
1€Ng

betrachtet. Der Ansatz u; = &' fithrt fiir j > 1 auf

§=3 Eaign=¢7 Y a T =g71A®),

i=j—1 i=j—1
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Kapitel 21. Markovketten in diskreter Zeit

wobei
x
= g akxk
k=0

wie im vorangegangenen Beispiel. Division durch &/~ liefert wieder die Fixpunktgleichung
A(§) = &, die fir p = > kay € (1,00] einen Fixpunkt & € (0,1) besitzt. In diesem Fall ist
auch die zu j = 0 gehérende Gleichung des Systems erfiillt, denn es gilt

o) k—1 0o
Zﬁon—Z S =Y ey =Y el
1=0 k=i+1 k=1 =0 k=1

L (Zak - Zm’f) = - A©) =1
6 k=0 k=0 6

Fiir p € (1,00] liegt also positive Rekurrenz vor. Fiir p < 1 liegt hingegen keine positive
Rekurrenz vor, denn hétte das System

g u; P, iy = Z UiAj—541, j=1

i€Np 1€Np

eine strikt positive und summierbare Losung u, so wére v auch beschrankt und nicht konstant.
Dann hitte das Gleichungssystem (21.16) aus dem vorangegangenen Beispiel auch in diesem
Fall eine beschrinkte Losung gehabt und es miisste Transienz vorliegen; dort wurde jedoch
Rekurrenz nachgewiesen.

Es soll nun gezeigt werden, dass fiir 4 = 1 noch Rekurrenz vorliegt und fiir i < 1 Transienz.
Nach Satz 21.45 wird das System

untersucht und die Existenz einer beschrdnkten nichtkonstanten Losung genau fir p < 1
gezeigt. Da jede Konstante das System ebenfalls 16st, gibt es im Existenzfall auch eine Losung
mit hg = 0. Mit dieser zusétzlichen Festlegung kann der Koeffizient vor hy dann beliebig
verandert werden, etwa kann Pjy im Gleichungssystem durch a;y, ersetzt werden. Es folgt

i+1
hi = Zai‘i’l*jhj? ) > 1.

Multiplikation aller Gleichungen mit s*+! und Summation ergibt

oo i+1 oo i+1
S - Z h; st = Z Za”“ jhj Fias Z Zai+1_jsi+l_jhjsj — saphy
i=1 57=0 =0 5=0
o0 oo
—Zh 57 Z Air1— ]s +1- ]—sa0h1:Zhjstaisi—sagh1.
1=7—1 7=0 =0
Fiir die erzeugenden Funktionen
[o¢] o0
= Z hy,s® und A(s) = Z ars”
k=0 k=0
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21.6. Kriterien fiir Rekurrenz und Transienz

folgt
sa0h1

A(s) —s

Nach den vorangegangenen Uberlegungen folgt aus u < 1, dass A(s) —s # 0 fiir alle s € [0, 1)
ist. Setze nun

sH(s) = H(s)A(s) — saphy bzw. H(s) = (21.17)

> oS
Wn = Z a; > 0 und W(S) = ansn’
i=n-+1 n=0
ferner . .
U(s) = Z(W(S))k = Zuns" mit Up > 0
k=0 n=0
und schlieflich . .
Un = ZUk und V(S) = Zynsn
k=0 n=0

Es gilt dann

o0
)(1—s) Zvns —Zvn —UQ+Z( — Vp—1)$ Zun =
n=1

Zunichst folgt wegen A(1) =

A(s)—s:(l—s)(l—ll__Ais)>:(l—s) 1- 1—Zajsj Zsk
§=0 k=0

=(1-s)[1-4 Zs +Zas]+k = 3)<1—i<A(1)—iai>8n>

J,k=0 n=0 1=0
(1—3) (1—22(@ ) (1—13) (1—ans> (1 —=35)(1—=W(s)).
n=01i=n+1
Setzt man diesen Ausdruck in (21.17) ein, bekommt man
sa0h1 saoh1 > k
H(s) = = w
) = Ty 1-s g( (5))
h
= 290 1U(s) = sagh1V (s).
1-s
Wegen
SIS DD IR S
n=01i=n+1 k=0
folgt
U =S W =3k < 0
k=0 k=0

genau fiir u < 1. Die Koeffizienten v, wachsen monoton und konvergieren gegen U(1), d.h.
sie sind genau dann beschrinkt, wenn U(1) < oo ist. Da die Koeffizienten von H und V
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Kapitel 21. Markovketten in diskreter Zeit

die gleichen Wachstumseigenschaften haben, ist damit gezeigt, dass die Koeffizienten h; von
H(s) genau dann beschriankt sind, wenn g < 1 ist. Da sie fiir jede Wahl von h; # 0 auch
nichtkonstant sind, liegt genau fiir 4 < 1 Transienz vor.

21.50 Bemerkung:

Die Idee hinter allen hier gezeigten Kriterien fiir Rekurrenz— bzw. Transienz war es, das
System h = Ph zu betrachten (fiir die Untersuchung auf positive Rekurrenz wurde v = uP
gelost), dabei aber eine der Gleichungen (oder Ungleichungen) zu ignorieren. Es gibt Kriterien,
bei denen auf beliebig viele Gleichungen verzichtet wird. Das zuletzt genannte Kriterium fiir
Rekurrenz, Satz 21.46, zum Beispiel wurde wie folgt verallgemeinert:

Es sei h : E — R* eine Funktion, fiir die jede der Mengen {i : h; < n} endlich ist (auf
E = N entspricht dies der Forderung h; — c0), sowie C' C E eine Teilmenge mit endlichem
Komplement E \ C und E irreduzibel. Gilt fiir alle i € C

JEE
so ist F rekurrent.

Auch beim Transienzkriterium, Satz 21.45, kann auf mehr als eine Gleichung verzichtet wer-
den. Allerdings ergeben sich dabei einige Anderungen:

Es sei E irreduzibel. Genau dann liegt Transienz vor, wenn es eine beschrénkte Folge (h;) mit
Werten in R™ und eine solche Zahl r > 0 gibt, dass fiir alle i € F zumindest eine der beiden
Ungleichungen

hi <r oder hi <> Pijh;

JjEE

erfiillt ist.
Diese beiden Aussagen werden in ,Markov Chains and Stochastic Stability* von S. P. Meyn
und R. L. Tweedie in einer deutlich allgemeineren Form formuliert und bewiesen.

21.7 Ergodensitze

Unter Ergodensétzen versteht man Aussagen iiber zeitliche Mittelwerte, also etwa die relative
Héufigkeit von Aufenthalten in einem fixierten Zustand j,

E

1 n—1
- Z 1y (Xe)| Xo = z] .
k=0

21.51 Satz:
Es sei (Xn)nen, eine irreduzible, positiv rekurrente Markovkette iber E mit Gitterkonstante
d und (7;)jer die zugehdrige stationdre Verteilung, also mj = i Dann gilt

. 1= .
nh_)I?(()loE nkz_ol{]}(Xk) X() —Z] = Tj.
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21.7. Ergodensétze

Beweis:
Es ist zunichst

n—1 n—1
1 1
- D 1 (Xe)| Xo = ] =2 Bl (Xx)[Xo =]
k=0 k=0
1 n—1
=— ) P(X) = j|Xo=1).
" =0

Ist j zunéchst aperiodisch, so konvergiert P(Xy = j|X¢ = i) nach Satz 21.25 iiber das Grenz-
verhalten von Markovketten gegen 7;. Die Konvergenz einer Folge zieht auch die Konvergenz
der Folge der arithmetischen Mittel nach sich (Cesaro’s Lemma, vgl. Stochastik II) und es
folgt die Behauptung.

Sei j nun periodisch mit Periode d > 2. Wihle ¢ = ¢;; < d so, dass Pi(]m) = 0 fiir alle m € Ny
mit m # ¢ mod d gilt (vergleiche Abschnitt tiber periodische Markovketten). Es soll nun Teil
d) des Grenzwertsatzes 21.25 angewendet werden. Unter Beachtung von fi; =1 folgt

e R *) 1 (md-+<)
w2 By = i Z PP =3 m g 3
o k=c modd
1 1 S (
_ L 'md—i—c _ < (md+c)
gy 2 B Jgﬁ.znZP
d m=0
1d

d:uJJ ’

Fiir d = 1 kann man Satz 21.51 als ,,Zeitmittel = Raummittel* interpretieren. Das weitere
Ziel dieses Abschnitt wird es sein, diese Aussage zu verallgemeinern.

Der nachstehende Satz lasst eine solche Interpretation zwar nicht direkt zu, ist aber von zen-
traler Bedeutung fiir alle sich anschlielenden Ergodensétze und wird auch spéter im Rahmen
der Markovschen Erneuerungstheorie verwendet.

Es sei daran erinnert, dass mit 7, ng )
wird, also

der n—ten Riickkehrzeitpunkt in den Zustand j bezeichnet
TV =0 wd 7TY=inf{k>TY | X, =4}, n=12...

21.52 Satz:

Es sei (Xp)nen, eine irreduzible, positiv rekurrente Markovkette iiber E sowie A(i,j) die
erwartete Anzahl der Aufenthalte im Zustand j wdihrend eines Zyklus von i nach i, d.h. mit
T=inf{n e N| X :i}:Tl(Z) sei

A(i,j) =E[|{Xn:0<n<T—1,X, =j}||Xo=1].

Dann gilt A(i,j) = %, wobei ™ die eindeutige stationdre Verteilung der zugrunde liegenden
Markovkette (also m; = /%) ist.
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Kapitel 21. Markovketten in diskreter Zeit

Beweis:

Offensichtlich ist A(i,7) = 1. Betrachte nun j € E'\ {i} und setze gg) als Wahrscheinlichkeit,
dass die in ¢ startende Markovkette nach genau n Schritten j erreicht, ohne zwischendurch
nach ¢ zuriickzukehren. Unter Verwendung der Markoveigenschaft folgt

21{3} ’X()—Z

n=1
oo m—1
=Y Y PT=m,X,=j|Xo=1i)
m=1 n=1
oo m—1
=SS Py A X = F e Xt A8, X = | Xo = 1)
m=1 n=1
m—1

M
M

P(Xn:%Xn—l?éza7X17AZ‘X0:Z)

3
Il
3
Il

P(Xni1 # iy X1 £ Xon = | X = 5, Xno1 £ 1y, X1 £, X0 = 19)

g P(T=m—n|Xo=j)

’L

Mg

n+1

S
I
—

m

1 =1

3
[
S

Die letzte Summe gibt die Wahrscheinlichkeit an, dass die in j startende Markovkette jemals 4
erreicht, ist also f;. Da (Xn)nen, irreduzibel und positiv rekurrent ist, gilt f;=1 (vergleiche
Satz 21.22) und es wird
o0
_ (n)
=2 95"
n=1

Damit folgt (wegen A(i,i) = 1)

=> 0 =P+ gy PZJJFZ > g Py
n=1 n=2

n=2keE\{i}

= A(i,i)Pj + > ZQE;L)ij = > Ali,k) Py

ke E\{i} n=1 keE

Aus der Definition der A(i,j) folgt sofort, dass die Folge der (A(7,j))jcr im positiv re-
kurrenten Fall summierbar ist (die Summe ist gerade die erwartete Zykluslidnge, also die
mittlere Riickkehrzeit). Da sie aber nun fiir jedes feste ¢ das Gleichungssystem (21.5) der
stationéiren Gleichungen erfiillt, stimmt sie bis auf einen konstanten Faktor mit 7; {iberein,
also A(7,j) = ¢;mj. Wegen A(i, i) = 1 folgt ¢; = ﬂ% [ |

Bei der Formulierung der Ergodensitze treten Kostenfunktionen f,g : E — R auf, die im
Folgenden als Spaltenvektoren aufgefasst werden. Da 7 als Zeilenvektor behandelt wird, gilt

insbesondere
wf = 3w i)

el
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21.7. Ergodensétze

Es soll nun eine Verallgemeinerung von Satz 21.52 angegeben werden.

21.53 Satz:
Es sei f : E — R mit w|f| < oo fir die stationdre Verteilung m der irreduziblen und positiv
rekurrenten Markovkette (X, )nen,. Y seien die Kosten wihrend eines Zyklus von i nach i,

also mit T = Tl(i)

T—1
Yp=) f(Xm)
m=0
Dann existiert E[|Yy| | Xo = 1] und es gilt
LT
ElY; | Xo—i = L.

Beweis:
Definiere fiir j € E die Indikatorfunktion 15 : £ — R durch
1{]}(2) = 51']‘ (’L S E)

Nach Satz 21.52 gilt

. . .o v
EHYI{j}‘ ’ Xo = Z} = E[YI{J—} ‘ Xo = 7’] = A(Zu?) = 7_[_7]
Zerlege nun
F=> ) 14
jeE
Wegen der absoluten Konvergenz 7| f| < oo folgt dann
Bl Xo =i < S EIV || Xo =) 1fG)] = T
[Vl | Xo=1d] <> E[Yig,l| Xo=1d]-[f()| = <o
jEE ¢
und /
. ) N
ElYy| Xo=1i=)Y EM, | Xo=1]-f(j) = o

JjeEE
Nun kann der erste Ergodensatz gezeigt werden.

21.54 Satz (1. Ergodensatz):
Es sei (Xp)nen, €ine irreduzible und positiv rekurrente Markovkette mit stationdrer Verteilung
m. f,g: E — R seien Funktionen mit 7|f| < oo und 7|g| < oo sowie wf # 0 oder g # 0.
Dann gilt P — f.s.
im SP————= = —.
n=o0 3 09(Xm)  mg
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Kapitel 21. Markovketten in diskreter Zeit

Beweis: '
Wie iiblich sei TT(L] ) der n-te Riickkehrzeitpunkt in den Zustand j, n = 1,2,.... Sei nun
£(n) so gewéhlt, dass TZ((J )) <n< T(()) 41 ist. Aufgrund der Voraussetzung, dass (X )nen,

rekurrent ist, handelt es sich bei den Riickkehrzeitpunkten um einen (nicht-abbrechenden)
Erneuerungsprozess und fiir n — oo strebt auch ¢(n) — co. Setze weiter

()
17,1

= > fXm), k=12,

_(9)
m—Tk]

d.h. Y}, gibt die Kosten im k-ten Zyklus an. (X, )nen, ist ein diskreter regenerativer Prozess
(die T, ,gj ) sind die Regenerationszeitpunkte) und somit ist auch f(X,,) ein regenerativer Pro-
zess, d.h. die Werte (Yy)r>1 sind i.i.d. und nach Satz 21.53 gilt E[Y;] = % Mit den (Yi)r>1
lasst sich

n 1 n
o FXm)= > (X ZYH Z f(x
Z(n)
schreiben.
Sei zunéchst f > 0. Dann gilt
t(n)-1 n -1 ¢(n)
> Yes > f( > f
k=1 m=0 k=1

Der erste Summand auf der rechten Seite héngt nicht von n ab und es folgt

n)—
JLI%O%Z < i gy 3 S0 < Jim ZYk

k=1

Nach dem starken Gesetz der groflen Zahlen haben die Grenzwerte auf beiden Seiten den
gleichen Wert, ndmlich E[Y;]. Es folgt

Hoog Z F(X Y] = jrf (21.18)

Fiir nichtnegative Funktionen ¢ folgt analog

und zusammen

Setze nun f = f* — f~ mit

fT(G) =max{f(i),0} >0  und £ (i) = max{—f(i),0} >0
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21.7. Ergodensétze

und entsprechend ¢, g~ > 0 mit g =g" — g~ . Fiir f, f7,9", ¢~ gilt (21.18) und es folgt

S0 f(Xm) _ Lm0 S (Xm) — gy Eino S (Xm)

lim ==—/——- =
=00 30 9(Xm)  mm00 i 3000 (Xm) — gy Lm0 9™ (Xom)
nft nf~
oy _mftenfm af n
- omgt _mem pgt—mgm wg
7 7

Folgerung:
Es sei (X,)nen, eine irreduzible und positiv rekurrente Markovkette mit stationérer Vertei-
lung 7 sowie f : E'— R eine Funktion mit 7|f| < co. Dann gilt unabhéngig vom Anfangszu-
stand P-f.s.

1 n—1
Jim = f(X) =f
m=0
Beweis:
Setze in Satz 21.54 g(i) = 1 fiir alle i € E. |

21.55 Satz (2. Ergodensatz):
Es sei (Xpn)nen, eine irreduzible und positiv rekurrente Markovkette mit stationdrer Verteilung
m. f,g: E — R seien Funktionen mit 7|f| < oo und 7|g| < oo sowie wf # 0 oder wg # 0,

ferner sei T = Tl(j). Dann gilt

BT S Ko =i _ B[S )| Yo =i] oy
n—oo B30 0 9(Xm)| Xo=1] g [ZZ;_:IO g(Xm)‘ Xo = ]} g

Beweis:
Der zweite Teil der Gleichungskette folgt unmittelbar aus Satz 21.53. Die erste Identitat wird
wie Satz 21.54 gezeigt; also zerlege

n T -1 £(n)—1 n
ED X)) =E| ) f(Xn)| + EWi+E| > f(Xm)
m=0 m=0 k=1 m:Té{))
und folgere zunéchst wieder fiir f > 0
o(n)—1 n 791 (n)
S ENI<E|S S| B | S £ | + Y BV
k=1 m=0 m=0 k=1

Der erste Summand auf der rechten Seite hidngt wieder nicht von n ab, und es folgt die

Beziehung
1 n
> F(Xm)
m=0

lim —F
)

n—o0o E(n

gy =

T
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Kapitel 21. Markovketten in diskreter Zeit

und das entsprechende Ergebnis fiir g. Somit ist der Satz fiir f,g > 0 bewiesen und die
allgemeine Aussage folgt wie im Beweis von Satz 21.54 durch Zerlegung in Positiv— und
Negativteil. ]

In Verallgemeinerung von Satz 21.51 gilt nun

21.56 Satz:
Es sei (Xp)nen, €ine irreduzible und positiv rekurrente Markovkette mit stationdrer Verteilung
m sowie f: E — R eine Funktion mit w|f| < co. Dann gilt unabhingig vom Anfangszustand

. 1 ,
nh_}n;oE - Z F(Xm)| Xo = z] =f.
m=0
Beweis:
Setze in Satz 21.55 ¢g(i) =1 fiir alle i € E. |
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Kapitel 22

Markovketten mit stetiger Zeit

In diesem Kapitel werden Markovketten in stetiger Zeit (oder auch Markovprozesse) be-
handelt. Zunichst werden die wesentlichen Begrifflichkeiten {iber Markovketten in diskreter
Zeit auf solche in stetiger Zeit iibertragen. Ein Schwerpunkt ist die Konstruktion von Uber-
gangsfunktionen aus sogenannten (Q—Matrizen. Abschlielend wird das Grenzverhalten von
Markovprozessen untersucht.

Schliisselworter: Homogener Markovprozess, Markoveigenschaft, Ubergangsfunk-
tion, @—Matrix, Kolmogorovsche Riickwérts— und Vorwértsgleichungen, ()—Prozess,
Feller—Prozess, Regularitét, Irreduzibilitdt, Rekurrenz, Transienz, Grenzverteilung,
Ergodensitze.
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Kapitel 22. Markovketten mit stetiger Zeit

22.1 Einfiihrung

22.1 Definition (elementare Markov—Eigenschaft, Markovprozesse):
FEin stochastischer Prozess (Q, U, P, (X¢)ier+) mit dem Zustandsraum (E,*B) heifst Markovprozess,
wenn fiir jede Menge B € B und fiir jedes Paar (s,t) € RT x RT von Zeitpunkten mit s < t
fast—sicher gilt:

P(X; € B|o{X,;u<s})=P(X, € B| Xy),

d.h. die Wahrscheinlichkeitsverteilungen der zukiinftigen Zustinde Xy mit t > s hdngt nur
vom aktuellen Zustand X, nicht aber von den vergangenenen Zustinden X, mit u < s ab. In
Analogie zu Markovketten spricht man von der elementaren Markov—FEigenschaft und nennt
die Markouvprozesse auch Prozesse ohne Geddchinis.

22.2 Bemerkung:
Wir beschéftigen uns hier ausschliefflich mit Markovschen Prozessen mit abzdhlbarem Zu-
standsraum E. In diesem Fall kann man B = P(FE) wihlen.

22.3 Definition (Homogene Markovprozesse):
Ein Markovprozess heiffit homogen, wenn die Grofien P(Xy = j | X5 = i) nur von der Differenz
t — s abhdngen. In diesem Fall hat man

Pij(t) = P(Xy =j | Xo=1i) = P(Xt1s = | Xs =1)

fiir alle s € R*. P(t) = (Py;(t))ijer heift Ubergangswahrscheinlichkeit, —matriz, —funktion
oder Markov-Kern.

Fiir die absoluten Zustandswahrscheinlichkeiten P;(¢) mit i € F und ¢t € R* eines homogenen
Markovprozesses mit abzédhlbarem Zustandsraum gilt:

P(t)=P(Xy=i)=Y P(X;=i|Xo=k) - P(Xo=k) = Pult)  P(Xo=k).
keE keE

Die endlichdimensionalen Verteilungen berechnen sich wie folgt: tg < ¢; < --- < t,, bezeichnen
Zeitpunkte und jo, j1, ..., jn Zustdnde aus F. Dann gilt:

P(th = jnath,1 = jnfla cee 7Xt0 = ]0) — P(th = jn | th,1 = jnflv .. 7Xt0 = ]0)
: P(th_1 = jn,1 | th_g = jn727 .. 7Xt0 = ]0) Teet P(th :jl | Xto :]0) : P(Xto :]O)

= P(th = ]n | th_l = jnfl) . P(th_1 = jnfl ‘ th_g = jn72) .
: P(Xt1 = | Xto :jO) ) P(Xto :jO)

= < H Pjjr i (te — tk—1)>P(Xt0 = Jo)-
k=1
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22.4 Satz (Eigenschaften der Ubergangsmatrix P(t)):
Die Ubergangswahrscheinlichkeit P(t) = (Py(t)), jep, t = 0, eines homogenen Markovprozes-
ses (Xt)ier+ mit abzdhlbarem Zustandsraum E besitzt folgende Eigenschaften:

L, i=7,

a) Pij(t) >0 fir allei,j € E und t € R" sowie P;;(0) = 6;; = { 0. it

b) > Pij(t) <1 firalleic E undteRT.
JjeEE
¢) Es gilt die Gleichung von Chapman—Kolmogorov:

Py(t+s) =Y Pu(t)Py(s)  Vi,j € E unds,t € R*.
keE

Beweis:
a) Klar.

b) Esist > Pij(t) =P(je E|Xyo=1) <1
JjEE

c) Wegen der Homogenitét des Markovprozesses wird

Pij(t+s) = P(Xeps =5 | Xo=1) = > P(Xeps = j, X = k | Xo = )

kelE
=Y P(Xyps=j| Xs =k Xo=1)-P(X; =k | Xo = 1)
keE
=Y P(Xiyps=j| Xi=k) - P(X; =k | Xo =)
keE
=Y Py(t)Py(s)  Vi,j€ EundsteR". |
keE

22.5 Bemerkung:

Ein Markovprozess legt die Ubergangsmatrix eindeutig fest. Ist umgekehrt eine Matrixfunk-
tion P(t) = (P;(1)); jep, t = 0, mit den Eigenschaften aus Satz 22.4 gegeben, dann lassen
sich ein Wahrscheinlichkeitsraum (€2, 2(, P) und ein homogener Markovprozess (X;);cr+ tiber
E so konstruieren, dass (X;)ieg+ die durch P;(t) definierten Ubergangswahrscheinlichkeiten
besitzt. Dies motiviert auch die nachstehende Definition.

22.6 Definition (Ubergangsfunktion):

Es sei E eine abzihlbare Menge (E heifst Zustandsraum,).

FEine Matrizfunktion P(t) = (Pi;(t))ijce,t > 0, heifst Ubergangsfunktion, wenn sie alle drei
Eigenschaften aus Satz 22.4 besitzt.

Man spricht von einer Standard-Ubergangsfunktion, wenn sie zusdtzlich (rechtsseitig) stetig
i 0 ist, d.h. wenn

lim f)ij(t) = 6ij Vi,j € B

gilt.

53



Kapitel 22. Markovketten mit stetiger Zeit

22.7 Bemerkung:
a) Fiir die Stetigkeit der Ubergangsfunktion in der 0 reicht die Forderung

lim P;(t)=1 Vi€ E.

t—0+
Aufgrund der Ungleichung 0 < > P;;(t) < 1 — P;(t) gilt dann auch schon
JEE,jFi
tLI%IJr Fy(t) =0
fiir ¢ # j.

b) Die rechtsseitige Stetigkeit in der 0 ist eine sehr starke Eigenschaft. Wir werden spéter
zeigen, dass damit bereits die rechtsseitige Differenzierbarkeit in 0 sowie die Differen-
zierbarkeit (und damit erst recht die Stetigkeit) fiir jeden Zeitpunkt ¢ > 0 folgt.

22.8 Definition:
Eine Ubergangsmatriz P(t) = (Pij(t); jep heift stochastisch, falls

Y Pit)=1 VieE

JEE
gilt. Ist mindestens eine Zeilensumme < 1, so heifit P(t) substochastisch. Im Vorgriff auf Satz
22.10 sei hier bereits angemerkt, dass P(t) stochastisch fir alle t > 0 ist, wenn P(t) fir ein
t > 0 stochastisch ist.

Im Fall einer substochastischen Matrix gibt es einen Zustand ¢ € E, von dem aus der Markov-
prozess den zuléssigen Zustandsraum F mit einer positiven Wahrscheinlichkeit 1—5 jer Pij (t)
verliisst. In einigen Fillen ist es allerdings einfacher, mit einer stochastischen Ubergangsfunk-
tion zu arbeiten. Dabei ist der nachstehende Satz hilfreich.

22.9 Satz:
Es sei P(t) = (P;;(t))ijer eine substochastische Ubergangsfunktion diber E. Sei A ein zusitz-
licher Zustand, der nicht in E liegt. Definiere Ea == E'U{A} und

Pi;(t) , ,jEFRE
PA(t) = 1= gepbir(t) , 1€ E,j=A
] 0 , i::‘A’j c kb
1 , 1=7j=A.

Dann ist P@(t) eine stochastische Ubergangsfunktin iiber En. Ist P(t) eine Standard-Uber-
gangsfunktion, so auch PA(t).

Beweis:
Die Eigenschaften Pi? (t) >0, PZJA(O) = §;; sowie (im Fall einer Standard-Ubergangsfunktion)

lim P2 (t) = d;; sind klar, auch
t—0 Y
> P =1

JEEA
folgt unmittelbar aus der Definition von P?. Damit bleibt die Gleichung von Chapman-
Kolmogorov nachzuweisen:

54



22.1. Einfiihrung

1. Seien i, j € FE, dann folgt

> PROPG(s) = > Pa(t)Prj(s) + Pia(t)Pag(s) = Py(t +5) + Pia(t) - 0
keEA keE

= Pij(t + S) = PUA(t + S).

2. Sei i € E und j = A der Zielpunkt, dann ist

Y PROPG(s) = D Par()Pials) + PA(HPRA(s)
kEEA kEE
= Z Pi(t) - (1 - ZPkl(5)> + (1 - Z Pik:(t)) -1
keE l€E kEE
=Y Pty + (1= Pa) = 303 Pa®)Pacs)
kEE kEE kEE I€E
1—221% )P (s —1—221[% ) Pri(s
kEE IEE IEE keE
=1- Z Py (t+s) (Gleichung von Chapman-Kolmogorov)
leE
= PA(t+s). |

3. Sei i = A der Startpunkt (letzte Zeile in der Matrix) und j € E, dann ergibt sich

> PR(t)Pi(s) = PRA(t)PRj(s) = 1-0= 0= P;(t + s).
keEa

4. Seii=j=A, dann ist

> PR () Pia(s) = PRA(HPRA(s) =1- 1= PRA(t + 5).
keEa

Es sollen nun noch weitere Eigenschaften der Ubergangsfunktion angegeben werden.

22.10 Satz:

Es sei P(t) = (Pij(1)); jeps t 2 0, eine Ubergangsfunktion.

a) > Pi;(t) ist eine nichtwachsende Funktion von t fir alle i € E.
JjeEE

b) Ist P(t) stochastisch fir eine bestimmtest > 0, dann ist P(t) stochastisch fiir allet > 0.

Beweis:
a) Fiir t,s > 0 ist

ZPM(t‘f‘S Zzpzk ij ZszZij ZPZk(t)

JEE JEE kEE keE JjEE keE
—_———
<1
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b) Wir zeigen zunichst, dass P(s + t) stochastisch ist, falls P(¢) und P(s) stochastisch
sind. Denn in diesem Fall gilt nach der Gleichung von Chapman-Kolmogorov

Y Pi(s+t) =YY Pul(s)Py(t) =Y _ Pin(s) Y Prj(t) = > Pils) =

S jeEE kel keE jer keE

Insbesondere folgt sofort durch Induktion, dass fiir jede natiirliche Zahl m mit P(s)
auch P(m - s) stochastich ist.

Wir kommen nun zur urspriinglichen Behauptung zuriick. Ist P(t) stochastisch fiir ein
t > 0, so folgt aus dem ersten Teil, dass P(s) stochastisch fiir alle s < ¢ ist. Fiir s > ¢
withle man n so, dass ;> < t ist. Dann ist P ( ) stochastisch und nach der Voriiberlegung
auch P(s). ]

22.11 Satz (Eigenschaften der I"Jbergangsfunktion):
Es sei P(t) = (Pij(1)); jeps t 2 0, eine Standard- Ubergangsfunktion.

a) Py(t) >0 fiir allet € R" undi € E. Fiiri,j € E mit i # j gilt:
Ist Pi;j(t) > 0 fiir eint > 0, dann ist Pyj(s) > 0 fir alle s > t.

b) Ist Pi;(t) =1 fir eint > 0, dann gilt:
Py(t) =1 fiir allet € R™.

c) Firt >0 gilt:
|[Pij(t +¢) = Pij(t)] < 1= Py(le])

d.h. Pi;(t) ist gleichmdfig stetig.

Beweis:
a) Sei t > 0 beliebig. Da P;j(t) standard ist, existiert ein n derart, dass P; (L) > 0 ist.
Aus der Gleichung von Chapman—Kolmogorov folgt

- () (5 2 () (52

JjEE

() (52 2 ((2) 0

Sei nun P;;(t) > 0 fiir ein ¢ > 0, so folgt wieder mit der Gleichung von Chapman-—
Kolmogorov

Pij(t +s) = szk )Pij(s) = Fij(t)Pj(s) > 0,
keE

da Pj;(s) > 0 fiir alle s > 0 bereits bewiesen ist.

b) Sei t > 0 so gewéhlt, dass P;;(t) = 1 ist. Wir betrachten die Félle s < ¢t und s > ¢
getrennt von einander.
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(1) s<t:
Aus
Pij(t) = Pi(s)Prj(t — s) > Pij(s) Pj;(t — s)
keE
folgt

0=1- Pu(t) > Z Pij(t) > Z H](S)P]Of — S) > 0.
JEE, j#i JEE,j#i
Da Pj;(t — s) > 0 ist, folgt notwendigerweise P;;(s) = 0 fiir alle j # i.
Andererseits aber gilt:
123 Pyls) 2 Y Pyt) =1,
JEE JEE
woraus Pj;(s) = 1 folgt.
(2) s>t
Wir wihlen ein n so, dass 7 <t ist. Dann gilt wieder:
S n
n
c) Sei e > 0. Mit Hilfe der Gleichung von Chapman—Kolmogorov schlieBen wir:
Pylt+2) = Pylt) = 3 Pule)Piglt) — Py(t)
keE

= ) Pule)Piy(t) — Py(t)[1 = Pu(e)]. (22.1)
kEE k£i

>0
Um eine Abschitzung fiir P;;(t+¢) — P;;(t) zu erhalten, betrachten wir die Ungleichung
[1 = Pi(e)] = Pi(t)[1 — Pi(e)],

aus der
(22.1)
—[1=Pi(e)l < —P;(t)[1 = Pi(e)] < Pyt +e) — Fi(t)
(22.1)
< Pir(e) Prj() < D Pi(e)
kEE k#i ";’1" kEE ki

<1l- Pii(€)7 n

also

|Pij(t + ) — Py (t)] <1 = Pi(e)

folgt. Der Fall ¢ < 0 kann auf den bereits bewiesenen Fall € > 0 zuriickgefiihrt werden.
Es ist

|Pij(t+€) = Pi(t)| = [Py ((t +€) + (=€) = Pij(t +¢))| < 1 — Pi(—e).
Folglich gilt fiir beliebiges ¢
|Pij(t+€) = Pij(t)] < 1 = P([e])-
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22.2 ()—Matrix und Kolmogorovsche Gleichungen

Von nun an seien alle Ubergangsfunktionen standard. Wie bereits vorne angemerkt wurde,
zieht diese Eigenschaft die Differenzierbarkeit der Ubergangsfunktion auf R™ nach sich. Wir
beginnen mit einem Hilfssatz iiber subadditive Funktionen.

22.12 Satz: o
Es sei ® : t — ®(t) eine Abbildung von R\ {0} — R+t mit folgenden Eigenschaften:

1. ®(s+1t) < D(s) + () Vs, t > 0 (Subadditivitit)

2. lim ®(t) = 0.
t—0

Dann existiert der Grenzwert

o(t)

lim —= = oglich ise ist q =
Jim — q (maglicherweise ist ¢ = 00)
und es gilt
o(t)
q = sup ——
>0 U
Beweis:
Definiere
Ot Dt
q:supﬁ == limsupﬁ <q
>0 t 0 t

Wir zeigen: liminf; . @ > q. Wihle ¢ mit ¢’ < ¢ und s mit @ >q.
Fiir jedes t > 0 konnen wir schreiben: s = nt + h, wobei n € Ny und 0 < h < ¢ ist. Aufgrund

der Subadditivitéit von @ gilt
O(s) =P(nt+h) <P(nt) + ®(h) <...<n-0(t) + ¢(h). (22.2)

Also (222
22.2 )
< D(s) p n®(t) + ®(h) _n-t d(t) n <I>(h)'
S S S t S

Die Beziehung s = nt + h impliziert

t
n——>1; h— 0 firt— 0 und s fest.
s

Nach Voraussetzung strebt mit h auch ®(h) gegen 0. Deshalb gilt

d(t
¢ <liminf Q
t—0+ 1
Da dies fiir alle ¢’ < ¢ gilt, folgt die Behauptung. |
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22.13 Satz:
Es sei P(t) = (Pij(t))ijcr, t > 0, eine Standardibergangsfunktion. Dann gilt fir alle i € E:

=P
a) g = —qi = %II% — € Rt existiert,
ﬁ
d.h. Pyi(t) ist differenzierbar an der Stelle t = 0 mit P/;(0) = qi; = —¢;.

b) inO e Pii(t):1 vt > 0.

c) Py(t)>e %t >1—¢qt Vt>0.

Beweis:
a) Definiere ®(t) := —log P;;(t). Da P;;(t) 29 1 und aufgrund von Satz (22.11a) P;(t) >0
fiir alle ¢, ist ®(t) wohldefiniert und endlich fiir alle t > 0. Aus

Pii(s+1t) > Py(s) - Pi(t) <= logPi(s+t) > log(P(s)P(t))
& —log Py(s+1t) < —log(Pi(s)) — log(P(t))
= P(s+1t) < D(s)+ P(s)

folgt auBlerdem, dass ®(t) = —log P;;(t) die Voraussetzungen von Satz 22.12 erfiillt.
Deshalb existiert
P(t)
lim —= =¢; > 0.
tgr(l) t ¢ =0

Es muss nun noch ¢; = lim #"im gezeigt werden. Der Fall ¢; = 0 wird dabei auf den

t—0+
Beweis von b) verschoben. Im Fall ¢; > 0 ist

. 1=Puyt) . 1—e0 P(1)
lim ———= = lim .
t—0+ t t—0+  P(t) t
(da ®(t) > 0 wegen ¢; = —¢g;; > 0 fiir alle ¢ mit 0 <t < 0)
o 1—e %) d()
= lim —————— - lim —=
t=0+  P(t) t—0+ t
o(t ()2 o(1))3
| LS 0r ) e
t—0+ O(t) t—=0+ ¢
=1-q=q.
b) Ist ¢; = 0, so gilt nach Satz 22.12 auch sup@ = 0 und damit —M = 0 bzw.
>0

1—Pi;(t)
t

P;;(t) =1 fiir alle ¢t > 0. In diesem Fall gilt tli%lJr = 0 = ¢;, was den Beweis von
%

a) komplettiert.
Ist umgekehrt Pj;(t) =1 fiir alle ¢ > 0, so folgt sofort

1— Pyt
q; = lim 7“( )
t—0+ t

=0.
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¢) Wegen ¢; = sup @ gilt fiir alle ¢ > 0

D(t
i) < ¢ = —logP;(t) < gt
— Pii(t) > e %

Die Ungleichung e~%! > 1 — ¢;t fiir alle t > 0 ist eine Standardabschiitzung aus der
Analysis. |

22.14 Satz:
Es sei P(t) = (Pi;(t))ijee, t > 0, eine Standardibergangsfunktion. Dann existieren fir alle

i,7 € E mit i # j die Grenzwerte g;; := lim PZ%(O

d it 0 < g4 .
R una es gi < gij < 00

Beweis (nach Chung, S. 132-133):

Betrachtet man fiir ein A > 0 den Ausschnitt X" = (Xnh)nen, eines homogenen Markov-
prozesses, so stellt man fest, dass X" eine eingebettete homogene Markovkette (mit diskreter
Zeit) darstellt. Offensichtlich gilt fiir ihre n-Schritt-Ubergangswahrscheinlichkeit:

PV (h) = Pyj(nh) Vn € N.

Wir definieren weiter:
PO =15 PP () = P(Xay =i, X0 # 4,1 <v<n| Xo=1i).

0

Diese Wahrscheinlichkeiten werden als sogenannte Taboo-Wahrscheinlichkeiten bezeichnet.
Sie geben die Wahrscheinlichkeit an, dass die Kette in genau n Schritten von ¢ nach ¢ zuriick-
kommt, ohne zwischendurch den Zustand j besucht zu haben. Die Wahrscheinlichkeiten fiir
einen erstmaligen Ubergang von i nach j in n Schritten ist

FE(h) = P(Xoh = . Xon # .1 v < n | Xo = ).
Es gilt
l] nh Z] i ’ 1] h)-ij((n—y—l)h), (223)

wobei die rechte Seite die Summe von Wahrscheinlichkeiten irgendwelcher Pfade von ¢ nach
j in n Schritten ist. Da jeder Zeitpunkt der eingebetteten Kette X" Regenerationspunkt ist,
gilt auflerdem

Pa(vh) < ;P (h Z ji((v —m)h). (22.4)

(Auf der rechten Seite werden die Wahrschemhchkelten aller Pfade von ¢ nach ¢ mit mindestens

v—
einem Besuch in j aufsummiert.) D E f(m (h) <1 ist, folgt aus (22.4)

JP'L(z )(h > ‘P“ Vh Z fz]m) P (V - )h)

> Pii(vh) — lr<nn%><(y Pji((v —m)h).

60



22.2. Q—Matrix und Kolmogorovsche Gleichungen

Aufgrund der Tatsache, dass P(t) standard ist, existiert zu jedem £ > 0 ein ¢y mit

P;; in Py 1— in Pj; 1—e.
s, P < 5ol 0> 160 g Pit) > 1=

Deshalb gilt fiir nh < tgund v =0,1,...,n—1

iPY(h) > Py(vh) — max P(v—m)h) >1—ec—e=1— 2.

1<m<v

Setzt man dieses Ergebnis in (22.3) ein, bekommt man

n—1
Py(nh) > 3" PV (h) - Py(h) - Py((n—v — 1)h)
v=0

n—1
>(1=26)- Y Py(h)- (1—¢) = (1-3c+2¢%) - n-Py(h)
v=0
> (1—=3e) n-Py(h)
bzw.
bBij(nh)
nh

Pij(h)

> (1 — 3¢) fiir nh < to.

Wir definieren P
¢ij := limsup L()
t—0

Indem man den Grenziibergang h — 0 und nh — ¢ durchfithrt, wobei 0 < t < tq ist, erhélt

man P
5 > (1 e)ay,
woraus ¢;; < oo folgt. Da € > 0 beliebig gew#hlt war, folgt andererseits
.. Pi(t)
1 f 20 > g
%&%ég = Gij,
. Py
woraus lim Jt(t) = q;; folgt. |

t—0+

22.15 Definition:

Ein Zustand i € E heifit stabil, falls ¢; < oo, und instabil (bzw. fliichtig, englisch: instan-
taneous), falls q; = oo ist. Eine Ubergangsfunktion P(t) = (Pij(t); jep: t = 0, wird stabil
genannt, falls alle Zustinde i € E stabil sind. Ein Zustand i € E heiffit absorbierend, falls
gi = 0 bzw. falls P;;(t) =1 fir alle t > 0 ist.

22.16 Satz:
Es sei P(t) = (P;j(t))ijer, t > 0, eine Ubergangsfunktion mit P'(0) = Q = (gij)ijer- Dann

ist Y qij <0 fir allei € E.
JjEE
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Beweis:
Wegen . F5(t) < 1 gilt

P:(t)—1 P;(t) —1 P;.(t
t— +jeE t—0+ — +j€E,j7éi
Pii(
> i G Dm0 ik Y =Y .
JEE, jF#i JEE jF#i JjEE

22.17 Definition (Begriff der Q—Matrix):
Eine Matriz Q = (¢ij)ijcr Uber einer endlichen oder abzihlbar unendlichen Indexmenge E
mit Elementen q;; € R heifit Q—Matriz, wenn sie folgende Eigenschaften besitzt:

(i) 0 < g < oo firallei,j € E miti# j.

(i) Y qij < q < oo firalleie E, wobei q; := —qy; ist.
JEE,j#i
Q heift konservativ, falls 3~ q;; =0 fir alle i € E.
jeEE
Anhand der @Q—Matrix kann auch fiir Markovprozesse in stetiger Zeit (analog zu Definition
21.11) ein Markovgraph definiert werden.

22.18 Definition:

(Xt)t>0 sei ein homogener Markovprozess mit abzihlbarem Zustandsraum E und Q-Matriz
Q = (¢ij)ijee. Der bewertete gerichtete Graph M = [J,K,(] mit J = E, K = {(i,j) €
E X E| g #0,i%# j} und ((4,7) = qij heift Markovgraph des Prozesses.

Die Q-Matrix einer Ubergangsfunktion ist durch einfache Differentation zu ermitteln. Die
umgekehrte Aufgabenstellung besteht darin, aus einer gegebenen (Q-Matrix ) sédmtliche
Ubergangsfunktionen P(t) mit P'(0) = @ zu bestimmen und wird nach William Feller
Feller’sches Konstruktionsproblem genannt. Da bei vielen Anwendungen nur die Q—Matrix
bekannt ist, ist dieses Verfahren fiir die Praxis von besonderer Bedeutung.

22.19 Beispiel (M/M/1/m — Bediensystem):

Als Beispiel betrachten wir das Warteschlangensystem M /M /1/m, d.h. eine Warteschlange
mit exponentiell (mit Parameter \) verteilten Zwischenankunftszeiten, exponentiell (mit Pa-
rameter p) verteilten Bedienzeiten, einem Bediener und einer maximalen Warteraumkapazitét
m. Mit X; bezeichnen wir die Anzahl der Kunden im System zur Zeit t. Aufgrund der Gedécht-
nislosigkeit der Exponentialverteilung stellt der Prozess (X;);cg+ der Anzahl der Kunden im
System einen homogenen Markovprozess mit abziéhlbarem Zustandsraum F = {0,1,...,m}
dar.

Die Anzahl der im Intervall (¢ 4+ At] eintreffenden Kunden ist dann Poisson—verteilt mit dem
Parameter A\t (Stochastik II, Kapitel 17). Es folgt

oA (At)*
k!
1 - XAt +o(At) falls k=0
= AAt +o(At)  falls k=1
o(At) falls & > 2.

P(in (t,t + At] treffen genau k Kunden ein) =
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Sofern geniigend Kunden im System sind, gilt entsprechend

1 — pAt+o(At) falls k=0
P(in (t,t + At] werden genau k Kunden abgefertigt) = uAt+o(At)  falls k=1
o(At) falls k> 2.

Fiir die zugehorigen Ubergangswahrscheinlichkeiten folgt:

Poo(At) =1 — MAt + o(At)
Pii(At) =1 — (A + p)At + o(At) (1<i<m-—1)
Prm(At) =1 — uAt + o(At)
P;it1(At) = AAL + o(At) 0<i<m-—1)
(At)

P;i—1(At) = pAt 4 o( At) (1<i<m).

. P”(At) —1 . 1—MAt + O(At) —1
= lim ————— =1 =-A
400 A?Eo At A%IE)IO At
. P“(At) —1 . 1-— ()\ + M)At + O(At) —1
= TR T A, Al (A+w)
Pom(At) —1 . 1—puAt+o(At)—1
mm = _— = 1 = —
4 Ali—m At AtS0 At K
. Pz i+1 (At) . AAL + O(At)
.. — 1 U . = _— =
Gt = 80 T At A5 At A
1 Pi,ifl (At) 1; MAt + O(At)
ii—1 — m ——-—-—== 1m —-—— = —
i1 A}£—>O At At—0 At K
und hat folgende Gestalt
-\ A 0 0 0 0 i=0
no —(\+p) A 0 0 0 i=1
0 m —(A+p) 0 0 0 =2
Q = | o :
0 0 0 —(A+p) A 0 i=m—2
0 0 0 H —(A+p) A t=m-—1
0 0 0 0 K —H 1=m

Die Zeilensummen dieser Matrix verschwinden, d.h. die Matrix ist konservativ. Der zugehorige
Markovgraph hat die Form

M m H m

Abbildung 22.1: Markovgraph zum M/M/1/m-Bediensystem.
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Bei der Berechnung von Ubergangsfunktionen aus Q-Matrizen spielen die Kolmogorovschen
Vorwiérts- und Riickwértsgleichungen eine wichtige Rolle. Ihre Herleitung erfordert einige vor-
bereitende Sétze.

Bislang wurde gezeigt, dass Standard-Ubergangsfunktionen in 0 rechtsseitig differenzierbar
sind. Es ldsst sich aber auch die stetige Differenzierbarkeit in jedem ¢t > 0 zeigen. Wir be-
ginnen mit einem Hilfssatz, der auf Doob und Chung zuriickgeht, vgl. K.L. Chung: Markov
Chains with stationary transition probabilities (Springer—Verlag, 1960) oder J.L. Doob: Mar-
koff chains — denumerable case (Trans. Amer. Math. Soc. 42, 107-140).

22.20 Satz:
Es sei P(t) = (Pij(t))ijer, t >0, eine Ubergangsfunktion diber E.

a) Sei {f(t)|t € R\ {0}} eine Familie von nichtnegativen Zeilenvektoren iiber E mit
f(s)-P(t)=f(s+t) VYs>0,t>0.

Dann sind alle Komponenten f;(t) von f(t) stetig auf (0,00) und haben endliche Grenz-
werte fir t — 04.

b) Sei{g(t) |t € R} eine Familie von stetigen, nichtnegativen Zeilenvektoren iber E mit
g(s+1t)—g(t) =g(s)-P(t) Vs>0,t>0.
Dann ist g(t) differenzierbar auf (0,00) und es gilt
gd(s+t)=4g'(s)- P(t) Vs>0,t>0.

Auferdem ist g(t) stetig differenzierbar auf RT.

22.21 Satz:
Sei P(t) = (Py;(1))ijer, t > 0, eine Ubergangsfunktion und i € E ein stabiler Zustand. Dann
gilt:

a) gij = P;;(0) existiert und ist endlich fiir alle j € E.

b) Pj;(t) ewistiert, ist endlich und stetig auf R fir alle j € E.

¢) R’j(s +1t) =Y Pl(s)Py;(t) fir alles >0,t >0 und j € E.
keE

Beweis:

a) klar.
b) Aufgrund von Satz 22.13(c) gilt zunéchst
Pu(t)>1—q -t Yt>0.
Fir 0 < s < t konnen wir deshalb schreiben:

Pij(t) — Pi(s) = Z Py (t — s)Py;(s) — Pij(s) (Gleichung von Chapman-Kolmogorov)
keE
Bii(t — s)Bij(s) — Pij(s) = [Pu(t — s) — 1] Pyj(s)

>
> —qi- (t = 5)Bi(s).
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22.2. Q—Matrix und Kolmogorovsche Gleichungen

Sei a =ty < t; <tg <...<t,=>eine Partition des Intervalls [a, b], dann gilt

n—1 n—1
PZ](b) - Pij(a) = Z [Bj(tm—i-l) - -Pij(tm)] > — Z Qi-Pij(tm)(tm—i-l - tm)‘
m=0 m=0

~~

untere Riemannsumme fiir [ ¢; Pi;(u) du

Da P;;(t) aufgrund von Satz 22.11(c) stetig ist, liefert der Ubergang von der Riemann-
summe zum Integral

b
Bj(b) — Bj(a) Z — /qZP”(’LL) du. (225)

Wir definieren Zeilenvektoren g(t) = (g;(t))jcp mit
t
4510 = Py(0) — 0 + [ aPytu) du.
0

Der Ungleichung (22.5) entnimmt man wegen P;;(0) = d;5, dass
gi(t) >0 Vt>0.

Da Pj;(t) stetig ist, ist auch g;(t) stetig. Wir zeigen weiter, dass auch die Voraussetzun-
gen von Satz 22.20(b) erfiillt sind. Denn es gilt

s+t
05(5 +1) — g5(t) = Pyi(s +1) — Py(t) + / 4:Py (1) du

= % PalP0) = Py() + [ Pyl s

keE
= ];[sz(s) - 5lk]Pk‘J(t) + ]CGZE (/08 qz‘])ik(z) dz) . ij(t)
= > gk(s) Py (1)

keE

Folglich ist g(t) stetig differenzierbar auf R™ und der Grenzwert tlir(])a+ J'(t) existiert und
%

ist endlich. Wegen
t
Pij(t) = g;(t) + i —/O qiPij(u) du
folgt
Pj(t) = g;(t) = aiPi (1), (22.6)

und da die rechte Seite stetig auf R ist, gilt dies auch fiir PZ’] (t). AuBerdem gilt aufgrund
von Satz 22.20(b) fiir alle s > 0 und ¢ > 0

d(s+1t) =g (s)P(t). (22.7)
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c) Wir greifen auf die Gleichung (22.6) zuriick. Es folgt fiir s >0 und ¢t > 0

(22.7)
Flj(s+1) = gj(s +1) = q:Py(s +1) =" Y k() Pij(t) = D aiPax(s) Pi (1)
kcE keE

_ng qi P ( Pk] 226 Z Pk] [ ]

keE keE

22.22 Satz:
Es bezeichne P(t) = (P;j(t))ijer, t > 0, eine Ubergangsfunktion und j € E sei ein stabiler
Zustand. Dann gilt:

a) gij = P};(0) existiert und ist endlich fiir alle i € E.

b) P’L/j (t) existiert, ist endlich und stetig auf R™ fiir allei € E.

¢) Pj(s+1t)= 3 Pul(s)P;(t) fir alle s >0,t >0 undi€ E.
keE

Beweis:
Analog zu Satz 22.21. |

Eine alternative Beweisfiihrung fiir die Sdtze 22.21 und 22.22 ohne Verwendung von Satz
22.20 erhalten wir unter der zusétzlichen Annahme, dass ) konservativ ist. Es gilt:

Pij(s+1) =Y Pu(s)Pii(t) = Pj(t) = > Pu(s)Pes(t) + [Puals) — 1]y (t).
keE keE k#i

Zu zeigen ist, dass
1
lim — Z Pik<S)ij(t)

s—0 8
keE k#i

existiert. Mit Hilfe des Lemmas von Fatou schlieffen wir

.1 .
lim inf — P (s)Pyj(t) > hsrgélif . ij qukPk]

SO0t Sk keE keE
Fiir alle NV > 4 gilt
N N
> Pu()Pii(t) < Y. Pu(s)Pij(t) +1—Pi(s) — > Pul(s),
kEE, k#i k=1,k#i k=1 ki

da Pp;(t) <1und > Pj(s) < 1. Hieraus folgt
JjEE

. 1
- J
lim sup . Z Pir(s)Py;(t Z QirPrj(t) + ¢ — Z qik-

s70+ 2 LB ki k=1,k+i k=1 ki
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22.2. Q—Matrix und Kolmogorovsche Gleichungen

N
Da @ konservativ ist, strebt der Ausdruck ¢; — > @i fiir N — oo gegen 0. Daher wird
k=1,k#i

1
Jim —[Py(s +1) = Py(1)] = Pi(t) = éqikpkj(t) (Riickwiirtsgleichung).  (22.8)

Es gilt weiter

Pli(s+1) = qiuPrj(s+1)
keE
(Gleichung von Chapman—Kolmogorov)

25N anPuls) Pyt = Y Py(t) Y ainPuls)

keEE ek leE kekE

P29 S B s) P (0).

leE

Analog (Teilen durch ¢ und anschlieBender Grenziibergang) kann nun auch
Pii(t) =) Pu(t)ars (22.9)
keE

gezeigt werden, woraus Satz 22.22 entsprechend folgt.

Man beachte, dass die Gleichungen (22.8) und (22.9) nicht fiir den allgemeinen Fall gezeigt
wurden. Das Lemma von Fatou liefert fiir den Grenziibergang s — 0 in Satz 22.21 bzw. t — 0
in Satz 22.22 nur Ungleichungen. Der nachstehende Satz fasst diese Ergebnisse zusammen.

22.23 Satz:
Es sei P(t) = (Pij(t))ijer, t >0, eine Ubergangsmatriz und i € E ein stabiler Zustand.

a) Pj(t) > kZ:E qikPrj(t) fir allet > 0 und alle j € E.
€

(sogenannte Kolmogorovsche Riickwirtsungleichungen)

b) P;(t) > > Pu(t)qr; fir allet >0 und alle j € E.
kelE
(sogenannte Kolmogorovsche Vorwdirtsungleichungen)

¢) Im Fall einer konservativen Q-Matriz Q = P'(0) gilt
Pli(t) = > qinDPy;(t) fir allet >0 und alle j € E.
keE

(sogenannte Kolmogorovsche Riickwirtsgleichungen)

d) Im Fall einer konservativen Q—Matriz Q = P'(0) gilt
Pli(t) = > Pi(t)qr; fir allet >0 und alle j € E.
keE

(sogenannte Kolmogorovsche Vorwirtsgleichungen)
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Abbildung 22.2: Pfadverhalten der eingebetteten Sprungkette eines Markovprozesses.

Die eingebettete Sprungkette

Die Werte ¢;; werden héufig als Ubergangsraten bezeichnet. Um diesen Begriff zu veranschau-
lichen, betrachten wir das Pfadverhalten der eingebetteten Sprungkette.

22.24 Definition:
Sei 1 € E und Xo =i. Dann heifst

T { inf{t > 0| Xy #i} , wenn das Infimum existiert

00 , sonst

Verweildauer im Zustand i.

22.25 Bemerkung:
Ist i € E ein absorbierender Zustand, d.h. ¢; = 0, so gilt nach Satz 22.11(b) P;;(t) = 1 fiir
alle ¢ > 0. In diesem Fall ist T; = oc.

22.26 Satz:
Es sei q; # 0.

a) Fir allei € E gilt

P(T; >t | Xo=1i) = e %, t>0, q:=—qij-

b) Fir die Ubergangswahrscheinlichkeit von i nach j # i am Ende der Verweilzeit T; gilt

P(Xp, =j| Xo=1i) =24,

qi
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Beweis:
a) Fir alle s,t > 0 gilt
PT,>t+s|Xo=1i)=P(Xy=100<u<t+s|Xg=1)
=PXy=i,t<u<t+s|Xyu=1X0=10<u<t)
P(Xy=i,0<u<t|Xo=1i)
(Markoveigenschaft)

<
<

LP(Xy=it<u<t+s|X,=i) P(T;>t|Xo=1i)
(Homogenitét)
L P(Xy=i,0<u<s|Xg=1) P(T; >t| Xo =1)
:P(Ti>S‘X0:Z')-P(T%>t|X0:Z').
Die Funktionalgleichung
g(s+1) =g(s)-g(t)
besitzt genau eine beschriinkte, rechtsseitig stetige Losung, nidmlich g(t) = e=; es ist

also
P(T;>t| Xo=1i)=e* t>0.

Zur Bestimmung von a benutzen wir
P(T, >t Xo =) = P(X, =i,0 S u <t | Xo= i)

t 2t — 1)t
— lim p(Xu:Z',u:() L ’m’(”)jﬂxozi)
n

n—00 "n’'n

-t n ()]

1
a=-—7 log[P(T; >t | Xo=1)] (Ausfallrate)

1 t\]1" 1
= log{ lim [P ()] } - 1og{ lim en'log(Pn(%»}
t n—00 n t n—o00

Folglich ist

log [Py (L log|P;;
o8 [Pil3)] _ _ y, loslPutr)]
n—oo o r—0+ x
(’Hospital)
Lo [P
=-1 S| = % = 4 |
30t [Pu*(a?) G =1

b) X7, ist der Zustand, in den der Markovprozess direkt von 7 aus iibergeht. Nach Definition
ist damit P(X7, = i|Xo =1) = 0. Fiir j # i ist

P (XTz = j | Xo = ’L) = hl—i>%1+ le(h) mit sz(h) = P(Xt+h :] ‘ Xt = iaXt+h 75 ’L)
Aufgrund der Homogenitdt des Markovprozesses ist R;j(h) unabhéngig von t. Es gilt

P(Xp=j|Xo=14)  Pyh)
P(Xp#i|Xo=1) 1—Pu(h)’

Rij(h) = P(Xp =7 | Xo=1,Xn#1) =
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und daher Pk h
lim — (h) =4

P(XTZ- =J ’ Xo = Z) - h—o+ h 1-— Pu(h) 4i

22.27 Definition:
Es sei Q eine konservative Q—Matriz. Mithilfe der in Satz 22.26b) festgestellten Ubergangs-
wahrscheinlichkeiten ldsst sich eine diskrete Markovkette definieren, ndmlich

dij » ;=0

P;; ist offensichtlich stochastisch und heifst eingebettete Sprungkette.

22.28 Bemerkung:

Ein durch die Ubergangsfunktion P;j(t) reprasentierter Markovprozess lasst sich in eine Folge
von exponentiell verweilten Verweildauern (vgl. Satz 22.26a)) und die eingebettete Sprung-
kette zerlegen. Auf den ersten Blick scheint es so, als wiirden diese beiden Komponenten, die
nur von der —Matrix abhéngen, schon zur vollstdndigen Beschreibung des Markovprozesses
ausreichen. Jedoch ist diese Beschreibung im Allgemeinen nicht eindeutig — tatséchlich kann
es mehrere Q-Prozesse, d.h. Ubergangsfunktionen P(t) mit P'(0) = Q geben. Wie schon
in Zusammenhang mit der Definition von @—Matrizen erwihnt, ist die Suche nach den Q-
Prozessen nicht einfach und wird die nichsten Kapitel beanspruchen.

Fin Grund fiir die Mehrdeutigkeit findet sich bei etwas genauerer Betrachtung der Folge der
Verweildauern. Ein Prozess mége nacheinander die Zusténde 1,2, 3, ... mit den Verweilzeiten
Ty,T5,T5 ... durchlaufen. Definiert man nun J, = ZZ:O T und ist Jo = lim,, o Jp, = 00,
so ist der Prozess zu jedem endlichen Zeitpunkt eindeutig festgelegt. Ist aber J,, < oo, so
fehlen Informationen iiber den Prozess zu den Zeitpunkten ¢ > J. In diesem Fall bezeichnet
man J, auch als Explosionspunkt.

22.3 ()—Matrizen iiber endlichen Zustandsridumen

Wir setzen in diesem Abschnitt generell voraus, dass @) eine konservative (Q—Matrix ist, und
suchen alle Ubergangsfunktionen P(t) mit P'(0) = Q. Wir betrachten zunichst einen end-
lichen Zustandsraum E = {0,1,...,m}, und notieren die Kolmogorovschen Vorwirts- und
Riickwartsgleichungen

P'(t)=P()-Q und P'(t)=Q - P(t)

mit der Anfangsbedingung P(0) = I. Wir wollen zeigen, dass in diesem Fall der QQ—Prozess
eindeutig bestimmt ist und einer vergleichsweise einfachen Darstellung geniigt. Dazu setzen
wir

n!

— (tQ)" — (tQ)" ,
6tQ:7;) ] :I—i-nzl mit ¥ =1

und stellen fest:
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22.29 Satz:
a) e'? existiert und ist wohldefiniert fiir alle t € R*.

b) P(t) = '@ ist eine Lisung der Kolmogorovschen Vorwdirts— und Riickwirtsgleichungen.

¢) P(t) = e'@Q ist die einzige Losung der Kolmogorovschen Vorwdirts- und Riickwdrtsgleich-
ungen.

Beweis:
a) Schreibt man P(t) = €'? komponentenweise auf, erhélt man

t? t3
Pz]() 5@]+75ng+2|q§])+3,qu)+.-->

wobei Q" = (qun)) . sei. Wegen
€

,

|gij] < (m + 1) max|gi;| = [|Q

und wegen ||AB]| < ||A|| - ||B|| erhalten wir

gl <"l <lQI*  VijeE.

Folglich besitzt die Potenzreihe P;;(t) eine absolut-konvergente Majorante fiir alle reel-

len ¢, ndmlich
Y A= q=]Ql.
S

Daher konvergiert auch P;;(t) absolut fiir alle reellen t. Da Aussagen iiber Matrizen
elementweise verstanden werden sollen, haben wir nachgewiesen, dass

© n e n
0 _ N Q)" ("
€= Z n! Zqij n!

n=0 n=0 i,j€E
fiir alle reellen t absolut konvergiert.

b) Da man bei einer konvergenten Potenzreihe gliedweise differenzieren darf, erhilt man
fiir P(t) = e'@, ¢t > 0:

d tQ)™ nt"lQn
a0 = dtz n! 221 n!

x n—1 n—1 S} n, on
Y Edrd= Y ERQ =€9-Q=P1)-Q

n=1 n=0
n—1,n—1 n, On
2% —=Q- th =Q €2 =Q- P(t)

AuBerdem gilt P(0) = % = 1.
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c¢) Hierzu betrachten wir die Matrixfunktion
R(t) = P(t) - e7 9,

wobei P(t) die Kolmogorovschen Vorwirtsgleichung erfiillen moge, d.h. P'(t) = P(t)-Q,
P(0) = I. Offensichtlich gilt

R(t)=P'(t) e+ P(t) (-Q)e"® = P(t)- Qe~*? — P(t) - Qe~'? = 0

und auflerdem ist

R(0)=P0)-e @ =1.T=1.

Da die Ableitung von R(t) gleich Null ist fiir alle ¢, sind alle Eintrdge von R(t) un-
abhéngig von t, d.h.

I=R(0)=R(t)=P(t) e @ vteR".
Multiplikation von rechts mit e*® ergibt
e!Q = P(t) - e = P(t) - 7R = P(t) - %9 = P(t) - T = P(t),

d.h. jede Losung der Kolmogorovschen Vorwiirtsgleichung ist von der Form P(t) = e!<.
Entsprechend kann auch mit der Riickwértsgleichung verfahren werden. |

22.30 Satz:
Die Losung P(t) = e'Q der Kolmogorovschen Gleichungen ist ein QQ—Prozess.

Beweis:
Es sind die drei definierenden Eigenschaften von Ubergangsfunktionen zu zeigen.

1. Pj;(t) >0,Vi,j € Eund t € R" sowie P(0) = I. (trivial)

2. Y epbij(t)=1firallei€ Eund t € R*. Da @ konservativ ist, gilt

% > Py(t) :Z%Pij(t)zzzpik(t)'qw

jek j€E JeE kek
=Y Pu(t)> arj=>_ Pul(t)-0=0.
kel jeE keb

Weiterhin folgt aus
d
T 2Pt | =0,
JjEE
dass 3 Pij(t) konstant fiir alle t € R* ist. Deshalb gilt

D Pi(t) = Py(0) = ;=1

jeE jEE jEE
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3. P(t) = e'@ erfiillt die Gleichung von Chapman und Kolmogorov. Mit Q0 := T gilt

Pt +s) = elt+9¢

— (t+9)" o thsl ) .
=2 nl Q:z_:l Zz’!j! @

n=0 i+j=n
0 . . o s o s
tl i 3.7 . ? . 3.7 .
_ h 0| = 0t . 2 0
_Z Z Z'!Q j!Q _<ZZIQ> Zle
n=0 \i+j=n i=0 j=0
=@ . 59, [ |

Ein Spezialfall zur Berechnung von e!? erhilt man unter der Annahme, dass @ eine (m +
1) x (m + 1)-Matrix ist mit den Eigenwerten ay, ..., . Mit o, ...,z bezeichnen wir die
zugehorigen Eigenvektoren und setzen B = [z, ..., Zy]|. Dann gilt

B™'QB = D = diag(ag, . .., an).
Hieraus folgt (B~'QB)? = B~1Q?B = D? und allgemein
B7'Q"B = D" bzw. Q" = BD"B L.
Damit wird
tQ 00 m 0o m .
n __ n n -
Zn.@ =Y Lo =Y L) B

n=0 n=0
= B - diag(e'™, ¢!, ... elom)B~ 1

22.31 Beispiel:
Es sei

E={0,1}, Q= (‘f _ﬂ) ,

d.h. @ ist konservativ. Es gilt:

_ (-8B B\(-8 B\_(B+Bs —p*-pB0\ _ -8 B
Q"= ( 5 —5) ( 5 —5) - <—55—52 —55+52) =—(8+9) ( 5 —5)
—(B+0)Q.
Allgemein folgt induktiv sofort Q" = (—1)""1(8 4+ §)"~1Q. Damit wird

-~ (1Q)" 2 ()" B+ 8" Q
P(t)ze’f"?zfﬂunz::1 . :I+nz::1 -~
L (5~ EB+o)y" 1
(o e
1 (64 BeBtOt g _ ge—(F+o)
- ? <(5 — 5@7(,3+5)t B"i‘ Se ( )t) s t e R+
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Natiirlich gilt auch hier wieder

P;(t) >0, Y Py(t)=1, P(0)=1.
JjEE

22.32 Bemerkung:
Offensichtlich lassen sich die bisherigen Uberlegungen auch auf den Fall iibertragen, dass F
abzahlbar unendlich viele Zustéinde umfasst. Es muss lediglich sichergestellt sein, dass

sup |g;;| < oo
i,jeEE

gilt, was wegen ¢;; = — Y i Qij dquivalent zu

sup |Qz2| < 0.

S
ist. Dies ist jedoch bei praktischen Fragestellungen eine zu grofie Einschrinkung, so dass
andere Methoden zur Lésung des Fellerschen Konstruktionsproblems benétigt werden.

22.33 Beispiel (Poissonprozess):
Der Poissonprozess (oder auch reiner Geburtsprozess) ist ein homogener Markovprozess mit
Zustandsraum F = Ny und Q-Matrix Q = (¢;5)i jen,, wobei

A, g=1+1,:=0,1,2,...,
qij: —)\, j:i,i:O,l,Z,...,
0. , sonst

Somit hat die Q—Matrix die Gestalt

-2 A 0
-2 A
Q= SN
0
Es gilt
n ..
o J(=D)PITA  0<j—i<n,
a) = <J—Z>( ) /
0 , sonst.
Hieraus folgt fiir j > i und t € R™:
£ ) LA
Pij(t) = 6ij + tgij + o1 ij +oe= 2 mqij

oo ]—Z+k s ) ) (0.) ]_1/_)'_](: s ‘ ) )
= g ti J . ‘ + F (—1)k)\]_l+k = Z ‘t : (] : ¢ + k)‘(_l)k)\]—z+k
(J—i+ kN j—1i (G—i+ k) (5—1)lk!

k=0 k=0
O R Y o) L V) U SV
(G-l &= & G- '

Fiir j < gilt P;j(¢t) =0,t € RY.
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22.4 Fellersches Konstruktionsproblem

In diesem Abschnitt soll nun eine Methode vorgestellt werden, die es ermdglicht, auch bei un-
beschrankten (Q—Matrizen einen zugehorigen ()—Prozess zu finden. Dabei setzen wir voraus,
dass die @Q-Matrix Q = (gij)i jer konservativ ist, d.h. fiir alle i € E gilt ZjGE gi; = 0. Die
QQ—Prozesse erfiillen somit notwendigerweise die Kolmogorovsche Vorwérts— und Riickwérts-
gleichung. Bei der Bestimmung eines solchen Prozesses hilft die Umformung der beiden Glei-
chungen in Integralgleichungen.

22.34 Satz:
Es gilt fir allei,j € E:

t
a) P(t) = Y qwPe(t), t>0 & Py(t)=6ie % + 3 [e 5(=9)gy Pyi(s)ds, t > 0.
kEE kB0

t
b) Pllj(t) = Z Pik(t)qkj, t>0 < Pij(t) = (5¢j67qjt + Z feiqj(tfs)Pik(S)qkde, t> 0.
keE ]’zgfj 0

Beweis:

a) Wegen P;;(0) = ;5 gilt

= 51] + Z /eq’ szPk] )d

’?55 0
d qi P, qit
<:>% e :| Z Gik k] 6
ker
ki
d _P ] qit QZ P qit
<:>% ij(t)_e + ge Zqzk ki (t)e
ker
ki
dr 1 . .
= | Put)] e =" qix Py (t) e
keE
d - -
= Pi(t)| = > qinPej(t)
keE
b) Analog. |

Die Idee besteht nun darin, eine der beiden Integralgleichungen als Iterationsgleichung zu
verwenden und den entsprechenden Grenzwert niher zu betrachten (Losung der sukzessiven
Approximation). Dazu setzen wir firi,j € E, n=0,1,2,... und ¢t >0

O'((-)) (t) =0,

o (1) = §je ot +Z/e “gpo ) (s)ds  (n=0,1,2,...),
i 0

fii(t) = Tim ol (t).
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Kapitel 22. Markovketten mit stetiger Zeit

In den nachstehenden Sétzen wird nun gezeigt, dass § = { fi;(¢)} tatsdchlich ein wohldefinier-
ter ()—Prozess ist und unter allen ()—Prozessen eine Minimalitétseigenschaft besitzt.

22.35 Satz:
§ = {fij(t)} ist wohldefiniert und Lisung der Kolmogorovschen Vorwdrts- und Riickwdrts-
gleichungen.

Beweis:
Zum Beweis der Wohldefiniertheit muss die Konvergenz der Folge {087) (t)} fir alled,j € E

nachgewiesen werden. Dazu zeigen wir, dass {JZ(]T.L) (t)} als Funktion von n monoton nichtfallend
und beschrénkt ist.

(i) Monotonie: Fiir alle 7,57 € E und ¢ > 0 ist

Z()( ) = ;e 9t -f—Z/e 9 (t=5) g1 Ug)()d

= 5ij€ ait >0= 0'(]0)(15)

Wir nehmen jetzt allgemein U,E?) (t) > agb_l)(t) fiir alle 4,7 € E und ¢ > 0 an und
schlieflen von n auf n 4 1:

(n—i—l)( _5 je —q;t —|—2/€ qi(t— S)qmak])( )d

keE
ki O

(aufgrund der Induktionsvoraussetzung und aufgrund der Monotonie des Integrals sowie
der Tatsache g;; > 0 fiir k # 7).

(ii) Es bleibt zu zeigen, dass {a,gL) (t)} nach oben beschriinkt ist; dies erfolgt durch Induktion
iiber n. Es gilt
0(1)(t) = &je—qit < 1,

v

fir alleé,j € Fund t € R™.
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22.4. Fellersches Konstruktionsproblem

Induktionsannahme: ng) (t) < 1. Dann gilt

t
JZZH) (t) = 5ije_q” + Z /e_Qi(t_S)qikU,(g)(s) ds

keE
i 0
t t
< 5ij€7qit + Z /eqi(ts)qik ds = 5Z‘j67qit + e %t Z dik /eqis ds
keE keE 0
ki ki
_ _ 1 _ _ 1, 1
— 5¢j6_%t 4 e 4t . g - el — 5ij€_%t 4 e 4t . - I:e(ht _ ]
qi 0 qi qi

= (5ij6_qit +1-— et <1.

Da {ng) (t)} monoton nichtfallend und beschrénkt ist, existiert der Grenzwert

fii() = lim o (1),

n—oo Y

Aufgrund des Satzes von der monotonen Konvergenz folgt aus der Definition von agb) (t) sofort

t
fii(t) = Ge %t 43 /e_q’i(t_s)qikfkj(s) ds (i,j € E; t € RT)
IZEAE 0

und nach Satz 22.34 ist damit gezeigt, dass § = {f;;(t)} die Riickwértsgleichungen erfiillt.

Zum Nachweis der Vorwértsgleichungen reicht es zu zeigen, dass {ag”) (t)} auch die an die
Vorwartsgleichung angepasste Iteration

t
o) = oe it + Y / e =950 () gids  (n=0,1,2,...) (22.10)
kel
k#j

erfiillt. Dann liefert erneute Anwendung des Satzes von der monotonen Konvergenz direkt die
Vorwirtsgleichung in der integralen Version aus Satz 22.34.

Der Nachweis von (22.10) erfolgt durch Induktion. Wegen Ug-)) (t) =0 ist

1 —a: P
ol () = dije ! = Gt

d.h. fiir n = 0 ist (22.10) richtig. Sei (22.10) nun fiir ein n € Ny und alle 4,5 € E, t > 0
nachgewiesen. Dann folgt unter Verwendung des Satzes von Fubini und der Definition der

77



Kapitel 22. Markovketten mit stetiger Zeit

ot

v

t

(t) Déf' (5Z'j€_qit + Z /e_qi(t_s)qikaé?)(s) ds

keE
ki 0

t S
L 5 et 4 > /eqi(ts)qz’k Orje H + / 0 w)ay du

kel leE
it o °
t
u=v+s—t —qg.t —q;(t— —
= (51']'6 i +Z/€ i S)Qik6kj€ 95 (s
keE
ki ©

¢
+ Z Z e 4 gy, / equ(t*”)a,(czfl)(v +s—t)qydvds

t t
+ZZ/€qJ'(tv)/eqi(tS)qikgl(cZ1

leF keE v
Z;ﬁ] k;éz 0 t—v
t
= e U+ 5y / e*qi”qije*qj(t*v) ds

0
t

~
o

keE,”
#j [T
t

S:w;rtiv (Sijeiqjt + Z / e b (tiv)éieeiqiv(nj dv

t
Y / e~ai(t=0) 3 / e (=5) g g (11
E0

)(v + 5 —1t)dsqe; dv

)(v +5—1t)dsqe; dv

t v
+Z/e—qj(t—v) /€_Qz(v wg ko-lgf
(eE kEE §
=3 ki
t v
—(51]6 qjt‘i‘Z/e_qj(t_v) <5ig€q’v+/e ql(v w)qZ
el
75 " ‘
t
Pef ggemiit + 3 / =95t (1)
tebp
L+

Damit ist (22.10) fur alle n € Ny gezeigt.

qrj dv
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22.4. Fellersches Konstruktionsproblem

22.36 Satz:
§ = {fij(t)} ist ein Q—Prozef.

Beweis:
Es muss gezeigt werden, dass § tatsichlich eine Ubergangsfunktion darstellt. (Dass : j(O) = qij
gilt, folgt dann wegen f;;(0) = d;; direkt etwa aus der Kolmogorovschen Riickwértsgleichung.)

(i)

Es gilt o (t) > 0 fiir alle n € N und damit auch f;;(t) > 0 fiir alle i, j € Eund t € R™.
Ferner folgt direkt aus der Definition der ng) (t), dass tli%lJr fij(t) = 6;; fir alle i,j € E
%

ist.
Es soll

> fiit)<1 VieE.

jeEE
gezeigt werden, wozu natiirlich ZjGE ai(;-L) (t) <1firallei € Fundn =0,1,2,...reicht.
Der Nachweis erfolgt wieder durch Induktion, fiir n =1 ist

> o) =3 e = et <1
jEE jEE

fiir alle ¢ € E und alle ¢ > 0.

Es seinun ) p oi(;l) (t) <1 fiir alle ¢ € E und ¢ > 0 nachgewiesen. Aus

t
UZ-(;-LH)(t) = §ije %t + Z /eqi(ts)qikal(g)(s) ds
kel
k#i

folgt

Sogt i =e 4y / e =g [ S0 (s) | ds

JEE keE jEE
ki ©
t
<e H 4 Z /e_ql(t %) gige ds
keE |
ki
t
—e % |14 ik /e %5 ds
kEE ki 0

1 1
= @t {1 +q; <eqit - >}
i qi

=e U1 +e%t —1] = 1.

Damit ist die Behauptung fiir alle n € Ny gezeigt.
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Kapitel 22. Markovketten mit stetiger Zeit

(ili) § = {fi;(¢)} erfiillt die Gleichung von Chapman-Kolmogorov. Dazu wird

fz-(f)(t) =@y —c™M(t) (i,jeE, t>0,n=0,1,2,...)

definiert. Wegen JS-)) (t) =0 ist dann fur alle4,j € Eund t >0

fij(t) = lim a = lim Zf” Zflgn)(t)

k—o0 k—)oo
n=0

Es soll nun

J(t+s) szz £7(s) (22.11)

v=0keFE

fir alle n =10,1,2,..., 4,5 € E und t,s > 0 gezeigt werden. Denn dann ist

fij(t+s) = wa (t+ s) ZZZ 19 (””s)

n=0v=0keFk
D39 ST e
keE v=0n=v
-5 (&) (E4)
keE
= filt) fui(s)
keE

Zum Nachweis von (22.11) wird zunéchst eine Rekursion fiir die fi(f) (t) angegeben. Es
ist

190 =) = o) =yt (G € B, 120)
und weiter

£ @) = o0 () — o (8)

1J 0;

t t
/e gi(t—s Zqz Uk;H_l) /e_’h(t_s) ZQikU;(g)(S) ds
0 0

Q

keE keE
ki js

kek

= /e_q" t=s) Z qikf,g?)(s) ds (i,jEE, t>0, n=0,1,2,...).
0 ki

(22.11) wird nun durch Induktion iiber n gezeigt. Fiir n = 0 ist

f( )(t-i- s) =0; e_‘h (t+s) Z Spe 4t - Oje I = Z fzk fkg

kekE kelE
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22.4. Fellersches Konstruktionsproblem

Nun erfolgt der Schritt von n auf n + 1. Es ist

n+1 n+1

Z me ;L+1 v) (t) = Zf(O)( n+1 ) + Z me ;L+1 v) (t)
v=0keE keE v=1keE
n+1
= S dwe 0 +ZZZ/e g, 10 ) 107 1) d
keE v= lkeEZEEO

(V)(s)

—— n+1 +Z/e qi(s— u)qzzz (") fk:? v) (t) du.

teEy v=0keE
O£

Induktionsvoraussetzung

O Y L N Y TS oy P ey

ko B
s+t
-5 [ g s [ e
LeE Y (eE Yy
i £
s+t
/ et g i) (u) du = £ (s + 1), u

22.37 Satz:

§ = {fij(t)} ist minimal im folgenden Sinn: Fir alle Losungen {z;j(t)} der Kolmogorovschen
Riickwdrtsungleichungen (oder Vorwdrtsungleichungen) mit z;;(0) = §;; und z;;(t) > 0 fir
allei,j € E undt >0 gilt

zij(t) > fi;(t)  Vi,j € E undteRT.

2i;(t) muss dabei nicht notwendig eine Ubergangsfunktion sein.

Beweis:
Die Kolmogorovschen Riickwértsungleichungen

keE

sind dquivalent (siehe Beweis von Satz 22.34)

d . , o
o7 (21 ()e®"] > Z e qnar;(t) (1,5 € E, t>0).
i
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Kapitel 22. Markovketten mit stetiger Zeit

Integration liefert
25 (£)eB" > 2;;(0) + Z /eqisqikzkj(s)ds (i,je E, t >0)

t

und durch Multiplikation mit e~%"* sowie Einsetzen von z;;(0) = d;; ergibt sich

Es wird nun
2i(t) > 0(t)  (i,j € E, t>0)

durch Induktion iiber n gezeigt. Fiir n = 0 ist

5i() =2 0=0"(t) (i,jEeE, t>0)

nach Voraussetzung.
Setze nun z;;(t) > ng) (t) fiir alle 4, j € F und t > 0 voraus. Dann ist auch

zij(t) > dije —ait E /6 ai(t= S)qkzk (s)ds
keE
k#£i

> Sije it -l—Z/e qztsqzak])()d

kelb
k#i 0

=),

Lost {z;;(t)} die Kolmogorovschen Vorwértsgleichungen, so kann entsprechend verfahren wer-
den, im Induktionsschritt wird dann (22.10) verwendet. [

22.38 Satz:
Ist § = {fi;j(t)} stochastisch, d.h.

d fii)=1 Vi€ E teR",
jEE

dann ist § der einzige Q—Prozefs.

Beweis:
Sei {z;;(t)} ein beliebiger @Q—Prozess beziiglich (). Dann ist z;;(0) = d;5, 2;(t) > 0 fiir alle
t > 0 und {z;;(t)} erfiillt die Kolmogorovschen Riickwirtsungleichungen. Satz 22.37 liefert

2i;(t) > fi;(t) und es folgt
123 a(t) 2D fii(h) =
JEE JEE
und damit z;(t) = fi;(¢). [ |
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22.4. Fellersches Konstruktionsproblem

22.39 Definition:
Der in diesem Abschnitt definierte QQ—Prozess § = { fi;(t)} heifit Fellerprozess. Ist er stocha-
stisch, so heifit die zugrunde liegende Q-Matriz Q = (qij)ijcr reguldr.

Ist der Fellerprozess der einzige Q-Prozess, kann er mit Methoden der Theorie der Differenti-
algleichungen oder der numerischen Mathematik direkt aus den Kolomogorovschen Vorwérts-
und Riickwirtsgleichungen bestimmt werden. Deswegen ist es fiir praktische Anwendungen
wichtig, ein Regularitétskriterium zu haben.

22.40 Definition:
Es sei fiir allei,j € E undn=0,1,2,...

die Laplace—Transformierte von O'E;-L) (), und

©ij(A) 3:/f1;j(t)6’_kt dt
0

die Laplace—Transformierte von f;;.

Wir leiten nun aus der Iterationsvoschrift fiir ag;l) (t) eine Iterationsvorschrift fiir cpgb)()\) her.

Zunéchst gilt U,Ej)( ) = 0 fiir alle ¢t > 0, also auch go( )()\) = 0 fiir alle A > 0.
Ferner war

(n+1)( 5 eQz _|_Z/e ai(t— s)q O' )<)d (n:0,1,2,)

Somit folgt

oo t
(1) yy _ 04 —qi(t—s),, _(n) —Xt
Pij (A) = At g +Z//e 4 Qik O (s)e™ " dsdt
0 0

oo t
61 — . n —AS
= )\—i-jqz‘ —i—Z//e (Atai) (= )%kai(cj)( )e AS ds dt
0 0

= J -+ //e (Atai) (= S)qz a,(w)( )e As dtds,
)
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Kapitel 22. Markovketten mit stetiger Zeit

o0

0ij 1 (1) 2y oA
= + i j °d
SRR eI AR
ki 9
0ij 1 (n)
- 2o (A =0,1,2,...
A+q A—I—%éqk%ﬁ() (n )
ki

bzw.

A+ a)el TV O) =8+ 3 anel) (A (n=0,1,2,...).
=

22.41 Definition:
FEs sei

di(t)=1-Y_ fi;(t)

JjeE

fir alle i € E der sogenannte Defekt.

22.42 Bemerkung:
Offensichtlich ist § = {fi;(¢)} genau dann stochastisch, wenn d;(t) = 0.
Um d;(t) ndher zu untersuchen, betrachtet man zunéchst die Transformierte z;(\).

Zi(\) = A /oodz-(t)eM dt = \ 7 (1 - fi (t)) e M dt
0 0

jEE

/)\e)‘t dt - )\/fij(t)e)‘t dt=1-X) ()

0 j€E JEE

— lim (1 - AZ@E?(A)) = lim 2™ (\),

n—00 ‘ n— 00
jerE

wobei

AN =1-23"e ) (n=0,1,2,..).
JjEE

22.43 Bemerkung:
Man beachte, dass z;(\) < 1 fiir |d;(¢)| < 1.
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22.44 Satz:
Sei @@ eine konservative Q—Matriz. Dann gilt
A+a)2"™ =3 gt (n=0,1,2,...) (22.12)
keE
ki

mit der Anfangsbedingung zi(o) =1 fir allei € F.

Beweis:
Fiir alle 1 € F ist

A7 =1-23" 0 )\Z/ t)dt=1-0=1.

jeE JEE 0

Weiterhin gilt

A+ a0 =65+ Y quel) (V)
keE

ki
A8
A () = 2250 J(A
- o z »
€eE
ki
A
A ("‘H) ;
= AN = T g e A0
JEE kek jeE
761
— 1-A3" 0 = S aud > el
JEE )‘+q )‘+q’ keE JEE
— At a)z" ) = A+ g — A - Z%MZ@
keE jeE
ki
=Y a(1-23 e W)
keE jEE
kAi
= Z QikZ;(cn)- u
kelE
ki

22.45 Satz:
Sei A > 0 und § = {&} eine Losung des Gleichungssystems

A+ @)=Y qrés  Vi€E,
keE
ki

mit [|€]] = sup;cp €] < 1, dann gilt:

*Zi()\) <& < +Zi()\) Vie FE.
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Beweis:
Wir zeigen durch Induktion & < 2™ fiir alle n € No. Zunachst gilt & < 1 = 2 fiir alle
1 € F und weiter

>\ + q; 51 = Z QikEk < Z QZkzk (/\ + QZ) (n+1)()\)
keE kel
ki ki
Entsprechend wird auch —zi(n)()\) < & fur alle i € E gezeigt. |

22.46 Satz (Regularitéitskriterium von Reuter):
Betrachte das Gleichungssystem

A+a@)&i=> anés Vi€ E. (22.13)
kelE

ki
Jede der beiden nachstehenden Bedingungen ist notwendig und hinreichend dafir, dass der
Fellerprozess stochastisch ist:

a) Fir ein beliebiges A > 0 ist & = 0 fir alle i € E die einzige beschrinkte Lisung.

b) Fliir ein beliebiges A > 0 ist & = 0 fir alle i € E die einzige nichtnegative, beschrinkte
Lésung.

Insbesondere ist jede dieser beiden Bedingungen hinreichend dafiir, dass der Fellerprozess der
einzige QQ-Prozess ist.

Beweis:

Ist {fi;(t)} stochastisch, so folgt d;(t) = 0 fur alle i € E. Damit wiederum folgt, dass z;(\) = 0

und somit nach Satz 22.45 & = 0 fiir alle ¢ € E die einzige beschrinkte Losung und erst recht

die einzige nichtnegative beschrinkte Losung ist.

Sei nun umgekehrt & = 0 fiir alle ¢ € E die einzige nichtnegative beschrinkte Losung. Da

aber z;(\) nichtnegativ und beschrénkt ist und eine Losung von (22.13) darstellt (folgt durch

Anwendung des Satzes von der majorisierten Konvergenz auf (22.12)), wird z;(A) = 0, somit

auch d;(t) = 0 und schlieBlich ) f;;(t) = 1. [ |
JEE

22.47 Bemerkung:

Unter der Voraussetzung, dass () konservativ ist, lasst sich zeigen, dass der Fellerprozess genau

dann der einzige Q)-Prozess ist, wenn er stochastisch ist, vgl. W. J. Anderson: Continuous-

Time Markov Chains, Corollary 2.5. Daher sind fiir konservatives ) die beiden im Regula-

ritdtskriterium von Reuter angefiihrten Bedingungen sogar notwendig und hinreichend dafiir,

dass der Fellerprozess der einzige (Q-Prozess ist.

In Bemerkung 22.32 wurde erwiihnt, dass fiir beschrinkte Q-Matrizen e’? der eindeutig
definierte (Q—Prozess ist. Die Eindeutigkeit ergibt sich nun auch unmittelbar als Folgerung
aus dem Regularitatskriterium von Reuter.
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22.48 Satz:
Ist Q = (gij)i,jeE konservativ mit sup;cp ¢; < 00, so ist Q reguldr.

Beweis:
Es sei K := sup;cp¢; < oo. Ferner sei (§;)icn, eine nichtnegative und beschrinkte Losung
von (22.13). Dann folgt

1 1
G=~1—— qinbk < > air | sup |l
A+ ai keE At g keE keE
ki ki
Qi K
N sup |&;] < su -sup |&k| < sup |k
ieJIE) & z'ejg A+q; keg 1 A K keg 1

so dass nach dem Regularitatskriterium von Reuter @) regulér und der Felleprozess der einzige
Q-Prozess ist. |

22.5 Anwendungen

Poissonprozess

Wir kehren zum Poissonprozess aus Beispiel 22.33 zuriick. Die zugrundeliegende Q)-Matrix ist
Q = (gij)i jen mit beliebigem A > 0 und

- ) Z:j7
0 , sonst.

In Beispiel 22.33 wurden die Ubergangsgwahrscheinlichkeiten bereits berechnet. Wir wollen
sie nun noch einmal auf eine andere Weise berechnen, ndmlich aus den Kolmogorovschen

Vorwiértsgleichungen:
d
G Po(t) = =APo(t)  (t=0)
d .
S Fu(t) = > Pr(t)gr = APij1(t) = AP;(t)  (j=1,2,...; t>0).

keE
Wir setzen -
Pi(z,t) =) Pj(t)s (i €No,|z| <1)
j=0

und erhalten J

dt
Man verifiziert unschwer, dass

Pi(z,t) = AzPi(z,t) — APi(2,t) = Mz — 1) Pi(2,t).

Pi(z,t) = Py(2,0) - =71 = Z(Sijzj L MEDE i Az
j=0
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eine Losung dieser Differentialgleichung ist. Wegen

. L (M2)T > (At GRS WAV B .
Zze)\(zfl)t — Z ( "Z) ef)\t — Z ( .') efAthJrz — Z ( ) : 'efktzj
—~ ! = (j —1)!

Jj=0 Jj=t

folgt durch Koeffizientenvergleich

———e ", j >,
Pyt =4 G-o° 7
0 , sonst

folgt. Da @ konservativ und beschriankt und somit regulér ist, fallt {P;;(¢)} mit § zusammen.

Der verallgemeinerte Geburts— und Todesprozef}

{An}nen, und {pntnen seien zwei reellwertige Zahlenfolgen mit A\g > 0 und A, > 0 sowie
fn > 0 fiir alle n € N. Wir betrachten eine Q-Matrix @ = (gi;)i jer mit £ = No und

Ao , 1=7=0,
_(AZ+M1) ) j:i,’iGN,
qij = i , 3=14+1,7 € Ny,
i s ] =1i— 171 € Na
0 , sonst,
also
=0 Ao
pr —(A1+ ) A1
Q= 2 —(A2+p2) 2

Die Parameter \,, werden als Geburtsraten, die Parameter u, als Sterberaten bezeichnet. Im
Fall Ag > 0 spricht man von einem Geburts— und Todesprozel mit Einwanderung, anderenfalls
wird der Zustand ¢ = 0 zum absorbierenden Zustand. Wir wollen jetzt herausfinden, unter
welchen Bedingungen @) regulér ist.

Das Gleichungssystem (22.13) nimmt jetzt die Gestalt

(A +20)é0 = Mo&1
A4+ pn)én = tnbn-1+ Abn1 (n=1,2,...)

an. Die zweite Gleichung kann umgeschrieben werden als
An(nt1 = &n) = An + pn(&n —&n—1) (n=1,2,...). (22.14)
Wir unterscheiden zwei Falle:
1. Ao = 0. Es folgt &, = 0, & beliebig, alle tibrigen &, sind dann eindeutig bestimmt.

2. Ag > 0. Es folgt &y beliebig, alle iibrigen &, sind eindeutig bestimmt.
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22.5. Anwendungen

Wiéhle nun & > 0, etwa & = 1, so folgt wegen &1 = (A + A\g)&o/ Ao auch & > & und induktiv
aus (22.14) wegen p,, > 0 allgemein

o <& <& <. ...

Zur Uberpriifung auf Regularitit bendtigen wir noch den folgenden Hilfssatz.

22.49 Satz:
(an)nen, (bn)nen und (wp)nen, bezeichnen reellwertige Zahlenfolgen mit ay, by, > 0 fir alle
neN; 0<wy <w <... sowie

W1 — Wy = ApWp + by (W, —wp—1) (n=1,2,...). (22.15)

Dann gilt: (wn)neN, ist genauw dann beschrinkt, wenn

o

> (an + bpn-1 + bpbn_1an_3 -+ + bubp_1...baa1 + by ... by) < 0.

n=1

Beweis:
Durch wiederholte Anwendung der Rekursion (22.15) erhélt man

Wnp+1 — Wy = GpWnp + bnan_lwn_1 +---+ bnbb—l NN b2a1w1 + bn NN b1 (w1 — wo).

Da (wp,)nenN, als streng monoton wachsend vorausgesetzt war, ergeben sich hieraus die beiden
Abschétzungen

Wpt1 — Wy, > (A + bpan—1 + -+ bpby_1...baas + by ... b1) (w1 — wp)
Wpt1 — Wy < (an +bpapn—1+ -+ +bybp_1...b0a1 +0b, ... bl)wn

wofiir wir abkiirzend
Un(wy —wo) < Wpg1 — wp < Ppw, (n=1,2,...)
schreiben wollen. Aus
Y1(w1 —wo) < way —wy < Prw, (w1 — wp) < w3 —wa < Yowo, ...

folgt zum einen

n—1 n—1
> br(wr — wo) < wy — wy bzw. w + (w1 —wo) Y i < wy,
k=1 k=1

und zum anderen

wy < (Y1 + Dwy, wy < (Y2 + Dwa < (Y1 + 1) (Y2 + Dwy, ...

bzw. allgemein
n—1

wn < wy [] (@ +1).

k=1

Nach einem bekannten Satz aus der Analysis konvergiert das Produkt HZ;%W% + 1) fiir
n — oo aber genau dann, wenn » -, ¥y < 00. |
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Kapitel 22. Markovketten mit stetiger Zeit

Wir setzen nun wy, = &,, a, = A/, und b, = u, /A, fir n € N. Es folgt

1 L, M - - 42 L - 41
L=A [ — ,
v (An+AnAn1 + +)\n...)\2>\1) LW

Somit ist {&;} beschrénkt genau dann, wenn

(1l fin - .- 12
R_;(Afrm + +)\n...>\2)\1><oo'

n—1
22.50 Satz:
Der verallgemeinerte Geburts— und Todesprozef§ mit den Geburtsraten A, und den Sterberaten
tn, n=1,2,..., ist genau dann requldr, wenn R = oco.

Es gibt keine allgemeine explizite geschlossene Lisungsdarstellung .

Linearer Wachstumsprozess (Yule—Prozess)

Als eine etwas konkretere Anwendung der Reuterschen Regularitétstheorie wollen wir die Re-
produktion eines Bakteriums bzw. einer Zellkultur betrachten. Dazu treffen wir die folgenden
Annahmen. Die Anfangspopulation zum Zeitpunkt ¢ = 0 betrage ¢ Einheiten. Jedes Mitglied
der Population teilt sich innerhalb einer mit dem Parameter A > 0 exponentiell-verteilten Zeit
in zwei identische neue Einheiten und zwar unabhéngig von allen iibrigen Mitgliedern der Po-
pulation. Bezeichnet X; die Grofie der Population zum Zeitpunkt ¢, dann definiert (X;);er+
einen homogenen Markovprozess mit dem Zustandsraum E = {1,2,...} (Gedéchtnislosigkeit
der Exponentialverteilung). Wir berechnen nun zunichst die infinitesimalen Ubergangswahr-
scheinlichkeiten.

Pi;(At) = P(,kein Ubergang in (¢t + At]“)
P(,verbleibende Reproduktionszeit zum Zeitpunkt ¢
ist fiir jedes Mitglied groBer als At*)

(e—w)z =1—iMAt+o(At) (i=1,2,...),
P; i+1(At) = P(,von i Individuen teilt sich in (¢,¢ + At] genau eins“)
_ (i) (1 . e—)\At)(e—/\At)i—l =i - AAt+ O(At) ,

Priik(At) = (;) (1 — e Mk i~k — (A (k=2,3,...).

Da es sich um einen reinen Wachstumsproze handelt, ist Pj;(At) =0 fiir j <4 (i =1,2,...).
Die Ubergangsintensitéten g¢;; erhélt man durch die Grenzprozesse

. Py(At) -1 .
Gi=Hm Ay - T (=012,

L Paa(At) -1 .
Qii+1 = A}E)I(IJ+T =iX (1=0,1,2,...).

Ansonsten gilt ¢;; = 0 und folglich ist @ konservativ. Da es sich hier um einen Spezialfall des
verallgemeinerten Geburts— und Todesprozess handelt (A, = nA, p, = 0), folgt wegen

=1 1 1.1
R=d = 2m =™

n=1
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die Regularitét von Q = (¢;j)i jeE-

Wir kommen nun zur Berechnung der Ubergangswahrscheinlichkeiten. Hierfiir ziehen wir die
Kolmogorovschen Riickwértsgleichungen heran, die sich hier wegen P;;(t) = 0 fiir j < i etwas
vereinfachen. Es gilt

Pi(t) = —iAPy(t)  (i=0,1,2,...),
Pjj(t) = —iAP;(t) + iAPi1(t) (> i+1).
Aus der ersten Gleichung folgt wegen P;;(0) = 1 sofort
Pit)y=e ™  (i=0,1,2,...).
Einsetzen in die untere Gleichung fiir j =4 + 1 fithrt zu
i1 (t) = —IAP; i1 (t) + iAPiy1 i1 (t) = —iAP; 1 (t) + iNe—HDX
— z‘/,iJrl (t)ei)\t — _7:>\.Pi7i+1(t)eiAt + Z')\ef)\t

d .
<~ % <Pm’+1 (t)eMt) = i)\e_)‘t,

bzw.
t

NP (t) = /i)\e)‘s ds +c,
0
wobei aus P; ;41(0) = d; 541 = 0 sofort ¢ = 0 folgt. Damit gelangen wir zu

Z) —i(1— e,

t

MNP (t) = /i)\e)‘s ds = z( —e

0

bzw.

Piii(t) =ie ™M1 —e M) (i=0,1,2,...;t € RT).
Entsprechend ergibt sich

ira(t) = —IAP; i 0(t) + iAPiyiqa(t)
= —iAPia(t) + m[(i 1) DX e—M)}

— Y o (B) e = —iAP; i a(t)e™ + i [(z’ +1)e M1 — e_)‘t)}
d : Ny _ _
— S (Parae™) = ia[(i+ D1 = )]
t
— Piio(t) =e ™ / iINi+ 1)e (1 — e ™) ds
0
(s —iXt Y } —2Xt
=i(i+1)e (1—e )+2(e 1)
i(i+1)

— 5 efi)\t [2 _ 267)\15 4 e*?At _ 1]

i(i "21' 1>e—m(1 _ M2,
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Kapitel 22. Markovketten mit stetiger Zeit

und schliefllich mit Hilfe vollsténdiger Induktion

Pu(t) = i(i+1).. '.(k - 1)67m(1 e M (ks e RY).
(k—1)!

t k=2 k=3 k=5 k=10
0.5 0.172 0.0381 0.0019 [ 9.87-10°7
1 0.239 0.0939 0.0145 0.000137
1.5 0.249 0.1315 0.0366 0.001497
2 0.233 0.1470 0.0587 0.005928
3 0.173 0.1347 0.0813 0.022998
5 0.0753 0.0692 0.0583 0.03797
7 0.0293 0.0284 0.0267 0.0229
10 0.0067 0.0066 0.0066 0.00634
15 [ 5.53-107% | 5.52-107* | 5.52-10~* | 5.50 - 10~*

Ubergangswahrscheinlichkeiten des Yule-Prozesses
fire=1,k=2,3,5und 10 und A = 0.5.

Linearer Wachstumsprozess mit Einwanderung

Der Yule-Prozess war ein reiner Geburtsprozess mit linear ansteigenden Geburtsraten. Ein
etwas allgemeinerer Prozess ist der lineare Wachstumsprozess mit Einwanderung. Darunter
versteht man einen Geburts— und Todesprozess mit A, = A-n + a und p, = p - n, wobei
A, i, a > 0. Lineare Wachstumsprozesse beschreiben die Reproduktion von Bakterien, Zellen,
Krankheiten und Bevolkerungen. Es ist

=1
R/:nzz:l)\n-l-a

eine divergente Minorante von R, weshalb die zugehorige Q—Matrix regulér ist. Die Kolmo-
gorovschen Vorwirtsgleichungen lauten hier

Pjo(t) = —aPyo(t) + pPa(t)
Pi(t)=(Aj—1) +a)Pj—1(t) = (A+p)j +a)Py(t) + u(G + DPja(t)  (G=1,2,...).

Unser Ziel ist es, die mittlere Population zur Zeit ¢,

Mi(t) :=E[X, | Xo=i] =) jP;(t), teR",
j=0
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22.5. Anwendungen

zu bestimmen (sogenannte Erwartungswertfunktion). Durch gliedweises Differenzieren und
Einsetzen der Kolmogorovschen Vorwértsgleichungen erhélt man

M(t) = jP(t)
j=1

JAG =) +a)Pija(t) =Y G((A+ i+ a)Pyt) + > ju( + )P ()

j=1 j=1

WE

<.
Il
—

G+DN +a)Piy(t) = ) J((A+p)j+a)Py(t)+ ) (G —DuiPis(t)

M
NE

I
—

o

<
I
o

J

Il
¥

J

[+ +a) =j(A+p)j+a)+ (G — DujlPi;(t)

M

<
Il
o

M

(A= p)j+a)P;;(t)

[e=]

A—pwM;(t) +a, teRT.

—~ .

Die Anfangsbedingung lautet
M;(0) = jPy(0) =" jdiy =i.
j=1 J=1

Damit ergibt sich

{ at +1i . A=p,

und wir beobachten

Speziell fiir den Yule-Prozess, also i = a = 0, gilt M;(t) =i-e M, t € RY.

a=1,1=0 A— U

t -2 -1 0 1
0.5 0.316 0.393 | 0.5 0.649

1 0.432 0.632 1 1.718

2 0.491 0.865 2 6.389

3 0.499 0.950 3 19.09

5 0.499977 | 0.993 5 147.4
10 0.500000 | 0.999955 | 10 | 22025.5
100 0.500000 | 1.000000 | 100 | 2.69 - 10%3
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Kapitel 22. Markovketten mit stetiger Zeit

a=1,1=10 A— U

t -2 -1 0 1
0.5 3.995 6.459 10.5 17.14

1 1.786 4.311 11 28.90

2 0.674 2.218 12 80.28

3 0.524 1.448 13 219.9

5 0.5004 1.061 15 1631.5
10 0.500000 | 1.0004 20 | 2.42-10°
100 0.500000 | 1.000000 | 110 | 2.96 - 10**

M;(t) in Abhéngigkeit von i, A — v, a und t.

Bediensysteme mit unbeschrinkter Kapazitiat (M /M /o)

Wir betrachten ein Bediensystem mit Poissonschen Eingangsstrom der Intensitéit A und expo-
nentialverteilten Bedienzeiten mit Parameter ¢ und nehmen an, dass unendlich viele parallele
Bediengeréte zur Verfiigung stehen. Der Prozess (X;);cr+ der zur Zeit ¢ anwesenden Kunden
stellt einen homogenen Markovprozess mit dem Zustandsraum E = {0, 1,2, ...} dar. Fiir den
Ankunftsstrom gilt

(A- At)ke—)\At

k!

1 —MAt+o(At), k=0,
= AL +o(At) , k=1,
o(At) , k>2.

P(,in (t,t + At] treffen k& Kunden ein®) =

Entsprechend gilt auch fiir jede einzelne Bedienung

1 — pAt+o(At) , k=0,
P(,in (t,t + At] werden k Kunden bedient“) = plAt +o(At) , k=1,
o(At) , k>2,

falls sich wenigstens ein Kunde im System befindet. Da es so viele Bedienungen gibt, wie
Kunden im System sind, gilt insgesamt

1 —nuAt+o(At) , k=0,
P(,in (t,t + At] werden k Kunden bedient“) = nuAt+o(At) , k=1,
o(At) , k>2,

falls sich genau n Kunden zum Zeitpunkt ¢ im System befinden. Es ergibt sich

A A
o —(A+p) A
Q= 20 —(A+2p) A :

3u —(A+3p) A
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d.h. es handelt sich um einen allgemeinen Geburts— und Todesprozess mit A, = A fiir alle
n € No und pp, = nu fiir alle n € N. Da

001 o0
SRt

eine divergente Minorante von R ist, ist () regulér.

y\»a

Es sollen nun die Werte von P;;(t) berechnet werden. Die Kolmogoroschen Vorwértsgleichun-
gen lauten

Ply(t) = =APy(t) + uPi (t)
Pii(t) = =\ +ju)Py(t) + (j + P jia(t) + AP ja(t) (G =1,2,...).

Zur Behandlung dieses Differenzen—Differentialgleichungssystem fiihren wir wieder die erzeu-
gende Funktion

i .
:sz](t)zj7 |Z’ SL
7=0

ein. Indem wir beide Seiten der Kolmogorovschen Vorwirtsgleichungen mit 2/ multiplizieren
und {iber alle 5 summieren, bekommen wir

[o¢] o
szlg(t ' Z/\+JM i ( Z]+MZJ+1PU+1( Z]+)‘ZR] 1(2)77 '
j=0 j=0 j=0 Jj=1
© .
=-A sz _,UZZPU ZJ 1+MZPJ+1 )(j"i'l)z]
§=0 =0
o0
—I-)\ZZP”,l(t)z] !
j=1
Es gilt
oo oo
Y Pijt)e =) Pija(t)? = P(zt)
7=0 j:l
> OP(z,t)

. i1
;Pij(t)ﬂj ZP]+1 (j+1)2 =,

Damit bekommen wir

Gli;,]igt) = —AP(z,t) — ,uzapgz’t) M@Pé()z,t) + AzP(z,t)
=p(l— z)apéz’t) — A1 —2)P(z,t). (22.16)

Um diese partielle Differentialgleichung zu 16sen, setzen wir

P(z,t) = G(z,t)F(z,t)
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mit G(z,t) = 2= D0=¢) und p = A\/p an. Damit wird

OP(zt) _ G(z, )E)F(z,t) + F(z,t) - G(z,t) - Mz — 1)e
ot ot
OP(z,t) OF(z,t) ut
9 = G(z,t) e + F(z,t) - G(z,t) - o(1 — e ).
Setzt man diese Ergebnisse in die Differentialgleichung (22.16) ein, erhélt man
_ OP(z,1) OP(z,t)

0

Y u(z —1) 5, Mz —1)P(z,t)

—Glat) - 8F§;’t) b E(at) Az —1)e + (s — 1)8Fa<jt)
+A(z = 1) (1 —e ™) - F(z,t) = Mz — 1) - F(2,1)]
Gt _aFéi,t) (s — 1)8Fa(,z,t)
Unter Beachtung von G(z,-t) = 0 folgt
aFéj’w iz — 1)8F6(;’t> = 0. (22.17)

Man {iberpriift unschwer, dass jede Losung von (22.17) von der Form
F(zt) = g((z = e
ist. Mit £ = (z — 1)e #* ergibt sich némlich

OF (z,t)  0g(¢) 0f  09g(l)

— LD = N _ (—yy) . oMt
ot o0 i~ o0 D (me
OF (1) dgt) 96 dgl) _,,
o0z ot o0z ot ©

Damit wird allgemein

P(z,t) = 2D (2 — 1)e#t),

Die Anfangsbedingung erhalten wir aus der Modellannahme, dass wir stets mit einem leerem
System starten, d.h. es gilt anfinglich ¢ = 0. Aus

[e%¢) o]
P(Z,O) = ZPOJ'(O)Zj = Z50jzj =1
j=0 J=0

folgt somit 1 = g(z — 1) und daher

P(z,t) = ez D=e™) _ ge(=1)
Abschliefend wird
1 07P(z,1) 1 (1 —eHt)p)

- _ g c(z-1) _ A= e ey —(1—e M)
R = _‘cje = e j € N,

Poj(t) = T » 7l

was einer Poisson—Verteilung mit Parameter (1 — e #!)p entspricht. Insbesondere gilt

E[XiXo=1i]=(1—e")o, tecR".
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p=1 0=0.5 J

t 0 1 2 3 5

0.25 0.895 | 0.099 | 0.0055 | 0.0002 | 1.23-10~"
0.5 0.821 | 0.162 | 0.0159 | 0.0010 | 2.02-1076
1 0.729 | 0.230 | 0.0364 | 0.0038 | 1.92-10°
2 0.649 | 0.281 | 0.0607 | 0.0087 | 8.17-107°
5 0.609 | 0.302 | 0.0751 | 0.0124 | 1.53-10~4
10 0.607 | 0.303 | 0.0758 | 0.0126 | 1.58 - 10~*
20 0.607 | 0.303 | 0.0758 | 0.0126 | 1.58 - 10~

Werte fiir Py;(t) in Abhéngigkeit von p, ¢ und t.

Anwendung findet dieses Modell etwa bei Problemen der Produkthaftung. Es sei X; die Anzahl
intakter Geréte zur Zeit ¢t. Die Anzahl produzierter Teile in (0, ¢] sei NV; (Produktionsrate \).
Mit Y; beschreiben wir die Anzahl ausgefallener Geréte in (0,¢] (Ausfallrate p). Dann gilt

A
n:m—&::mmZMMFEwwiEmﬁﬂpju—(%,mR#

Zweidimensionale Competitionprozesse

Zweidimensionale Competitionprozesse stellen eine weitere Verallgemeinerung von Geburts—
und Todesprozessen dar, das Regularitétskriterium aus Satz 22.50 soll auf diese Prozesse aus-
gedehnt werden.

Es seien Fj und Es zwei abzéhlbare Mengen, o. B.d. A. entweder Ny oder {0,1,...,n}; we-
nigstens eine der beiden Mengen sei abzahlbar unendlich. Wir sagen, Q = (¢ij)i jer gehort
zur Klasse I'g, g,, wenn die Elemente q(y ), (m,n) dem folgenden Schema geniigen:

(’I?’L, n) d(uw),(m,n)
(u+1,0) v
(u, 0+ 1) 05
(u - 17U) 913w
(u,v—1) 0,

(u+1,0+1) 03,

(u - 17 v+ 1) 921}

(u—1,0—-1) o7,

(u+1,v—1) 03,

(u+i,v+37), |i| > 2 oder |j| >2 0
8

(uvv) - Z 051}

k=1

Die Funktionen 0% (k =1,...,8) sind auf E = F; x Ey definiert und haben die nichnegativen
reellen Zahlen als Wertebereich. Zusétzlich werden die Randbedingungen

930:950:91%020 (UGEl) ‘98@:98@:95@:0 (UEEQ)
02, =05, =05, =0 (ue E; v, =supkEy) falls |[Es| < oo
0n =02 ,=05 ,=0 (vEEy u,=supEy) falls |[Ej| < o0
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gefordert.

22.51 Definition:
Ein Markovprozess (X¢)i>0 mit Zustandsraum E = Ey x Ey und Q-Matriz Q € I'g, g, heifst
zweidimensionaler Competitionprozess.

Fiir einen zweidimensionalen Competitionprozess (X¢):>0 mit Zustandsraum £ und Q-Matrix
Q sei
A= {(uv) € E| qup),@e) =0}

die Menge seiner absorbierenden Zustidnde. Aulerdem werden Teilmengen T} (k € Np) von
E sowie reellwertige Zahlenfolgen (M})ken, und (myg)ken, ausgezeichnet:

Ty = {(u,v) e E\A|u+v=k} (keNy),

M, := max {911“) + 951}} (k € No),
(U,U)GTk
= min {63, + 0} k € No).
mg (ugjl)lélTk { v T uv} ( 0)
Fir Ty, = @ sind M} und my, nicht definiert.
Mit diesen Bezeichnungen ldsst sich nun eine Verallgemeinerung von Satz 22.50 angeben.

22.52 Satz:
(Xt)e>0 sei ein zweidimensionaler Competitionprozess mit Zustandsraum E und Q—Matriz Q.
Existiert ein N € No mit Ty, # @ und My > 0 fir alle k > N und gilt

00
T R Y A Vvl At 22.18
k:;kl (Mk‘ MkMkfl Mk‘---MN-|-1 ( )

so ist Q) reguldr.

Beweis:
Fiir die Q—Matrix eines zweidimensionalen Competitionprozess reduziert sich das Gleichungs-
system (22.13) auf das partielle Differenzengleichungssystem

8
(A + Z 92}/0) g(u,v) = eqlwé-(u—l-l,v) + eiué(u,v—l—l) + ngf(u—m) + eﬁyf(u,v—l) + 915w€(u+1,v+1)
=1

+93v§(u71,v+1) + eztvg(ufl,vfl) + 92v§(u+1,'u71) ((u,v) € £)(22.19)

Wir haben nachzuweisen, dass das System (22.19) unter den Voraussetzungen des Satzes
keine positive beschriankte Losung zuldsst. Zu diesem Zweck wird das Verhalten der Teilfolge
(nk)ken, eines positiven Losungsvektors (€(y.))(u,v)er von (22.19) studiert, deren Glieder
durch

ng = max
k (u0)e T g(u,v)
festgelegt sind, und gezeigt, dass (nk)ren, unbeschrankt ist. Mit (ug, vi) werden die (nicht not-
wendig eindeutig bestimmten) Stellen bezeichnet, an denen die Maxima angenommen werden.
Im Falle der Mehrdeutigkeit entscheide man sich fiir das Tupel mit der kleinsten u—Koordinate.
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Fiir 6 wird fortan kurz 6% (i = 1,...,8) geschrieben. Aus (22.19) folgt, dass (ng)ren, fiir

Uk, Vk

k > 0 der dreigliedrigen Rekursion

4
()\ +> 9,@) ng, = (0 + 0%) nigr + (03 + 05) g1
=1

geniigt. Fiir k > N folgt daraus

A 03 + 0
ol 5Nk + o7 2
i+ 0 0, + 05

N1 — N (ng — ng—1).

Fiir einen beliebigen positiven Losungsvektor (§(,,4))w,v)er von (22.19) sei kg > n ein Index
mit ng, > 0. Die Folge (ng)g>k,—1 erfiillt dann die Voraussetzungen von Satz 22.49, wobei

ap = ﬁ und by = Z’?ig% zu setzen ist. Satz 22.49 liefert nun: (ng)k>k,—1 ist genau dann
k k k k -
beschréankt, wenn die Reihe
io: A n /\(02 + 9%) o /\(91% + ‘9@ .- (9;§0+1 + %OH)
Kt Ot 0k (O 00 +07) (05 +63) - (63, +67)

(0F +65) - - (0, + 0x,) } (ko > ) (22.20)

(0p +67)... (6}, + 602 )

konvergiert. Da die Reihe aus (22.18) eine divergente Minorante von (22.20) ist, ist (ng)g>ko—1
und damit auch (€, ) (u,v)er unbeschrinkt. [ |

22.6 Verweildauern und Riickkehrzeiten

Wir sagen, j ist von ¢ aus erreichbar, und schreiben i — 7, wenn es ein t > 0 gibt mit
P;;(t) > 0. Gilt i — j und j — 4, kurz ¢ <> j, dann heiflen ¢ und j miteinander verbunden
bzw. man sagt, dal ¢ und j miteinander kommunizieren.

Fiir Ubergangsmatrizen definiert ,,<>“ eine Aquivalenzrelation auf E.

1. Reflexivitét: Es gilt sogar P;;(t) > 0 fur alle ¢ > 0, vgl. Satz 22.11.
2. Symmetrie: Gilt nach Definition.

3. Transitivitét: Ist P;;(¢) > 0 und Pji(s) > 0, so folgt mit der Gleichung von Chapman-—
Kolmogorov auch Py (t + s) > P;;(t)Pji(s) > 0.

Ein Markovprozess, dessen Zustandsraum bzgl. der Relation ,,<»* in genau eine Klasse zerfillt,
heift irreduzibel.

Da die Ubergangswahrscheinlichkeiten im allgemeinen nicht explizit bekannt sind, stellt sich
die Frage, ob man anhand von @ feststellen kann, ob ein Markovprozess irreduzibel ist oder
nicht. Diesem Zusammenhang dient die nachfolgende Definition.

22.53 Definition:
FEine Q-Matriz Q = (qij)ijcr heifit irreduzibel, wenn es zu jedem Paar (i,j) € E x E mit
i # j eine Folge von Zustinden (i,hy,...,hy,j) mitr >0, ho € E, a =0,1,...,r, gibt mit

Qih1Qhihs " Ghyj > 0.
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22.54 Satz:

(Xt)iecr+ sei ein homogener Markovprozess mit abzihlbarem Zustandsraum E, der von einer
konservativen, reguliren Q-Matriz Q = (qij)ijce erzeugt werde. Dann gilt: (X;)icr+ ist
genau dann irreduzibel, wenn Q irreduzibel ist.

Beweis:

(i)

Wir nehmen zunéchst an, dafl @ irreduzibel ist. Ist g > 0 fiir £ # k, so folgt aufgrund
der Beziehung Py, (At) = qo At + o(At) fiir At — 0, dass auch Py (s) > 0 fiir alle s < 6
mit einem § > 0. Mit der Gleichung von Chapman—Kolmogorov folgt aber auch fiir alle
t>0

Pij(t) = Pij(s) Pjj(t — ) > 0.

Aufgrund der Annahme existiert fiir jedes Paar (i, j) € FE x E eine Folge (i, h1, ..., hy,J)
von Zustdnden mit g¢;n, qrihy - qh,.j > 0. Hieraus folgt aber sofort

Py () Prypy (t) - -+ - - Pp,(t) >0

fir alle t > 0. Mit Hilfe der Gleichung von Chapman und Kolmogorov kann man nun
jeweils fiir beliebige s,t > 0 sukzessive schlieflen:

P, (s+1) Z Pite(8) Pihy (t) = Piny (8) Phyny (1) > 0
keE

zh3 s+t) Z Py.(s thg ) > Pip, (S)Ph2h3 (t)>0
keE

Pij(s +1) Z Pii(8)Pyj(t) > Pip, () Py, (t) > 0.
ker

Sei (X¢);er+ irreduzibel. Da @ als regulér vorausgesetzt war, muss die korrespondie-
rende Ubergangsfunktion gerade der Feller—Prozess sein. Dieser ldsst sich bekanntlich
durch

fi(t) = lim o\(t), teRY,

n—oo

darstellen, wobei
V) =0 (teRh),
(22.21)

(nﬂ)( ) = ;e 9t -f—Z/C ai(t= s)qkakj)( )ds (n=0,1,2,...; te R").

kelE
ki 0

Ist fi;(t) > 0 fiir ¢ # j und alle ¢ > 0, dann gibt es einen Index ng € N mit JZLO)(t) > 0.
In diesem Fall garantiert die Gleichung (22.21) die Existenz mindestens eines Zustandes
hng—l mit

-1
Qihpg—1 > 0 und Uf(:(;,l,)j(t) >0,
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denn andernfalls wiirde die rechte Seite von Gleichung (22.21) verschwinden, was nicht

sein kann. Wenn nicht schon h,,,—1 = j feststeht, leitet man aus a,(1 o 1) () > 0 wiederum

die Existenz eines Zustandes hy,_2 ab, fiir den

-2
qhnoflhn072 > 0 und 0222_27)J(t) > 0

gilt. Nach einer endlichen Anzahl von Iterationen gelangt man zu einer Ungleichung der
Form

q'ihnoflq}lnoflhn072 .... qhno—k—lhno—k > 0

mit Ay, = j oder bekommt
. 0 d M 1) > 0
Qihpy—19hng—1hng—2 Qhahy > ur Uhu( ) > 0.
Aber
bedingt hy = j. ]

Wir kommen jetzt auf das Riickkehrverhalten von homogenen Markovprozessen zu sprechen.
Definiere

Tz(]()) = O, T(n+1) — inf {t > T | Xt = ],X() = Z ds : T‘Z(Jn) <s < t, Xs ?é ]} .

j ]

~.

»
»

0 1 2 3
7;_() 7;']‘() Tij() 7;})

<

Abbildung 22.3: Eingebetteter Erneuerungsprozefl

Offensichtlich bilden die Gréfen (Tz(jn)) neN die Erneuerungszeitpunkte eines modifizierten

Erneuerungsprozesses. Fiir die zugehorigen Lebensdauerverteilungen wéhlen wir die Bezeich-
nungen

Fy(t):=P(T) <t) (teR")

eR
Fi(t) =PI — T <1)  (n=12..:teRY)

und setzen noch Fj := lim Fj(t) sowie F;; = lim Fj;(t).
t—00 t—o00

22.55 Definition:
e Fin nichtabsorbierender Zustand i eines homogenen Markovprozesses heifst rekurrent,
wenn F; = 1, transient, wenn F; < 1 ist.
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e Fin rekurrenter Zustand heif§t positiv rekurrent, wenn

Wi 1= /tdFZ-(t) < 00
0

gilt, andernfalls nullrekurrent.

e Fin homogener Markovprozess mit lauter positiv rekurrenten Zustinden heif$t ergodisch.

22.56 Satz:
Fiir homogene Markovprozesse gilt

P(Xy =4, T} > ] Xo = i) = b5~ (t € RY),
d.h. fiir j =1 ist die Aufenthaltsdauer des Markovprozesses im Zustand i mit dem Parameter
q; > 0 exponentiell verteilt.

Beweis:
Fiir ¢ # j ist die Behauptung klar, fiir ¢ = j handelt es sich lediglich um eine Umformulierung
von Satz 22.26. |

Der nachstehende Satz beantwortet nun noch die Frage, wie oft ein Markovprozess einen
bestimmten Zustand annimmt.

22.57 Satz:
Es bezeichne N; die Anzahl der Aufenthalte in einem nicht absorbierenden Zustand i.

a) Esist P(N;=m | Xo=1)=F" (1 - F) firm=1,2,... (geometrische Verteilung).

o _ o 1-—Fj , m=20
b) Fiiri# j zstP(N]—m]Xo—z)—{ FijF]m_l(l—Fj), m=12,

. ' N 1, Fii<1
c)EszstP(NZ<oo|a:0—z)—{0’ Fo—1.
d) Es gilt EIN; | Xo = i] = Zf;, falls F; <1.

. ‘ : 0, Fy;=0
e) Firj#iund F; <1 gilt E[N; | Xg=1] = Fy

—F; Fij?éo‘

Beweis:
a) Das Ereignis {N; = m | Xy = i} tritt genau dann ein, wenn Ti(il) < 00, Ti(f) - Ti(il) < 00,
e Ti(imfl) — Ti(imd) < 00, Tz(zm) — Ti(imfl) = oo gilt. Die Wahrscheinlichkeit fiir jedes
der ersten m — 1 Ereignisse ist F;, die fiir das letzte ist 1 — F;.
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b) Mit Wahrscheinlichkeit 1 — Fj; erreicht der in i startende Markovprozess niemals den
Zustand j; mit Wahrscheinlichkeit Fj; erreicht er ihn irgendwann, anschlieend erfolgen
noch soviele Aufenthalte wie bei einem in j startenden Markovprozess.

¢) Unter Verwendung von a) ergibt sich die Behauptung aus
oo o
P(N; <o0)=> P(N;=m|Xg=1)= Y _ F"(1-F).
m=1 m=0

d) Die Behauptung folgt direkt aus der Formel fiir den Erwartungswert einer geometrisch
verteilten Zufallsvariable.

e) Der Fall F;; = 0 ist trivial. Fiir F}; > 0 wird der Erwartungswert aus d) nur durch den
Faktor F}; modifiziert. |

22.7 Grenzverhalten

Die Zustéinde sollen nun anhand der Ubergangsfunktion auf Rekurrenz und Transienz unter-
sucht werden, d.h. es soll ein Kriterium hergeleitet werden, dass Satz 21.25 entspricht.

22.58 Satz (Grenzverhalten von Markovprozessen):
Es sei P(t) = (Fij(1)); jep, t 2 0, die Ubergangsfunktion einer Markovkette (Xi)jer+-

o0
a) i € E ist genau dann rekurrent oder absorbierend, wenn [ Pi;(t) = oo ist. Umgekehrt

0
ist 1 € B genau dann transient, wenn das Integral konvergiert.
b) i € E ist genau dann positiv rekurrent, wenn tlim P;i(t) > 0 ist. Insbesondere gilt im
—00

Fall positiver Rekurrenz

, 1
mi i= Jim Palt) = Giphi

¢) Ist die Markovkette irreduzibel und i € E positiv rekurrent, so gilt fir alle k € E
. 1
Jm Pra(t) = mi = qifti”
d.h. die Grenzwerte der Aufenthaltswahrscheinlichkeiten im Zustand i sind unabhdngig
vom Anfangszustand k.

Beweis:
a) Bezeichnet N; die Anzahl der Aufenthalte im Zustand i und T; die Verweildauer im
Zustand i, so gilt nach dem Satz von Fubini und Satz 22.57

/Pii(t)dt _ /E G, 4| Xo = i]dt = E /5Xt,idt|X0 i
0 0 0

BT
1—F

Das Integral divergiert also genau dann, wenn E|[T;] = oo (absorbierendes i) oder F; = 1

ist (rekurrentes 7).

= E[Zeit im Zustand i] = E[N;|Xo = i| - E[T}]
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Kapitel 22. Markovketten mit stetiger Zeit

b) Wie schon im Fall diskreter Markovketten werden die Grenzwertaussagen aus der Er-
neuerungstheorie (vgl. Stochastik IT) verwendet. Zunéchst gilt fiir alle ¢, j € Eund t > 0
unter Verwendung der Homogenitét

Fij(t)

P(Xt—]’XO—Z)

= P(X, = 4. T > t| Xo=i) + P(Xe = 5. T < t | Xo = i)
= P(Xy =4, T >t Xo=1) + P(X, o =7 | Xo =)
t
= (5,']‘67‘12'1‘/ +/ij(t — ) dFij(S), teR". [ ]
0

Speziell fiir ¢ = j ergibt sich die Erneuerungsgleichung
¢
Py(t) = e 0! +/Put—s dFi(s), teRT.
0
In der Erneuerungstheorie wurde gezeigt, dass dann

t
Pii(t) = e 4t _|_/e(Ii(t5)dRi(S)7 te R,
0

o0

gilt, wobei R;(s) = > (F;)™(s) die Erneuerungsfunktion von Fj ist. Da e~ %! direkt
n=1
Riemann—integrierbar ist (vgl. Stochastik II), folgt aus dem Fundamentalsatz der Er-
neuerungstheorie
[e.o]
1
P(t) —— — / 4% ds =
t—o00 /ij , q1/~'L’L

also

) , falls 7 positiv rekurrent,

= lim Py(t) = ¢ qipi P
oo 0 , falls ¢ null-rekurrent.

oo
Der Grenzwert 0 fiir transientes ¢ folgt aus der Konvergenz des Integrals [ Pj;(t)dt.

¢) Fiir einen irreduziblen Markovprozess ist Fj; = tlim Fy;(t) =1 fiir alle k,7 € F und es
—00

folgt mit dem Satz von der majorisierten Konvergenz
t t
lim P;(t) = lim [ Py(t — s) dFy(s) = tlim Py(t / dFyi(s) = mi By = ;.
—00

t—o00 t—00
0 0

22.59 Satz:

Es sei i +» j. Genau dann ist i transient bzw. positiv rekurrent, wenn j transient bzw. positiv
rekurrent ist. Insbesondere sind fir irreduzible Markovketten entweder alle Zustdinde transient
oder alle Zustinde null-rekurrent oder alle Zustinde positiv rekurrent.
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Beweis:
Es werden die Kriterien aus Satz 22.58 verwendet. Aufgrund der Voraussetzung existieren
5> 0 und u > 0 mit Pj;(s) > 0 und P;;(u) > 0 und aufgrund der Gleichung von Chapman-—
Kolmogorov folgt

Pjj(s +1t+u) > Pji(s)P(t) Pij(u).

Es sei nun zunéichst ¢ transient. Dann divergiert | P;;(¢) dt und es folgt
oo o0 o
[Pz [P+t az P psw [Paoa=o.
0 0 0

also ist auch j transient.
Nun sei i positiv rekurrent. Dann ist lim P;;(¢) > 0 und es folgt
Jim Py;(t) = lim Pjj(s + ¢ +u) > Pji(s)Pyj(u) lim Py(t) >0
und damit die positive Rekurrenz von j. Die Umkehrungen folgen aus der Symmetrie von
14> . |

In Satz 22.58 wurden Kriterien fiir Rekurrenz und Transienz formuliert, die auf der Ubergangs-
funktion P;;(t) basieren. In vielen Anwendungsfiillen ist es jedoch bei gegebener Q—-Matrix
sehr aufwendig, den Feller—Prozess zu berechnen. Daher ist der nachstehende Satz von grofler
Bedeutung, da mit seiner Hilfe direkt aus den Werten der (Q—Matrix ermittelt werden kann,
ob Zusténde positiv rekurrent sind oder nicht, und gegebenenfalls sogar die Grenzwerte m;
direkt berechnet werden koénnen.

22.60 Satz:
Es sei Q = (qij)ijcE eine konservative, reguldre und irreduzible Q-Matriz. Dann gilt: Der
zugehorige Fellerprozess { fi;j(t)} ist genau dann ergodisch, wenn das Gleichungssystem

> g =0 (j € E) (22.22)
keE

eine positive, summierbare Lisung besitzt. In diesem Fall gilt

g (4) — Yi
7T.7 - tll)ngolo fl] (t) - Z v
i€E

Vje k.

Beweis:

(i) Wir setzen zunéchst voraus, dass {f;;(t)} ergodisch ist. {f;;(¢)} geniigt den Kolmogo-
rovschen Vorwirtsgleichungen

W) =>" futae; Vi€ E,
kel

Das Grenzverhalten von lim;_, fij(t) studieren wir anhand der zugehérigen Laplace—
Transformierten

Fi(s) = / faetdt (i) € ),
0
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die wegen |f;;(t)] < 1 fiir s > O stets existieren. Nach einem bekannten Satz iiber
Laplace—Transformierte gilt

Jim fi;(t) = lim s fij(s)  (Vi,j € E).

Durch partielle Integration erh&lt man
[0.9] T
/ —st 3, _ 1 / —st
0 0
-

= lim [ e f;(t)]] + / se S f(t) dt

T—00
0

T

= lim | e™ fi;(7) — fi;(0) + S/e_Stfij(t) dt

T—00
0
= sfij(s) — (52']‘ VZ,] € F.

Wendet man die Ergebnisse auf die Kolmogorovschen Vorwirtsgleichungen an, bekommt
man

Sfl] - Z] = Z fzk: ij

keE

bzw.

[szj( ) 1]] Zsfzk( )Qk]

keE
Da sfik(s) — m fir s — 0, folgt zunéchst mit dem Lemma von Fatou:
0> Z TikQk;-
keE

Indem man beide Seiten dieser Ungleichung iiber j summiert und dabei ) jep Qi =0
ausniitzt, erhélt man

0= Zm‘k%j (J € E).
keE

(ii) Sei nun (yi)kep eine positive summierbare Losung des Gleichungssystems

 ma; =0 (jEE).
keE

Mit

o (1) = 5yt +Z/ ~0(=) g0 (g)gids  (n=0,1,2,...; t € RY)
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bezeichnen wir wieder die Approximanten der Fellerschen Minimallgsung (es handelt
sich dabei um die Vorwérts—Integral-Rekursion (22.10), vgl. den Beweis von Satz 22.35),
d.h.

lim aj () fii () Vi,je E, teR".

n—oo
Wir behaupten

Zyz (n) < yj Vn € N.
i€EE

Offensichtlich ist

fiir alle j € E und auch
1 i 0,
S piol (1) =3 pidie = yemut <y
i€EE icE

fir alle j € E. Wir kommen zum Schritt von n auf n 4 1:

Zyz (n+ —ye —at +Z/Zyz Ok le —as(t= S)ds

ki

t

<yje Y yquj/e_Qj(t_s) ds

keE
ki 0

1 1
_ —q,t —q,t q;t
=y,e qj +yiqie” Y (63 _>
J J47 qj qj
=y (e e (e 1))

Nun folgt unmittelbar
Zylflj Z%(T}ggog t)) < nlgglozyzaz(;)(t) < yj-
icE =) icE

fiir alle 7 € E. Wegen

S wilii®) =D w Y fi® = vi=> v

jEE i€k i€E  jER ) jeE

ist bereits

> wifi(t) =y

1€ER
fiir alle j € E und alle ¢t > 0 bewiesen. Da unabhéngig von t

D wifi(t) <Dy < oo

i€l yeE
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gilt, liefert nun der Satz von der majorisierten Konvergenz

Yyj = tliglozyifzj(t) => i,

1€ER i€E
woraus
T = e— (j € E)
ZiEE Yi
folgt. ]

22.8 Anwendungen

Geburts— und Todesprozess mit konstanten Raten

Beim Geburts— und Todesprozess mit konstanten Raten gilt A\, = A fiir n = Ng und p, = p
fiir n € N. Das zugehorige System fiir die stationdren Zustandswahrscheinlichkeiten (22.22)
lautet hier

0 = —Amo + pm,
0=—A4+pw)m+ pmpi1 + A1 (n=1,2,...).

Nach Division durch g nimmt die zweite Gleichung die Form
Tne1 — (0 + D)+ 01 =0 (n=1,2,...)
mit o := 2 an. Offensichtlich handelt es sich hier um eine lineare Differenzengleichung zweiter

Ordnung mit konstanten Koeffizienten (siche Anhang A). Die Nullstellen des zugehorigen
charakteristischen Polynoms

2 = (o+ D)z +o

sind 1 = 1 und x5 = p. Die konstante Funktion 7, = 1 fiir n = 0, 1,2, ... kann nicht zu einer
Wahrscheinlichkeitsverteilung normiert werden und ist auch nicht mit der Anfangsbedingung

0= —MAmg + pmy
kompatibel. Die gesuchte Losung ist deshalb
Tp=c-0" firn=0,1,2,...,

wobei allerdings ¢ < 1 zu fordern ist, da die Folge (7, )nen, sonst nicht summierbar ist. In
diesem Fall ist

120-2@”: — c=1-op.

Auf die Voraussetzung, dass @ regulér ist, kann in Satz 22.60 nicht verzichtet werden, wie
das nachfolgende Beispiel zeigt.
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22.61 Beispiel:
Betrachte einen verallgemeinerten Geburts— und Todesprozess mit den Ubergangsintensitaten

nnt1 = Ay =4" fiir n=0,1,2,...

n

Qn,nflzﬂn:? fir n=1,2,...

Zur Uberpriifung auf Regularitéit verwenden wir Satz 22.50. Dieser liefert wegen
— [ 1 M fin -
R= —yf +...+""'2>
(1 = gnogqn=t. 4 an. 4?2 o
D N\wta ettt T m
/1 11 11 11
=2 an T oqnei Togmes T T oty
=1
:Z—-(20+2+22+...+2"*1)

o0 o0 n oo n
1 1-—2" 1 1
S 2() X(i) <=

n=1 n=1 n=1

dass @ nicht regulér ist. Die zugehorigen stationdren Gleichungen

0=—(An+ )T + tnt1Tnt1 + An—1Tn—1 fir n=1,2,...

qn n+1
— 0=- <4n+2> 7Tn+?7rn+1+4"_177n,1 fir n=1,2,...
= 0=—(4+2)m, +8mTpy1 + o1 fir n=1,2,...

besitzen aber trotzdem eine nichtnegative Losung, ndmlich

1 n+1
7Tn2<2> fir n=20,1,2,...,

die sich auch mit der Anfangsbedingung
)\07‘&’0:#17{1 <~ 7wy =2m <~ —=2--

vertriagt. Da aber die Geburtsraten grofier als die Sterberaten sind, explodiert der Prozess
und besitzt keine Grenzverteilung.

Ein Warteschlangenmodell fiir Telekommunikationssysteme

Bereits zu Beginn des 20. Jahrhunderts hat der dénische Ingenieur und Mathematiker A.
K. Erlang ein stochastisches Modell fiir Bediensysteme ohne Warteraum entwickelt, das seit-
dem fiir die Beschreibung des Telefonverkehrs herangezogen wird. Anrufe fallen nach einer
vorgegebenen Wahrscheinlichkeitsverteilung an einer Vermittlungsstelle ein. Sie passieren die
Stelle, wenn das abgehende Leitungsbiindel frei ist, anderenfalls gehen sie ohne Nachwirkung
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auf das Netz verloren. Das Erlangsche Modell beschreibt den Telefonverkehr auf eine sehr ver-
einfachte Weise. Denn aus eigener Erfahrung weifl man, dass ein erfolgloser Anruf mit einer
gewissen Wahrscheinlichkeit wiederholt wird und dass sowohl die Wiederholwahrscheinlichkeit
als auch der Wiederholabstand von der Art des Misserfolgs abhéngen. Um die Auswirkungen
von Anrufwiederholungen auf ein Fernsprechsystem zu untersuchen, wird eine Verkehrsmodell
definiert, das das Verhalten der Teilnehmer nach erfolglosen Anrufversuchen beschreibt.
Wir betrachten eine Vermittlungsstelle mit s > 1 Abnehmerleitungen und voller Erreichbar-
keit, d.h. ein Anruf wird nur dann vom System blockiert, wenn alle s Abnehmerleitungen
belegt sind. Die Einfallabstinde der neuen Anrufe seien unabhingige, exponentiell verteilte
Zufallsvariablen mit dem Parameter A > 0. Ein Teilnehmer, der bei seiner Ankunft nicht
sofort bedient werden kann, wiederholt seinen Anruf mit Wahrscheinlichkeit p1, 0 < p; < 1.
Jeder weitere Anruf wird unabhingig von der Anzahl der vorangegangenen Versuche mit
Wahrscheinlichkeit p2, 0 < p2 < 1, wiederholt. Mit Wahrscheinlichkeit 1 — p; bzw. 1 — po
gibt der Kunde auf. Die Absténde zwischen den einzelnen Wiederholungen eines Teilnehmers
werden als unabhéngige, identisch verteilte Zufallsvariablen angenommen. Die Wiederholrate
bezeichnen wir mit §. Die aufeinanderfolgenden Belegdauern bilden eine Folge unabhéngiger,
exponentiell verteilter Zufallsvariablen mit Parameter p > 0. (siehe Abb. 22.4)

Zur Beschreibung des Systems wéhlen wir den Prozess (X;);cr+ mit X; = (Li, Qr),t € RT,
wobei L; die Anzahl der zur Zeit t belegten Leitungen und @); die Anzahl der zur Zeit t
wartenden Teilnehmer bezeichne. Aufgrund der Gedéchtnislosigkeit der Exponentialverteilung
definiert (X;);er+ einen homogenen Markovprozess mit Zustandsraum E = {0,1,2,...,s} X
Ny und Ubergangswahrscheinlichkeiten

P(k,l)(m,n)(t) = P(Xt = (m7 n) | Xo = (kvl))v (k7l)7 (m7n) € E7 te R+‘

Der Einfachheit halber setzen wir s = 1 und p; = p2 = p und stellen zunédchst die )—Matrix
auf:

4(0,n)(1,n) A, n = 0,1,2,...
don)(1n-1) = N9, n = 1,2,...

don)on = —(A+nd), n = 0,1,2,...
da,n)(0n) — M n = 0,1,2,...
A (ns1) = AP n = 0,1,2,...
daman-1) = né(l—p), n = 1,2,...

Aunyam = —(L+Ap+ns(l—p)), n = 0,1,2,....

(Xt)icr+ stellt einen zweidimensionalen Competitionprozess dar. Mithilfe von Satz 22.52 kann
man zeigen, dass (X;);cr+ reguldr ist. Wir wollen nun

T(m,n) = tliglo P(k,l)(m,n) (t)a (ma ’I’L), (ka l) €F,
berechnen. Die zu (X;);cr+ gehorenden stationdren Gleichungen (22.22) lauten

0:—()\—|—n5)~7r(07n)+p,~7r(17n) fir n=0,1,2,...
0=—Ap+p+nd(l—p) Tan+A Ton) + A T(1n-1)+ (n+1)0- 7011
+(n+1)6(1 = p) - (1 nt1) fir n=0,1,2,...,
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Vermittlungsstelle

neue Anrufe

4 N

fiktiver

| erfolgreiche

Anrufe

e iates!
oo~ RT C

Wiederholungen

Warteraum

o //

o ocnro<
o ocnro<

b2

b1

vl—p v1—po
erfolglose Anrufe

Abbildung 22.4: Verkehrsmodell fiir Anrufwiederholungen

wobei (1 _1) := 0 vereinbart wird. Zur weiteren Behandlung dieses Differenzengleichungssy-
stems fithren wir die erzeugenden Funktionen

Go(z) = ZW(O,n)Zn’ 2] <1,
n=0

Gi(2) =Y mam el <1,
n=0

ein. Multiplikation der stationdren Gleichungen mit 2™ und anschliefendes Aufsummieren
liefert
0 = —AGo(z) — 82G((2) + uGi(2), (22.23)
0=—Ap+p) Gi(z) —8(1 —p) - 2G1(2) + X - Go(2) + Ap - 2G1(2) + 6 - G (2)
+6(1—p)-Gi(2).
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Addiert man diese Gleichungen, erhélt man
§1—p)(1—2)-Gi(z) +8(1 —2)-Gy(2) = Ap(1 — 2) - G1(2) =0
bzw.
§(1—p)-Gi(2) +6-Gi(z) — Ap- Gi(z) = 0. (22.24)
Um das Differentialgleichungssystem (22.23) — (22.24) zu 16sen, verfolgen wir zunéchst die
Separation der Variablen. Aus (22.23) folgt sukzessive

puG1(z) = 62G((2) + AGo(2)  bzw.
pG(2) = 02GG(2) + (A + 0)Go(2)

Indem wir diese Ausdriicke in (22.24) einsetzen, bekommen wir:

0(1 —p)p- G(2) +0p- Go(z) — App - G1(2) =0

— §1-p)- (52G6’(z) + (At 5)G6(z)> Fop - Gh(z) — Ap<5zc;g(z) + )\Go(z)) —0

= 62(1—p)z-Gy(z) + ((5(1 —p)(A+9)+op— )\p(Sz) SGH(2) = A%p-Go(2) =0

1" A H Ap / A%p

= zGO(z)+<5+ +(5(1—p) (5(1—p)z Gy(2) 52(1_p)G0(z) 0

(22.25)
Zur weiteren Behandlung dieser Differentialgleichung fithren wir die Transformation

z=z(z) = 5(1\_;)) - (22.26)

durch und setzen
Fy(z) := Go(z(z)).
Unter Beriicksichtigung der Kettenregel
/
(Gol2(@))) = Go(2) - 2/ (a)

ergibt sich

Gole) = Fola).  Gho)= -2 Flw). Gy = P .
I R S (O ke
Wenden wir die Transformation (22.26) auf die Gleichung (22.25) an, bekommen wir
6(1—p) . ()‘p)z CFV

Nop (I —p)? 0()

A Aop o 01— A
+<5+ B S S p>~x>-p-F6(:U)

S(=p) T S=p) Aep ) 81 p)
)\2
_Wfp).ﬂ)(x):o
A-p " A H AP 4
= §(1—p) FO(xH(&W(l— )H_x) (1 —p) Fol)
P ey o
T 82(1—p) o(z) =
— T Fé’(:v)+<2+5(1u_p)+l_x> Fé(x)_g'FO(x)zo
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22.8. Anwendungen

Diese Gleichung ist vom Typ der konfluenten hypergeometrischen Differentialgleichung
2y +(b—2)y —ay=0, =xe€C
fiir die die Funktionen

y1 =c1-P(a,b,z), z€C,
y2:cz-x*bﬂ-<I>(1+a—b,2—b,:r), xz e,

ein Fundamentalsystem bilden, wobei @ die sogenannte konfluente hypergeometrische Funk-
tion bezeichnet:

Zala+1)-...-(a+k—-1) 2*
@(a,b,m):1+; b((b+1§-...-((b+k—1)) e z e C. (22.27)

Aufgrund des Quotientenkriteriums konvergiert die konfluente hypergeometrische Reihe fiir
alle x € C, denn es gilt

ala+1)-...-(a+k) LRl
ag+1 bb+1)-...-(b+k) (k+1)! a+k = )
ag al@a+1)-...-(a+k—1) 2F btk k+1< iir fast alle k
bb+1)-...-(b+k—1) &

Im vorliegenden Fall ist

A
und b=—-+ H

— + 1.
stsa—pt

A
a=—=
1)
y2 scheidet als Losung des Problems aus, weil sie wegen b — 1 > 0 keine wahrscheinlichkeits—
erzeugende Funktion darstellt (y2 hat an der Stelle 0 eine Polstelle). Die gesuchte Losung ist
folglich

A A I
Fo(x)—cl'q)<5,5+6(1_p)+1,JI>, z e C,
bzw. wenn wir zuriicktransformieren
A A I A-p
G =c-P(=, = 1 . C.
=ae (55 iy ) 2
Eine entsprechende Rechnung fiir G(z) fiithrt zu
A A 7 Ap
G =co- P =+1,= 1 . C.
1(z) =2 <6+’5+5(1—p)+’5(1—p) z), z €

Die Konstanten c; und co haben eine anschauliche Bedeutung, es ist
CcC1 = 77(0,0) und Cy = 7['(1’0).
Unter Beriicksichtigung der Gleichung

0= —()\—I—n(5)7r(07n) + (1 ) fir n=0,1,2,...
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Kapitel 22. Markovketten mit stetiger Zeit

erhalten wir

A A
(1,0) (0,0) bzw. o= —c1
Aus
Go(1)+Gi(1) =1
folgt
A 1 A-p A A A I A-p
“ F(é’é*é(l—@“’&l—@) p (5“’6+6<1—p>“’6<1—p>>]‘1
bzw

A A m Aop Ao (A A m Aop \17!
= =, = 1 - =41, = 1 .
“ [ <6’6+6<1—p>+ ’6(1—@)% (5* S5 sa-p " ’5(1—p>>}

Die Einzelwahrscheinlichkeiten ergeben sich unmittelbar aus (22.27):

A (A A n
g'(3+1)~...'(3+n—1> (\-p)
Tom =y u A 0 (1 —p)*-n!
fiir n:0,1,2,...
AL (A (A n
T )=cl.i. 0 (5+1) <5+n> . (-p)
| S (P DU AR T
o (1-p) \0 T (1-p)
fir n=20,1,2,...

Insbesondere besitzen die stationdren Gleichungen fiir p < 1 eine positive summierbare
Losung, d.h. alle Zusténde sind positiv rekurrent.

Wir wollen nun noch die mittlere Anzahl wartender Teilnehmer

Zn T(om) + T(1,n)) Zn T(0,n) +Zn T = Go(1) + G (1)

berechnen. Dazu kénnen wir die Gleichungen

pG1(2) = 62 - Gy(z) + X - Go(2)
0= 6(1—p) - Gi() + 8- Gi() — W G (2)

heranziehen. Die erste Gleichung fiihrt zu

Gh1) =5 Gi1) = 5 Go(1),
die zweite liefert
Gil1) = 75 Gr(1) = 1 - Gol)
A-p 1 u 1 A
50— p) 1(1) —po 1(1)4‘@5'&)(1)
Ap — i A
“op W sa @
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Damit wird

BIQ) = Ghl1) + G1(1) = § - Gr(1) = 5+ Gall) + F o - Ga(1) + 52— Go()
_QA—pp (1) + <5(1)\fp) - Go(1).

6(1—p)

22.9 Transienz— und Rekurrenzkriterien

Die Rekurrenz— und Transienzkriterien fiir Markovprozesse ergeben sich im Wesentlichen
aus den Kriterien fiir Markovketten in diskreter Zeit. Zentral dabei ist der nachstehende
Zusammenhang.

22.62 Satz:
Es sei @ konservativ, requlir und irreduzibel. Genau dann ist i € E fiir den durch Q eindeutig
definierten QQ—Prozess (Xi)ier+ rekurrent, wenn i in der durch die Ubergangswahrscheinlich-

keiten
0, j=1
Pij‘{ L G

definierten diskreten Markovkette (Yy)nen, rekurrent ist.

Beweis:

Nach Satz 22.26 ist (Y,)nen, gerade die Sprungkette von (Xi);er+, d.h. (X¢)er+ und
(Y )nen, haben das gleiche Pfadverhalten ((Y,)nen, ignoriert lediglich die Verweildauern).
Kehrt die in ¢ startende Kette (Y),)nen, mit Wahrscheinlichkeit 1 nach ¢ zuriick, so gilt das
auch fiir den Prozess (X;);cg+ und umgekehrt. |

Damit lassen sich nun die Kriterien aus der Theorie der diskreten Markovketten direkt iiber-
tragen.

22.63 Satz:
Es sei Q) konservativ, regquldr und irreduzibel.

a) Gibt es ein ig € E derart, dass das Gleichungssystem

S aghy=0, 0<h;<1 (i#i)
jeBLio)

nur die triviale Losung h = 0 besitzt, so ist E rekurrent.

b) Gibt es ein ig € E derart, dass das Gleichungssystem

> ahy =0, 0<hy <1 (i)
j€E\{io}

eine Losung h # 0 besitzt, so ist E transient.
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¢) Genau dann ist E transient, wenn es ein solches ig € E gibt, dass das Gleichungsystem

> qihj =0 (i #1o)

JjEE
eine nichtkonstante beschrinkte Lisung hat.

d) Sei E = Ny. Gibt es ein ig € No und h mit h; — oo fiir i — oo und

D aih; <0 (i # o),

J€No

so ist INg rekurrent.

Beweis:
Der Satz beruht auf den diskreten Kriterien aus den Sétzen 21.43, 21.45 und 21.46. Dort
wurden Systeme der Form

> o
hi ) Z Pijhj, i # g
JEE'
mit E' = E\ {ip} oder E' = E betrachtet. Einsetzen der Ubergangswahrscheinlichkeiten der
eingebetteten Sprungkette liefert

qih; =

> aishy, i # o
JeEN\{i}
und wegen ¢; = —q;; folgt
>) .,
0= Z q:'jhj7 2 75 10.-
JEE’

Damit sind die Rekurrenz— und Transienzaussagen fiir die eingebettete Sprungkette bereits
gezeigt und mit Satz 22.62 folgen die Behauptungen. [ |

Fin wichtiges Kriterium fiir positive Rekurrenz wurde bereits in Satz 22.60 angegeben. Fiir Q)
konservativ, reguldr und irreduzibel liegt genau dann positive Rekurrenz vor, wenn das System
der stationdren Gleichungen y@ = 0 eine strikt positive und summierbare Losung besitzt. Es
kann nun noch eine Beziehung zwischen den stationdren Maflen des Markovprozesses und
seiner eingebetteten Markovkette gezeigt werden.

22.64 Satz:
Es sei @ konservativ, requlir und irreduzibel und die eingebettete Sprungkette (Y )nen, sei

wie Gblich durch
0, =1
P = ii .
7 {‘f/ j#i

definiert. Fir u = (ug)rep und y = (yr)kep moge die Beziehung y, = Z—: fiir alle k € E
gelten. Genau dann ist u ein stationdres Maf fir die eingebettete Sprungkette (Y )nen,, also

Y ukPij=u; (j€E),
keE

wenn y die stationdren Gleichungen fir Q, also y@Q = 0 ldst.
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Beweis:
Betrachte das Gleichungssystem uP = u bzw. w(P —I) = 0. Die Matrix P — I besteht im Fall
der eingebetteten Markovkette aus den Eintrigen

“1= =i
Pomta=1 w® s

qi
u ist genau dann Losung von u(P — I) = 0, wenn fiir alle j € F

uk%:()

wer Ik

gilt. Dies ist wegen y; = Z—: genau dann der Fall, wenn y@Q = 0 besteht. Ist u strikt positiv,
so ist auch y strikt positiv. ]

22.65 Bemerkung:

Satz 22.64 gibt nur eine Beziehung zwischen den stationdren Maflen fiir den Markovprozess
und seine eingebettete Sprungkette an; die gegebenenfalls vorliegende strikte Positivitdt bleibt
dabei erhalten. Allerdings ist dadurch nicht gezeigt, dass der Begriff der positiven Rekurrenz
fiir den Markovprozess und seine eingebettete Sprungkette zusammenfallen — diese Ausssage
ist im Allgemeinen sogar falsch. Wegen der Beziehung ¥, = Z—: folgt aus der Summierbarkeit
der gy nicht die der u; und auch die umgekehrte Schlussweise ist nicht mdoglich.

22.10 Ergodensitze

FErgodensitze fiir Markovprozesse in stetiger Zeit konnen auf dieselbe Weise bewiesen werden
wie solche fiir Markovketten in diskreter Zeit. Zentral ist dabei wieder eine Aussage tiber die
mittlere Zeit, die der Prozess wihrend eines Zyklus von ¢ nach ¢ im Zustand j verbringt.

22.66 Satz:
Es sei QQ konservativ, requldr, irreduzibel und positiv rekurrent mit zugehoriger stationdrer

Verteilung m. Dann gilt mit T = Ti(il) (erster Riickkehrzeitpunkt)

M(i.j) = E [/OTI{]-}(XS)ds

Xo—i]—

Beweis:

M(i,j) berechnet sich als Produkt der mittleren Anzahl der Aufenthalte im Zustand j
wahrend eines Zyklus von ¢ nach ¢ und der mittleren Verweilzeit im Zustand j.

Die Verweilzeit im Zustand j ist exponentiell verteilt mit dem Parameter ¢;, d.h. die mittlere
Verweilzeit ist qij, die mittlere Anzahl von Aufenthalten im Zustand j wurde im entsprechen-
den Satz aus der diskreten Theorie 21.52 mit A(i, j) bezeichnet. Im Beweis wurde dort gezeigt,
dass A(i, 7) fiir jedes feste i das stationéire Gleichungssystem uP = w erfiillt. Nach Satz 22.64
erfiillt daher M(i,7) = %'j’j) fiir jedes feste ¢ das stationire Gleichungssystem y@Q = 0. Es

folgt M(i,j) = ¢;mj und wegen M (i,i) = i die Behauptung. |
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Mit analogen Beweisen wie im Kapitel iiber Ergodensitze fiir diskrete Markovketten (lediglich
die Summen sind durch Integrale zu ersetzen) folgt nun

22.67 Satz:
Es sei QQ konservativ, requldr, irreduzibel und positiv rekurrent mit stationdrer Verteilung .
Ferner seien f,g : E — R Kostenfunktionen mit w|f| < oo, m|g| < oo sowie nf # 0 oder

wg # 0. Der erste Riickkehrzeitpunkt zum Zustand i wird mit T = Ti(il) bezeichnet.

a) Fiir die mittleren Kosten in einem Zyklus gilt

E| [T f(X,)ds| Xo =1
E [/Tf(Xs)dS XOZZ} _ S bzw. {fo fXs) S‘ ° Z] = ﬂ
0 qimi E [fOTg(Xs)ds’Xo - z] g
b) P—f.s. gilt
i 0/ (Xo)ds _ mf L[ _

¢) Fiir die entsprechenden Erwartungswerte gilt

B[y f(Xds| Xo=i] | .
gg"E[fotg(Xs)ds’Xo—z} “mg g&E[t/o J(X)ds

X():Z:| :ﬂ'f.
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Kapitel 23

Markovsche Erneuerungstheorie

In diesem Kapitel werden Markovsche Erneuerungsprozesse behandelt. Sie verallgemeinern
sowohl Markov— als auch Erneuerungsprozesse; daher lassen sich sehr viele real existierende
stochastische Prozesse als Markovsche Erneuerungsprozesse darstellen. Es werden zunéchst
die Markovsche Erneuerungsfunktion und die Markovsche Erneuerungsgleichung eingefiihrt,
anschlieend wird das Grenzverhalten Markovscher Erneuerungsprozesse analysiert. Zum Ab-
schluss werden diese Ergebnisse auf verwandte Prozesse, ndmlich Semi-Markov— und semire-
generative Prozesse angewendet.

Schliisselworter: Markovscher Erneuerungsprozess, Semi—Markov—Prozess, semi-
regenerativer Prozess, Markovsche Erneuerungsfunktion, Markovsche Erneuerungs-
gleichung, Grenzverhalten.
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23.1 Markovsche Erneuerungsprozesse

Markovsche Erneuerungsprozesse verbinden die Eigenschaften von Erneuerungsprozessen und
Markovprozessen miteinander. Letztere kénnen in zwei Komponenten zerlegt werden — in eine
diskrete Markovkette, d.h. eine Folge (X, )nen, (mit Werten in einer diskreten Menge E), bei
der die Verteilung von X,,+1 nur von X, abhingt, und in eine Folge (7},),cn von Verweildau-
ern aus R™, die nur vom aktuellen Zustand abhingen und exponentiell verteilt sind.

Wird nun zugelassen, dass die Verweildauern beliebig verteilt sind und neben dem aktuellen
Zustand auch vom Folgezustand abhéngen diirfen, so entstehen Markovsche Erneuerungspro-
zesse bzw. Semi — Markovprozesse.

23.1 Definition:

a)

b)

d)

Es sei (X,5) = ((Xn)neNos (Sn)nen,) €in Paar von stochastischen Prozessen, wobei die
Werte von (X,,) in der diskreten Menge E und die von (Tp,)nen mit T, = Syp — Sp—1 in
R™ liegen (S :=0). Gilt fiir alle j,i,i1,...,in—1 € E, t,t1,...,t, € RT undn € N
P(Xn—i-l = jaTn—i-l < t’XO =100,y Xn-1 = in-1,Xp =10, 11 =1t1,..., T = tn)
= P(Xn—i—l = jan—i-l < t’Xn = Z) = Qij(t)7
sowie
P(Thyr = 0[X, =) < 1
so heifit (X, S) (homogener) Markovscher Erneuerungsprozess und Q(t) = (Qi;(t))
wird als Ubergangskern von (X, S) bezeichnet.

i,JER

Es sei (X, S) ein Markovscher Erneuerungsprozess. Ein Zustand i aus dem Zustands-
raum E heif$t positiv rekurrent bzw. nullrekurrent bzw. transient, wenn i im Sinne der
Markovkette (X )nen, positiv rekurrent bzw. nullrekurrent bzw. transient ist.

Der Prozess (Yi)ier+, der durch
o0
}/t - Zan[Sn’S7L+1)(t)7 t < Sup Sn = J
n=0 neN

erklirt und im Fall J < oo durch den leeren Zustand Yy = A ¢ E firt > J fortgesetzt
wird, heifit der (minimale) Semi— Markovprozess zu (X, S).

Es sei (Zy)>0 ein zeitstetiger Prozess dber dem Mafraum (A, A) sowie (X, S) ein Mar-
kovscher Erneuerungsprozess. Unterteilen die Zeitpunkte Sy, den Prozess derart, dass

P(ZSertl S Al, .. .,ZSertk S Ak ‘ Xm = i, {ZS,S < Sm})
= P(ZSW_HI S Al, .. '7ZSm+tk € A ‘ X = Z)
= P(Zt1EAl,...,ZtkEAk|X0:i)

gilt (also die Zukunft des Prozesses zum Zeitpunkt S,, nur vom Zustand X,, abhdngt),
so heifit (Z;)i>0 semiregenerativer Prozess.

Die Ubergangswahrscheinlichkeiten der Markovkette (X,,)nen, erhilt man einfach durch den
Grenziibergang t — oo, also

P(Xyi1 = j1Xn = 1) = Qij(00) := Jim Qi;(t).
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Folglich gilt fiir die bedingten Verweildauern

P(Typ1 < HXn = i, Xoi1 = j) = gig)
ij

sowie fiir die unbedingten Verweildauern im Zustand ¢

P(Th1 S tX, =1i) = Z Qij(t)-

JjeEE
Die Bedingung P(T,+1 = 0|X,, = i) < 1 kann daher auch als

Z QU(O) <1

jJEE

beschrieben werden; sie entspricht der Bedingung F'(0) < 1 aus der Erneuerungstheorie, die
erforderlich war, um die Konvergenz der Erneuerungsfunktion zu sichern (vergleiche Stocha-
stik II, Kapitel 17).

23.2 Bemerkung;:

Im Gegensatz zu Erneuerungsprozessen kann in der Tat mit positiver Wahrscheinlichkeit
J < oo sein. Wie bei Markovprozessen legen die Markovsprungkette und die Folge der Ver-
weildauern den Prozess dann nur bis zum Explosionspunkt J eindeutig fest, die Wahl von
Y; = A fiir ¢ > J fiihrt daher nur auf einen moglichen zeitstetigen Prozess, sodass der Zusatz
,minimal®“ in der Definition der Semi—Markovprozesse berechtigt ist.

Einige wichtige stochastische Prozesse treten als Spezialfille der Markovschen Erneuerungs-
prozesse bzw. Semi-Markovprozesse auf.

e Wihlt man F mit nur einem Zustand, etwa E = {1}, so bilden die (Sy)neN, einen
einfachen Erneuerungsprozess mit F'(t) = Q11(t).

e Wird £ = {0,1} und

Qij(t) = Fi(t), 4,j=0,1, i#j, t>0

gewihlt, so ensteht der sogenante alternierende Erneuerungsprozess. Der Zustand 1
kann als ,Bauteil in Betrieb“ interpretiert werden, der Zustand 0 als ,, Bauteil in Repa-
ratur®. Die Funktionen Fj(t) bzw. Fy(t) geben dann die Verteilungen der Lebensdauer
bzw. der Reparaturdauer an.

e Ignoriert man die Verweildauern durch die Festlegung T;, = 0, also
Qij(t) = P(X1 = j|Xo = i)
unabhéngig von ¢ > 0, so erhéilt man eine diskrete Markovkette.

e Unter der Voraussetzung, dass der Explosionspunkt J bei oo liegt, wird der Semi —
Markovprozess zu (X,S) zu einem Markovprozess, indem die Verweilzeiten als expo-
nentiell verteilt gewédhlt werden; ist ]5(1, 4) die Ubergangsfunktion der eingebetteten
Markovkette, so ist Q;;(t) = P(i,7)(1 — e~ 9%%) zu setzen.
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23.2 Markovsche Erneuerungsgleichung

Es sei (X, S) ein Markovscher Erneuerungsprozess mit Ubergangskern Q(t).
Nun werden die Eintrittszeiten in einen Zustand j mit M,(LJ ) bezeichnet, also Méj ) .= 0 und

MY) = min{m € N | m > Mr(Lj),Xm = j}. Die bis dahin vergangene Zeit sei S

n+l =
S,(L) =T +...+T,,;y =5, Dann sind die Zeiten Sr(ﬁl — S,(f) (fiir n > 1) unabhéngig

und identisch verteilt, fiir jedes j € E bilden die (ST(Lj )) N einen (je nach Startzustand)
ne

gegebenenfalls modifizierten Erneuerungsprozess.

Von Interesse ist wie in der Erneuerungstheorie die mittlere Anzahl R;;(t) von Erneuerungen
dieses eingebetteten Erneuerungsprozesses, also die mittlere Anzahl von Eintritten in den
Zustand j im Zeitraum [0, t], ausgehend vom Startzustand i (in Analogie zur Theorie der
Erneuerungsprozesse wird fiir den Fall i = j die O—te Erneuerung nicht mitgezahlt). R(t) =
(Rij(t)); jep wird als Markovscher Erneuerungskern bezeichnet. Es gilt

Zl{a} n) 1o ( n>|X0=i]

- ZE 1453 (Xn) 110, (Sn) | Xo = ]
n=1

, also

R(i;j,t) =

= Y P(Xp=j,S < t[Xo=1)

Wird Q7 (t) = P(Xy, = j, 5, < t| Xo =1) gesetzt, so folgt zum einen

oo

Rij(t) =Y _ Qi (t)

n=1

und zum anderen

QU Z/Q (t — $)dQui(s).
kel

firn>1,4,7 € E,t>0und Q" = Q.

Die hier an Faltungen erinnernde Schreibweise verlangt eine allgemeinere Definition von Fal-
tungen mit einem Ubergangskern Q(t). Dazu sei B die Menge aller in der ersten Komponente
global und in der zweiten Komponente lokal beschriankten Funktionen f : F x [0,00) — R,
d.h. fiir jede beschrinkte Menge K C [0, 00) gibt es eine Konstante C' mit f(i,t) < C fiir alle
1 € F und alle t € K. Dann werden Faltungen von @) mit f € B durch

Q@+ 1)(irt) Z/fy, $)dQi(s)
jerE

definiert. Wegen Q. € B (Wertebereich ist [0, 1]) fiir jedes k ist obige Schreibweise Q™ legitim.

23.3 Bemerkung:
Es sei Fj;(t) die Wahrscheinlichkeit, dass der in i startende Erneuerungsprozess bis zum Zeit-
punkt ¢ den Zustand j erreicht hat. Aus dem Kapitel iiber modifizierte Erneuerungsprozesse
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(Stochastik IT) ist bekannt, dass dann
n—1)*
Rij(t) =Y (F] « FD )(t)
n=1

besteht. Ist j rekurrent, so handelt es sich tatséichlich um einen modifzierten Erneuerungs-
prozess, insbesondere gilt
lim R;;(t) = oc.

t—o00

Ist j jedoch transient, so ist F}; keine Verteilungsfunktion, da F
Es folgt dann nach dem Satz von der majorisierten Konvergenz

= limyeo Fj;(t) <1 ist.

1) 1)
tlggo Rij(t) = tlggo Fiy(t) - tlg})lo FJ(: Eij Z Fij ﬁ =0
— ji

Man spricht von einem abbrechenden Erneuerungsprozess.

FEine wichtige Hilfe zur Behandlung des Grenzverhaltens von Markovschen Erneuerungs-
prozessen ist wie in der Erneuerungstheorie die Kenntnis des Losungverhaltens von Glei-
chungen der Form h = ¢g + @ % h. Den Grundstein fiir die Theorie dieser sogenannten
Markovschen Erneuerungsgleichungen bildet

23.4 Lemma:
Es gilt R=0Q+Q*R.

Beweis:

Die kompakte Konvergenz von R(i; j,t) fiir alle 4, j € E' (Erneuerungsfunktion eines Erneue-
rungsprozesses) und der Satz von der majorisierten Konvergenz erlauben die Vertauschung
von Summation und Faltungsintegral in

Q+QR+R=Q+Qx> Q" =Q+y Q") =3 Q" =r

n=1 n=1 n=1

Der erste grofie Unterschied zur urspriinglichen Erneuerungstheorie besteht darin, dass die
Losungen von Markovschen Erneuerungsgleichungen nicht eindeutig sein miissen. Ohne wei-
tere Voraussetzungen gilt nur

23.5 Lemma:
FEs set
h=g+Qxh (23.1)

mit einer Funktion g € By = {f € B | f > 0} und einem Markovschen Ubergangskern Q.
Dann hat jede Lésung h € By die Form

h=g+Rxg+d,

wobei d € B die Faltungsgleichung
d=Qx*d

erfillt.
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Beweis:
Iteration von (23.1) fithrt auf

h=g4+Q*g+ Q¥ xg+ ...+ Q" xg+ Q" xh

fiir ale n € N. Da g > 0 vorausgesetzt war, konvergiert die rechte Seite gegen g + R * g, wenn
man vom letzten Summanden absieht. Dieser konvergiert gegen eine Funktion d € B, fiir die

d= lim Q(""'l)**h Q * hm Q" xh=Qx*d

n—o0

gilt. |

Die Losung g + R * g ist also eine minimale Losung. Eindeutig ist sie genau dann, wenn
d = @ xd in By nur die triviale Lésung besitzt. Das nachstehende Lemma vereinfacht die
Suche nach derartigen Funktionen d etwas.

23.6 Lemma:
Ezistiert eine von 0 verschiedene Losung d € By von d = Q xd, so existiert auch eine Lésung
d eBy mit0#d <1.

Beweis:
Sei d = @ *d mit d # 0. Dann existiert ein b > 0, so dass es ein ¢ € E und ein ¢ < b mit
d(i,t) > 0 gibt; somit ist

B = sup{d(i,t);i € E,t <b} > 0.

Definiere nun zunéchst die Funktion k£ € By mit £ < 1 durch

(i)
k(z’,t):{ C t<b’}g1

1, t>b

Dann gilt fiir ¢ < b sofort £k = Q * k und fiir ¢ > b noch

(Q*Ek)(i,t) ZQU = k(i,t).

JjEE

Zusammen folgt also k > @ * k und somit die Ungleichungskette

1>2k>Qxk>Q%xk>...> lim Q¥ «k=:d.

Offensichtlich ist nun d’ € B, d’ < 1 und wegen der Monotonie der Konvergenz ist

d=lim QU *xk=Qx lim Q" xk=Qx*d.
n—0o0

n—oo

Fiir t < b gilt wegen k = Q x k auch d’ = k und daher ist d’ nicht die Nullfunktion. [ |

Damit lédsst sich nun das nachstehende Ergebnis zeigen, dass das wichtigste Kriterium zur
eindeutigen Losbarkeit der Markovschen Erneuerungsgleichung bildet.
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23.7 Lemma:
Genau dann ist die Markovsche Erneuerungsgleichung (23.1) in By eindeutig losbar, wenn
J =sup S, =oco P-fs.

Beweis:
Es bezeichne

falist) = P(Sy <t | Xo=1i) = > QfF(1).

JEE

Wegen Sy < 51 < ... fillt f, monoton fiir n — oo und der Grenzwert ist

flist) := lim P(S, <t|Xg=1i)=P(J<t|Xo=1).

n—o0

Wegen fr4+1 = @ * f,, folgt mit dem Satz von der monotonen Konvergenz

f=Qxf

Ist 0 die einzige Losung von d = @ * d, so folgt f = 0, also P(J < t) = 0 fiir jedes endliche
te R, dh. J =00 Pfs.

Sei nun umgekehrt J = oo P—f.s. gegeben, so folgt f = 0. Fiir jede weitere Losung d von
d=@Q*xdmit 0 < d <1 gilt jedoch

d=Q+d=Q"+xd<Q"x1=f,

fiir alle n € N, und damit auch d < f = 0. Nach Lemma 23.6 folgt damit, dass d = 0 auch die
einzige Losung aus B4 von d = @ *d ist. Nach Lemma 23.5 ist dies dquivalent zur eindeutigen
Losbarkeit der Markovschen Erneuerungsgleichung. ]

Fin einfaches hinreichendes Kriterium fiir die eindeutige Losbarkeit bildet

23.8 Satz:

Es sei Q der Ubergangskern eines Markovschen Erneuerungsprozesses iiber dem Zustandsraum,
E, der ausschlieflich rekurrente Zustinde enthdlt. Dann besitzt die Markovsche Erneuerungs-
gleichung h = g + Q *x h fiir jedes g € By nur eine Lisung h € B4, ndmlich h =g+ Rxg.

Beweis:
Betrachte den Erneuerungsprozess R;;(t). Da j rekurrent ist, handelt es sich um einen nicht—
abbrechenden Erneuerungsprozess. Insbesondere divergiert R;;(t) und somit wachsen auch die

Erneuerungszeitpunkte S,(f ) iiber alle Schranken. Da sie aber eine Teilfolgen von (Sy,)nen, dar-
stellen, folgt J = sup S, = oo und mit den Lemmata 23.5 und 23.7 die eindeutige Losbarkeit
der Markovschen Erneuerungsgleichung. Auf die Voraussetzung, dass alle Zusténde rekur-
rent sind, kann nicht verzichtet werden, da ein rekurrenter Zustand mit Wahrscheinlichkeit 1
erreicht werden muss. n
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23.3 Das Markovsche Erneuerungstheorem

Ziel dieses Abschnittes ist eine Verallgemeinerung des Fundamentalsatzes der Erneuerungs-
theorie, also eine Aussage iiber Faltungen R * g mit dem Markovschen Erneuerungskern R(t)
und ¢ aus einer geeigneten Funktionenklasse. Um Entartungen des mit der Erneuerungsfunk-
tion R;;(t) assoziierten Erneuerungsprozesses zu verhindern, fordern wir, dass der Zustands-
raum F irreduzibel rekurrent ist. Dann sind die Funktionen Fj;(¢) aus Bemerkung 23.3 echte
Verteilungsfunktionen.
Wie im Kapitel iiber Markovketten gezeigt, existiert fiir einen irreduzibel rekurrenten Zu-
standsraum E ein stationdres Mafl der eingebetteten Markovkette, d.h. eine Folge (7;);cp
mit

D miQij(00) =73

JEE

im Fall positiver Rekurrenz gilt m; > 0 und die Folge kann normiert werden, so dass

Z 5 = 1

JEE
gilt.
Auf den eingebetteten Erneuerungsprozess sollen nun das Blackwell’sche Erneuerungstheorem
bzw. der Fundamentalsatz der Erneuerungstheorie angewendet werden. In beiden kommt da-
bei der Erwartungswert der Zeitdifferenz der Erneuerungspunkte, also der Dauer eines Zyklus

von ¢ nach i, vor. Das nachstehende Lemma gibt an, wie diese anhand der Grenzverteilung
berechnet werden kann.

23.9 Satz:

Es sei (X,S) ein Markovscher Erneuerungsprozess iber dem irreduzibel rekurrenten Zustands-
raum E; die eingebettete Markovkette (X,) mdge die stationdre Verteilung (m;)icp besitzen.
Mit

i = E[Ti| X0 = i] :/ 1= Qi(t) | dt
0 JjEE

gilt
‘ ZE/WU
vii= B[S0 X0 =] = &

T

Im null-rekurrenten Fall ist v; = oc.

Beweis:
Es seien E; := E \ {i},
ik = E[Tn1|Xn = j, Xny1 = k]

sowie N =inf{n > 1, X,, =i} = Ml(i). Es soll nun eine Darstellung der Form
vi= ) D amih
JEEkeE

gefunden werden, d.h. aj; ist die erwartete Anzahl von Ubergiingen von j nach k wéhrend
eines Zyklus von ¢ nach 1.
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Betrachte zunichst a;; fiir £ € E. Ein Sprung von ¢ nach k kann wahrend eines Zyklus von
i nach ¢ nur einmal auftreten, die Wahrscheinlichkeit dafiir betriagt Q;;(c0). Vom Zustand k
kehrt der Prozess wegen der Voraussetzung, dass F irreduzibel rekurrent ist, mit Wahrschein-
lichkeit 1 in den Zustand i zuriick. Fiir alle k € F ist daher

air = Qir(00).

Seien nun j,k € E;. Das Problem bei der Bestimmung von a;; besteht nun darin, dass der
Sprung von j nach k in einem Zyklus von ¢ nach ¢ gegebenenfalls mehrfach auftritt. Es ist also
iiber die Anzahl r 41 aller Spriinge wihrend eines Zyklus von ¢ nach ¢ und die Nummer n+ 1
des Sprungs zu summieren, bei dem der Ubergang von j nach k stattfinden soll. Da j, k # 4
vorausgesetzt ist, gilt r > 2 und es ergibt sich unter Ausnutzung der Markoveigenschaft

oo r—1
ajr = > > P(Xp=jN>n|Xo=1i)Qjs(c0)P(N=(r+1)—(n+1)| Xo = k)
r=2n=1
= Qir(0)Y P(Xy=jN>n|Xo=i) Y P(N=r—n|Xo=k)
n=1 r=n+1

= Qjr(0)A(i,§) Y P(N =r| Xo =k).
r=1

Die letzte Summe gibt die Wahrscheinlichkeit an, dass der in k startende Prozess irgendwann
i erreicht. Aufgrund der Irreduzibilitdt und Rekurrenz von F hat sie den Wert 1, es wird

aji, = Qjk(00)A(1, ).

Dieses Ergebnis ist auch fiir k£ = ¢ giiltig, da fiir j € E; offensichtlich
o

Qj; = ZP(X" = j,N >n ’ X() = z)Qﬂ(oo)
n=1

ist. Die Summe

oo
A(i,j) = P(Xp = j,N >n|Xo = i)
n=1
gibt genau die erwartete Anzahl von Aufenthalten in j wihrend eines Zyklus von ¢ nach ¢ an;
in Satz 21.52 wurde gezeigt, dass sie sich durch % berechnet. Damit folgt insgesamt

5 5
vi=» Qu(co)pi+ > > #ij(oo)ujk =) #ij(oo)ﬂjk-
keE JEE keE ° jkeE "

Unter Beachtung von

> Qu(c0)uje = Y E[T1|Xo = j, X1 = k]P(X1 =k | Xo = j) = E[T1|Xo = j] = 115
keE keE

wird
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Damit folgt fiir feste h > 0, 4,5 € E direkt in Verallgemeinerung des Blackwell’schen Erneue-
rungstheorems

h h-m;
lim (Rij(t+h) — Rij(t) = — = =—2—.
Jim (R4 1) = (1) = 72 = < T
Das Ziel dieses Abschnittes ist es allerdings, den Fundamentalsatz der Erneuerungstheorie zu
verallgemeinern, d.h. eine Aussage der Form

tliglo(R*g = hm Z/ g(j,t — s)dR;;(s /
0

JEE

flir g aus einer geeigneten Funktionenklasse zu zeigen. Es wire naheliegend zu verlangen,
dass g(j,-) fir alle j € E direkt Riemann—integrierbar ist. Dann miissten allerdings, um
den Fundamentalsatz anwenden zu konnen, Grenzwert und Summe vertauscht werden. Dies
ist nur fiir endliches E einfach moéglich. Um das Markovsche Erneuerungstheorem auch fiir
unendliche Zustandsrdume formulieren zu kénnen, wird der Begriff der direkten Riemann —
Integrierbarkeit etwas verallgemeinert.

23.10 Definition:
Es sei (;)icr ein positives Maf$ auf E und g € B. Konvergieren die Reihen

—5zzw]supg], und o —5221/1] 1nfgj,
neNg jeE  tEIR nENg jEE

mit Ifb = [nd, (n + 1)d) fiir alle § > 0 und strebt ihre Differenz fir § — 0+ gegen 0, so heif§t
g direkt Riemann—integrierbar beziiglich (1;)icE.

Im nachstehenden Satz werden einige Ergebnisse zur direkten Riemann — Integrierbarkeit
beziiglich eines Mafles zusammengefasst. Die Beweise sind etwa in dem im Literaturverzeichnis
angegebenen Buch von Cinlar zu finden.

23.11 Satz:
Es sei (1;)icr ein positives Maf$ auf E und g € B

(i) Ist g direkt Riemann — integrierbar beziiglich (V;)icE, so ist
> Wil t)
JjEE
direkt Riemann — integrierbar (im wurspringlichen Sinne) und & und o konvergieren
beide gegen

3 wiati vy

0 jerE

(ii) Ist g(j,t) monoton nichtwachsend in t fir alle j € E und gelten

> 1big(§,0) < oo sowie /ijgj, t)dt < oo,

JEE jeEE

so ist g direkt Riemann — integrierbar beziiglich (1V;)icE.
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(i1i) Es sei f € By mit 0 < f < g und f(i,-) sei Riemann — integrierbar fiir jedes i € E. Ist
g direkt Riemann — integrierbar beziglich (1;)icE, so auch f.

() Sind F; (j € E) Verteilungsfunktionen, die auf (—o0,0) verschwinden und ist h € B,
durch

h(jt) = / g(j.t— $)dFj(s) (j € E, t € RY)
0

definiert und ist g direkt Riemann — integrierbar beziiglich (1;)icg, so ist auch h direkt
Riemann — integrierbar beziglich (V;)icp.

23.12 Satz (Markovsches Erneuerungstheorem):

Es sei (X, 8) ein Markovscher Erneuerungsprozess mit Ubergangskern Q tiber einem irreduzi-
bel positiv rekurrenten diskreten Zustandsraum E; fir mindestens ein j sei Q;;(t) nicht arith-
metisch. (;)icp sei ein positives stationdres Maf fir X und g direkt Riemann—integrierbar
beziiglich (m;)icp. Dann gilt

o0

. . 1 .
Jim (R * g)(i,1) = W/ ' m39(J, s)ds.
KeE 0 JeE
Im Full eines nullrekurrenten Zustandes i € E und sonst unverdndert gelassenen Vorausset-
zungen gilt
li i,t) = 0.
Jim (R # g)(i,t) = 0

Beweis:
Die wesentliche Beweisidee besteht darin, den ,,Riickwértsprozess* @) durch

Qij(t) = %Qﬁ(t)

zu definieren. Im ersten Schritt werden dann Beziehungen zwischen () und Q hergeleitet. Diese

ermdoglichen es im zweiten Schritt, das Faltungsprodukt R x g mithilfe einer gewShnlichen

Faltung auszudriicken, wie sie in der Erneuerungstheorie verwendet wurde. Im dritten Schritt
wird auf diese Faltung dann der Fundamentalsatz der Erneuerungstheorie angewendet.

1. Wegen

~ 1 o

(00) = — 1:.0::(00) = =% =1

> Qo) = — > mQui(oe) = =

T
jEE ' jeE

ist auch Q wieder Ubergangskern eines Markovschen Erneuerungsprozesses, R = > Q-
sei der zugehorige Markovsche Erneuerungskern. Dann gelten

o mQU(t) = mQU(t) fiir alle n € N,

L] WiRij(t) = WjRj‘(t) und
° R”(t) = Rii(t).
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2. In dem durch Q definierten Markovschen Erneuerungsprozess sei sz(t) die Wahrschein-
lichkeit, dass ausgehend vom Startzustand j der erste Eintritt in den Zustand ¢ bis ¢
erfolgt, also

Fji(t) = P(SMl(i) <t|Xo=7j).

Dann ist

Ra(t) = / (1+ Rus(t — ))dFy(s)
0

t
= +/ ]Zt_SdR/”()
0

oder kurz Rﬂ =F i + Rii * Fji (im Sinne der urspriinglichen Faltung). In

mi(R* g)(i,t) —WZZ/ g(j,t — s)dR;;(s)

JEEO

gilt nun fiir j # 4

mig(J,t — s)dRij(s) = [ mjg(j,t — s)dRji(s)

mig(j. t — s)dFji(s) + [ mg(j,t — s)d(Rii  Fyi)(s)

O\w O\w

t—s

ng(j’t—S)dsz’(S)ﬂLWj//g(jat—(7“+S))dpji(7“)d3u(3),
0 0

Il
S O~ O~

also
(R g)(it) — ij/ G0t = (r + 8))dFy (r)dR(s)
JF o 00
+m; [ g(i,t — s)dRyi(s 7ig(j,t — s)dFji(s)
| -z
= (BaxfG.)) O+ F6.0) = mgli.1)
mit

fi,t) ZW]/ (j,t — s)dFji(s) 4+ mig(i t).
JFi

3. Da g nach Voraussetzung direkt Riemann-integrierbar beziiglich (m;)icp ist, folgt mit
den Punkten (i) und (iv) aus Satz 23.11 die direkte Riemann-Integrierbarkeit von f(i, )
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fiir jedes feste ¢. Daher kann auf R;;* f (i,-)) der Fundamentalsatz der Erneuerungstheorie
angewendet werden. Wegen

/tg Jz( )dt =
=0

[e.o]

[

9(j,t — s)dtdﬁﬁ(s)

T~y

~+

S

vl

i, t)dt

Lo— g L~

~+

ISH
o b
I~

—
Va)
N—
Q
—
\.b

vl

t)dt

.

g(

|
o —

folgt unter Verwendung von Satz 23.9 (und dem Satz von der majorisierten Konvergenz)

| | | » 1T
Jim mi(R*g)(i,t) = lim (R + f(3,-))(t) = M/f(l 5)ds
0
¢ 3 oo
= /Zﬂ'j/ g(j,t—s)dFji(s)dt—i-m/g(i,t)dt
J#i s=0 0
= Zﬂ-]/ .77 Zﬂj/ ]7
Y jeE keEﬂ-kuk
= - /Zﬂgg jrt
keE kME JeE

Die Voraussetzung, dass mindestens ein ;;(t) nichtarithmetisch ist, garantiert dabei, dass
R;; die Erneuerungsfunktion eines nichtarithmetischen Erneuerungsprozesses ist, d.h. das
tatsdchlich die Variante des Fundamentalsatzes der Erneuerungstheorie fiir nichtarithmeti-
sche Lebensdauern verwendet werden kann.

Der Zusatz fiir nullrekurrente Zusténde ist klar, da bei der Anwendung des Fundamentalsatzes
durch die mittlere Lebensdauer geteilt wird, die in diesem Fall oo ist. |

Obige Verallgemeinerung des Blackwell’schen Erneuerungstheorems erhélt man wieder durch
die Wahl

g(ist) = 1o ) (1) - 1(51(4),

den Fundamentalsatz der Erneuerungstheorie etwa durch E = {i}.

23.4 Grenzverhalten semiregenerativer Prozesse

In diesem Abschnitt soll nun das Grenzverhalten semiregenerativer Prozesse (Z;):>0, die be-
reits in Definition 23.1 erkldrt wurden, untersucht werden. Besitzt der eingebettete Markov-
sche Erneuerungsprozess (X, S) den Zustandsraum E = {i}, so ergibt sich ein regenerativer
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Prozess; insofern bilden semiregenerative Prozesse eine Verallgemeinerung regenerativer Pro-
zesse.

Entsprechend der Behandlung regenerativer Prozesse in Stochastik II wird zunéchst eine
Markovsche Erneuerungsgleichung fiir semiregenerative Prozesse angegeben, auf die dann an-
schliefend das Markovsche Erneuerungstheorem angewendet wird.

23.13 Lemma:

Zusdtzlich zu den Bezeichnungen aus Definition 23.1 sei der Zustandsraum E des eingebette-
ten Markovschen Erneuerungsprozesses (X, S) irreduzibel rekurrent und fir i € E und t > 0
sowie B € A seien

Pp(i,t)=P(Z € B|Zy=1i) und  Kg(i,t) = P(Z € B, T\ > t|Zy = i)

Dann besteht

Pp(it) = Kp(i,t) + (R* Kp)(i,t) = Kp(i,t) + /Ot Kp(j.t —s)dRij(s).  (23.2)
jeE

Beweis:
Unter Beachtung der Regenerationseigenschaft zum Zeitpunkt 77 wird

Pplit) = Kp(i,t) + P(Z € B, Ty < t|Xo = i)

t
= Kp(i,t)+» [ P(Zt€B| X1 =jTi=5Xo=1)dP(X; =j,T1 = s | Xo=1)
i€B,’,

= Kpli)+ X [Pl € B Xo = 9)iQu(s) = Knli.t) + (@ Pr)(i).
jEE

Da irreduzible Rekurrenz vorliegt, ist die Losung dieser Markovschen Erneuerungsgleichung
eindeutig und es folgt (23.2). [ |

Anders als bei regenerativen Prozessen liefert die Regenerationseigenschaft alleine noch nicht
die Existenz einer Grenzverteilung. Da es nur zustandsabhingige Zyklen geben muss, besteht
zumindest bei unendlichem Zustandraum FE des eingebetteten Markovschen Erneuerungspro-
zesses die Moglichkeit, dass jeder Zustand aus F nur endlich oft angenommen wird. Zum
Beispiel ist mit geeigneten Zustandriaumen (etwa Ng) auch Z; = t als semiregenerativer
Prozess realisierbar. Daher muss wie auch bei der Formulierung des Markovschen Erneue-
rungstheorems zusétzlich positive Rekurrenz der Zustédnde vorausgesetzt werden.

23.14 Satz (Grenzverteilung semiregenerativer Prozesse):

Es sei (Zt)i>0 ein semiregenerativer Prozess tiber dem Mafraum (A, A) mit dem eingebet-
teten nichtarithemtischen Markovschen Erneuerungsprozess (X,S) mit dem irreduzibel po-
sitiv rekurrenten Zustandsraum E und dem strikt positiven stationdren Mafl (m;)icp; fir

My = E[Tl‘Xo = Z] sei
Z T g < O0.
keE
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Weiter sei B € A und die in Lemma 23.13 definierte Funktion Kg(i,-) fir jedes i € E
uneigentlich Riemann—integrierbar. Dann gilt

1
E Mlﬂk

keE

Jlim P(Z, € B| Xo =) = Zw] /P (Z, € B,T) > t| Xy = j)dt. (23.3)

Ist die Funktion Kpg(i,-) fir alle B € A und alle i uneigentlich Riemann—integrierbar, so
existiert eine Zufallsvariable Z*, so dass fiir t — oo
7z N oz

Beweis:
Kp(i,t) ist fiir alle ¢ € E monoton nichtwachsend in ¢. Wegen Kp(i,t) < 1 gelten ferner

ZmKB(i,O) < Zm =1l<o0
el el

sowie

/ZmKBtht<Z/ (1—-P(Ty <t| Zy=1))dt = Zm,ul<oo

i€E i€l i€l

Nach Satz 23.11 (ii) ist Kp somit direkt Riemann—integrierbar beziiglich (7;);cp und es kann
das Markovsche Erneuerungstheorem 23.12 mit ¢ = Kp angewendet werden. Damit folgt

tlggoP(Zt €eB|Xyg=1) = }EEOPB(”) = hrn Kp(i,t) +t1£§30(3* Kp)(i,t)
= 0+Z /KB ],
JjEE Vi 0

Die Darstellung (23.3) folgt unmittelbar mit Satz 23.9; die schwache Konvergenz gegen ein
Grenzmaf3 ist damit auch bereits bewiesen. Dabei wird durch

P(2* € B) = lim P(Z, € B| Xy =)

wegen
. : 1 .
lim P(Z € Al Xo=1) = ZV/P(T1>t|X0_])dt
jeE
L2 Tk
_ ZE[THXOZJ]:J‘GE _1
B vj IgE Ttk
eine (von i unabhingige) Wahrscheinlichkeitsverteilung definiert. [ |
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23.15 Bemerkung:
Um die Grenzverteilung in konkreteren Situationen zu berechnen, hilft

Kp(j,s)=P(Zs€ B,T1 > s | Xo=j) = E[18(Zs) - Ljo.1y)(s) | Xo = j]

_ j]
fiihrt.
Sind alle Zustédnde des irreduziblen Zustandraums E nullrekurrent, so liefert das Markovsche
Erneuerungstheorem die Konvergenz von P(Z; € B) gegen 0.

was mit dem Satz von Fubini auf

T1
lim P(Z, € B | Xo=1i)= Z e Z@ [/0 15(Zs)ds| Xo

keE

23.5 Grenzverhalten von Semi—Markovprozessen

Semi—Markovprozesse stellen einerseits eine Verallgemeinerung von Markovprozessen, ande-
rerseits aber auch spezielle semiregenerative Prozesse dar. Es liegt daher nahe, mithilfe von
Satz 23.14 ein Transienz— bzw. Rekurrenzkriterium zu zeigen, das Satz 22.58 iiber das Grenz-
verhalten von Markovprozessen entspricht. Das Kriterium fiir positive Rekurrenz folgt dabei
direkt aus Satz 23.14.

23.16 Satz:

FEs sei (X, S) ein nichtarithmetischer Markovscher Erneuerungsprozess tiber dem irreduziblen
Zustandsraum E. (Yi)i>0 sei der damit assoziierte minimale Semi-Markouprozess. Im Fall
positiver Rekurrenz gilt dann

. . . U1

lim P(Y; =j | Yo =1i) = =22—

A PYe=g1Yo =0 =
kek

bei Nullrekurrenz wird
tlim PY,=j|Yo=1i)=0.
—00

Beweis:
Nach Bemerkung 23.15 zu Satz 23.14 gilt

1 PY;e B|Xy= i Y,)ds| Xo =1 .
1m (tG | 0 Z Z,U/kﬂ'kzﬂ |:/ B( )8 0 Z:|

f=ys 1€ER

Wihle nun B = {j}, so folgt wegen

T
FE |:/ 1{j}(YS)dS Xo
0

die Behauptung. [ |

= Z] = E[(SijTl | Xo = Z] = (52‘]‘/@‘
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Um die komplette Aussage von Satz 22.58 auf Semi—-Markovprozesse zu iibertragen, fehlt noch
die Untersuchung des Integrals

[o¢]
[ Pvi=i1 X0 = .
0

Dazu definiere

Z%ﬁﬁszﬂgzjL%:ﬁMSZE[AHﬁﬂﬂMSszﬂ.
0

Von Interesse ist also das Verhalten von Z;;(t) fiir t — co. Dazu zeige zunéchst

23.17 Lemma:
FEs sei

r(i,t) i=1-Y_ Qj(t), jeE,t>0.
keE
Dann gilt fiir allei,j € E undt >0

t
POV = | Yo = i) = 0,r(js 1) + / PGt — 5)dRyy(s).
0

Beweis:
Unterscheide die Félle J = co und J < oco. Fiir J = oo zerlege

PYi,=j|Yo=i)=PYi=4T1>t|Yo=9)+PY,=34T1 <t|Yo=1).

Der erste Summand verschwindet fiir ¢ # j und fiir ¢ = j hat er den Wert r(i,t). Ist k der
Zustand, in den der Prozess zum Zeitpunkt 77 springt und 77 = s, so vereinfacht sich der
zweite Summand wegen der Markovschen Erneuerungseigenschaft zu P(Yi—s = j | Yo = k).
Summation und Integration liefert

t
P(Yy = j | Yo =i) = 6,r(ist) + / P(Yies = j | Yo = K)dQun(s).
keE

Mit den Bezeichnungen h(i,t) = P(Y; = j | Yo = i) und g(i,t) = d;;7(i,t) ergibt sich
damit h = g + @ * h. Diese Markovsche Erneuerungsgleichung wird nach Lemma 23.5 durch
h=g+ R=x*g, also

t
P(YGi=j | Yo=i)=05r(it) + S / 5ujr (ke £)dRir (5)
ke 0

gelost. Wegen J = oo ist dies nach Lemma 23.7 die einzige Losung und die Behauptung ist
bewiesen.
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Fiir J < oo muss nach Lemma 23.5 in der Losung ein zusétzlicher Summand d; € B
beriicksichtigt werden, dessen Verschwinden gezeigt werden muss. Aus

P(J>t|Xg=i)=1-P(Y,=A|Xo=i)=PY, € E| Xo=i) =Y P(Yi=j|Xo=1)

JjEE
folgt zunéchst
¢
P(J > t|Xo=1) = ) + / t)dRi;(s) | + > dj(t)
jEE 0 jeE
=r(i,t) + (Rx*7)(i,t) —|—Zdj(t)
jeE
Im Beweis von Lemma 23.7 wurde gezeigt, dass
nlir%oz P(J<t]|Yy=1)
jeEE
gilt und somit folgt mit der Definition von r =1 — @ x 1
n—1
CoN . m .
(r4+ Rx*r)(i,t) =r(i,t)+ nh_)n(f)lo Z (Q™ x1)(i,t)
m=1
n—1
1 . . mx* _ (m+1)x .
=1 (Q*l)(z,t)—f—nh_}n;OZ(Q x1—Q *1)(1,75)
m=1
= 1—n13202%*(t) = P(J >t|Yy=1).
JjEE
Folglich ist
> di(t) =
JjEE
und wegen d; > 0 folgt d;(t) = 0 fiir alle j € E. [ |

Unmittelbar ergibt sich nun

23.18 Satz:
Mit der Funktion r aus Lemma 25.17 und zugehoriger Integralfunktion

Il
o
-

-
<

qgilt
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23.5. Grenzverhalten von Semi—Markovprozessen

Beweis:
Folgt direkt durch Integration aus Lemma 23.17. |

Fiir das Grenzverhalten gilt somit

23.19 Satz:
FEs sei E ein irreduzibler Zustandsraum und

pi = E[Ty |X0:j]:/<1_ZQik(t)> dt

i keE
sei die mittlere Verweildauer im Zustand j. Genau dann konvergiert Z;;(t) fir t — oo, wenn

J transient und p; < oo ist.

Beweis:
Wegen r=1—3, Q. ist

thm Zz‘j(t) = /P(Y:g :j | }/0 = i)dS
—00
0

_ / 5ijr(j,t)+/tr(j,t—s)dRij(s) dt
0

0
= 6Z-juj+/ /r(j,t—s)dt dRij(s) = (dij + Rij(00))pj-
0 S

Das Produkt ist genau dann endlich, wenn beide Faktoren endlich sind; dabei ist R;;(oco)
genau dann endlich, wenn j transient ist (vgl. Bemerkung 23.3). ]

Die Ergebnisse aus diesem Abschnitt sollen nun noch einmal zusammengefasst werden.

23.20 Satz (Grenzverhalten von Semi—Markovprozessen):

Es sei (X, S) ein nichtarithmetischer Markovscher Erneuerungsprozess iiber dem irreduziblen
Zustandsraum E mit den Verweildauern p; = E[Th|Xo = i] und einem stationdren Maj$
(m3)ick. Fir den assoziierten Semi—-Markovprozess (Yi)i>0 mit

o0
Y;t = Zan[S7zvsn+l)(t)7 t<J= sup Sn
n=0 neN
gilt dann:
e Genau dann konvergiert

oo
/ PY,=j| Xo=1)dt,
0

wenn j transient und p; < 0o ist.
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e [st 5 transient oder nullrekurrent, so gilt

lim P(Y, =j | Xg=1i) =0.
t—o00

o Istj (und damit auch jeder andere Zustand aus E) positiv rekurrent und > mppup < 00,
so gilt

lim P(Y; = j|Xo = i) = 919

t—o0 ZkGE uyy

sofern (m;)icp strikt positiv gewdhlt wird.

23.21 Bemerkung:

Wird zusétzlich p; < oo fiir alle ¢ € E gefordert, so ergeben sich genau die in Satz 22.58 formu-
lierten Rekurrenz— und Transienzkriterien. Bei Markovprozessen war p; = i < oo fiir nicht
aborbierende Zusténde stets sichergestellt. Die durch den Fall p; = oo nétige Einschrénkung
dieser Kriterien ist auch intuitiv klar. Z;;(t) stellt die mittlere Zeit dar, die der in i startende
Semi-Markovprozess bis zum Zeitpunkt ¢ im Zustand j verbringt. Wird j erreicht und ist die
mittlere Verweildauer p; = oo, so muss auch Z;;(t) fiir ¢ — oo divergieren — unabhéngig von
der Rekurrenz oder Transienz von j.

23.22 Beispiel:

Wir kommen auf den alternierenden Erneuerungsprozess aus Bemerkung 23.2 zuriick. Der
Zustandsraum besteht aus zwei Zusténden, also E = {0, 1}, die ,Bauteil in Reparatur® bzw.
,in Betrieb* bedeuten. Der Ubergangskern hat die Form Qi;(t) = F(t) fir ¢ # j, d.h. Fy
stellt die Verteilung der Reparaturdauer und Fi die Verteilung der Lebensdauer des Bauteils
dar; pg bzw. pp seien die zugehérigen Erwartungswerte.

Die eingebettete Markovkette besitzt die Ubergangsmatrix < (1) é > und es folgt sofort my =

T = % und somit nach Satz 23.20
Hj
fo + p1

Jim PO =71 X0 =) =

23.6 Das M/G/1 — Warteschlangenmodell

M/G/1 als Markovscher Erneueurungsprozess.

Es wird ein Kunden—-Bedien—System mit den nachstehenden Eigenschaften betrachtet.

e Der Strom der ankommenden Kunden formt einen Poissonprozess, d.h. die Zeiten zwi-
schen zwei Kundenankiinften sind exponentiell verteilt mit dem Parameter A; die zu-
gehorige Verteilungsfunktion wird im Folgenden mit A bezeichnet.

e Die Bedienzeiten sind alle identisch und unabhéngig verteilt, die gemeinsame Vertei-
lungsfunktion sei F', der gemeinsame Erwartungswert sei pu € (0, 00).

e Es gibt einen Bediener; die Kunden werden alle einzeln bedient.

e Es steht unbegrenzt viel Raum fiir die Warteschlange zur Verfiigung.
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23.6. Das M/G/1 — Warteschlangenmodell

Die Tatsache, dass die Zwischenankunftszeiten exponentiell verteilt sind, hat zur Folge, dass
zu jedem Zeitpunkt, zu dem die Bedienung eines Kunden abgeschlossen wird, der weitere
Verlauf des Prozesses nur von der Anzahl der aktuell wartenden Kunden abhéngt. Diese
Zeitpunkte bilden also die Regenerationspunkte eines semiregenerativen Prozesses. Wird nun
mit S,, derjenige Zeitpunkt bezeichnet, zu dem der n—te Kunde bedient worden ist (zusitzlich
sei Sp = 0), und z&hlt X,, die Kunden, die zu diesem Zeitpunkt noch im System verbleiben, so
bildet (X, S) den zugehorigen Markovschen Erneuerungsprozess; der Zustandsraum ist Ny.
Es soll nun der Markovsche Ubergangskern Q(t) = (Qij(t))i,jelNo bestimmt werden. Dazu
seien e

qn(t) == /0 erF(s) und qn = tliglo qn(t).
Zur Berechung von Q;;(t) = P(X1 = j,T1 < t|Xo = ©) beachte, dass die Anzahl der ankom-
menden Kunden in [0, s] fiir s > 0 mit Parameter As Poisson-verteilt ist. Da zum Zeitpunkt
Ty ein Kunde das System verldsst, miissen, um X; = j zu erreichen, bis 71 genau j —i + 1
Kunden ankommen. Integration iiber 77 = s liefert fiir ¢ > 1 und j > ¢ —1

te=As(\g)imitl

Qi;(t) :/0 P(X1 = j|Xo=1i,T1 = s)dF(s) = /0 (

mdF(S) = qj—it1(t).

Fiir ¢ = 0 muss Q;;(t) etwas anders berechnet werden, da nicht sofort die Bedienung des ersten
Kunden beginnen kann. Stattdessen muss iiber den Zeitpunkt s integriert werden, zu dem der
erste Kunde ankommt, mit dessen Bedienung dann sofort begonnen wird; anschlielend liegt
die Situtation wie bei Q1;(-) vor, allerdings bleibt nur noch die Zeit ¢ — s iibrig. Es ist also
fir alle j € Ny

Qo; (1) / Qu,(t — 5)dA(s) = /O 0i(t — ) ds = py(8).

Mit den Satzen von Fubini und von der majorisierten Konvergenz folgt fiir das Grenzverhalten
der p,

t t—s
. e*)‘“ /\u
limpa(t) = lim / / AF (u)dA(s)
0 0

) ) t s e—)\u(Au)n
= tgrgo/qndA(s)—tllglofo /n!dF(u)dA(s)

_ _g&//d/\ e A“’) € Y R )

0 t—u
7 e—Au()\u)n
= /tliglo (t —u) A(t))TdF(u) = qn.
0

Zusammenfassend ergibt sich
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23.23 Satz:

Im M/G/1-Warteschlangenmodell seien X\, pu, F, qn, qu(t) und p,(t) wie oben defininiert.
Der oben beschriebene eingebettete Markovsche Erneuerungsprozess (X,S) besitzt dann den
Ubergangskern

die Markovkette X wird durch die Ubergangsmatriz

qgo 41 G2
q g1 Q2

9 q1
0 .

beschrieben.

Das Grenzverhalten der eingebetteten Markovkette.

Es soll nun auf das Grenzverhalten der Markovkette X eingegangen werden. Dazu definiere
P;j = Q;j(00) und P = (P;;); jen, als Ubergangsmatrix von X und setze weiter » = Ay und
r.=1—qo—...— qg-

23.24 Lemmna: .
Esgilt r= % ry= > jg.
k=0 j=0
Beweis; .
Wegen > gj =1ist rp = ) ¢; und es folgt
§=0 j=k+1
o= XY g =Ydu= [y e
k=0 k=0 j=k+1 7j=1 0 j=1
= /e_/\s)\sz Q) j‘) dF(s) = )\/de(s) =Au=r.
0 =0 7' 0

Mit dieser Voriiberlegung kann nun gezeigt werden, dass wie auch beim M /M /1-Modell genau
fiir r < 1 positive Rekurrenz vorliegt.

23.25 Satz:
X st aperiodisch und irreduzibel. Genau fiir r < 1 liegt positive Rekurrenz vor.
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Beweis:

Aus der Definition folgt sofort ¢ > 0 (und auch r; > 0) fiir alle & € Ny. Die Struktur
der Ubergangsmatrix impliziert somit die Aperiodizitit und die Irreduzibilitit. Zum Nach-
weis positiver Rekurrenz muss die Existenz einer stationdren Verteilung (7j)ren,, d.h. die
Erfiillbarkeit der Bedingungen

Wk:ZTrijk (kEN()) und ZWIC:I

fiir nichtnegative 7 gezeigt werden. Die erste Bedingung fithrt nach Satz 23.23 auf

kt1 k1 k
k= moPok + Y 1Pk = moPok + Y TiGk—j41 = Toqk + Y 10k
j=1 =1 =0
und Summation liefert
m
ZT% = WOZ% +ZZ7T;+1% —j=mo(1l—rp +Z%+1Z% —j
k=0 k=0 j=0

m—
= Wo(l—Tm)+Z7Tj+1 th =mo(1 —rm) + Z Tj41(1 = Tm—j) + Tm+4190;
j =0

und es folgt die Rekursionsvorschrift

m—1

Tm4140 = T0Tm + D Tjt1m—j, (23.4)
=0

die fiir festes mg > 0 eindeutig eine Losung der ersten Bedingung m = 7P liefert. Um die
Summierbarkeitsbedingung zu iiberpriifen, summiere (23.4) iiber m. Unter Verwendung von
Lemma 23.24 wird

o0 o0 oo o0 oo
q0 E Tm+1 = TQ E Tm + E Tj+1 E Tm—j = Tor + (r—ro) E Tj+1,
m=0 m=0 j=0 m=j5+1 Jj=0

und wegen qo = 1 — rq folgt
o0
(1 — 7“) Zﬂ'j = Tr7g.
j=1

Fiir r € (0,1) konvergiert die Reihe also, und mit der Wahl mp = 1 — r wird auch

ij <1+> 7o = 1.

Fiir r > 1 ist entweder die Reihe divergent oder mg = 0 und damit 7, = 0 fiir alle k € N. B

Fiir die Grenzverteilung gilt

143



Kapitel 23. Markovsche Erneuerungstheorie

23.26 Satz:
Firr = Ap > 1 ist mj := limp 00 Pj; = 0 fiir alle 4, j € No. Ist r <1, so folgt
70 J 1
m=1-—r, m=(1- r)qfo und  mip = (1= —gsie (G >1) (23.5)
k=190
mit
Sk 1= Z R
artag+...fap=j,a;>1
Beweis:

Die Darstellungen fiir mg und 7 folgen direkt aus der Wahl von w9 = 1—1 aus dem Beweis von
Satz 23.25 und der Rekursion (23.4) fiir m = 0. Damit wird dann mo+m = (1—7r) (1 + ;—8) =

% und erneut nach (23.4) folgt

1 1—7r)r;
7722*(7?07"1+7T17“1)=7( 2) :
q0 90
Um den Rest der Behauptung per Induktion zu beweisen, beachte
J+1-k

J
Sj+1,k+1 = E Sj+175,k7’6:E Sm,kTj+1—m-
B=1 m=k

Fiir 7 > 1 folgt nun nach (23.4) und Induktionvoraussetzung

J
Tj1-mTm+1 '
Wy mpnlmbm) g e gy ]
1—17r 1—r 1—r q0

H

i

N
)

m=

J J J

T 1 S 1

_ J+1 _ 97+1,1

= o +§ i1 E SmkTj+1—m = o +§ Tr1 Sit1 k41
k=140 =k k=1 90

j+1

— 1
= &SItk
k=1 10

23.27 Bemerkung:
In Beispiel 21.48 wurde gezeigt, dass genau fiir » < 1 Rekurrenz vorliegt, d.h. genau fiir r = 1
ist das System null-rekurrent, fiir > 1 ist es transient.

Die zeitabhiingige Beschreibung des M /G /1-Modells.

Es sei Z; die Anzahl der Kunden im System zum Zeitpunkt ¢. Dann stellt (Z;);>0 einen
semiregenerativen Prozess dar. Unter der zeitabhéngigen Beschreibung des M/G/1-Modells
versteht man die Untersuchung der Wahrscheinichkeiten P(Z; = k) fiir t > 0 und k& € INg. Die
explizite Darstellung dieser Wahrscheinlichkeiten ist bereits im einfacheren M/M/1-Modell
sehr schwierig, fiir wenig kompliziertere Modelle bereits nicht mehr méglich. Die Markovsche
Erneuerungstheorie ermdglicht es immerhin, diese zeitabhéngigen Wahrscheinlichkeiten unter
Riickgriff auf die Markovsche Erneuerungsfunktion R(t) anzugeben.
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23.28 Satz:
Es gilt
kot
P(Z, = M Xo = i) = Kpi, t) + Z/ K(jst — s)dRyy (s)
— Jo
mait
6_)"5, j =k = 07
Koty i 4 Jare 0 F(s) 0 —ds, j=0k>0,
k\Js = — —j ’
(1 F(t) 28—, j>0.k> 5,
0, sonst.
Beweis:

In Anbetracht von Lemma 23.13 reicht es zu zeigen, dass K (j,t) = P(Z; = k,S1 > t| X = j)
gilt; aufgrund des letzten Falls in der Definition von K} braucht die Summe nur bis k erstreckt
werden. Fiir j > k ist P(Z; = k,51 > t|Xo = j) = 0; fir 0 < j < k gibt 1 — F(¢) die
Wahrscheinlichkeit an, dass S7 > t ist, und der Term e(k(%;)) gibt die Wahrscheinlichkeit
flir genau k — j Ankiinfte bis £ an. Zur Nachvollziehung des Falles fiir j = 0 und & > 0
betrachte den Zeitpunkt s, zu dem der erste Kunde das System betritt. Integration liefert in
diesem Fall

Ki(0,1) /Kkllt—s)dA /Kklls)dA(t—s)

und die bereits bewiesene Darstellung fiir den dritten Fall sowie die Substitution u =t — s
liefern die Behauptung.

Der erste Fall schlieBlich folgt daraus, dass e™* = 1 — A(t) die Wahrscheinlichkeit ist, dass
bis zum Zeitpunkt ¢ kein Kunde ankommt. ]

Das Grenzverhalten des M/G/1-Modells.

Es soll nun das Grenzverhalten der Wahrscheinlichkeiten P(Z; = k|Xy = i) fir t — oo
untersucht werden. Es wurde bereits in Satz 23.26 das asymptotische Verhalten dieser Wahr-
scheinlichkeiten eingeschrinkt auf die Zeitpunkte ¢ = S;, beschrieben. Die Markovsche Er-
neuerungstheorie ermoglicht den Nachweis, dass P(Z; = k|Xo = i) ganz allgemein die dort
angegebenen Grenzwerte besitzt.

23.29 Satz:
Figrr > 1 ist mj = limy, 00 P(Zy = j|Xo = 1) =0 fiir alle i,j € Ng. Ist r < 1, so folgt

j
mo=1-—r, wlz(l—r);—g und  Tjq1 = 1—7"2 sik (1 =>1)
k=

mit

Sk = E TarTas -+ - Tay-

artas+...+ap=7,0;>1
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Beweis:
Fir r > 1 sind alle Zusténde transient, insbesondere konvergieren die Komponenten der
Erneuerungsfunktion, d.h.

lim R;j(t) =: R;;(00) < o0,

t—o0
und nach Satz 23.28 wird

k
Jim P(Zy =k | Xo=1i) = Ki(i,00) + Z;Kk(Jv 00) R;;(00) = 0,
‘]:

da K} in allen Féllen gegen 0 konvergiert (aus der Definition von K}, ist die Konvergenz fiir
j > 0oder k =0 klar, im Fall j = 0 < k gilt K(0,-) = Ki(1,-)*A und wegen der Konvergenz
von Kj(1,t) und der Beschrinktheit von A folgt auch hier die Konvergenz gegen 0).

Sei nun r < 1, d.h. der Zustandsraum Ny ist irreduzibel rekurrent. Da die Verweilzeit in 0
eine exponentielle Komponente enthélt, sind alle Zusténde nichtarithmetisch. Ferner ist fiir
4y k>0

Ko(0,6) =1 = A(t), Ki(0,6) < (Ax (1—F))(t) und Ku(j,t) < (1— F(£),

insbesondere ist Ky (j,t) fir alle j,k > 0 (uneigentlich) Riemann-integrierbar. Bezeichnet
(1) die Grenzverteilung der Markovkette aus Satz 23.26, so folgt mit Satz 23.14 iiber semi-
regenerative Prozesse, dass

T = lim P(Z =k | Xo =) = Z%/Kw,
Z¢1,Uzjo 0

ist, sofern > 1¥;p; < oo ist und sonst 7 = 0. Die p; = E[T1|Xo = i] konnen hier sehr einfach
berechnet werden, da p; = g fiir ¢ > 0 und po = p + % gilt. Im Fall » = 1 existiert kein
summierbares (von 0 verschiedenes) stationédres Mafl (v;) fiir die eingebettete Markovkette
und es folgt m, = 0.

Im Fall » < 1 ist

o Yo+r 1
Z%Mz— )\sz_ AN
also
k o0
T = Aquj/ Ki(j, t)dt. (23.6)
j=0 70
Um 7, = ¥y fiir alle k£ € Ny zu zeigen, setze

:iﬁkzk und G(z Z@bkz
k=0

und zeige H(z) = G(z) fur alle z € [0, 1). Fiir derartige z konvergieren beide Reihen absolut
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und es gilt

(1—2)H(z) = )\(1—2)21/1]/ ZKHt ZFdt

0 k= J

OOOO
_ %( 1—z/K00tdt+)\1—z /EKkOt kldt)
0

k=1

—1—2% 1—zz]/iKk k=t
0

k=j

oo t
= o ((12 +A1—zz//)\eAtS - e~ (1= Z)dsdt)
00

+Z¢Jza / (1= 2)eX0=2(1 = F(t))dt

0

= ( (1-2) //)\e AE=9)dt(1 — F(s))A(1 — z)e)‘(lz)sds)
0

S

iz — 2)e A=A .
+;¢ﬂ /0 A1 - 2) (1 - F(t))dt

Mit

folgt einerseits
(1—2)H(z) = wo(l—z+2(1—@ +Z¢]z]1—

= Zw]zﬂl— ) + Yo(1 — 23(2) — (1 — $(2)))
= G< )1 = 3(2)) + Yo@(2)(1 - 2).

Beachte nun, dass (mit a := A(1 — 2))

G(z)=1— Zae_“t ]OdF(u)dt = 07(1 - /0 ’ ae‘atdt> dF (u) = Ze_““dF(u)

und somit

[e. 9]

S = [ ‘”Z MY i) = [ e0=ar) = 502
=0

0
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gilt. Wegen 1 = ¢ P folgt nun andererseits

oo [e.e] oo o0 [ee] ] o0 ]
2G(z) = Y T =D Y P =z Y a2 ) v’ Y grpai2t
k=0 k=0 k=0

=0 = = 1=1 k=i—1

1=0

= (1/)02 — o + Z¢i2i> Y akz = G(2)p(2) — o1 — 2)$(2)
k=0

und zusammen

(1= 2)H(2) = G(2)(1 = ¢(2)) + G(2)p(2) = 2G(2) = (1 = 2)G(2).
Damit ist die Identitdt H(z) = G(z) auf dem Intervall [0,1) gezeigt und insbesondere folgt
7, = vy, fur alle k € Np. |
Die in einem Zustand verbrachte Zeit.

Das Beispiel des M/G/1-Modells abschliefilend soll noch die Zeit berechnet werden, die das
System in einem Zustand k verbringt.

23.30 Satz:
Es seiv: Ng — R eine beschrinkte Kostenfunktion der Zustinde. Fir die mittleren ,Kosten“
bis zum Zeitpunkt t gilt

E /U(Zs)ds\Xo =i| = Vi(t)o(k)
0 k=0
mat

(1= (F+A)(w)du, j=0,

Vie(t) = 0ixI(i,t) + | I(k,t — s)dRix(s) und I(j,t) =

o _

(1 = F(u))du, j>0.

O O — &

Beweis:
Es ist

v = g)v(kn{k} wd B [/0t1{k}(zs) X, :z} = Z(®)

mit der Funktion Z(i;k,t) aus dem Kapitel iiber Semi-Markovprozesse, die nach Lemma
23.18 berechnet werden kann; mit

00 t
i) =1-3 Qu() wd  L(,t) = / (i, ) du
k=0 0
gilt

Zis(®) =l 0.0) + [ LGkt = )R ().
0
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Fir ¢ > 0 ist hier

n

(i) =1-3 qu(t) =1 - /e_AS 3 (An"”!) dF(s) =1 — F(t),
n=0 0

= n=0

ferner ist

F(t — 8)dA(s) = 1 — (F + A)(t).

o _

0.0 = 1= pal) =1- [ Y ault— s)aA5) =1~
n=0 0 n=0

Damit ist I, = I, Zjx(t) = Vix(t) (fiir alle i,k € E und ¢t € R") und die Behauptung ist
gezeigt. |

Von Interesse ist noch das asymptotische Verhalten der mittleren Kosten, also eine Form
Ergodensatz.

23.31 Satz:

Es seir < 1 und (mg)ken, die Grenzverteilung aus Satz 23.29. Ferner sei v : Ng — R eine
Kostenfunktion, fir die > ;- mglv(k)| < oo ist (v muss nicht notwendig beschrinkt sein).
Dann gilt unabhdngig vom Startzustand i

t—oo t

t
1 [e.e]
w:= lim - F /U(Zs)ds | Xo=1i| = Zﬂ'kv(k‘).

Beweis:

Es wird zunéchst
t

1
wy = lim ;E /1{k}(Zs)d8 | Xo=1| =my
0

gezeigt. Nach Folgerung 23.19 (bzw. nach Satz 23.30) strebt der Erwartungswert im Zahler
flir t — oo gegen oo. Wegen

t

t
E /1{k}(Zs)d5 | Xo=1i| = /P(Zs = k| Xo = i)ds
0 0

folgt mit der Regel von L’Hospital
wi = lim P(Z; =k | Xo =1)
t—o0

und Satz 23.29 liefert wy = m. Es gilt weiter

v = Z 1{k}v(kj)
k=0
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und mit dem Satz von der monotonen Konvergenz folgt

= > tll% -FE Ly (Zs)ds | Xo =1i| v(k) = kz_owkv(k)

Literatur zu Kapitel 23

Folgende Biicher werden als begleitende Literatur zu diesem Kapitel des Skriptes empfohlen:

e S. I. RESNICK:
Adventures in Stochastic Processes,
Birkhauser, Boston, 1992.
ISBN:0817635912

e E. CINLAR:
Introduction to stochastic processes,
Prentice-Hall, 1975.
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Anhang A

Lineare Differenzengleichungen

Allgemeine homogene lineare Differenzengleichungen

Unter einer homogenen linearen Differenzengleichung der Ordnung r, r € N, versteht man
eine Rekursion der Form

e +a Vg 4. 4+ a2, =0 (n=0,1,2,...), (A.1)

wobei die Koeffizienten ag), 1=0,1,...,r irgendwelche komplexe Zahlen sind. Jede komplex-
wertige Zahlenfolge (x,)nen,, die der Rekursion (A.1) geniigt, nennt man eine Losung der
linearen Differenzengleichung.

A.1 Satz:

Ist . q) # 0 fir alle n, so ist jede Lisung (xn)nen, von (A.1) durch r beliebige aufein-
anderfolgende Werte xn, TNt1, ..., TN1r—1 eindeutig bestimmd.

Beweis:

Aufgrund der Annahme agLO) : a,(f) # 0 fiir alle n kann man die Differenzengleichung (A.1) fiir

n = N bzw. n = N — 1 sowohl auf die Form

(r=1) (0)

—a TNgp—l — o — QN TN
IN+r = A el ) > (A2)
an
als auch auf die Form
—a™ . _(r-1) o (D
N—1ZN+4r—-1 —Qn_1 TN4r—2 — ... — AN_ 1IN A
IN_1 = o) ( .3)
aN_1

bringen, woran man erkennt, da§ die Funktion (x,)nen, nicht nur fiir aufsteigende, sondern
auch fiir absteigende Indizes eindeutig bestimmt ist. |

A.2 Satz:
Es bezeichnen mg)und :nﬁf) zwei Losungen der Differenzengleichung (A.1) und es seien oy, ag €

(1) (1) (2)

C. Dann sind auch aqxy,’ und a1y’ + agxy,’ Lisungen der Differenzengleichung (A.1).

Beweis:

Aus

a1 ag)x&)ﬂ + a;’“*1>x£}+)r_1 +...+ aglo)xg)} =0
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folgt sofort
alr) ( ( ) ) +alr Y (alxgH)_,, 1) +...+a (qug)) =0.

Ebenso schlieft man aus

al) ( 2t ) + a1 (alxﬁlle_l) +... +d0 (alxgn) =0 (n=0,1,2,...)
und

o) (azal),) +al ™ (aoel, ) + o+ (02P) =0 (n=0,1,2,..)
auf

a{") (alx( )+ agxg]rr> +alrb (aleJ)rT 1+ agmg)ﬂ, 1) +...

+a<o><a1$<>+a2x<>>_o (n=0,1,2,...). u

A.3 Definition:

M, . 2™ seien Losungen der linearen Differenzengleichung (A.1). Die Funktionen (M),
.., ™) heiflen linear abhingig, falls es micht gleichzeitig verschwindende Konstanten i,
.oy Oy mit

ozt + . 4 ape™ =0 (n=0,1,2,...)

gibt. Andernfalls heiflen sie linear unabhdingig.
A.4 Definition:

Es seien 2, 2@ .
net man die Matriz

.,z Lésungen der linearen Differenzengleichung (A.1). Dann bezeich-

AV D
1:(1) o (7‘)

X,=| " Fnt1 (n=0,1,2,...)
1 T
7(1-i)-r 1 x7(7/-f)‘7”—1

als Casorati-Matriz und
C,, = det(X,,) (n=0,1,2,...)

als Casorati-Determinante der Differenzengleichung (A.1).

A.5 Satz:
Die Casorati-Determinante der homogenen linearen Differenzengleichung (A.1) geniigt der
Rekursionsformel
(0)
a
Cny1=(-1)"—5-Ca (n=0,12,...). (A.4)

an
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Beweis:
Mit Hilfe der Matrizen

[0 1 0 0
0
0 0 0 1
CL'SLO) aE’Ll) CL,(,LT_I)
" D ]

148t sich die Rekursion (A.1) auf die Form
Xpi1=AnX, (n=0,1,2,...)

bringen, wobei die X,, wie in Definition 4 erklart sind. Die Behauptung folgt aus den Bezie-
hungen

Cpt1 = det(Xp11) = det(A,X,,) = det(4,) - C, (n=0,1,2,...)

und
L0
det(dn) = (1" =5 (n=0,1,2,...)
an
A.6 Satz:
M, 2@ 2 bezeichnen Lisungen der Differenzengleichung (A.1). Dann sind folgende
Aussagen dquivalent:
(i) Die Funktionen V), ... ") sind linear abhdingig.
(ii) Cp =0 fiir einn € Ny .
(iii) Cyp =0 fiir alle n € Ny .
Beweis:
Wir nehmen zuniichst an, daf die Funktionen (. ..., z(") linear abhéngig sind. Dann exi-
stieren Konstanten oy, ..., a, mit

e + . +azl) =0

alxilll +...+ arwfgl =0

1
alew)q_l + ...+ ara:glpl =0

Da dieses System aufgrund der Voraussetzung eine nichttriviale Losung besitzt, mufl die
Determinante der Koeffizientenmatrix X,, verschwinden. Aus C,, = det(X,,) = 0 aber folgt
aufgrund von Satz 5 C,, = 0 fiir alle n.

Sei nun Cy = 0 fiir ein N € Ny angenommen. Dann existieren Konstanten aq, ..., a, mit

oq:vs\l,) —l—...—i—ozra:g(,) =0

(1) (r)
a1 +... oz =0
N+1 N+1 (A.5)

1
alxg\f:-r—l +...+ arxg\ilr_l =0.
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Da aufgrund von Satz 2 mit (M, ..., z(") auch

T
Ty = E aix%’)
i=1

eine Losung der Differenzengleichung (A.1) ist, entnehmen wir dem System (A.5)

IN =ITN41 = ... = TN4r—1 =0.
Mit Hilfe der Formeln (A.2) und (A.3) schlielen wir weiter, da§ z, = 0 fiir alle n € Ny.
Folglich sind die Funktionen M 2 linear abhéngig. ]

A.7 Definition:
Jedes System von 1 linear unabhdngigen Lisungen der Differenzengleichung (A.1) wird Fun-
damentalsystem genannt.

A.8 Satz:
Es seizW, ..., (") ein Pundamentalsystem der Differenzengleichung (A.1). Dann kann jede
Lésung © = (zp)nen, von (A.1) als Linearkombination der Form

xn:Zaiaﬁg) (n=0,1,2,...)
i=1

dargestellt werden.

Beweis:
Da C,, = det(X,,) # 0 vorausgesetzt ist, hat das Gleichungssystem

(1) (r)

TN x{\/ [N xN oq

v | el e a0 |

IN+r—1 xg\lf)Jrrfl x(Nr)+rfl ar
bzgl. a1, ..., a, eine eindeutige Losung. Da jede Losung von (A.1) durch r beliebige auf-
einanderfolgender Werte zn, N1, ..., Tni+r—1 eindeutig festgelegt ist, ist der Satz damit
bewiesen. ]

A.1 Lineare Differenzengleichungen mit konstanten Koeffizi-
enten

Als néchstes wollen wir das Losungsverhalten der Differenzengleichung (A.1) unter der An-

nahme agf) = q; fir ¢ = 0,1,2,...,r und n > 0 studieren. Dazu machen wir den Ansatz

Tp = A" (n=0,1,2,...), (A.6)

wobei X irgendeine komplexe Zahl bedeuten soll. Setzt man (A.6) in (A.1) ein, erhélt man
(nach Division durch A\") die charakteristische Gleichung

D aX =0. (A7)
=0
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Wir nehmen zunéchst an, dafl die r Wurzeln A1, Ag, ..., A, der Gleichung (A.7) alle verschieden
sind. Dann bilden die Funktionen

n n )\TL

15729y \p

ein Fundamentalsystem der Differenzengleichung (A.1). Denn es ist

A} e A? 1 1 Y 1
PR o A+l r )‘é )‘3 e )‘g
det(X,) = ' " = (H )\?) AT Ay A
: : i=1 : : :
)\n—l—r—l L. )\?Jﬂa,l T., T., T__
1 )\1 1 )\2 r .. )‘r 1
1 1 . 1
, Al — N\ Ao — A1 Ar— A1
:<H)\7> )\%*)\1->\1 )\%*)\1')\2 )\72~*>\1'>\r
i=1 : : :
D S VI VA P VA V. T e

(vorangehende Zeile mit \; multiplizieren und von der aktuellen abziehen)

1
, 0 1 11|,
= (H )\?) 10 A2 A3 U Ar | ()\,L — )\1) Uusw.
=1 R P =2
0 A2 Af2 e A2

Bildet A\ eine mehrfache Nullstelle mit der Vielfachheit 6;, dann sind neben A} auch
n- AL n2 AL, nf T

Losungen der Differenzengleichung (A.1). Um dies zu erkennen, fithren wir den Shift-Operator

Ezr, =1o,11 (A.8)
ein. Dann kann man die Differenzengleichung (A.1) fiir al? = g (1=0,1,2,...) auch in der
Form

[, E" +ar 1B 4+ .. +agle, =0 (n=0,1,2,...) (A.9)
bzw.

(E-= )" (E=\p)'™z, =0 (n=0,1,2..)) (A.10)
schreiben, wobei A1, ..., A, die m verschiedenen Wurzeln der charakteristischen Gleichung

(A.7) und 04, ..., 0, ihre Vielfachheiten bedeuten. Aufgrund der Darstellung (A.10) geniigt
es auch, sich auf einen der Faktoren (E — \;)% zu beschrinken (0.B.d.A. i = 1) und die
Gleichung

(E—X\)"z, =0 (A.11)
zu studieren. Denn jede Losung von (A.11) ist zwangsléufig auch eine Losung von (A.10) bzw.
(A.9). Fiir x,, machen wir jetzt den Ansatz

Ty = A -0y (n=0,1,2...). (A.12)
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Setzt man (A.12) in (A.11) ein, bekommt man
0, -
0= (E—A)" A}, = ~M)ITE AT v,
=g =3 () At )

b5 rp S
, i
01

=AY <0z1> (=)™ By

=0
=\t (B —1)% g,

= )\?Hrn : Aelvn ;

wobei

Avp = Upa1 — Un (n=0,1,2,...).

Damit haben wir das Problem verlagert auf die Losung der Differenzengleichung
A%y, =0 (n=0,1,2,...). (A.13)
Bevor wir den Sachverhalt allgemein klédren, einige einfache Rechnungen:
b1=1: Av,=v,41—v,=0 (n=0,1,2,...)
wird durch v, = 1 gelost.

01=2: A%, =A(Av,) = A(Vns1 — V) = Unto — Vni1 — (Ung1 — Un)
= Upt2 — 2Up41 + 0, =0 (n=0,1,2,...).

Zwei linear unabhéngige Losungen sind
o) =1 und 0@ =np (n=0,1,2,...).
Probe:
1.1-2+1=0,
2. n+2)—2-(n+1)4+n=n+2-2n—-2+n=0.
Auflerdem ist

1 n

det(Xn) = ‘1 n+1

‘:n—l—l—n:l (n=0,1,2,...).
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Allgemein gilt

AnF = (n+1)F —n¥

k-(k+1
:[nk+k'nk+1+(2|+)+ ] —nk
k-(k+1
:k-nk_l+gnk_2+...

2!
AnF = (n4+2)F —2(n + 1)* +n*
k-(k—1
k90 k=10l (2‘ )nk—2.22

(k=1
Wﬂk_2-12+...]+nk

+ ...

—2.[nfF 104+ k-nFt 1+
=k-(k—1)-nF24 ...

AFnk = k!
Mit anderen Worten: .
ARk =0 fiir i > 1.

Deshalb bilden die Funktionen
Tlla n- )‘?777’2 ’ ?7 cee n01_1>‘711

Losungen der Differenzengleichung (A.11). Thre lineare Unabhéingigkeit beweisen wir mit Hilfe
der Definition 3:

o AP ag-n- A+ g, onTH N =0 (n=0,1,2,...)

impliziert

a1+a2-n+a3-n2+...+a91 il =0 (n=0,1,2,...).
Da aber ein Polynom der Ordnung 6; — 1 hochstens #; — 1 Nullstellen besitzt, mufl a; = as =
... = ap, = 0 gelten. Im allgemeinen Fall mufl man

0>—1

M a4+ nog+ .o+ n o |+ MY - [ag 1+ agas .. 40 cag4o,] +...=0

iiberpriifen. Dazu dividiert man sukzessive durch A} - n®1=1 \P . nf1=2  und fiihrt den
Grenziibergang n — oo durch. Unter der Annahme |A1| > |[A2| > ... > |\, ergibt sich auf
diese Weise ag, = ag,—1 = ... = 0. Zusammenfassend erhalten wir das folgende Ergebnis.

A.9 Satz:
Die charakteristische Gleichung besitze die Wurzeln A1, ..., Ay, mit den Vielfachheiten 61,
.+ Om. Dann besitzt die Differenzengleichung (A.1) ein Fundamentalsystem der Form

n n 01—1 n n n [7) n
LA, ...,n AL A TV Ay, U A

A.10 Beispiel:
Betrachte die Differenzengleichung dritter Ordnung:

Tpas — 4xpao + 5rp1 — 22, =0 (n=0,1,2,...).
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Die zugehorige charakteristische Gleichung lautet:
M4\ 5 —2=(\-1)*-(A=2)=0.

Die charakteristischen Wurzeln sind Ay = 1 und Ay = 2 mit den Vielfachheiten 2 und 1.
Deshalb bilden die Funktionen

aM =2 =1"=1

23 = \p = 2"

ein Fundamentalsystem. Die zugehorige Casorati-Determinante ist

1 n n 1 n 1 1 n 1
Co=1 n+1 20t =2".11 n4+1 2[=2"-10 1 1|=2"#0 (n=0,1,2,...)
1 n+2 2o2nt2 1 n+2 4 0 2 3

wie es aufgrund von Satz A.9 erwartet werden konnte.

A.11 Beispiel:
Man 16se die Differenzengleichung

Tnts — TTpio + 162,11 — 122, =0 (n=0,1,2,..)

mit den Anfangswerten
o = 0,$1 = 1,.1,‘2 =1.

Losung: Die zugehorige charakteristische Gleichung lautet
A —TA2 + 161 —12=0

und hat die Wurzeln

Die allgemeine Losung lautet deshalb:
Tp=a1-2"+az-n-2"+a3-3" (n=0,1,2,...).
Folglich muf} gelten:

To=0a1+a3=0,
1 =201 + 200+ 3a3 =1,
To = 4o + 8ag + 903 = 1.

Wir erhalten
a1 = 3,0[2 = 2,043 =-3.

Die gesuchte Losung ist deshalb

T, =3-(2")+2-n-(2")-3"""  (n=0,1,2,...).

158
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A.12 Beispiel (Fibonacci-Zahlen, Vermehrung von Kaninchen):
Modellannahmen: Zu Beginn ein reifes Paar. Reifezeit 2 Monate, dann jeden Monat ein neues
Paar als Nachwuchs. Leonardo d. Pisa, 1202.

Monat‘n‘0‘1‘2‘3‘4‘5‘6‘...
Populationsumfang | z, | 1[2[3 |5 |8 [13]21 -

l‘[]:l,

$1:2,

Tp+2 = Tntl + Tn (n=0,1,2,...).

Bestimmung der allgemeinen Losung. Die charakteristische Gleichung lautet

M-XA—1=0
und hat die Wurzeln
1++5 1-+5
AL = 5 Ao = 5

Folglich lautet die allgemeine Losung

xn—a1-<1+\/g> +a2_<1—\/5> (n=0,1,2,...),

2 2
wobei
To=a1+ag=1
1+5 1-+5
Ty =aj - + s - =2.
2 2
Es folgt

a2:1—a1

was dquivalent ist zu

und

_A4-1+v5 3+V5 V543
U= s T 25 245
2-v5-3-v5  V5-3

2-v5 2.5

oy =1—0a1 =

Damit wird

V5+3 (1+v5\ V5-3 [1-5)\
$n:2'\/5.< 5 ) _|_2.\/5.< 5 ) (n=0,1,2,...).
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Anhang B

Zeichenerklarungen

2RO Z

&

Menge der natiirlichen Zahlen

Menge der rationalen Zahlen

Menge der reellen Zahlen

Menge der komplexen Zahlen

Menge der mafdefinierenden Funktionen auf R, die in (—o00,0) ver-
schwinden

Menge der nichtnegativen reellen Funktionen, die auf jedem Intervall der
Form [0, ] beschrénkt sind

Menge der links offenen und rechts abgeschlossenen Intervalle im R”,
neN

:=o0(I") “o—Algebra der Borelschen Mengen des R™”

=R U{—00,+o0}

:={B,BU{—00}, BU{+c0}, BU{—00,+cx}|B € B}

Potenzmenge von M

= {z]a < z < b} ,links offenes, rechts abgeschlossenes Intervall“
=n-(n—1)-...-2-1  Fakultit von n*

=M =N (N-1)-...- (N —n+1) “nte untere Faktorielle von N”
"ol . B
= m N iuber k

meint den linksseitigen Limes von F'(a)
konvergiert von unten gegen

X ist exponential-verteilt

X und Y sind identisch verteilt
Realteil der komplexen Zahl x

Imaginérteil der komplexen Zahl x
seien die Landau-Symbole.
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Literatur

Stochastik 111

Folgende Biicher werden als begleitende Literatur zum Teil III des Skriptes empfohlen:

e S. I. RESNICK:
Adventures in Stochastic Processes,
Birkhiuser, Boston, 1992.
ISBN:0817635912

e E. CINLAR:

Introduction to stochastic processes,
Prentice—Hall, 1975.

e S. KARLIN/H.M. TAYLOR:
A first course in stochastic processes,
Academic Press, 1975.

e K.L.. CHUNG:
Markov Chains with stationary transition probabilities,
Springer—Verlag, 1960.

e W.J. ANDERSON:
Continuous—Time Markov Chains,
Springer Verlag, Berlin, 1991.
ISBN: 3540973699

e D. W. STROOCK:
An Introduction to Markov Processes,
Springer-Verlag, Berlin, 2005.
ISBN: 3540234993
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Anhang D

Historie

In der folgenden Auflistung werden einige fiir die Entwicklung der Stochastik bedeutende
Mathematiker mit ihren Lebensdaten und kurzen Beschreibungen ihrer Wirkungsfelder auf-
gefiihrt. Die Liste erhebt keinen Anspruch auf Vollsténdigkeit. Insbesondere fehlen wichtige
Mathematiker, die nicht direkt im Bereich der Stochastik gewirkt haben, durch ihre Arbeiten
zur Maf3- oder Integrationstheorie die moderne Stochastik aber erst erméglichten.

e Thomas Bayes
(* 1702 in London, England; ¥ 17. April 1761 in Tunbridge Wells, Kent, England)

Thomas Bayes studierte ab 1719 Theologie an der Universitét in Edinburgh und beschéfti-
ge sich nebenbei mit Mathematik. 1733 wurde er Pfarrer der presbyterianischen Kapelle
in Tunbridge Wells, 35 Meilen siidostlich von London. 1742 ernannte man Bayes zum
Mitglied der Royal Society, obwohl der bis zu diesem Zeitpunkt noch keinerlei mathema-
tische Arbeiten verdffentlich hatte. Insgesamt publizierte Bayes selbst nur 2 Arbeiten.
Seine wichtigten Forschungsergebnisse, die unter anderem auch den spéter als ,,Formel
von Bayes” benannten Satz enthielten, wurden erst aus seinem Nachlass bekannt.

e Richard Ernest Bellman
(* 26. August 1920 in New York; t 19. Mérz 1984 in Santa Monica, Californien)

Bellman studierte bis 1943 am Brooklyn College (B.A.) sowie an der University of
Wisconsin (M.A.) Mathematik. Danach arbeitete er 2 Jahre in Los Alamos in der theo-
retischen Physik. Seit 1965 lehrte er an der Universitdt von Southern California, Los
Angeles, als Professor fiir Mathematik, Elektroingenieurwesen und Medizin.

1953 stellte Bellman die Methode der dynamischen Programmierung auf, die fiir die
Entscheidungstheorie sowie fiir die Variationsrechnung und optimale Steuerung wesent-
lich ist. Bellman beschéftige sich auch mit der Modellierung biologischer Prozesse und
der Theorie der unscharfen Mengen.

e Familie Bernoulli
Die schweizer Gelehrtenfamilie Bernoulli hat tiber mehrere Generationen hinweg sehr
grofle Beitrage zur Mathematik geleistet.

Im Folgenden werden nur die beiden Mitglieder der Bernoulli-Familie aufgefiihrt, die
sich wesentlich mit stochastischen Fragestellungen beschéftigt haben. Insbesondere wer-
den Jakob Bernoulli II, Johann Bernoulli I, Johann Bernoulli II, Johann Bernoulli III,
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Niklaus Bernoulli I und Niklaus Bernoulli II, die allesamt bedeutende Mathematiker
waren, hier nicht ndher erwihnt.

— Daniel Bernoulli
(* 8. Februar 1700 in Groningen; t 17. Mérz 1782 in Basel)

Daniel Bernoulli interessierte sich hauptséchlich fiir Anwendungen der Mathema-
tik. Er entwickelte das Prinzip zur Losung algebraischer Gleichungen mit Hilfe
von rekurrenten Reihen (,,Methode von Bernoulli”) und untersuchte Kettenbriiche.
AufBlerdem lieferte er wichtige Beitrdge zur Wahrscheinlichkeitstheorie, die spéter
teilweise von Laplace in seine Theorie aufgenommen wurden.

— Jakob Bernoulli I
(* 27. Dezember 1654 in Basel; T 16. August 1705 in Basel)

Jakob Bernoulli I ist der erste Gelehrte in der Familie der Bernoullis und iiber-
haupt der erste bekannte Schweizer Mathematiker. Er befasste sich {iberwiegend
mit analytischen Fragestellungen (er stand u.a. mit Leibniz, der gerade eine Infini-
tesimalmethoden aufgestellt hatte, in Kontakt), sowie mit stochastischen Proble-
men. Seine Arbeit baute auf den Ergebnissen von Huygens iiber das Gliicksspiel auf.
In einer erst nach seinem Tode durch seinen Neffen Niklaus Bernoulli I vercffent-
lichten Arbeit stellte Jakob Bernoulli I bereits das Gesetz der grofien Zahlen auf
und verallgemeinerte viele kombinatorische Ansétze von Huygens.

e Emile Borel

( 7. Januar 1871 Saint-Affrique; 1 3. Februar 1956 in Paris)

Borel beschiéiftige sich zunéchst mit Funktionentheorie. Nach seiner Tétigkeit als For-
schungsbeirat im Kriegsministerium von 1914-1918 iibernahm er den Lehrstuhl fiir
Wabhrscheinlichkeitsrechnung und mathematische Physik an der Sorbonne. Wahrend
seiner Arbeit in der Funktionentheorie prige Borel den Begriff des Mafles und der
iiberabzéhlbaren Uberdeckung. Ab 1905 befasste sich Borel mit den Nutzungsmoglich-
keiten seiner Mafitheorie in der Wahrscheinlichkeitstheorie. Auflerdem ist Borel Mitbe-
griinder der Spieltheorie und bewies das Minimax-Theorem fiir 3 Spieler.

Guido Fubini
(* 19. Januar 1879 in Venedig; T 6. Juni 1943 in New York)

Zu den wichtigsten Arbeiten Fubinis gehort der 1907 von ihm bewiesene und spéter nach
ihm benannte Satz. Dariiber hinaus befasste sich Fubini mit projektiver Differentialgeo-
metrie sowie der Theorie diskontinuierlicher Gruppen und automorpher Funktionen.

Andrej Nikolajewitsch Kolmogorov
(*x 25. April 1903 in Tambow; 20. Oktober 1987 in Moskau)

Kolmogorov gilt als einer der bedeutensten Mathematiker der Gegenwart. Er befasste
sich vorwiegend mit Wahrscheinlichkeitstheorie, mathematischer Statistik und Logik,
Maf- und Integrationstheorie, Funktionnalanalysis sowie Informations- und Algorith-
mentheorie. Nebenbei entwarf er Lehrpline und Schulbiicher fiir den Mathematikunter-
richt und pragte so zu groflen Teilen den Mathematikunterricht in der Sowjetunion.

Mit seiner Arbeit ,,Grundbegriffe der Wahrscheinlichkeitsrechnung” von 1933 16ste er
das 6. Problem der beriithmten 23 von Hilbert gestellten mathematischen Probleme.
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e Pierre Simon Marquis de Laplace
(* 28. Mérz 1749 in Beaumont-en-Auge; t 5. Mérz 1827 in Paris)

Laplace befasste sich sehr viel mit partiellen Differential- und Differenzengleichungen.
Seine Entwicklung der Laplace-Transformation diente ihm dazu, Naturerscheinungen
analytisch zu erfassen. Neben vielen Arbeiten zu physikalischen Themen befasste er sich
mit Themen der Wahrscheinlichkeitsrechnung. Seine 1812 erschienene Theorie stellte ei-
ne umfassende Darstellung der damals bekannten Wahrscheinlichkeitstheorie dar. In ihr
wurde der Begriff der Wahrscheinlichkeit definiert, sowie die mathematische Erwartung
erortert. Zudem greift Laplace in seiner Arbeit das von J. Bernoulli gefundene Gesetz
der groflen Zahlen auf.

Auf Laplace geht auch die Idee zuriick, dass das Geschehen in einem physikalischen
System exakt vorherbestimmbar sei, wenn nur alle Anfangszustéinde bekannt sind (,,La-
placescher Determinismus”).

Laplace war neben seiner Tétigkeit als Forscher ab 1794 Vorsitzender der Kommission
fiir Mafle und Gewichte und unter Napoleon Bonaparte Minister des Inneren.

e Henri Lebesgue
(* 28. Juni 1875 in Beauvais (Frankreich); { 26. Juli 1941 in Paris)

Lebesgue erkannte, dass viele zu seiner Zeit giiltigen Theorien fiir eine Reihe von Frage-
stellungen unzureichend waren. 1902 verallgemeinerte er den Riemannschen Integralbe-
griff zu dem wesentlich leistungsfihigeren Lebesgueschen Integral. Lebesgues Resultate
wurden zunédchst nur zégernd aufgenommen, stellen heute aber die Grundlage fiir die
moderne Analysis dar.

e Andrej Andrejewitch Markov
(* 14. Juni 1856 in Gouvernement Rjasan; T 20. Juli 1922 in Petrograd)

Markov studierte von 1874-1878 unter anderem bei Tschebyscheff und beschéftigte sich
zunéchst hauptséichlich mit Fragestellungen der Zahlen— und Funktionentheorie. Spéter
befasste er sich {iberwiegend mit Wahrscheinlichkeitsrechnung. Dabei legte er wichtige
Grundlagen zur Entwicklung der Theorie der stochastischen Prozesse. Auflerdem ent-
wickelte Markov die Theorie der spater nach ihm benannten Markovschen Prozesse bzw.
Ketten.

e Pafnuti Lwowitch Tschebyscheff
(* 16. Mai 1821 in Okatowo; t 8. Dezember 1894 in Petersburg)

Tschebyscheff befasste sich zunichst {iberwiegend mit Zahlentheorie. Unter anderem
wirkte er an der Herausgabe der zahlentheoretischen Manusskripte Eulers mit. Spéter
beschiftige er sich dann {iberwiegend mit wahrscheinlichkeitstheoretischen Fragestel-
lungen. Insbesondere erarbeitete er die GesetzméfBigkeiten von Summen unabhéngiger
Summanden. Er verdeutlichte die Wichtigkeit solcher Begriffe wie Zufallsgrofie oder Er-
wartungswert, verallgemeinerte das Gesetz der grofien Zahlen und vereinfachte dessen
Beweis erheblich.

¢ Bernhard Georg Friedrich Riemann
(* 17. September 1826 in Breselenz bei Dannenberg; 1 20. Juli 1866 in Selasca in Italien)
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Riemann studierte ab 1846 an der Universitat in Gottingen zunéchst Theologie und
Philosophie, wechselte dann aber bald zur Mathematik. In seiner 1854 vorgelegten Ha-
bilitationsschrift fithrte Riemann das spéater nach ihm benannte Riemann-Integral ein.
Neben der Integrationstheorie befasste er sich mit vielen weiteren mathematischen Ge-
bieten. So forschte Riemann u.a. auf dem Gebiet der partiellen Differentialgleichungen,
sowie in der Zahlentheorie und der nichteuklidischen Geometrie. Die Ideen Riemanns
sind bis heute von grofier Bedeutung: Die Riemannsche Hypothese iiber die Nullstellen
der (-Funktion wird in sehr vielen Sétzen der Zahlentheorie verwendet. Beweisen lies
sich die Riemannsche Hypothese allerdings bis heute nicht.

Weitere Informationen und diverse Biographien finden sich unter:

S. GorTtwALD, H.-J. ILcAuDs, K.-H. SCHLOTE:

Lexikon bedeutender Mathematiker,
Verlag Harri Deutsch, Thun, 1990.
ISBN: 3-8171-1164-9

Turnbell Server, Biographies
http://www-groups.dcs.st-and.ac.uk/

Mathematik.ch: Bedeutende Mathematiker
http://www.mathematik.ch/mathematiker/

Wikipedia (Kategorie: Mathematiker)
http://de.wikipedia.org/wiki/Kategorie:Mathematiker
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Kapitel D.

Historie

Huygens begriindet mit seinem
Buch ,Uber das Wiirfelspiel* die

Wahrscheinlichkeitstheorie. Er
fuhrt u.a. den Erwartungswert ein.

,Gesetz der groen Zahlen* (aus
Jakob Bernoullis Nachlass von
seinem Neffen Niklaus Bernoulli |
veroffentlicht)

Formel von Bayes (aus Bayes
Nachlass verdéffentlicht)

Laplace verdffentlich seine Wahrscheinlichkeitstheorie. In
ihr wird der Begriff der Wahrscheinlichkeit exakt definiert,
auBerdem wird darin der Erwartungswert erortert.

Riemann fiihrt den spater nach
ihm benannten Integralbegriff ein

schebyscheff befasst sich mit Summen unabhangiger
Zufallsvariablen und verallgemeinert das Gesetz der grofien
Zahlen. Tschebyscheff versuchte die Wahrscheinlichkeits-
theorie so auszubauen, dass sich mit ihr ein groRer Teil der
Vorgange der Wirklichkeit bescheiben lasst.

Borel pragt den
Begriff des Males
Markov befasst sich mit stochastischen Prozessen und zeigt

dass das starke Gesetz der grofRen Zahlen und der zentrale
Grenzwertsatz unter allgemeineren Voraussetzungen gelten

Probleme, darunter als 6. Problem: Axiomatisierung der

ilbert formuliert seine 23 bedeutenden mathematischen
ahrscheinlichkeitstheorie

G_ebesgue verallgemeinert den Integralberiff von Riemann

orel beschreibt Nutzungsmaglichkeiten der MaRtheorie fiir
die Wahrscheinlichkeitstheorie

Warteschlangentheorie (in seinem Fall zu Dimensionierung

rlang veroffentlich die erste Arbeit zur
on Fernsprechvermittiungenen)

olmogorov 16st mit seiner Arbeit ,Grundbegriffe der
Wahrscheinlichkeitsrechnung® das 6. Problem von Hilbert

@aratheodory beweist die beiden MaRfortsetzungssatze

)’____,1761_

v
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1900
1900=
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1917—
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1625 * Christiaan Huygen

1654 * Jakob Bernoulli

95 1 Christiaan Huygen
00 * Daniel Bernoulli
02 * Thomas Bayes

16
17
17
1705 t Jakob Bernoulli

1749 * Piere Simon Marquis de Laplace

1761 1 Thomas Bayes

1782 t Daniel Bernoulli

1821 * Pafnuti Lwowitsch Tschebyscheff
1826 * Bernhard Georg Friedrich Riemann
1827 t Piere Simon Marquis de Laplace

856 * Andrej Andrejewitsch Markov
862 * David Hilbert o .

866 1 Bernhard Georg Friedrich Riemann
1871 * Emile Borel

1873 * Constantin Caratheodory

1875 * Henri Lebesgue

1878 * Agner Krarup Erlang

1894 t Pafnuti Lwowitsch Tschebyscheff
1903 * Andrej Nikolajewitsch Kolmogorov

Andrej Andrejewitsch Markov

1922 ¥
1929 T Agner Krarup Erlang

1 1 Henri Lebesgue
3 1 David Hilbe

0 1 Constantin Caratheodory
6 T Emile Borel

1987 1 Andrej Nikolajewitsch Kolmogorov
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