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Vorwort

Die Stochastik II ist Teil eines viersemestrigen Zyklus, den ich seit 1993 regelméfig fiir Stu-
dierende der Mathematik und Informatik an der Technischen Universitit Clausthal abhalte.
Das Skriptum ist bereits an den speziellen Anforderungen des neuen Bachelor-Studiengangs
,,Angewandte Mathematik” und den darauf aufbauenden Master-Studiengéngen ,,Angewand-
te Mathematik” und ,,Operations Research” ausgerichtet und beinhaltet deshalb neben den
weiterfithrenden Kapiteln der Wahrscheinlichkeitstheorie (charakteristische Funktion, schwa-
che Konvergenz, zentraler Grenzwertsatz, bedingte Erwartung, bedingte Verteilung) und der
Einfiihrung in die Theorie der stochastischen Prozesse (Erneuerungstheorie und regenerati-
ve Prozesse) auch Anwendungen aus den Bereichen Statistik, Instandhaltung, Monte Carlo-
Integration und stochastische Simulation.

Dank der finanziellen Unterstiitzung durch die ELAN-Initiative des Landes Niedersachsen
(elearning academic network Niedersachsen) kann auch dieses Skriptum wieder als Online-
Version zur Verfiigung gestellt werden:

http://www.stochastik.tu-clausthal.de/Stochastik2Skript/

Fiir die tatkriftige Zuarbeit danke ich Frau Dipl.-Math. Sylvia Arns, Herrn Dipl.-Math.
Alexander Herzog und unserem Hilfsassistenten Herrn Hendrik Baumann. Meinem ehema-
ligen Kollegen Prof. Dr. Joachim Hilgert, der nach einer Vorversion dieses Skriptums im SS
2002 die Stochastik II gelesen hatte, verdanke ich einige wichtige Korrekturhinweise.

Thomas Hanschke Clausthal, April 2007


http://www.stochastik.tu-clausthal.de/Stochastik2Skript/

INHALTSVERZEICHNIS

0.1 Mit der Stochastik II zusammenhingende Vorlesungen

Die Stochastik II Vorlesung ist Teil einer Reihe weiterfithrender Veranstaltungen, die man der
nachstehenden Grafik entnehmen kann.

Stochastik Il Stochastik il Stochastik IV Stochastik-Praktikum

* Grundztige der e Zentraler Grenzwertsatz * Markovketten in diskreter * Semi-Markovprozesse * Beschreibende Statistik
Wahrscheinlichkeitstheorie 3| ¢ Bedingte Erwartung Zeit | ® Semi-regenerative Prozesse | —)f ® Regressionsanalyse
¢ MaB- und Integrationstheorie « Erneuerungsprzesse * Markovketten in stetiger * Martingale e Varianzanalyse
* Gesetze der groBen Zahlen o Regenerative Prozessse Zeit * Wiener Prozess e Ereignisorientierte Simulation
Grundlagen der Monte-Carlo-Methoden Zuverlassigkeitstheorie Finanzmathematik
Computersimulation
e Erzeugung gleichverteilter e Simulation stochastischer  Lebensdauerverteilung * Optionspreismodelle
|y Zufaliszahlen Prozesse [ * Systemfunktionen [ * Binomialprozess
® Erzeugung nicht- e Stochastische Approximation « Instandsetzungs- und o \Wiener Prozess
gleichverteilter Zufallszahlen Instandhaltungsstrategien « Black-Scholes Optionsmodell
o Tests fur Zufallsgeneratoren e Lebensdaueranalysen o Europaische und
amerikanische Optionen

StatlStIS(Eh"e M.ethoden Warteschlangen Stochasti e Methoden
der Qualitatssicherung der Produktionsplanung
* Gut-Schlecht-Prifung ¢ Markovmodelle ¢ Auslegungsplanung
* Messende Priifung * Matrix-geometrische Verfahren ® Kanban-Systeme
Ly|* Qualitatsregelkarten mit Ly|* Zustandsabhéngige | &, ® Pufferdimensionierung
Gedaéchtnis Bediensysteme o Batch-Verarbeitung
* Kostenoptimale Prifpléne * Methode der eingebetteten * Belastungsorientierte
Markovkette Auftragsfreigabe
o Diffusionsapproximation * Anwendungssysteme

Offene und geschlossene
Warteschlangennetzwerke

(Siehe auch PowerPoint-Prisentation zum Stochastik—Vorlesungsplan.)




Kapitel 13

Charakteristische Funktionen

Der Begriff der charakteristischen Funktion ist grundlegend fiir die Wahrscheinlichkeitstheo-
rie. Es wird sich zeigen, dass viele mit dem asymptotischen Verhalten von Folgen von Zufalls-
variablen zusammenhéngende Fragestellungen sehr einfach und elegant mit Hilfe charakteri-
stischer Funktionen beantwortet werden kénnen.

Schliisselworter: Komplexwertige Zufallsvariable, Fourier—Transformierte oder
charakteristische Funktion, Satz von Bochner, Umkehrformel, Summen stochastisch
unabhéngiger Zufallsvariablen, Momenten—Berechnung aus charakteristischen Funk-
tionen.




Kapitel 13. Charakteristische Funktionen

13.1 Komplexwertige Zufallsvariablen

Um den Begriff der charakteristischen Funktion einfithren zu kénnen, werden Kenntnisse iiber
komplexwertige Zufallsvariablen X : Q@ — C benétigt. Indem man

X =ReX +:i:ImX

setzt, wobei Re X der Realteil von X, Im X der Imaginérteil von X und ¢ die imaginire
Einheit bedeuten, kann die Behandlung komplexwertiger messbarer Abbildungen dem bereits
behandelten Kalkiil untergeordnet werden.

13.1 Definition (komplexwertige Zufallsvariable):

Es seien (2, §, P) ein Wahrscheinlichkeitsraum und X : Q@ — C eine Abbildung. X heifit
komplexwertige Zufallsvariable genau dann, wenn Re X und Im X F-B-messbare Abbildungen
von  in R sind.

13.2 Definition (P—integrierbar iiber 2, Erwartungswert von X iiber Q):
Es sei (Q,F, P) ein Wahrscheinlichkeitsraum und X eine komplexwertige Zufallsvariable iiber
(2,8, P). X heifit genau dann P—integrierbar iber 2, wenn Re X und Im X P—integrierbar

sind. Dann heifit
/XdP::/ReXdP—i—i/IdeP
Q Q

Q

der Erwartungswert von X dber Q. Er wird wie im reellen Fall mit Ep[X] (oder einfach mit
E[X], wenn das Wahrscheinlichkeitsmaf$ aus dem Kontext heraus klar ist) bezeichnet.

13.3 Satz:

(Q, 3, P) sei ein Wahrscheinlichkeitsraum und X,Y : Q — C seien komplezwertige Zufallsva-
riablen.

a) Ist X P-integrierbar, dann ist auch X P-integrierbar und es gilt:

/ X dP = / X dP.
Q Q
b) Ist X P-integrierbar, so ist auch cX P—integrierbar fir jedes ¢ € C und es gilt:

/chP:c/XdP.
Q

Q
¢) Sind X undY P-integrierbar, dann ist auch X +Y P—integrierbar und es gilt:

EX +Y] = E[X]|+E[Y].

d) X ist genau dann P—integrierbar, wenn |X| P—integrierbar ist.

e) Ist X P—integrierbar, so gilt

/XdP < /|Xydp.
Q Q




13.1. Komplexwertige Zufallsvariablen

f) Sind X undY stochastisch unabhdingig und P—integrierbar, so gilt
EX Y] = E[X] E[Y].

Beweis:
Die Eigenschaften a) bis c¢) folgen unmittelbar aus dem Ansatz X = Re X + iIm X bzw. fiir
b) auerdem aus dem Ansatz ¢ = a + ib.

d) Aufgrund der Definition des P-Integrals von X folgt aus der P—Integrierbarkeit von X
die P-Integrierbarkeit von Re X und Im X. Mit Hilfe der Aquivalenz

f ist y—integrierbar <= |f| ist p—integrierbar

kann aus der P-Integrierbarkeit von Re X und Im X auf die P-Integrierbarkeit von
|Re X| und |Im X| geschlossen werden. Wegen| X | < |Re X|+ |Im X| und der Monotonie
des Integrals folgt somit die P-Integrierbarkeit von | X|. Die Umkehrung ergibt sich aus
den Abschétzungen |Re X| < |X| und [Im X| < | X].

e) Zuerst werden X (w) und [, X (w) dP(w) in Polarkoordinaten dargestellt:

X(w) =7rw)- @ W e Q, mit r(w) € RT und 0 < y(w) < 27,
/X(w) dP(w) = e mit ' € RT und 0 <+ <2r
Q
(fiir X (w) # 0, sonst nicht definiert). Unter Einbezug der Eulerschen Formel
e = cosz + isin z
und der Identitéat
le”*| = |cosz + isinz| = \/m: 1

erhélt man

s
e"v

/ iy’ /
r~e”‘:‘r|~

/ /

[x@are)| -
Q

1 Al
eZ'Y .e vy

X(w)dP(w) e = / X(w)-e ™ dP(w)
Q

r(w) - e@ . em dP(w) = /r(w)ei(”’(“’)_V,) dP(w)
Q

S DL Pe— %

r(w) - cos(y(w) —v) dP(w) + /r(w) -i - sin(y(w) —v) dP(w)
Q

=0, da r"€eR*

r(w) dP(w) = / X (w)| dP(w).

Q

IN
R—
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f) Es gilt:

E[X Y] = E[ReX +ilmX)-(ReY +ilmY)]
= EReX -ReY —ImX -ImY +iReXImY +iIm X ReY]
= EReX -ReY]-E[ImX -ImY]+iEReXImY]+iE[InXReY]
E[Re X] - E[ReY] — E[lm X] - E[Im Y]
+iE[Re X] - E[lm Y] + ¢E[lm X] - E[Re Y]
— (E[ReX]+iE[ImX])- (E[ReY] +E[ImY]) = E[X] - E[Y].

((%): Die stochastische Unabhéngigkeit der betreffenden Real- und Imaginérteile folgt aus
Satz 11.26, indem man X; = (Re X, Im X) und X3 = (ReY,ImY’) wéhlt und fiir g; und g2
die entsprechenden Projektionsabbildungen einsetzt.) ]

Der Satz von der majorisierten Konvergenz gilt auch im Komplexen.

13.4 Satz (Satz von der majorisierten Konvergenz im Komplexen):

Es sei (2,8, P) ein Wahrscheinlichkeitsraum und (X,)nen eine Folge komplezwertiger P-
integrierbarer Zufallsvariablen iber (Q,§, P). Fir alle n € N gelte | X,, |< Y mit einer
P-integrierbaren, § — B-messbaren Abbildung Y: Q — RT und es existiere lim,, .. X, fast
tberall. Dann ist lim,_, X, P-integrierbar und es gilt:

lim XndP:/ lim X, dP.
n—00 n—00
Q Q

Beweis:
Der Beweis ergibt sich aus dem Satz von der majorisierten Konvergenz unter Beriicksichtigung
der Abschétzungen | Re X, |[<| X, | und | Im X, |<| X, |,n € N. |

13.2 Eigenschaften charakteristischer Funktionen

13.5 Definition (Fourier—Transformierte, charakteristische Funktion):
Es sei p ein endliches Maf$ auf (R,B). Dann heifit die durch

oult) ::/ e du, teER,
R

definierte Funktion die charakteristische Funktion von u. Sie ist fiir alle t € R definiert, da

aufgrund von |e"®| = 1 das Integral stets konvergiert. Wenn X eine reelle Zufallsvariable tiber
(Q, 5, P) ist, dann heifst die durch

ex(t) = E[eitx} = /eitX dP = /em dPx, teRR,
Q R

definierte Funktion die Fourier—Transformierte oder charakteristische Funktion von X bzw.
Px.

10



13.2. Eigenschaften charakteristischer Funktionen

Es ist stets

lox (t)] = /eitdeX g/\e“x\ dPX:/dPX:I VieR
R R R

und nach Satz 13.3 a) gilt auflerdem:

ox(—t) = / =it 4py — / ¢t APy — / ¢itr iPy — ox (D), Vi€R.
R R R

13.6 Beispiel:
Einige Beispiele fiir charakteristische Funktionen
(sieche auch Mathematica-Notebook zu diesem Beispiel)

1. Es sei Py eine Einpunktverteilung , d.h. es existiert ein ¢ € R mit P(X = ¢) = 1. Dann
lautet die zugehorige charakteristische Funktion

ox(t) = €', t € R.

2. Es sei X eine Bernoulli-verteilte Zufallsgrofie mit P(X = 1) =pund P(X =0) = 1—p.
Die zu X gehorende charakteristische Funktion berechnet sich wie folgt:

ox(t) = E[eit’r] =etlp 4+ (1 —p) =1+ p(e — 1), t € R.

3. Eine mit dem Parameter A\ > 0 Poisson—verteilte Zufallsgréfie X hat die charakteristi-
sche Funktion

o~ A X itk A o~ (A A Aett AMett—1
ng(t):Z—e_ et =e" Z = e = M), tecR.

4. Eine auf dem Intervall [0,1] gleichverteilte ZufallsgroBe X habe die Dichte f(z) =
Ijpqy(), z € R. Dann gilt:

1
ex(t) = /em dPx = /emf(x) do = /eiml[o,l](:c)dx = /e“w 1dz
0

R R R
1,01,

= —é| = Z(ei 1), teR.
1t 0 1t

5. s sei X < N(0,1). Dann gilt:

1 , 2 1 )2 2
1 = itr —x /2d _ / —(z—it)?/2 —t /Zd
ex () \/%/6 ¢ ! V2 ¢ ‘ :
R R

e /2. —(@=it)*/2 gy — e*t2/2, t e R.

Ik
R

=1, Integral von N(it, 1)

11
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6. Fiir eine mit dem Parameter 6 > 0 exponentiell verteilte Zufallsgréfie ergibt sich

o0 o0

ox(t) = / e dPx = / e . ey =0 / o@(it=0) 7.
R 0 0
0 , & 0 0
_ Y x(it—0) _ __v
it—0° ST e T e—aw 'R

7. Fiir eine mit den Parametern n und 0 Erlang—verteilte Zufallsgrofie X ldsst sich mittels
partieller Integration (Ubung!) zeigen:

ztm ® Hn n—1 —930 0 n
QOX(t) = dPx = dx = 07 s t e R.
0

n—l — 1t

8. Es sei X eine Zufallsvariable mit der Dichte

1 z ..
fx(z) = T(liLTl) , fur |z| < T
0 ,  fir |z| > T,

die sogenannte Dreiecksverteilung auf [T, 7.

-10 5 10

Abbildung 13.1: Dreiecksverteilung mit 7" := 5

Die zugehorige charakteristische Funktion ¢x berechnet sich wie folgt:

ox(t) :/em fx(z) dx

R

0
1
=7 /(l—l— -md:c—l—/ e dx|, teR.
—T

12



13.2. Eigenschaften charakteristischer Funktionen

Es gilt:
0 0
T ) et T v=0 1 1 )
1 7) | it dr = (1 7) = / itx d
/<+T o {it T TaT)o
_T _
1 1 1 [eite]®=Y 11 .
- _ . — - 1 o —itT d
it it T[itL . g S

1 itx = 1
T . e T B 1 1 .
1— 7) | it dr = (1 _ 7) - / itx d
/( r) < { it 7)), TaT) "
0 0

11 1 fet=1™" 1 1 (@7 1)
: =————= (" —1).
it it T

z=0

1 1 ) i 9 eth+e—th
= ox() = pp @ - ZtT):T?t?<1_2)

2 1 itT  —itT  (—itT)?  (—itT)?
=——(1-(1+14+—
T2t2< 2< L T s S R

_ 2 ( (4 2PT? Tt 50T
=g\ttt T

2(1 — cos (Tt))

= T2;2 , t€eR,
wobel wir im letzten Schritt
2
z z &
e Lo+ o+
_ 1 22 4
cosz = o1 + i + ...

benutzt haben.

13.7 Satz (Analytische Eigenschaften der charakteristischen Funktion):
Es sei p ein endliches Maf auf (R,B) mit der charakteristischen Funktion y,,. Dann gilt:

(1) @u(t) ist stetig fiir alle t € R.

(it) @, ist positiv-semidefinit , d.h.

n

n
Z’YJ'YkSDM —ty) =20
1 k=1

J
fiir allet; € R, alley; € C, j =1,...,n und alle n € N.

(iit) Es gilt ¢, (0) = p(R). Ist p ein Wahrscheinlichkeitsmafs, so gilt also ¢,,(0) = 1.
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Beweis:
(i) Es gilt e/ttM? — ¢ fiir b — 0 und es ist | ¢ |= 1 fiir alle t € R. Folglich liisst sich
mit Hilfe des Satzes von der majorisierten Konvergenz schlieflen:

IE% wﬂ(t + h) _ %%/ei(t-‘rh)a: d,u(a:) _ /}LIE% ei(t+h);r d,u(:z:)

R R
= /6“”” dp(x) = pu(t).
R
(ii)
SO vAkeult; —te) = > v / L=t g (z)
J=lk=1 Jj=1k=1 R

7=1 k=1
n 2
= [ et dutw) =0
R |7=1

(i) 2u(0) = [ % dn = [1d = u(®). .
R

R

In Satz 13.7 wurde gezeigt, welche Eigenschaften charakteristische Funktionen aufweisen.
Im Folgenden soll nun umgekehrt beschrieben werden, durch welche Eigenschaften charakte-
ristische Funktionen von Wahrscheinlichkeitsverteilungen gekennzeichnet sind. Es wird sich
zeigen, dass dies genau die Figenschaften aus Satz 13.7 sind, d.h. Satz 13.7 stellt eine ,,genau
dann, wenn”—Beziehung dar.

13.8 Satz (Satz von Bochner):
Eine Funktion p: R — C ist genau dann charakteristische Funktion eines endlichen Mafes
w auf (R,B), wenn sie die Bedingungen (i), (ii) und (iii) aus Satz 15.7 erfillt.

Beweis:
Siehe M. Loéve: ,,Probability theory”, Van Nostrand, New York, 1963; Kapitel 4, §14: ,,Dis-
tribution functions und characteristic functions”.

Die folgenden Sitze geben Auskunft iiber Existenz und Eindeutigkeit der Umkehrung der
Fourier-Transformation.

13.9 Satz (Umkehrformel von Lévy):
Es sei ¢ die charakteristische Funktion der Zufallsgréfie X. Dann gilt fiir —oco < a < b < oco:

c
1 —ita __ ,—itb

14



13.2. Eigenschaften charakteristischer Funktionen

P(X =a) + P(X =)

=Pla< X <b)+

Beweis:
Es wird

gesetzt. Da [(e™® — e7) /it]e™X fiir ¢ auf dem kompakten Intervall [—c, c|] beschrinkt ist,

folgt mit dem Satz von Fubini:

1 ( git(X—a) _ it(X~b)

T = — F t
(c) 2w / it d

1 (jaMKX—aD—aMﬂX—w)ﬁ
it

—C

=0, da hier [° - dt=[7- dt

n % B /sin(t(X —a)) ; sin(t(X — b)) gt

—C

C

—1El/mﬂw_@%ﬂmmX_whﬁ:iﬂéwﬂ

t
0

Fiir den Integralsinus gilt (z.B. Fichtenholz, S.654 oder Si(z) auf functions.wolfram.com):

% ot sgn(a)-00 T fir a>0,
/SH;Q dt = / su;:ndx = 0 , fir a=0,
0 0 -5 , fir a<0.
Deswegen folgt
1, fir a<u<b,
Cll)rgo Jo(u)=1< %, fiir u=aoderu=1b,
0 , fiir u<aoderu>b.

Da| J.(u) |< 2 fiir alle —oo < wund ¢ < oo lésst sich mit Hilfe des Satzes von der majorisierten
Konvergenz schlieen, dass

lim I(c) = lim E[J.(X)] = E[lim J.(X)]
1
=F 3 Iix—q oder x=b) T Lja<x<p]

_PX =) PX=0) L p o x <y, n
2

15
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13.10 Bemerkung;:
Sind a und b Stetigkeitspunkte der Verteilungsfunktion F' von X, so reduziert sich die Formel
aus Satz 13.9 auf

efita _ efitb
lim — / — ox(t)dt = Fx(b) — Fx(a).
i
13.11 Satz (Eindeutigkeit):

Es seien p und v zwei endliche Mafe auf (R,B) mit den charakteristischen Funktionen ¢,
und @,. Dann gilt ¢, (t) = ¢, (t) fir alle t € R genau dann, wenn p = v gilt.

Beweis:
Da p ein endliches Ma8 ist, kann es hochstens abzihlbar viele x € R mit p({z}) > 0 geben.
Damit lassen sich monoton fallende Folgen (a;)jen und (by)ren mit limj .o aj = —oo und

limy_,00 by =: b € R finden mit p({a;}) = 0 und p({bx}) =0.
Wegen der Stetigkeit von unten ergibt sich weiter

1((—00,0)) :jlgrgou((aj,b)) und  pi((—00,0]) = lim p((—00,bk)).

k—o0

Damit folgt mit Bemerkung 13.10 angewandt auf das Wahrscheinlichkeitsmaf3 ﬁ 1%

k—o00 j—o0 c—00 27T it

1 c e*itaj _ e*itbk
p((—00,b]) = lim lim lim / ————u(t) dt.
—C
Analog lasst sich eine entsprechende Formel fiir v((—oo, b]) aufstellen. Da die Borelsche o-
Algebra durch Intervalle der Form (—oo, b] erzeugt wird, folgt 1 = v. Die Umkehrung erhélt
man aus der Eindeutigkeit der charakteristischen Funktion. ]

Da Verteilungsfunktionen und Bildmafle sich wechselseitig eindeutig bestimmen, ergibt sich
sofort als Spezialfall des obigen Satzes:

13.12 Satz (Eindeutigkeit):

Es seien X und Y reellwertige Zufallsvariablen diber (Q,F, P) mit den Verteilungsfunktionen
Fx und Fy sowie den charakteristischen Funktionen px und py. Dann gilt ox(t) = @y (t)
fir alle t € R genau dann, wenn Fx(t) = Fy(t) fir alle t € R gilt.

13.13 Satz:
Es sei (0, F, P) ein Wahrscheinlichkeitsraum und es bezeichne ¢ die charakteristische Funk-
tion der Zufallsgrifie X : Q — R mit der Verteilungsfunktion F. Gilt

/|so<t>r it < oo,
R

dann ist I stetig differenzierbar und es gilt

F@) = Fl(a) = = / o) dt Vo e R.

T on
R
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13.2. Eigenschaften charakteristischer Funktionen

Beweis:
Es wird zunéichst die Stetigkeit von F gezeigt. Da [ | (t) | dt < oo vorausgesetzt ist, kann
R

der Satz von der majorisierten Konvergenz angewendet werden und es ergibt sich

1 e—ita - e—itb (t)dt 1 . e—ita o e—itb
¢ 21 ) b—a+0 it
R

beschrankt =0

lim — -
b—a+0 27 it

wobei die Beschrénktheit von eﬂml;teﬂtb wie im Beweis der Umkehrformel 13.9 folgt, wenn

man beriicksichtigt, dass diese Funktion im Unendlichen verschwindet. Andererseits gilt nach
der Umkehrformel:

1 o—ita _ p—ith 1 [ e—ita _ p—ith
- = - lim — | — =
2 aewdt = lm oo / i P
R —cC
= P(X=0b
= Pla<X<b)+ ( a); ( )
Zusammen mit

P(X = P(X=0b 1

blim+<P(a<X<b)+ ( a); ( )>22P(X:a)20

ergibt sich P(X =a) = P(X =a+0) — P(X = a—0) =0, was beweist, dass F' stetig ist.
Aus

1 e—ita _ e—itb
F@) - F(a) = — t)—— dt firb
)~ Fla) =5 [ o) ir b > 0
R
folgt
F(.T + h) - F(.I) 1 / etz _ e—it(x-l-h) .
- f
Y 5 o(t) h dt fir h>0
R
1 o1 —e7ih
= — () [ R————
2T /(P( Je ith
R

Damit wird

1— —ith

—itr | q:
plt)e™ - Jim ——dt

o(t)e ™ . 1 dt.

Damit ist die Existenz der rechtsseitigen Ableitung von F' nachgewiesen. Fiir h < 0 ergibt
sich auf dieselbe Weise die linksseitige Ableitung.
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Es sind sowohl ¢(t) (vgl. Satz 13.7) als auch e* stetig in t. Auflerdem gilt
[ 1ot = [ o)) it < .

da nach Voraussetzung [i [¢(t)| dt < oo ist. Damit lésst sich mit Hilfe des Satzes von der
majorisierten Konvergenz schliefien:

1 . 1 -
li h = I . ¢ —it(xz+h) dt = / £ 1 —it(xz+h) dt
pmy S (@ 1) gg%néwwe o J P10 fimpe
1 .
= — t)e " dt = .
- | etoe f(@)
[ |
13.14 Beispiel: 2
Es sei p(t) :==e” 2, t € R. Wegen
2 42
/ 62’ dt = /e?dt =27
R R
kann mit Hilfe von Satz 13.13 geschlossen werden:
1 2 ; 1 (ttie)?  (2)?
flz) = or e T il dt:%/e%ﬁ 2 dt
R R

M

1 x 1 ( ix)Q 1 12
= '6_2"/6_%6115:-6_2, z € R.
V2T

5

R
—_———
=V27

Offensichtlich ist f(z) die Dichte der Standard-Normalverteilung (vgl. Beispiel 13.6 (5)).

13.15 Beispiel:
Es sei X eine Zufallsvariable mit der charakterischischen Funktion

11— fir ) <T
px(t) == :
0 , fir |t|>T.

Es soll die Dichte fx(z) von X berechnet werden. Dazu wird Satz 13.13 herangezogen:
1

fx(z) = o e_imgox(t) dt
R
0 T
1 t } 1 t .
= 27 / <]. + T> eiltx dt -+ 27 <1 — T> 67“33 dt.
T T
- 0

18



13.2. Eigenschaften charakteristischer Funktionen

Es gilt
0
) ef’itzv t t=0 1 )
1 —itx dt = 1 - _ / —itx dt
[eg)ema = |5 (ep)] = [
_T _
1 1 [emite]™=" 1 Ly g
= _— e — == — €
i ixT | —ix |, iz (ix)?T
und

1 1 —itg =T 1
I s D
ix il | —iw |,y ix (ix)?*T
Damit wird
1 ) ) 1 ez'Tr 4 e—iTz
- - _(9_ T —iTzy _ 1T
fx(@) o 2 e = o ( 2 )
1 1 iTr —iTx (—iTz)?> (—iTx)?
= 1—-1[114+1 e
7T < 2 < i 1 + 1 + 2 + 2 +
L (s T2 N ATt N T8 N
- ma?T 2 4! 6!
1 —cos (Tx)
- e 0 TR

13.16 Satz:
Es seien X und Y zwei reelle Zufallsvariablen mit den charakteristischen Funktionen ¢x (t)

und @y (t). Dann gilt:
a) paxip(t) = epx(at) fir alle a,b € R.

b) Sind X undY stochastisch unabhdngig, so gilt:
px+y () = @x(t) - oy (t).
c) Aus EHX’“H < oo folgt, dass px (t) k—-mal stetig differenzierbar ist. In diesem Fall gilt:
A (0) = B[ X

d) Aus EHX’“H < oo folgt

px(t) = Z(Zt)ﬂ} + o(|t|*) fiirt — 0.
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e) Falls E[[X|k+6] < oo fiir ein 6 € [0,1] gilt

: | 91-3 |t|k+6 E[|X|k+6}
T+R(t) mit |R(t)| < 1+0)-...-(k+td)

Beweis:
a) Es gilt:

SOaX—&—b(t) - E [eit(aX—l-b)} -F [6itaX€itb} — eith [eitaX} _ eitbSDX (at).

b) Da mit X und Y auch ¢®* und €Y stochastisch unabhiingig sind, kann mit Hilfe von
Satz 13.3 f) geschlossen werden:

oxiy(t) = E[eit(X—i-Y)} = E[¢"Xe®] = B[e"X] . E[e"] = ox(t) - oy (t).

¢) Wir setzen zunichst k := 1. Fiir alle ¢, h € R mit h # 0 gilt dann

t h _ i ih:B_
QOX( + ) @X(t) /eztxe 1 dPx.

h =
R

Weiter gilt

oihe _ 1‘ = /(cos ha — 1)2 + (sin hz)2 = \/2(1 — cos ha)

1_
:2,/7608}”" — 2 |sin (hx)' <2
2 2

(Im vorletzten Schritt wird die Tatsache |sin x| < |z| verwendet. Fiir x = 0 gilt sinz =

0 =z und fiir z € [0,%] ist (sinz)’ = cosz < 1 = (z)". Fiir # > 1 ist die Behauptung
evident und fiir x < 0 ist sie aus Symmetriegriinden dann ebenfalls erfiillt.)

hx

= |hx|.
2

ihx __

ihx eitac €

Aus |e?"* — 1| < |ha| wiederum folgt sofort < |z|.

Nach Voraussetzung ist |X| Py—integrabel. Mit Hilfe des Satzes von der majorisierten
Konvergenz, der auch fiir komplexwertige Zufallsvariable giiltig ist (siehe 13.4), kann
deshalb geschlossen werden:

thx
ox () h—0 h o ) © p dbx

R

ihx
. -1 .
- / [lim eite € ] dPy = i / ze''® dPy.

h—0 h

R R

Damit wird
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13.2. Eigenschaften charakteristischer Funktionen

Weiter lasst sich induktiv von k auf k& 4+ 1 schlief3en:

k k
(B11) PB(t+h)— P (1)
px () = fILLO h

o ok (ei(t—i-h):v _ eitm)
- s

R

ihx
A 1
= 4k /l’keth lim ¢ h dPx

—0

R
_ Z‘k+1 _/xk+leltx dPX

Und damit:

S (0) = Z-k—i—l./ k10 gpy = ik+1E[Xk+1}'
R

d) Die Behauptung folgt aus dem Taylor’schen Satz.

e Folgende Gleichung lasst sich induktiv nachweisen:

k t tkt1 to
et — Z = 1/ / / Tty dbdtg.
J=0 0

(Fiir k£ = 1 lasst sich die Gleichung leicht nachrechnen und fiir & — k + 1 schreibt

t trto )
man die rechte Seite als i [¢**1 [ ... [t dt; ... dtg1dtgy2 und setzt nach In-

0 0

) ko (itesa)! teg2  tp
duktionsvoraussetzung e'tk+1 —>i—0 ““]7? fiir 4L [ L f et dty ... dtg1dtpyo
0
. . . . k4l zt)] ! (itpy2)?

ein. Die verbleibende Gleichung e* Z i [ etk — j 0 %dtkﬂ lasst

Jj=0 0
sich ebenfalls leicht nachrechnen.)

Es ist |sint| < |t|° fiir 6 € [0,1], denn fiir [t} > 1 ist [t/ > 1 und somit ist
die Ungleichung offensichtlich erfiillt und fiir |t| < 1 gilt |¢| < [¢|° und auBerdem
natiirlich | sin¢| < |t|. Damit l4sst sich nun folgende Abschitzung aufstellen:

e — 1| = \/(cost — 1)2 + (sint)2 = \/2(1 — cost)

1—
_y cos.t:2
2

sin <;>’ <270 1° fiir 6 € [0,1].
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Hieraus ergibt sich:

k L t tkt1 t3 t2
it (it)! ity
€ —27': € dtl...dtk_H
— VE
3=0 0 0 0 0
tr4+1 t3

(VAN
—
\

m@.

=
V]
|
=

QL

H.

)

&

=

ol

+

—

0 0 0
[t] th+r t3
< 21—5/ (ta)® dia ... dtpss
0 0 0

J

Durch Anwendung dieser Abschétzung auf E ;

A ko
et X _ > (Zt?!() ] folgt dann die Be-
=0

hauptung:
() E[ itX] E i (itX)’ | itX i (itX)?
25,4 = € = .‘ (& — 7
PR PR
b (it E[X7] (itX)d
_ Z(Z) [ EeitX_Z(l )
B J! J!
Jj=0 j=0
=:R(t)
mit

91-3 ’t’k+6E[|X|k+6}
T (1+6).. (k+9)

BOI< B\ G5y (h o)

Satz 13.16 hat zahlreiche inner—-mathematische Anwendungen, einige davon sollen hier notiert
werden:

a) Im Beispiel 13.14 5. wurde gezeigt, dass eine standardnormalverteilte ZufallsgroBe X
die charakteristische Funktion

px(t) = e_t2/2, te R,
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13.2. Eigenschaften charakteristischer Funktionen

besitzt. Wie man sich leicht klar machen kann, ist ¥ := ¢ X 4 p normalverteilt mit den
Parametern p und o, wobei p € R und o > 0 seien. Fiir die zugehorige charakteristische
Funktion gilt dann aufgrund von Satz 13.16 a)

Py (1) = Poxiu(t) = €px(at) = e . e~ (D°/2, teR.

b) Summe von Poisson—verteilten Zufallsgrofien:
Es seien X und Y reellwertige und stochastisch unabhéngige Zufallsvariablen mit X 4
P(A) und Y 4 P(p). Dann gilt nach Satz 13.12 X +Y 4 P(A+ p), denn es ist

pxy(t) = px(D)py (t) = MDD = (AmETD e R

¢) Summe von normalverteilten Zufallsgrofen:
Diesmal seien X und Y reellwertige und stochastisch unabhéngige Zufallsvariablen mit

X L N(p,0) und Y £ N (', 0"). Dann gilt X +V £ /\f@ + o, \/m) und

(PX-i-Y(t) = QOX(t) : (py(t) = eith. @*(Ut)2/2 . eitul . e*(a’t)2/2

i) o=+ R

d) Summe von exponentiell verteilten ZufallsgroBen:
Es seien X1, ..., X, unabhingige und jeweils mit demselben Parameter § > 0 exponen-

tiell verteilten Zufallsgréfen. Dann gilt > 7" | X; 4 Erlang(n, 6), denn es ist

0
0 —it

Py X (t) = H@Xi (t) - [SOX1 (t)]n = I: :|n, t € R.
=1

Literatur zu Kapitel 13

Folgende Biicher werden als begleitende Literatur zu diesem Kapitel des Skriptes empfohlen:

e Y.S. Cunow/H. TEICHER:
Probability Theory - Independence, Interchangeability, Martingales,
Springer-Verlag, New York, 1988.
ISBN: 0387406077

e G.H. FICHTENHOLZ:
Differential- und Integralrechnung 11,
VEB Deutscher Verlag der Wissenschaften, Berlin, 1974.
ISBN: 3817112793

e M. Fisz:
Wahrscheinlichkeitsrechnung und mathematische Statistik,
VEB, Deutscher Verlag der Wissenschaften 1989.
ISBN: 3326000790

e P. P. SPIES:
Grundlagen stochastischer Modelle,
Hanser, Miinchen, 1982.
ISBN: 3446137114

23



Kapitel 13. Charakteristische Funktionen

24



Kapitel 14

Schwache Konvergenz und zentraler
Grenzwertsatz

Der in diesem Kapitel behandelte zentrale Grenzwertsatz besagt, dass die geeignet normierte
Summe einer groflen Zahl stochastisch unabhéngiger und identisch verteilter Zufallsvariablen
anndhrend standardnormal verteilt ist, was die Sonderstellung der Normalverteilung in der
Stochastik erklért (sogenannter zentraler Grenzwertsatz). Um den zentralen Grenzwertsatz
zu beweisen, werden zunéchst die Begriffe der vagen und schwachen Konvergenz eingefiihrt
und einige Zusammenhénge mit charakteristischen Funktionen behandelt.

Schliisselworter: Vage und schwache Konvergenz, Konvergenz in Verteilung, Aus-
wahlsatz von Helly, Stetigkeitssatz von Lévy, zentraler Grenzwertsatz, Satz von de
Moivre-Laplace, Satz von Berry-Esseen.
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Kapitel 14. Schwache Konvergenz und zentraler Grenzwertsatz

14.1 Vage und schwache Konvergenz

In diesem Abschnitt wird eine weitere Konvergenzart fiir Zufallsvariablen vorgestellt, die
sogenannte schwache Konvergenz bzw. Konvergenz in Verteilung. Dafiir wird zunéchst das
folgende einfiihrende Beispiel betrachtet:

Es moégen X, ..., X, reellwertige, identisch verteilte und stochastisch unabhéngige Zufalls-
variablen tiber (2,3, P) bezeichnen. Es wird M,, := max {X1,...,X,} Vn € N und F(z) :=
P(X; < z) gesetzt. Eine einfache Uberlegung zeigt

{Mn§$} — {Xlgl‘,---,XnSZL’},

so dass gilt

Es wird nun speziell X; 4 Exp(A), mit A > 0 gewihlt. Gefragt wird nach der Verteilungs-
funktion von Y;, := M,, + A~!In(n) fiir n — oo:

lim Fy,(z) = lim (F(z+A"'In(n)))" = lim (1 _efwﬂn(n)))”

n—oo n—oo n—oo
. —€_>‘z " 767)‘1
= lim (1+ = e Vzel.
n—oo n

Da die Grenzfunktion wieder eine stetige Verteilungsfunktion ist, legt dieses Beispiel nahe,
die Konvergenz einer Folge (P,)nen von Wahrscheinlichkeitsverteilungen auf (R, ) gegen
eine Limesverteilung P vermoge

lim P,(B)=P(B) VBe®B

n—oo

festzulegen, was jedoch unzweckmifig ist, wie ein anderes Beispiel zeigt. Dazu werden die
Einpunktverteilungen

Pn(B);:IB@) VBE®B, neN

betrachtet. Diese Verteilungen approximieren offensichtlich diejenige Verteilung, die der Men-
ge {0} die Wahrscheinlichkeit 1 zuordnet. Folglich mochte man als Limesverteilung P(B) :=
Ip(0) V B € B haben. Doch P,(B) — P(B) ist bereits fiir B := (—o0, 0] nicht erfiillt, denn
es gilt

P,((—00,0))=0VneN und P((—o0,0])=1.

Betrachtet man anstelle der Verteilungen P, die zugehorigen Verteilungsfunktionen F,, =
1 [2,00) SO ergibt sich hier

n,OO)

I[l oo) — [(O,oo) fir n — oo.

Jedoch ist [(g ) keine Verteilungsfunktion. Die Schwierigkeit resultiert hier offenbar — im
Gegensatz zum vorangegangenen Beispiel — aus der Tatsache, dass ein Randpunkt von
B = (—00,0] bzgl. P eine positive Wahrscheinlichkeit besitzt. Deswegen muss der Begriff
der schwachen Konvergenz bzw. Verteilungskonvergenz etwas allgemeiner gefasst werden.
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Im Folgenden werden Mafle u auf (R, B) betrachtet. Im Hinblick auf zukiinftige Anwendun-
gen wird vorausgesetzt, dass p lokal endlich ist, d.h. dass p(K) < oo fiir alle kompakten
Mengen K C R ist. Mit C, werde die Menge aller stetigen Funktionen f: R — R mit
|| flloo := sup,er |f(x)| < oo bezeichnet und mit Cy werde die Menge aller stetigen Funktio-
nen f: R — R mit kompaktem Tréger T := {z | f(x) # 0} bezeichnet. Fiir eine beliebige
Funktion f: R — R bezeichne C(f) die Menge ihrer Stetigkeitspunkte.

14.1 Definition (vage Konvergenz, schwache Konvergenz):
Es seien p sowie die Elemente der Folge (pn)nen lokal endliche Mafle auf (R,B). Man sagt

(tn)neN konvergiert vage gegen i, kurz i, s, falls

/fd,un—>/fdu V £ € Cy.
R R

Gilt diese Beziehung sogar fiir alle f € Cy und ist u(R) < 0o, so konvergiert (fin)neN schwach

gegen u, kurz i, — p (vom englischen ,,weak convergence”).

14.2 Definition (straff):
Es seien die Elemente der Folge (pin)nen lokal endliche Mafe auf (R,B). (tn)nen heifit

straff, falls
lim sup pin (R \ [-N,N]) =0
N—0oopeN

gilt.

Den Zusammenhang zwischen vager und schwacher Konvergenz verdeutlicht der folgende Satz.

14.3 Satz:
Es seien pu sowie die Elemente der Folge (pin)nen lokal endliche Mafe auf (R, B) mit 1, —
fiir n — oco. Dann sind folgende Aussagen dquivalent:

a) pn — p fiir n — oo.

b) lim p,(R) = pu(R) < oo.

C) (/‘n)ne]N ist straff.
Beweis:

»a) = b)”: Da die konstante Funktion Ig: R — R, x — 1V 2 € R zu C} gehort, impliziert

i, —= p fiir n — oo:

pn(R) = /dun = /IRdﬂnm/IRd,U = /du = p(R).
R R

R R
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3 . _.2 R R R | — . 2 . 3

Abbildung 14.1: gn(x) fiir N :=2

»b) = ¢)”: Es sei gy € Cp gegeben durch

1 <N
gy(x):=< N+1—|z|, |z|€ (N,N+1)
0 , |zl >N+ 1

Unter Benutzung der Abschétzungen
I NN <9y < I -n-iny1 bzw. Ir\n-1nv41) S 1—9gnv < IR\[-N,N]

und den gegebenen Voraussetzungen folgt dann fiir alle hinreichend grofien V:

limsup pp (R \ [-N — 1, N +1]) zlimsup/IR\[_N_l,NH] dpin,

n—oo n—oo R
< limsup/(l — gN) dpin
n—oo &
= lim p,(R) — lim /gN dpin,
R
—u(®) - [ gx du
R
= /(1 —gn) dp
R
< / Iy\[-n,N] At
R
= p(R\ [-N, N]).

Da u(R\ [-N, N]) — 0 fiir N — oo, folgt die Behauptung.

»»C) = a)”: Fiir beliebiges f € Cj, wobei 0.B.d.A. 0 < f < 1 angenommen werden darf,
sei nun fy := min(f,gny) € Cp und hy := f — fn. Wegen fy < f = fy + hy und
0 < hy < Ig\[-n,n fir alle N folgt zunéichst

Og/ hy d/LnS/ IIR\[—N,N] d,un:;tn(R\[—N,N])HO fir N — oo.
R R
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A 4

Abbildung 14.2: Graphische Darstellung der Funktionen fy und hy

Wir rechnen weiter:

limsup/ fdu, = limsup/ fdpn — lim pp(R\ [-N, N))
R R n—oo

n—oo n—oo

< limsup/ (f =hn) din (hy < Ir\(-N,N))
R

n—oo

= limsup/]RfN dun, (fy=f—hn)

n—oo

= / fndu  (fn € Copund (pn)nen konv. vage)
R

< /fdu (f:fN—l-hNundOShNSl)
R

[ dut [ ol
R R
liminf/ N d,un—l—/ hy du

< liminf/Rf dp, + (R \ [N, NJ).

n—oo

IN

Wegen p(R \ [-N, N]) — 0 fiir N — oo folgt hieraus

/fw=hm/fwm
R n— Jr

was zu zeigen war.

Es ist wichtig zu wissen, dass man sich beim Nachweis von schwacher Konvergenz im Fall
endlicher Mafle auf gleichméflig stetige und beschrinkte Funktionen f zuriickziehen kann,
wie der folgende Satz zeigt.

14.4 Satz:
Es seien p und die Elemente der Folge (pn)nen endliche Mafle auf (R,B). Wenn fir jede
gleichméifig stetige und beschrinkte Funktion f: R — R

/Rfdunm/ﬁfdu
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gilt, dann gilt auch schon p, — u fir n — co.

Beweis:
Es sei f € Cp mit sup |f(z)] = M < oo und € > 0. Es werden eine Zahl a € R mit
zeR

/ du(z) < ﬁ sowie stetige Funktionen fy, f/* mit folgenden Eigenschaften gewihlt:

|z|>a
fulw) == [H(x) = f(z) fir |z <a
—M < fi(z) < f(zx) fir a<|z|<a+1
fl@) < f(x) <M fir a<|z[]<a+1
folx) =—=M fir |z|>a+1
ffle)y=M fir |z|>a+1.
A
M——
\\ ’// f*
| . :
-a-1 \\ia _ W i
fx
M ——
Abbildung 14.3: Graphische Darstellung der Funktionen f, und f*
Da jede auf der kompakten Menge K := [—a—1, a+1] stetige Funktion auf K auch gleichmé8ig

stetig ist und f* und f, auBerhalb von K konstant sind, sind f* und f, gleichmaBig stetig (vgl.

Aumann/Haupt: ,,Einfithrung in die reelle Analysis”, Band I, S. 139). Da f*(z) = fi«(z) =
f(x) fir |z|] < a ist, gilt:

/(f* — fo) du < 2M / du(z) < e.

R |z|>a

Weiter folgt
liminf/f dity, > liminf/f* duy, = /f* du
R

R R
— s~ [ 1) du
R

R

> [rdn - [ -fyduz [fau-e
R R

R
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Und entsprechend

limsup/f dp, < limsup/f* dp, = /f* du

n_)OOR n_@o]R R
— s+ [t -1
R R
S/fdu+ /(f*—f*)dué /fdwrs-
R R R

Da € > 0 beliebig gewihlt war, folgt

n—oo

lim fdun—/fdu

14.5 Satz:
Es seien P und die Elemente der Folge (P,)nen Wahrscheinlichkeitsmafe auf (R,B), F und
die Elemente der Folge (Fy,)nen bezeichnen die zugehorigen Verteilungsfunktionen. Dann gilt:

P, 2> P < F,(z) —— F(z) Y2 eC(F).

n—oo n—oo

Beweis:
Es wird zuniichst P, ——— P und x € C(F) angenommen. Zu € > 0 sei § > 0 so gewiihlt,
n—oo

dass |F(z) — F(y)| < ¢ fiir alle z,y mit |z —y| < § gilt. Ferner werden f, f € Cj, definiert
durch 0 < f, f<1und

1, firy<az -4 = v |1, firy<wz
f(y)'_{O’ fir y > «, f<y)'_{0, fir y > x + 0.

x-8 X x+5

Abbildung 14.4: Graphische Darstellung der Funktionen f und f
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Dann folgt

limsup F,,(z) = limsup P,((—o0,z]) = limsup/l(_oo,x](y) dP,(y)

n—oo n—oo n—o0o

n—oo

< limsup / fly) dPy(y) = / f(y) dP(y)
R

< [ i@ dP() = P((-o,0+8) = Fla+5) < Fla) +<.

R
liminf F,(z) = liminf P, ((—o0,z]) = lim inf/I(_Oo,x] (y) dP(y)

v

lim inf / f(y) dPu(y) = / f(y) dP(y)

n—oo

A%

/ I sog/(¥) dP(y) = P((~00,x b)) = F(x —8) > F(x) -
R

Da e > 0 beliebig gewé#hlt war, folgt lim,, .o F,(z) = F(z).
Sei nun umgekehrt F,(x ) —— F(z) YV x € C(F) vorausgesetzt. Es wird zunéchst gezeigt,

dass P, —> P gilt. Dazu erd eine beliebige Funktion f € Cp mit kompaktem Triger

K :=[a, b] a < b, betrachtet. Da f gleichméfig stetig ist, lédsst sich zu jedem & > 0 ein 6 > 0

angeben, so dass |f(z) — f(y)| < e ist fiir alle z, y mit |x — y| < §. Es werden z; € C(F), 1 <

1 < k so gewdhlt, dass a = x1 < x9 < ... < xRy = b und ln<1a<xk(aci+1 —x;) < § ist. Dann gilt:
_Z_

[a,b] [a,b]
k
:Z / fz) dPy( / f(xi) dPp(x)
=1 (wi,mi41] (@i, @i41]
+ / f(zi) dPy( / f(z;) dP(z
wal+1] (z5,2i41]
" / F(a;) dP(z / f(z) dP(z }
[(z4,2i41] (zi,2i41]
k
> { [ v@-s@)irw+ [ Fe) - @) e
=1 (24,2511] (T3, Ti41]

[ @) [Falis1) = Fulw:) = Flair) + F()] },
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woraus
k

|Ha| <ete+ > |f (@)l |Fa(zip1) = Fu(wi) — F(zig1) + Fa)]
i=1
bzw.
|Hy| — 2¢  fiir n — o0

gefolgert werden kann. Da ¢ > 0 beliebig gewéhlt war, folgt P, —— P. Um P, ——— P
n—oo

nachzuweisen, wird Satz 14.3 b) angewandt. Aus 11111 Fo(z) = lirf Fz)=1 VneN
folgt P,(R) =1 Vn € N sowie P(R) =1 und damit lim P,(R)= P(R) < co. |

Angesichts von Satz 14.5 definiert man:

14.6 Definition (schwache Konvergenz, Konvergenz in Verteilung):
Es seien X und die Elemente der Folge (Xp)nen reellwertige Zufallsvariablen iber (2,5, P).
Die zugehorigen Verteilungsfunktionen seien F und (Fp,)nen. Man sagt, die Folge (Xp,)nen

konvergiert schwach oder in Verteilung gegen X, in Zeichen X, A X, falls

F,(x) — F(x) fir alle x € C(F)

gilt.

Es stellt sich die Frage, wie sich der Begriff der Konvergenz in Verteilung den bereits behan-
delten Begriffen der stochastischen und der fast sicheren Konvergenz unterordnet. Dazu wird
der folgende Satz betrachtet.
14.7 Satz:
Es seien X und die Elemente der Folge (Xp)nen reellwertige Zufallsvariablen iber (2,5, P).
Dann qult

X, 2t x = x,x

n—oo n—oo

Beweis:
Aufgrund von Satz 14.4 kann man sich beim Nachweis der schwachen Konvergenz auf gleich-
miBig stetige beschrankte Funktionen f zuriickziehen. Es gibt zu jedem € > 0 ein § > 0 mit
der Eigenschaft

|f(x) — f(y)| <e furalle x,y € R mit |z —y| <.

Fir n € N bezeichne 4, = {w | |[Xp(w) — X(w)| < ¢}, und wir setzen wieder M :=
sup,er | f(2)|. Dann gilt:

B[f(X,)] — Bl (X)) = / foX, dP - / foX dP
Q Q

< /‘foXn—foX] dP + /\foXn—foX] dP
Ap A

SE/dP—FQM/dP
A,

n n

<e + 2M P(A,) =¢ + 2M - P(|X,, — X| > §).
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Aufgrund der Voraussetzung X,, —— X gilt P(|X,, — X| > §) — 0 fiir n — co und damit
n—oo

lim [E[f(X,)] - E[f(X)]] <e

n—oo

fiir jedes ¢ > 0. Aus lim |E[f(X,)] — E[f(X)]| = 0 aber folgt Py, —— Py und aufgrund
von Satz 14.5 auch Fyx, (x) —— Fx(z) fiir alle x € C(FY). |

14.8 Satz:
Es seien X und die Elemente der Folge (Xp,)nen reellwertige Zufallsvariablen iber (0, F, P).
Auferdem sei X P-f.s. konstant. Dann gilt:

X, YV.x = x,—*.x

n—oo n—oo

Beweis:
Es wird P(X = a) = 1 mit a € R angenommen. Fiir eine > 0 wird f € C, mit f >0, f(a) =0
sowie f(z) =1 Vx € R mit |z — a] > ¢ gewahlt. Dann gilt fiir alle n € N:

Nach Voraussetzung gilt:
/f dPXn — /f dPX:f(a):0.
R R

Damit folgt
P(|X,—X|>¢) — 0 fir n— oc.

14.2 Der Stetigkeitssatz von Lévy

Dieser Abschnitt beschéftigt sich mit dem Stetigkeitssatz von P. Lévy. Der Satz besagt, dass
man Verteilungskonvergenz mit Hilfe charakteristischer Funktionen iiberpriifen kann. Zur
Vorbereitung benotigt man einen Auswahlsatz von Helly. Der Auswahlsatz von Helly bezieht
sich auf sogenannte beschréankte Folgen (i, )nen lokal endlicher Mafe auf (R, B). Darunter
versteht man Folgen (u,)nen lokal endlicher Mafie auf (R, B) mit der Eigenschaft

sup fin (K) < 00

nelN
fiir jede kompakte Menge K C R. Zum Beweis des Auswahlsatzes von Helly werden zunéchst
weitere Kriterien fiir schwache bzw. vage Konvergenz zur Verfiigung gestellt. Das Kriterium
fiir schwache Konvergenz stellt eine Teilaussage des Portmanteau—Theorems dar.
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14.9 Satz:
Fiir endliche Mafle p, 1, po, - .. auf R gilt

fn — p & lim p,(C) = p(C) fir alle C € B mit p(0C) = 0.

n—oo

Beweis:
Der Beweis ist technisch aufwendig. Daher soll hier nur auf den Beweis in ,, Wahrscheinlich-
keitstheorie“ von P. Génssler und W. Stute (Sétze 1.12.5 und 8.4.9) verwiesen werden.

14.10 Definition:
Ist p ein Maf$ auf R und I C R ein Intervall, so wird die Einschrdinkung von p auf I definiert
duch

W(A) = p(ANT) (A€B).

14.11 Satz:

Es seien p, 1, po, . . . lokal endliche Mafle auf R. Dann sind paarweise dquivalent:
(a): pn —— p.

(b): b = ul fir alle beschrinkten Intervalle T mit (91) = 0.

(c): limp_soo pn(C) = p(C) fiir alle beschrinkten C € B mit u(0C) = 0.

Beweis:
Folgt aus Satz 14.9 und der Definition der vagen Konvergenz. |

14.12 Satz (Auswahlsatz von Helly):
Jede beschrankte (und straffe) Folge (pin)nen lokal endlicher Mafe auf (R,B) enthdlt eine
vag (schwach) konvergente Teilfolge.

Beweis:
Es sei F,, maBdefinierende Funktion von p, mit F,(0) =0, d.h.

F,.(z) = pn((0,2]) firx >0 und  Fy(z) = —p,((x,0]) fiir x < 0.

Da (0,z] bzw. (—z,0] in kompakten Mengen enthalten sind, gilt wegen der Beschrénktheit

von (fin)eN
M(z) :=sup F,(z) < oo (fur alle z € R).
neN

Der Beweis gliedert sich in vier Schritte

(i) Konstruktion einer Folge (ng)ren natiirlicher Zahlen, so dass F),, auf einer dichten
Teilmenge von R fiir £ — oo gegen eine Funktion F' konvergiert.

(ii) Rechtsseitig stetige Fortsetzung von F' auf R zu einer mafidefinierenden Funktion des
Grenzmafes pu.

(iii) Nachweis von p, — .
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(iv)

Zu (i):

Zu (ii):

Zu (iii):

Beweis der eingeklammerten Aussage.

Es wird eine abzdhlbare, aber dichte Teilmenge T' = {z1,x9,x3,...} C R (also etwa
T = Q) betrachtet. Die Menge {F,(z1) : n € N} ist durch M(z1) beschrénkt, es
existiert also eine unendliche (geordnete) Teilmenge ;1 C N mit

n—oo,n€l

Fy(x1) hiAN 21.

Genauso ist die Menge {F},(z2) : n € I1} durch M (z2) beschrénkt und daher existiert
eine unendliche Teilmenge Iy C I \ {ni} fiir ny := min I, so dass

n—oo,n€la

Fn(iL'Q) — z9.

Dieses Verfahren kann fortgesetzt werden und es ergibt sich eine Folge von Mengen
(In)nE]N mit

NOL1DIbDI3D... und ny=minl; <ng =minlys < ng=minlg < ...
und eine Folge (2;) en, so dass fiir alle j € N

n—oo,nel;
—

Fo(zj) zj =: F(z))

gilt. Speziell ist dann auch fiir alle j € N

lim F,, (x;) = F(z;).

k—o0

Die F,,(z) sind in  monoton nicht fallend, somit ist auch F'(z) auf 7' monoton wachsend.
Daher kann F'(x) rechtsseitig stetig auf R durch die Definition

F(z) :=inf{u({t}): teTN[z,00)}, ze€R\T

zu einer mafidefinierenden Funktion fortgesetzt werden. Fiir alle Stetigkeitspunkte x €
C(F) gilt dabei F,, (z) =% F(z), da die Differenz

[ Fny, () = F ()] < [Foy (%) = Foy ()] + [Fny (25) = F(25)] + [F () = F(2)]

fiir gentigend grofle £ und gentigend nahe bei = gelegene x; € T, x; > x beliebig klein
wird. Es sei nun p := pr das von F' definierte Maf.

Da C(F) dicht in R ist, gilt fiir b € C(F)

li n.({0}) < inf lim (Fy,, (b)) — Fy = inf F() - F =0,
msup o, ((8) < in (B (5) = Fu(a) = _jnf  (F() = Fla) =0

k—o0

also pin,, ({0}) —0.
Es sei nun [ ein beliebiges beschrinktes Intervall mit den Randpunkten a < b und
w({a,b}) = 0. Dann ist fiir alle t € I N C(F)

pny, ((a, t) N I) = Fy, (t) — Fp,(a),
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und mit k£ — oo folgt
' ((a,t]) = F(t) = Fl(a),

was nach Satz 14.5 Mﬁk ! impliziert. Da I ein beliebiges beschriinktes Intervall
mit p(0I) = 0 war, folgt mit Satz 14.11

[, — [

Zu (iv): Die eingeklammerte Aussage folgt aus dem bereits Bewiesenen und Satz 14.3. |

14.13 Satz (Stetigkeitssatz von Lévy):
Es bezeichne (X,,)02, eine Folge reellwertiger Zufallsvariablen dber (Q,§, P) mit den Vertei-
lungsfunktionen (F,)nen und den charakteristischen Funktionen (¢p)nen. Dann gilt:

a) Gilt X, Vo X und ist @ die charakteristische Funktion von X, so ist lim ¢, (t) =
n—oo
o(t) VteR.

b) Gilt lim @, (t) = ¢(t) V t € R und ist ¢ in einer Umgebung von t = 0 stetig, dann
n—oo

konvergiert (X, )nen in Verteilung, d.h. es gibt eine Verteilungsfunktion F, so dass
lim F,(z) = F(z) Yx € C(F) und ¢ die charakteristische Funktion bzgl. F ist.
n—od

Beweis:
a) Zunéchst wird angenommen, dass X, Ve X fiir n — oo gilt. Da sowohl der Realteil
als auch der Imaginirteil der Funktion z — e® fiir jedes ¢ € R beschrinkte stetige
Funktionen darstellen, impliziert Px,, - Px:

onlt) = [ e dPy,(0) — / " 4Py (z) = plt) (n— o).

R

b) Es sei nun llm en(t) = @(t) YVt € R und ¢ sei in einer Umgebung von ¢t = 0 ste-
tig. Es Wirdnzuoriéichst gezeigt, dass dann die Folge der Wahrscheinlichkeitsverteilungen
(Px, )nen straff ist (vgl. Definition 14.2). Allgemein gilt fiir eine reellwertige Zufallsva-
riable Y iiber (€2, §, P) mit der charakteristischen Funktion yy:

u u

i/u ~Re py(v)] dv = /(1 — Elcos(uY)]) dv

u
0 0

_% /0" <1_/ cos(vy) dPy(y )) dv

1
/ (1 —cos(vy)) dv dPy(y) (Satz von Fubini)
R J0

_z /}R [u_ ysm(uy)] dPy (y)
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Indem man Z :=uY und g := |i]|r1f (1 — (sinz)/x) setzt, erhédlt man
x|>1

g, sm@)] _of, sinZ
]

uy Z }Z/(“S?) AP (x)
R

> [ 1= anw =5 [ apaw =5 P(212 1)

|z|>1 |lz|>1

ZB-P<IY|21>.
u

Folglich lasst sich mit Hilfe des Satzes von der majorisierten Konvergenz schlielen:

u

1 1
limsup 3 - P (]Xn > u> < limsup/[l — Re ¢ (v)] dv

n—00 U n—oo
0

= i/[l — Re ¢(v)] dv.

0

Da lim0 o(u) = 1 ist (aufgrund der Stetigkeit von ¢ in einer Umgebung von ¢ = 0), folgt
u—
mit Hilfe der Regel von I’Hospital:

1 11
lim limsup P <|Xn| > > = lim limsup Pk, (IR\ [—,]) =0,
u—0 p—oo u u—0 pnco u u

weshalb die Folge (Px, )nen straff ist. Nach dem Auswahlsatz von Helly enthilt die
Folge (Px,)nen eine schwach konvergente Teilfolge (Px,, )ren mit Px, — Px fiir
k — oo. Deshalb gilt

k—o0
R R

o(u) = lim [ e™® dPx, (x) = /eiw dPx (z),

so dass ¢ die charakteristische Funktion von Px bzw. X ist. Da Px durch ¢ eindeu-
tig bestimmt ist, besitzt jede schwach konvergente Teilfolge von (Py, )nen denselben
Grenzwert Px. [}

Bemerkung:
Lésst man die Bedingung, dass ¢ in einer Umgebung von ¢ = 0 stetig ist, fallen, so gilt die
Aussage des Satzes bereits nicht mehr, wie nachfolgendes Beispiel zeigt.

14.14 Beispiel:
Es seien X,, Zufallsvariablen, die auf [—n, n] gleichverteilt sind. Fiir |z| < n gilt dann

x
1 1
-n
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Die zugehorige charakteristische Funktion lautet:

n

1 itx
on(t) = /%etdx

—n
1

Sii (eitn o efitn)

1 . .
= %(Cos(nt) + isin(nt) — cos(nt) + isin(nt))

1
- I i t .
o sin(nt)

Fiihrt man den Grenziibergang n — oo durch, ergibt sich:

ﬂﬂ—{é:tig

Offensichtlich ist ¢(¢) im Punkt ¢ = 0 unstetig. Beim Grenziibergang n — oo ergibt sich fiir
F,, aber auch keine Verteilungsfunktion:

. . 1 =z 1
lim F,(z) = lim <2 + 271) =3

n—oo n—oo

14.3 Der zentrale Grenzwertsatz

Der im Folgenden behandelte zentrale Grenzwertsatz trifft Aussagen iiber die Verteilung der
Summe von unabhéngigen und identisch verteilten Zufallsvariablen.

14.15 Satz (Zentraler Grenzwertsatz):

Lévy' /Mises®

Es sei (Xp)nen eine i.i.d. Folge von reellwertigen Zufallsvariablen iber demselben Wahr-
scheinlichkeitsraum (2, §, P) mit 0 < Var[X;] < co. Dann gilt

P<W§x>—>¢(x) VzeR,

O'[Xl] . \/ﬁ n—00
wobei Sy, == > X;, o[X1] == / Var[Xy] und ®(z) die Verteilungsfunktion der Standardnor-
i=1
malverteilung sei.
Beweis:
Es wird
X — E[X4]
Yy = ——
’ o[ X]

definiert. Offensichtlich ist E[Y;] = 0 und Var[Y;] = E[Y}?] = 1. Mit Hilfe der Taylorentwick-
lung lésst sich die charakteristische Funktion von Y} schreiben als (vgl. Satz 13.16 d))
itB[Yy] | (it)*E[Y}]

pvi(t) =1+ ——+—

'Paul Lévy, 15.09.1886 — 15.12.1971, Professor fiir Mathematik in Paris
2Richard von Mises, 19.04.1883 — 1953, studierte in Wien Mathematik und war spéter Professor fiir Ma-
thematik an Universitdten in Berlin und Straflburg. Vor dem ersten Weltkrieg emigrierte er in die USA.

2
+o(t?) =1- 7+ o(t?).
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Es folgt

und weiterhin

esn v yml(t) = en <\/tﬁ> = (1 - ;Z +o (i))n

Mit e¥ = lim (1+ %)™ folgt

n—oo

gp(t) = nh_)n;O ©n <\/tﬁ> = 6—%152’

d.h. o(t) ist die charakteristische Funktion einer standardnormalverteilten Zufallsvariable.

Nach Satz 14.13 folgt damit die Behauptung. |

FEin Spezialfall des zentralen Grenzwertsatzes ist der Satz von de Moivre-Laplace:

14.16 Satz (Satz von de Moivre—Laplace):
Es sei (Sp)nen eine Folge von stochastisch unabhdngigen Zufallsgréfen mit der Eigenschaft

S, & B(n,p) YneN, 0<p<1. Dann gilt:

Sp —

P —npgsc —— ®(x) VzeR,
n-p-(1-p)

wobei ®(x) die Verteilungsfunktion der Standardnormalverteilung bedeutet.

Beweis:
In Satz 14.15 wihlen wir (X,,)nen mit P(X,

Dann gilt: E[X,,] = p, 0[X,] = /p(1 —p) und S,

(Siehe auch Mathematica-Notebook zum zentralen Grenzwertsatz.)

1)=pund P(X,, =0)=1—-pVneN.
iB(n,p) vV neN. |

Die Frage, wie schnell sich die Verteilung der Zufallsvariable S;[%i[%l] der Standard—Nor-

malverteilung ® néhert, beantwortet der Satz von Berry und Esseen.

14.17 Satz (Berry—Esseen):
Es sei (Xk)ken eine i.i.d. Folge von reellwertigen Zufallsvariablen iber (Q,§, P). Ferner seien

p:=E[Xy], o%:=VarX:], v:=E

X1 —pl -
’ < oo und SnIZZXi~
o

=1

Dann gilt
<&

NG

mit einer von n unabhingigen Konstanten C (C' ~ 2.8741).

sup
z€R

Fiir den Beweis des Satzes von Berry-Esseen ben6tigt man einige Hilfsmittel, die zunéchst in
Form der Satze 14.19 bis 14.21 zur Verfiigung gestellt werden.
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P (X=k) P (X=k)

0.035

0.08 0.025

0.015

0.005

= k
20 25 30 35 230 240 250 260 270 280

Abbildung 14.5: Binomialverteilung mit den Parametern p = 0.5 und n = 5, 10, 50 und 500
und jeweils tiberlagert von der Dichte einer Normalverteilung mit den Parametern gy =n-p
und 62 =n-p-(1—p)

14.18 Satz:

Es sei F' eine Verteilungsfunktion und G eine rellwertige differenzierbare Funktion mit

lim, oo G(z) = 0, limy_ 4o G(z) = 1 und sup,er |G'(z)] < M > 0. Dann ezistiert eine
reelle Zahl a, so dass fiir alle T > 0:

1 —cos(Tz)
’/ Az + a) 3 dm‘ 2M -6 [2 5] ,

wobei A(z) := F(z) — G(z) und § := (317) Supger | F(2) — G(2)]| sind.

Beweis:

Wir definieren « := sup,¢p |F () — G(z)|. Da A := F — G beschrénkt ist und fiir z — o0
verschwindet, existiert ein b € R mit entweder |A(b — 0)| = a oder |A(b)| = a. Da F monoton
nicht fallend ist, kommen nur die Fille F'(b—0)—G(b) = —a und F(b) —G(b) = « in Betracht.
Es wird F(b—0) — G(b) = —« angenommen und a := b — ¢ gesetzt. Der Mittelwertsatz liefert
fiir G und das Intervall [a + x, b]:

G) = Glatz) =G )b —(a+2)] =G b —(b-0+z)] =G0 —x) <M —x)
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fiir ein £ € (a + x,b). Folglich gilt fiir alle z mit |z| < o:

F(z+a)— Gz +a)

I
=

VANVAN

(5 :U) =—a+ M(§—x)

I

|
O
3
>
_|_
i
Q
ﬁ/

|
=
8
_|_
=

Abbildung 14.6: Darstellung von a = sup,cg |F(z) — G(z)|, Fall 1

F(b)-G(b)=at —F

/G

©
©

+
x
o

Abbildung 14.7: Darstellung von « = sup,cg |F(z) — G(z)|, Fall 2

Damit folgt

0 0

/A(:E-l—a)l_;?;;T:E) dz —M/ 33—1-5 ;?;2(7%) dx

IN

—0

1)
1 —cos (Tx) —cos (T'x)
= —M/x T2 d —M(S/ T2 dx

=0 aus Symmetrlegrunden

)
1 —cos (T'x) 1 —cos (Tx)

0

Aufgrund der Voraussetzungen gilt auflerdem

1 — cos(Tx) / 1 — cos(Tx)
Alz+a)————— dzr < « ———— dx. ok
o> )7 wj>s  Ta? &)

X.

42
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Weiter ist
T 1 — cos (Tx) / 1 T
/A(x—i—a) _C;; z) x-/Aw—i—a _;?::2( z) dx
1 —cos (Tx)
|z|>6
Locos(Tw) [ 1 eos(Tw)
—cos (Tx —cos (Tx
<o [ e [ e
|x|>d 0
wegen (**) wegen (*)
[1ocos(Tw)  [1-cos(Tu)
1 —cos(Tx 1 —cos(Tx
é 0
[1-cos(Te) [ 1—cos(Ta)
1 —cos(Tx 1 —cos(Tx
=« 3/ T22 d:c—/ 22 dx
é 0
o0 oo
1 1 —cosz 1—cosz
= ozf 3/ 2 dz/ 2 dz
6T 0
< 6 T
=*\or " 2)
wobei im letzten Schritt die Beziehungen
r1
/ #S(Z) dz = g (partielle Integration und Integral-Sinus)
z
0
und
71— cos (2) 2
6T
benutzt wurden. Da der Ausdruck « (% — %) fiir hinreichend grofles T negativ ist, folgt
cos(Tx) 6 6 7
A( > |l ——-=|=2M-§|— — =|.
‘/ (@+a dw‘— a(éT 2> 5[5T 2]
Der Fall F(b) — G(b) = a wird analog behandelt. [ |

14.19 Satz (Esseen):

Es seien X und Y reellwertige Zufallsvariablen tber einem gemeinsamen Wahrscheinlichkeits-
raum (2, §, P) mit den Verteilungsfunktionen Fx und Fy, den charakteristischen Funktionen
vx und gy und den Erwartungswerten E[X] < oo und E[Y] < oco. Ferner sei Fy stetig
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differenzierbar auf R mit sup F;;(x)‘ < M > 0. Dann gilt fir alle T > 0:
zeR

T

2 — 24 M

sup |Fx(z) — Fy(2)] < > / px(w) = eyl 24

2€R s U T
0

Beweis:
Es gilt fiir eine reellwertige Zufallsvariable Z mit Verteilungsfunktion Fz und Erwartungswert
E[Z] < o

E[Z] = /(1 — Fz(x)) dx — /Fz(x) dx.

R+t R~

Wegen der Abschitzungen
[Fx (x) = Fy (2)] < [Fx (@) + [Fy (2)| fiir 2 <0
und
[Fx(z) = Fy(z)| = [1 = Fy(2) = (1 = Fx(@))| < |1 = Fy(@)| + [1 = Fx(2)] fir 2 >0

ist deshalb

/]FX(z) — Fy(2)|dx < oc.
R

Deswegen kann der Ausdruck ¢x(t) — ¢y (t) partiell integriert werden:

Q Q

:/emdPX(x) —/eimdPy(m) = /eitxd(Px(x) — Py (x))
R

R R

_ it / (Fx(2) — Fy(2)] €®de.  (Ubung)
R

Hieraus folgt mit A(x) := Fx(z) — Fy(x) und a € R:

X (t) _';OY (t) e~ ita _ / A(l,)eit(gv—a)d:C
]
R

—/A(y + a)edy.
R
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Unter Zuhilfenahme des Satzes von Fubini ldsst sich weiter schlieflen:

L px(t) = oy () —ita <1 3 \t) _ 1

2 —it T
T

wobei im letzten Schritt das Ergebnis aus Beispiel 13.6 Nr.8 benutzt wurde. Die linke Seite
dieser Formel stellt offensichtlich die Ableitung von (Fx * G)(a) — (Fy * G)(a) dar, wobei G
die Verteilung mit der charakteristischen Funktion

o) = (1= 1) toam. eem

und der Dichte
1 —cos(Tx)
f(.%') - 7T;L'2T )

ist (siehe Beispiel 13.15). Durch die Faltung von Fx — Fy mit der auf [T, T konzentrierten
Verteilung G wird gewissermaflen eine Glattung von Fxy und Fy herbeigefiihrt, weshalb Satz
14.19 oft auch als ,,Glattungslemma’” bezeichnet wird. Die spezielle Form von G ist dabei

unerheblich, wesentlich fiir das Weitere ist, dass ¢ fiir || > T verschwindet.
Aufgrund von Satz 14.18 gilt nun:

T 6 1 —cos (Ty)
— — | < [ .
a <2 6T> < /A(y—i—a) Ty? dy

z € R,

T
_ 1 QOX(U) - QDY(“) —iua( ‘U|
T2 / —1U ¢ 1 ?) du
T
T T
<1 []ets [l -atly,
-2 U U
-T 0
woraus mit § := 53; die Ungleichung
T
2 [loxt—er(l , 200,
m U " —
folgt. ]
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14.20 Satz:
Fiir komplexe Zahlen x,y gilt:

" —y"| < nle—yla",
mit a := maz (|z|, |y]).

Beweis:
Aus der Identitét

2 =y = (- y)" T yle -y Ty T (@ )
folgt sofort

2" — " <@ — )"+ |y(@ — )" 2|+ o+ [y (@ — )

<n-|lz—y|-a"".

14.21 Satz:
Sei (2, F, P) ein Wahrscheinlichkeitsraum und X : Q — R eine reellwertige Zufallsvariable

mit E[X] = 0, E[X?] =1 und E[|X|3} < 00. Dann gilt fir die charakteristische Funktion

px von X:
3 3
W (Lt <E[\X|}.!t! 3 e a) exp (2L
X\ Vn =" 2a/n NG P\718 n

fiir alle |t] < W}F’]\/ﬁ Ist n > 10 (und |t| < W\/ﬁ) so gilt

B[1x[*] - 1’
S

<

t 1
SOT_)Z( (\/ﬁ) — 67%t2 . (‘t‘ + 4) - exp (—4t2> .
Beweis:

Satz 13.16 impliziert mit E[X] =0, E[X?] =1 und k:=2, §:= 1:

< & B[IXP] 11

1
‘@X(t) — 14 5t?

Wegen E[X 2] =1 ist E[]X \3] > 1. Folglich ist B < /2. Mit Hilfe der Ungleichungen

4
[1xP]
—x 1 2
1—z<e §1—$+§$ Vx>0
schliefit man, dass fiir [¢| < m gilt
1 1 1 1

5 5 ,2

D <1— =2 f-E[X?’]tg’:l—ftZ f-E[X?’}-t-t2<1——t2< — 15t
lox(t)] < 5t 15 | X7 [¢] 5T 5 | X[ - [t - ] < gt Se
(14.1)
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14.3. Der zentrale Grenzwertsatz

und
— 112 Lo -1 Lo
ex(t)—e 2" | < ng(t)—l—i-it + |e" 2 —1+§t (14.2)
<L R[xpE] e e 14.3

Wenn man Satz 14.20 auf =z := ¢px (ﬁ) und y = exp (—%%) anwendet, erhélt man

Wt 1p2 t i t 2\
()~ <njex (m) | (e (fox (5 )
Aufgrund von (14.1) gilt:
(Jox QR =8
max | (px | —= )|, e 2| | <e 18n
vn
Wir fassen zusammen und erhalten aufgrund von (14.1) und (14.2):
n t 142 |X| 3 1 t 4 _ 5 n-1,2
”(ﬁ)e HlEn ‘f 8(\/6) e 14y
E[m 3 -
= [t (4 =] ) e 14.5
1P e (14 o) e (145)
Wegen \/% < 1list fir n > 10 (und [¢t| < 3;[@3]) offensichtlich
p E||x]°| e
- —_— = . 4
eine obere Schranke fiir den Ausdruck (14.4), womit alles gezeigt ist. |

Mit Hilfe dieser Sétze ldsst sich nun der Satz 14.17 von Berry und Esseen beweisen.

Beweis (des Satzes von Berry-Esseen):
Ohne Beschrinkung der Allgemeinheit kann fiir die Zufallsvariablen in Satz 14.17 E[X;] =0
und Var[X;] = E[X{| = 1 angenommen werden. Andernfalls ersetzt man die Zufallsvariablen

X}, durch die Variablen X = X BN g 1,2,.... Um zu der Abschéitzung aus Satz 14.17

\/Va [Xk]

zu gelangen, wird Satz 14.19 mit X := S, := Z\fl “und Y = ./\/(0,1) angewandt. Die

n

dazugehorigen charakteristischen Funktionen lauten

t
H=¢%  {t)=0% [ — teR
oxt) =g =28 (75 1

und
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Da

Fy(t) = e2", teR,

ist, kann M := \/% gewéhlt werden. Da E[\X |3] > 1 gilt und die Abschitzung von Berry-

Esseen fiir \/n < 3 trivialerweise richtig ist, kann n > 10 angenommen werden und die zweite
Abschitzung aus Satz 14.21 verwendet werden.

T
2 — 24 M
sup |Fix (z) — Fy (z)| < / lpx () — oy (u) du+ ——
z€R ™ U 7T
0
T ‘ u 7%u2
2 vx (7) —€ 24 M
T U 7T

T 3 3
Q/E[IXI } ™ (Ju| + 4)e= 1 24 M
d : du+ .
T

0

<
- 24./n u T
Mit T := 3E[|47X\3]\/ﬁ und M := \/%7 erhilt man schlielich
T 3] 13 3
E[|X| | L2 24-3-E||X|
2 (lu| +4)e"x
sup |[Fx(z) — Fy(z)] < = : du+ ————3
sup P () = Py >\_W0/ Sk ; NI
E|IXP| [1 7 2|
3 2y, —1u?
S S N 4 z
s 12/(u+u)e4 du+9\/;
0 |
E[IxP| [ F . 7]
< _L I 30 4q2 — 142 \/7
SN 12/(u—|—u)e4 du + 9 -
0 |

B||X/°]
_ L 1.0
vn 7
wobei C:= 2- 557 4 0. /2 59 874103874 ist. m

14.22 Bemerkung;:

Auch wenn die Berry-Esseen-Konstante C' durch entsprechende Rechnungen verbessert wer-
den kann (vgl. z.B. Génssler/Stute, ,,Wahrscheinlichkeitstheorie”), ist eine Verbesserung der
Konvergenzordnung ﬁ ohne zusétzliche Voraussetzungen nicht moglich. Man betrachte da-
zu eine i.i.d. Folge (X, )nen reellwertiger Zufallsvariablen iiber (Q2,F, P) mit P(X, = 1) =
P(X,, = —1) = L. Fiir diesen Fall gilt:

-2
P(Ssp =0) =P (i_n;X :0) - (i’;) <;)2n neN.
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Die Stirling’sche Formel besagt

2n AN —1 fir n 00
— ~ —
n 2 N ’

so dass aufgrund der Symmetrie von Sa,

1 1 1
P(Szng()):5(14—]3(82”:0)):5—’-2\/%

+0(n_%> fir n — oo

folgt. Damit wird

sup [ P(52n < (20)30) - 0(0)] 2 [Pl <0 - | ~ 1

2/nm

fiir n — oo.

zeR 2
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Kapitel 15

Statistische Auswertung von
Zufallsexperimenten

Die Statistik beschiftigt sich mit dem Schéitzen und Testen von Parametern stochastischer
Modelle. Oft existiert eine Messreihe und man interessiert sich z.B. fiir den Erwartungswert
der Grundgesamtheit. Da sich aus der Messreihe zundchst nur der empirische Mittelwert
berechnen lisst, stellt sich z.B. die Frage, wie grof3 die Diskrepanz zwischen dem theoreti-
schen Wert und dem Schétzwert ist. Diese und &hnliche Fragestellungen sind Gegenstand der
mathematischen Statistik.

Schliisselworter: Statistisches Modell, Stichprobe, (Punkt-)Schétzer, erwartungs-
treu, Konsistenz, starke Konsistenz, verzerrt, unverzerrt, Bias, gleichméflig bester
Schitzer, Cramér-Rao-Schranke, a-Quantil, Konfidenzintervall, Hypothesentest.
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15.1 Einleitung

Allgemein hat man es bei der statistischen Auswertung eines Zufallsexperiments mit folgender
Situation zu tun: In einem System, das durch einen Mafiraum (2, §, P) beschrieben wird, wird
ein Experiment durchgefiihrt. Die erhobenen Daten betrachtet man als eine Realisierung einer
zum Experiment gehorenden Zufallsvariable X : 2 — X, wobei (X, 2l) ein geeigneter Messraum
ist. Es wird angenommen, dass die unbekannte Verteilung Px von X einer gewissen Familie
P = (Py)pco von Verteilungen auf (X,2A) angehort, d.h. es gibt ein 6y € O, fiir das Py,
das Bildmal Px von P unter X ist. Die explizite Gestalt von (2, §, P) tritt dabei génzlich
in den Hintergrund und man bezeichnet (X,2, (Py)pco) als ein statistisches Modell fiir die
Zufallsvariable X.

15.1 Beispiel:

In Kapitel 4 hatten wir uns im Rahmen der statistischen Qualitdtssicherung mit der soge-
nannten Gut—Schlecht—Priifung beschéftigt. Es wird ein Los vom Umfang N angeliefert und
eine Stichprobe vom Umfang n entnommen. Wir vereinbaren

X, = {1 falls i-tes Stiick fehlerhaft (i=1,....n)

0 falls i-tes Stiick fehlerfrei

und setzen X := (Xj,...,X,). Unter der Annahme, dass die X; stochastisch unabhéngig
und identisch B(1, #)-verteilt sind mit unbekanntem Parameter 6 € [0, 1], geniigt X einer
®1%9 B(1, 6)-Verteilung. Damit erhalten wir als statistisches Modell fiir X

(}:7 Qla (PG)GEG)) = ({Oa 1}n’ %({O’ l}n)7 (®%2%B(1, 0))96[0,1]) .

Man kénnte aber auch ebensogut die Fehleranzahl

=1

beobachten. Da YV £ B (n,0), lautet das statistische Modell fiir Y:

(%7 A, (P9)9€@) = ({07 L... 7n}7 %({07 ..., TL}), (B(TL, 6))06[0,1})'

In der Regel hat man es mit einem Einzelexperiment zu tun, das n-mal unter gleichwertigen

Bedingungen durchgefiihrt wird, wobei die Daten x1,...,x, erhoben werden. Diese Daten
werden als Realisierung stochastisch unabhéngiger und identisch verteilter Zufallsvariablen
Xi,...,Xp: Q — X aufgefasst. In diesem Fall gilt Px, = ... = Py, und das statistische

Modell fiir X := (Xy,...,X,) hat die Form (X", %", (Pég’”)(;e@), wobei A®" und P(?” die
n-fache Produkt-o-Algebra bzw. das n-fache Produktmafl von Py = Px, bezeichnen. Die
Zufallsvariable X := (X,...,X,,) heift dann Stichprobe vom Umfang n.

15.2 Punktschitzer

Mit Hilfe der beobachteten Daten X (w) = x = (x1,...,zy) sollen jetzt Aussagen iiber die
zugehorige Verteilung, d.h. {iber den Parameter 6y € © oder eine von 6y abhéngige Kenngrofie
0(60y) getroffen werden.
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15.2 Beispiel:
Sei XiExp(/\). In diesem Fall ist ©® = (0,00) und 6 = A. Als p(f) kommen z.B. p(f) :=
E[X] = 67! oder o(0) := Var[X] = 6~2 in Betracht.

Sei Xi./\/'(u,az). In diesem Fall ist © = R x (0,00) und 6 = (u,0). o(f) konnte z.B. der

Variationskoeffizient sein, d.h. o(f) := 7.

In diesem Zusammenhang von Bedeutung ist der Begriff des Schétzers:
15.3 Definition (Schitzer, Schitzwert):
Es sei (X,2, (Py)oco) ein statistisches Modell und o: © — RY, £ € N, eine Abbildung. Dann

heift jede A — B -messbare Abbildung T: X — R ein (Punkt-)Schitzer fiir die Kenngrife
0(0) € RY. Die Werte T(z) von T heifien Schitzwerte fiir o(6).

Um unsinnige Schitzer g(f) zu vermeiden, werden an 7' gewisse Anforderungen gestellt.

1. Forderung:
Fiir einen hinreichend grofen Stichprobenumfang n sollte T,, = T'(X1, ..., X,) den gesuchten
Wert o(0) moglichst gut approximieren. Deswegen definiert man:

15.4 Definition (schwach konsistent, stark konsistent):
Eine Folge (T,,)nen von Punktschditzern fiir o(0) heifit schwach konsistent, wenn

T, 2 06) Vvoco.

n—o0

FEine Folge (T,,)nen von Punktschitzern heifit stark konsistent, wenn

T, 715 00)  veco.

15.5 Definition (Stichprobenmittelwert, Stichprobenmomente):
Falls X := (X4,...,X,) eine Stichprobe vom Umfang n ist, nennt man

[ — 1
X=X, = E(Xl—l—...—i—Xn)

den Stichprobenmittelwert,

1 <& — 1 & EE——
SPi=82 = =) (X - Xn)P =) (X - 2X, X, + X))
" =1 " =1
1 & 1< 1 —9 1 - -2
= =) X7 -2X, - Xi+—-n-X, =— (ZX?) - X,
n ne n " \i=
=X,

die Stichprobenvarianz und

1 n
=1

das k—te Stichprobenmoment, k € N. Offensichtlich ist mg) =X,.
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15.6 Bemerkung:
Mit Hilfe des starken Gesetzes der groflen Zahlen kann man sofort schlieflen, dass die Folgen

(X n)nen, (52)nen und (m;k))n@N stark konsistente Folgen von Punktschétzern fir E[X;],
Var[X;] und E[X}] darstellen (sofern die entsprechenden Momente existieren, d.h. sofern
E[|X1]] < oo, Var[X;] < co bzw. E[|X}|] < oo gilt).

2. Forderung:
Bei hinreichend oftmaliger unabhéngiger Anwendung des Schéitzers T' soll der Durchschnitt
der Schitzungen den gesamten Wert o(6) beliebig gut approximieren.

15.7 Definition (erwartungstreu, unverzerrt, verzerrt, Bias, Verzerrung):
Ein Punktschitzer T: X — RY fir die Kenngrofe o(f) € R’ heifit erwartungstreu oder
unverzerrt, wenn gilt

Ey [T(X)] :/nT(xl,...,wn)dPg(:L‘l,...,:En):Q(Q) Voeo

Andernfalls heifit T verzerrt (englisch: ,,biased”).
b8, T) = By [T(X)] — o(6)
heifst der Bias (oder die Verzerrung) von T .

15.8 Bemerkung:
Ist b(0,T) > 0, so wird ¢(f) durch T" im Mittel iiberschétzt, andernfalls unterschitzt.

15.9 Beispiel:
1. Es sei X := (X1,...,X,) eine Stichprobe vom Umfang n und E[|X;]|] < oo. Dann ist

X, ein erwartungstreuer Schétzer fiir p := E[X1], denn es gilt:

1 1| 1
E[X,] =E ﬁ§ Xi]:nE > X, = —(n-p) = p.
i=1 j=1

2. Essei X := (X1,...,X,) eine Stichprobe vom Umfang n mit E[X1] = ¢ und Var[X;]| =
0?2 < 0o. Dann ist S? ein verzerrter Schiitzer fiir 0.

1< 2 32 1 ¢ 2 2 2 2
DA X = O (Bl ) - B[X - )
i=1 j=1

- % i (B[X7) ~2E[X;)p + 42 ~(B|X"| ~2E[X;)p + 1))

E[S)] = E

1 — — 1
= S (B - ) ~B[X ) = - n(o® - Var[X))
=1
1 & 1
= o¢2—Var EZXJ = 02—ﬁ~n02
j=1
_ 027l02 _ n—102 ” o2
n n

54



15.2. Punktschétzer

Die Verzerrung ist in diesem Fall b(0,T) = E[S?] — 02 = —10? und legt folgende
Modifikation nahe:

g2 . N o 1 2
S“‘_n—15"_n—1;(Xl Xn)2.

Man erkennt sofort, dass S,QL ein erwartungstreuer Punktschitzer fiir o2 ist.

3. Es sei (2,F, P) ein Wahrscheinlichkeitsraum sowie X := (Xi,...,X,): Q@ — R" und
Y = (Y1,...,Y,): Q@ — R" bezeichnen zwei Stichproben vom Umfang n (jeweils i.i.d.)
mit Var[X;] < oo und Var[Y]] < co. AuBlerdem nehmen wir an, dass die Zufallsvaria-
blen X; und Y; fiir 7 # j stochastisch unabhéngig sind. Dann heif}t

1< — -
C, = D (X = X)) (Y =Y

n—1
i=1

die Stichprobenkovarianz von X und Y.

15.10 Satz:
Die in Beispiel 15.9 beschriebene Stichprobenkovarianz ist ein erwartungstreuer Schdtzer fir
COVy[X1, Y]

Beweis:
Als statistisches Modell fiir (X,Y) verwenden wir ((R?)™, (B2)™, (Py™)sco), d.h. Py ist die
gemeinsame Verteilung von X; und Y;. Da COVy[X,,Y1] = COVy[X; — E[X,],Y1 — E[Y1]]
ist, kann 0.B.d.A. angenommen werden, dass Egy[Xi] = Eg[Y1] = 0 sei. Damit ergibt sich
COV@[Xl,Yl] = E[Xl : Yl] Es gﬂt
n

Z(Xi - Yn)(Y; - ?n)

=1
= n-Ey [(((-5)%— X LX) (- D)V e da)

2 n
= n((l—i) E@[X1H]+7;ZE9[XZE]>
=2

n—1
n2

Eg [(n — 1) . Cn] = Eg - ZEQ [(Xz - Yn)(}/z - Yn)]
=1

1 2
= n((l—n> COV@[Xl,Yl]—i-

= (n—1)COVy[Xy,Yi].

COVG[XL H})

Um die Giite eines Schétzers T'(X) fiir o(f) messen zu kénnen, betrachtet man die mittlere
quadratische Abweichung

R(O,T) :=Ey [(T(X) — 0(0))*], 6€8.
Es gilt
R(O,T) = E¢[(T(X))? = 200)T(X) + (2(6))?]
= Ey [(T(X))*] —20(0)Eq [T(X)] + (2(6))?
(T(X))?] — (Eg [T(X)])* + (Eq [T(X)])? — 20(0)Eq [T(X)] + (0(6))”
]+ (Eq [T(X)] - 0(6))?
|+ (b(6,T))%,

~—

~— —
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d.h. fiir erwartungstreue Schétzer T'(X) ist
R(0,T) = Vary [T(X)] Voeo.

Man definiert deshalb:

15.11 Definition (erwartungstreuer Schitzer mit minimaler Varianz, Wirkungsgrad):
T(X) heifst erwartungstreuer Schitzer fir o(0) mit (gleichmdfig) minimaler Varianz (eng-
lisch: ,,uniformly minimum variance unbiased estimater”; kurz UMVU) oder auch gleichmdfig
bester erwartungstreuer Schitzer, falls er erwartungstreu ist und

Vary [T(X)] < Vary [S(X)] Voeco

fiir jeden erwartungstreuen Schdtzer S(X) fir o(0) gilt.

(eY)
Das Verhdltnis Yary[T] heift Wirkungsgrad von TW in Bezug auf T?.
Vary [T(Q)] —J=F 7

15.12 Beispiel:
Essei X := (X1,...,Xn), Xi 4 R(0,0),1=1,...,n. Fir o(0) = 6 seien die beiden folgenden
Schétzer gegeben:

2 n
TWx) = 2y Xx;
D00 = 23
T7(L2)(X) = ntl -max{Xy,..., Xy}
n

e Beide Schitzer sind erwartungstreu:

Eo [TM —E,

2 — 2 0
ZXZ»] =~ n-Eg[X1]=2--=0.
ni:l n 2

Setzt man M, := max{X1,..., X}, so gilt:

0 , <0
Py(M, <z)=P(X;<z,..., Xy <z)=14(%)" |, 2€]0,0]
1 , x> 0.

Dabei besitzt M,, die Dichte

nf="m. g1 T 0
fu(z) == { » o< 0.6]

0 , sonst.

Damit folgt By |17 | = By [ - M, ] = 2L, [M,] und

0 0
Ey [M,] = /nﬁ_"-x" d:c:ne_”'/ " dx
0 0
1 G
= 0 | ——a | = T,
n+1 o n+1

Damit gilt also Ey [T,EQ)} = ”T‘HE(; [M,] = 6.
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15.2. Punktschétzer

e Fiir die Varianz der beiden Schétzer ergibt sich:

2 2
"/2':11'[)(1]_é i _0

Varg |:T7’(L1):| = — — =
n 12 3n

Vary [T}f)} - - Varg [M,]

_ [(n+1)2—n-(n+2)

N n-(n+2) } &
92

T onn+2)

Damit ist also Vary [Téz)} < Vary [Trgl)] fiir n > 2.

Es stellt sich nun die Frage, wie man erkennt, ob ein gegebener erwartungstreuer Schéitzer fiir
0(6) erwartungstreuer Schétzer mit minimaler Varianz ist. Eine hinreichende Antwort darauf
liefert der folgende Satz.

15.13 Satz (Cramér-Rao):

Es seien X := (X1,...,X,) eine Stichprobe aus reellwertigen Zufallsvariablen und

(R™,B", (P )geo) das zugehérige statistische Modell. Es sei © C R ein offenes Intervall
und die Verteilungsfunktion der Zufallsvariablen Xy habe auferdem eine Dichte f(z,0), die
die folgenden Eigenschaften besitzt:

1. Die Ableitung % existiert fir alle 8 € © und fiir fast alle x € R,

2. By | G0 —0v 0 € © und
2
3. 1(9)::E9[<W) ] <o Veo.

Ist T(Xq,...,Xpn): R" — R ein erwartungstreuer Schétzer fiir o(0) mit

& In f(X;
S E [T(Xl,...,Xn)W 1 Voco,
i=1
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so gilt
1

n-1(0)

Die Grife 1(0) wird Fisher—Information von Py genannt und der Quotient #w) heifst die
Cramér-Rao-Schranke.

Vary [T(X41,...,Xn)] > Voeo.

Beweis:
Unter Beriicksichtigung der angegebenen Regularitétsbedingungen erh&lt man

n

1 Oln XZ,G 2
(T(X1,...,Xn)—9—nj(9)z fa(e ))]

0< Ey

1=
n

= By [(T(X1,.., Xp) = 02 = 2((T(X1,.., X) = 0) L_$~ alnf(Xz-,H))

1 : z”: 8lnf(g(k,0)8lnf(Xl,9)}

T 216 =0 00

n

1 Oln f(X;,0
T(Xl,...,Xn)-nI(e)Z fa(e )]

20 Oln f(X;,0) 1 = Oln f(Xg,0) 0ln f(X,0)
n 1(0) ;Ee [ BT, ] T 2107 > B [ 90 BT, }
1 1

= Varg [T(X1,...,X,)] — 2n T00) + @) -n-1(0),

=Ey [(T(X1,...,X,) — 0)*] —2Ey

1=

+

k=1

woraus

folgt. |

15.14 Bemerkung;:
Fiir erwartungstreue Schitzer T'(X) fiir 6 ist Bedingung

- In f(X;
Y E [T(Xl,...,Xn)W =1 V0eoO
i=1

im Satz von Cramér-Rao stets erfiillt.

Beweis:

Es seien = := (z1,...,2,) und f(z,0) := [[;_; f(xi,0). Nach dem Satz von der majorisierten
Konvergenz gilt fiir erwartungstreue Schitzer mit Dichte f(x,6) die folgende Vertauschbarkeit
von Integration und Differentation:

0 0
%EQ[T(X)] = 89/nT(wl,...,xn)dPg(xl,...,xn)
0
= 69/nT(ajl,...,xn)f(xl,...,xn,H)d(xl,...,xn)
0
= /nT(xl,...7xn)&9f(x1,...,xn,ﬁ)d(:cl,...,xn)
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15.2. Punktschétzer

Damit ldsst sich nun die eigentliche Behauptung beweisen:

;Ee [T(X)alnfa(;(i,e)]

- EQ[T(X)% znjlnf(Xi,H) ]
i=1

=In[[7, f(X;,0)=In f(X,0)

= /nT(x) %lnf(:vﬁ) dPy(x1,...,Tn)
———

__1 3
—m'%f(fﬁ)

/HT(x) (;;f(x,o)> f(i,e)f(:cl,...,xn)d(m,...,xn)

=1

® 9
= 59 /n T(z)f(z,0)d(z1,...,Ty)
=Ey[T'(X)]=0,
da T erwartungstreu ist
0
—_— %9 —_— 1-

((*): Verwendung oben genannter Vertauschbarkeit von Integration und Differentation.) M

15.15 Beispiel (Stichprobenmittelwert bei normalverteilten Zufallsvariablen):
Es seien X1 = N (6, o) und Py die Normalverteilung mit Erwartungswert  und Varianz o2.
Die zugehorige Verteilungsfunktion hat die Dichte

1 _(@=0)?
e 22 VY (2,0) e R xR.

f(x,0) :=

ﬁ

27 - o
Hieraus folgt:

—0
5 + In > v 5
20 Vor o o

00 00

Oln f(x,0) 0 (_(w—9)2

Damit ergibt sich:

8lnf(X1,9) X1—9

Die Fisher-Information von Py ist dann:

<61nf(X1,9)>2

1(0) = Eq -

X, —0\2 1 o2 1
( P >]:a4va"[X1]:a4:az'

Der Stichprobenmittelwert X, liefert nach Beispiel 15.9 einen erwartungstreuen Schiitzer fiir
2 2
E[X;] = 6. Da einerseits Vary [X,] = 2 Vary [X;] = Z ist und andererseits n,%w) = 2= gilt,

n

ist X,, gleichmiBig bester erwartungstreuer Schitzer fiir o(f) = 6.

Das Konzept des erwartungstreuen Punktschétzers ldsst sich in folgender Weise abschwéchen:
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15.16 Definition (asymptotisch erwartungstreu):
FEine Folge (Ty)nen von Punktschitzern fiir o(0) heifst asymptotisch erwartungstreu, wenn

lim Eg[T,] = 0(6) V0€©

n—oo

gilt. Entsprechend lassen sich die Begriffe der Wirksamkeit und des Wirkungsgrads ausdehnen.

15.17 Beispiel: "
Die Stichprobenvarianz S2 = % S (X;— X ,,)? ist ein asymptotisch erwartungstreuer Schitzer

=1
fiir o() = Vary [ X1].

7

Einen Zusammenhang zwischen den Begriffen ,,asymptotisch erwartungstreu” und ,,schwach
konsistent” stellt der folgende Satz her.

15.18 Satz:
Es sei (T),)nen eine Folge von Punktschdtzern mit

lim Eg [(T, — 0(0))*] =0 VO€O,

n—oo

dann ist (Ty,)nen schwach konsistent fir o(0).

Beweis:
Durch Anwendung der Rechenregeln fiir den Erwartungswert ergibt sich:

B [T, o0)7] = [ Pol(T— 0(6)) > w)do
R

62

/ Py((T — 0(0))? > 2)da
0
> 2P((T, - 0(0)) > £2)

= 2P(|Ty, — 0(8)| > ).

v

Mit der Voraussetzung lim,, ., Eg [(Tn — 9(9))2] =0 V4@ e 0 folgt dann die Konsistenz. B

15.3 Maximum-Likelihood-Schatzer

Das Maximum-Likelihood-Prinzip ist ein allgemeines statistisches Konzept zur Konstruktion
von Schétzfunktionen. Wir erldutern es an einem einfithrenden Beispiel:

15.19 Beispiel:

In einer Urne mogen sich 9 Kugeln (rote und schwarze) befinden. Wieviele rote und schwarze
es sind, ist nicht bekannt. Aus dieser Urne werden nun drei Kugeln ohne Zuriicklegen gezogen.
Damit ist festgelegt, dass die hypergeometrische Verteilung dem Experiment zugrunde liegt.
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15.3. Maximum-Likelihood-Schétzer

Es mogen zwei rote und eine schwarze Kugel gezogen worden sein. Damit ergeben sich folgende
Parameter:

=9
:= unbekannte Anzahl der roten Kugeln
= 3
= 2

~ 3 W =2

Da zwei rote Kugeln gezogen wurden, muss R > 2 gelten. Da auflerdem eine schwarze Kugel
gezogen wurde, kann R maximal 8 betragen. Prinzipiell sind also alle Werte zwischen 2 und
8 fiir R moglich, aber offensichtlich nicht gleichwahrscheinlich.

Um die Anzahl der roten Kugeln zu schétzen, werden die zum Ereignis {k = 2} und den

Bedingungen R = 2,...,8 gehérenden Wahrscheinlichkeiten berechnet und miteinander ver-
glichen:
R 0 1 2 3 4 5 6 7 8 9

Hgor3(2) |0 0 0.083 0.214 0.357 0476 0.536 0.5 0.333 0

Das Ereignis {k = 2} tritt also am wahrscheinlichsten auf, wenn R = 6 gilt. Deswegen wird
6 als Schétzwert fiir die Anzahl der roten Kugeln verwendet.

15.20 Bemerkung:
Etwas formaler lédsst sich das obige Schétzverfahren wie folgt zusammenfassen:

Es seien Fy(x) eine vorgegebene Wahrscheinlichkeitsverteilung, die von dem unbekannten
Parameter § € © abhingt. Wenn Fj stetig verteilt ist, dann sei fp(x) eine zugehorige Dichte,
ansonsten sei fg(x) := F(x)—F(z—0). Bei der einmaligen Ausfithrung des Zufallsexperimentes
sei das Ereignis x( eingetreten. Dann ist

T(0) := 60 € © mit fo(xo) > for(xo) VO €O

ein Schéatzer fiir den unbekannten Parameter 6.

Dieses Schiatzverfahren hat jedoch den Nachteil, dass es sich nur auf die Auswertung eines
einzigen Zufallsexperimentes stiitzt. Genauere Schitzungen ergeben sich, wenn man das Ex-
periment mehrfach wiederholt:

15.21 Beispiel:

In dem Versuch aus Beispiel 15.19 seien die drei Kugeln wieder zuriickgelegt worden und
danach seien die Kugeln in der Urne neu durchgemischt worden.

Beim erneuten Ziehen von drei Kugel, wurden nun ks := 0 rote Kugeln gezogen. Nur auf
diesem Ergebnis basierend, wiirde man R = 0 vermuten, da Hgg3(0) = 1, und fiir R > 0
gﬂt Hgijf,(O) < 1.

Um zu einem besseren Schitzwert fiir R zu gelanden, multipliziert man die Werte Hgy r 3(2)
und H gy g 3(0) punktweise:

R 0 1 2 3 4 ) 6 7T 8 9
Hgor3(2)-Hgors(0) | 0 0 0.035 0.051 0.043 0.023 0.006 0 0 0

Damit ergibt sich T'(R) = 3 als Schétzer fiir R.
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Die Verallgemeinerung dieses Schétzverfahrens fiir den Parameter 6 auf die n-malige Durch-
fithrung des Zufallsexperimentes nennt man die Maximum-Likelihood-Methode.

15.22 Definition (Maximum-Likelihood-Methode):
Es sei Fy(x) eine vorgegebene Wahrscheinlichkeitsverteilung, die von dem unbekannten Pa-
rameter 8 € © abhingt. Bei der n-maligen Ausfiihrung des Zufallsexperimentes seien die

Ereignisse x := (x1,...,x,) eingetreten. Wenn Fy stetig verteilt ist, dann sei fo(x) die zu-
gehdrige Dichte, ansonsten sei fp(x) := F(z) — F(z —0).
Dann heifst

) = [ [ folw:)
i1

die Likelihood-Funktion und der Schdtzer

To(0) =0 €O mit L(0,z) > L(0,z) V0 €O

fiir den Parameter 0 heif§t der zugehdrige Maximum-Likelihood-Schdtzer.

15.23 Beispiel (Maximum-Likelihood-Schiitzer fiir die Normalverteilung):
Die Zufallsvariable X sei normalverteilt mit den unbekannten Parametern p und o?. Zu
schétzen ist 0 := (u,0) € © := R x R*.

Mit der Dichte .

2T

e—ﬁ(fi—ﬂy

fo(w;) = >

der Normalverteilung ergibt sich folgende Likelihood-Funktion:

L9, z) := Hf@(xi) = (0\}%> exp <—%i2 Z(ﬂfz - u)2> :
; i=1

=1

Aufgrund der Monotonie des Logarithmus liegt das Maximum von L(6,z) an der Stelle, an
der auch In L(f, z) sein Maximum hat. Es ist

1 n
InLO,x)=-—n-InV2r —n-Ino — MZ;(.TZ

Zur Bestimmung der Extrema werden die partiellen Ableitungen betrachtet:

OlnL 1 —

o 0,x) = U—ZZ: L0 — W= — ;xz,

Oln L o 2 _ 1IN~ 2o
oy (0e) = — UBZ = o —nZ(azz p)? =52,

Damit ergibt sich als Maximum-Likelihood-Schitzer: T, (i1, 0%) := (X, S2).
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15.24 Beispiel (Maximum-Likelihood-Schiitzer fiir die Poisson-Verteilung):
Die Zufallsvariable X sei Poisson-verteilt mit dem Parameter 6 := X\ € R™*.

Mit fp(x;) = %6_6 ergibt sich folgende Likelihood-Funktion:

frit..+Tn
Lb,2)= ——— ¢

x1!- !

Mit derselben Argumentation wie in Beispiel 15.23 ergibt sich zunéchst:

InL(0,x) = (Z xz> ‘Inf — In(x1!-- - z,!) — nd.
i=1

Wir differenzieren:

[
sl
S

Damit ergibt sich als Maximum-Likelihood-Schétzer: T}, () :

15.4 Konfidenzintervalle

Konsistenz und Erwartungstreue sind mathematische Konzepte, die geeignet sind, um Punkt-
schitzer qualitativ miteinander zu vergleichen. Will man die Giite einer Schitzung auch quan-
titativ erfassen, braucht man weitere Hilfsmittel, die wir zunéchst anhand von Beispielen
erlautern wollen.

Dazu betrachten wir noch einmal das unter 15.1 genannte Beispiel der statistischen Qualitéts-
sicherung. Es sei X := (Xy,...,X,,) das Ergebnis der Gut-Schlechtpriifung, d.h.

P(X;=1)=60 und P(X;=0)=1-0 (i=1,...,n).

Dann ist die Fehlerzahl

binomialverteilt mit den Parametern n und 6.

Der Satz von de Moivre-Laplace besagt, dass die Zufallsvariable
Y, —nb
nf(1 —0)

flir n — oo ndherungsweise standard-normalverteilt ist, so dass fiir jedes € > 0 ndherungsweise
gilt:

V/né(1—0)

Py (—5 < Yo —nb < 5) ~B(e) — B(—e) = 2B(e) — 1.
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al2 ol2

Abbildung 15.1: Darstellung der Dichte der Standardnormalverteilung

Weiter ist
e < M <e
 /nl(1—-06)
Y, —nb| <e-+/nb(1l—0)
(Y, —nb)? <& nb(1 - 0)
(Yn)2 — 2n0Y,, + n?0% < % - nh — 2 - nb?

r1ee

9(0) == (£ +n) - 6% — (2Y0 +2)0 + %(Ynﬁ <.

Die Nullstellen von g(6) lauten

O120=——>
’ n 4+ &2

2 Y, (n -, 2
Yn+5:F€\/11(nnn)+5

und wir erkennen, dass die Bedingung ¢(#) < 0 fur alle 6 € [01, 0] erfiillt ist. Indem man nun
€ so wahlt, dass

2b(c)—1=1-—a dh @(5)21—%

wird, erhilt man
P({y e R Iny) <0<y} >1-a,

wobei

1 g2 - (n— g2
M2(y) = y+ﬂF€\/y noy) e
2 n 4

n + &2

Die durch die Gleichung ®(¢) = 1 — a, a € (0,1), eindeutig bestimmte Grofie € = 2_g
wird das (1 — «)-Quantil der Standard-Normalverteilung genannt, welches den einschlégigen
statistischen Zahlentafeln entnommen werden kann. Géngige Zahlenwerte fiir a bzw. z_g
sind:
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0
A
1
Yz(y)\A
Y2(K)
%
Y+(k)
0,0) >y
k n
Abbildung 15.2: Konfidenzintervall
« 21,%
0.1 | 1.645
0.05 | 1.960
0.01 | 2.576

Wir wollen nun unsere Ergebnisse mathematisch prézisieren:

15.25 Definition (a-Quantil):
Es seien X eine reellwertige Zufallsvariable mit Verteilungsfunktion F und o« € (0,1). Dann
heif$t die Zahl

2o =inf{zx e R: F(z) > a}

das a-Quantil von X bzw. von F.

15.26 Definition (Konfidenzintervall, Konfidenzkoeffizient, Konfidenzniveau):

Es sei X := (Xq,...,X,) eine Stichprobe und (Py)gco das statistische Modell. T1(X), To(X)
seien zwei reelle Zufallsvariable mit T1(X) < To(X).

[T1(X),To(X)] ist ein Konfidenzintervall fir o(0) mit Konfidenzkoeffizienten v € (0,1) (oder
auch zum Konfidenzniveau ), falls

P(I1(X) < 0(0) <Th(X)) >y VOeO
gilt.

15.27 Bemerkung;:

Prinzipiell ldsst sich jedes Konfidenzniveau 7 erreichen, wenn man 73(X) — —oo sowie
T5(X) — oo gehen ldsst. Interessant ist also die Frage, wie klein das Intervall [T7(X), T5(X)] zu
einem vorgegebenen Konfidenzniveau gewiihlt werden kann oder alternativ wie klein 4" € (0, 1)
mit

P(Ti(X) < o(0) <Th(X)) <4 VOeO
fiir 6 # 0’ gewihlt werden kann.
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15.28 Definition (Kennfunktion):
Es sei [Tl(g),Tég)} ein Konfidenzbereich fiir o(6) zum Konfidenzniveau . Dann heifst

K:0x0— 0,1, K0,0)=P(T(X) <o) <7{"(X))

die Kennfunktion von [T1(9)7T2(0)].

15.29 Definition (unverfilscht, gleichmiflig besser):
FEin Konfidenzbereich [T1(X), Ta(X)] fir 0(8) zum Konfidenzniveau v heifit unverfilscht, wenn
seine Kennfunktion folgende Eigenschaften besitzt:

e K(0,0)>~ Y0cO.
o K(0,0)>K(0,0)) V(0,0)€0x0O mith+£0.

Sind die beiden Intervalle [T1(X), To(X)] und [T(X), T5(X)] zwei Konfidenzbereiche fiir o(6)
zum gleichen Konfidenzniveau v jeweils mit den zugehirigen Kennfunktionen K und K', so
heift [Th(X), To(X)] gleichmdfig besser als [T](X), To(X)], falls K(6,0") < K'(6,0") fiir alle
(0,0") € © x © mit 0 £ 6" gilt.

15.30 Bemerkung (Konfidenzintervall fiir den Erwartungswert):
Es sei X eine reelle Zufallsvariable mit o2 := Var[X] < oo, p := E[X] und X := (X1,...,X,)
eine Stichprobe bzgl. Px. Es gilt:

1 s.
To(X) = (X1 + ...+ X)) nf:;o "
und T.(X)
nTp(X) —np 4
_— — 0,1).
Vio e VO
Also gilt:
P(To(X) —pl<e) = Plu—e<Th(X)<p+e)
= Frx)(p+e) = Fr,x)(p—-e¢)
und

nTn(X) — nu
P R S A
Vno
Mit 71 = — -2 und @y == 25 ist P(|T,(X) —pl < &) = P (xl < o o :EQ). Damit
ergibt sich:

< :n) ~ O(x).

1—<1><0"6n)

d.h. gesucht ist ein € > 0, so dass zu gegebenem v > 0 folgende Bedingung erfiillt ist:

2<I><n6>—127 bzw. @(x/ﬁg)zm.
ovn o 2

66



15.4. Konfidenzintervalle

15.31 Beispiel:

An einer Klausur haben 200 Studierende teilgenommen. Nach der Korrektur von 16 Klausuren
hat sich als Mittelwert fiir den Prozentsatz der erreichten Punkte T14(X) = 63.7% ergeben.
Die Varianz o2 werde durch die verzerrungsfreie Stichprobenvarianz, die sich zu S35 = 0.04
ergeben hat, geschétzt.

Gesucht ist das Intervall [Th6(X) — e, T16(X) + €], in dem sich der Durchschnittswert nach
Korrektur aller Klausuren mit einer Wahrscheinlichkeit von 95% befinden wird.

Es sind also n := 16, ¢ := 0.04 und 7 := 0.95. Nach Bemerkung 15.30 ist ein méglichst
kleines € > 0 gesucht, welches

1
o (ﬁg> > % bow.  B(206) > o
(o2

erfiillt. Es ist #(1.96) ~ 0.97500. Damit ist € ~ % = 0.098 und es liegt der Durchschnittswert
nach Korrektur aller Klausuren mit einer Wahrscheinlichkeit von 95% im Intervall [63.7% —

9.8%, 63.7% + 9.8%)] = [53,9%, 73.5%).

15.32 Beispiel (Konfidenzintervall fiir den Erwartungswert):

Ein Zufallsexperiment werde n mal durchgefiihrt. Die Varianz 0 > 0 sei bekannt. Fiir den
unbekannten Erwartungswert p = E[X] verwenden wir als Schétzer das Stichprobenmittel
Th(X) =1 >, X;. Asymptotisch gelten dann folgende Aussagen:

T on

e Falls ein Konfidenzintervall fiir p der Lange 2¢ bendtigt wird, so ist

()

die Wahrscheinlichkeit dafiir, dass p in dem Intervall [T,,(X) — ¢, T,,(X) + €] liegt.

e Falls ein Konfidenzintervall, in dem g mit der Wahrscheinlichkeit v € (0, 1) liegt, gesucht
ist, so ergibt sich die Intervalllinge 2¢ aus

mit ¢ (zlﬂ> = HT“’
2

e Zu vorgegebenen € > 0 und 7y € (0,1) ist eine Stichprobe vom Umfang

Zity c O\ 2
n= 2
€

erforderlich, wenn p mit der Wahrscheinlichkeit v in dem Intervall [T,,(X) —e, T,,(z) +¢]
liegen soll.

15.33 Beispiel:
e Ein Versuch werde n := 100 mal durchgefiihrt. Die Varianz o := 5 sei bekannt. Gesucht
ist ein Konfidenzintervall, in dem der Erwartungswert mit einer Wahrscheinlichkeit von
v = 99% liegt.
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Es ist HTV = 0.995 und ®(2.57583) ~ 0.9950. Damit ist z1+, &~ 2.57583. Mit Satz 15.32
2
ergibt sich dann das Konfidenzintervall fiir v := 0.99 zu [T,,(X) — ¢, T,,(X) + €] mit

Fl4a°0 257583 /5
N 10

D.h. die Abweichung von T},(X) vom tatséchlichen Mittelwert betrégt mit einer Wahr-
scheinlichkeit von v = 99% héchstens € ~ 0.57597.

~ 0.57597.

E =

Bei einem Versuch mit der bekannten Varianz o2 := 2 ist gefragt, wie oft er durchgefiihrt
werden muss, damit die Wahrscheinlichkeit, dass 7),(X) um mehr als € := 5% vom
Mittelwert abweicht kleiner als 1 — ~ := 1% ist.

Mit HTW = 0.995 ergibt sich zunichst ®(2.57583) ~ HTV bzw. z11, & 2.57583. Nach
2
Satz 15.32 gilt dann

24y O\ 2 9
n = ( 2 ) ~ <2.57583 V2. 20) ~ 5307.92
g

bzw. n > 5308.

(Siehe auch Mathematica-Notebook zu diesem Beispiel.)

Mit @hnlichen Uberlegungen wie in Bemerkung 15.30 kénnen auch Konfidenzintervalle fiir die
Varianz aufgestellt werden, wie der folgende Satz zeigt.

15.34 Beispiel (Konfidenzintervall fiir die Varianz):

n

Bei bekanntem Erwartungswert g und mit Q,(X) := > i (X; — p)? liegt die Varianz eines
Zufallsexperiments mit einer Wahrscheinlichkeit von v € (0, 1) in

7
ZTL 1+~ Z?’L 1—n

[Qn(X) Qn(X)

’ 2 ’ 2

1+~

Dabei sei x2 (z m) = = und es sei x2(z) die x%-Verteilung mit n Freiheitsgraden.
2

n,

Es sei 02 > 0 die Varianz des Zufallsexperiments. Die Zufallsvariable

Qu(X) :fj <X—uo)2

=1

Qn(X)

ist eine Summe von n Quadraten von N(0,1)-verteilten Zufallsvariablen. Damit ist <25~
x2-verteilt und es gilt:

o2

, (Qn@f) P Q"(X>> _p <z P i 1C O Zn,””) -y

68



15.5. Hypothesentests

15.35 Beispiel:
Eine Maschine bohrt Locher der Grofle = 20mm in Bleche. Der Produktion wurden n := 10
Bleche entnommen und die Groflien der gebohrten Locher wurden nachgemessen:

20.1lmm, 19.8mm, 19.9mm, 20.5mm, 20.0mm, 21.0mm, 20.2mm, 19.4mm, 20.0mm, 19.7mm

Um Aussagen iiber die Qualitit der Bohrungen zu treffen, interessiert man sich fiir die Varianz,
mit der die Maschine arbeitet.

Als Stichprobenvarianz ergibt sich

und als Standardabweichung +/0.2mm = 0.45mm. Das Konfidenzintervall zum Niveau 95%
berechnet sich wie folgt:

Es ist Q,(X) = 1.8, 142 = 0.975 und 152 = 0.025 und damit
x2(20.4832) ~ 0.975 und Y2(3.24697) ~ 0.025.

Damit ergibt sich folgendes Konfidenzintervall:

Qn(X) Qu(X)| [ 18 1.8
’ ~ [20.4832’ 3.24697

z 1+~ z 1—
n, =5t n, 2

~ [0.08788,0.55436] .

15.5 Hypothesentests

In der Praxis interessiert man sich oftmals nicht nur fiir den Wert eines Schétzers, sondern
auch dafiir, mit welcher Wahrscheinlichkeit der Schétzer den korrekten Wert geliefert hat. Eine
Moglichkeit, solche Fragen zu beantworten, stellen die bereits behandelten Konfidenzintervalle
dar. Eine andere Moglichkeit bieten die Hypothesentests.

Bei einem Hypothesentest wird gefragt, ob basierend auf den beobachteten Ausgéingen eines
Zufallsexperimentes, eine bestimmte Annahme abzulehnen ist oder nicht.

15.36 Definition ((Null-)Hypothese, Alternative):

Gegeben sei eine Stichprobe x = (x1,...,xy,), die eine Realisierung unabhdingiger, Py - ver-
teilter Zufallsvariablen X = (X1,..., Xy) sind. Py stellt dabei die parametrische Familie von
Wahrscheinlichkeitsverteilungen auf dem Merkmalraum R mit 9 € © dar.

Hy C © heifit (Null-)Hypothese, Hy := © — Hy heifit Alternative und Hy : Hy beschreibe das
Testproblem Hy gegen Hyi. Sei o : © — R ein Parameter und kg € R fest, dann heifst

Hy = {9o(¥) < ko} gegen Hy := {¥]o(¥) > ko}

bzw.
Hy := {9]o(9) > ko} gegen Hy := {9]o(9) < ko}

einseitiges Testproblem und
Hy = {9]o(9) = ko} gegen Hy = {V]o(9) # ko}

zweiseitiges Testproblem.

69



Kapitel 15. Statistische Auswertung von Zufallsexperimenten

Hat man ein Testproblem Hy : H; gegeben, so sind folgende Entscheidungen mdoglich:

e ap, := "Annahme von Hyp”

e ap, := "Ablehnung von Hy”
Ein Hypothesentest d liefert nun zu einer Stichprobe = = (z1,...,z,) die Antwort aus der
Menge {am,,am, }, d.h. ist eine Abbildung d : R™ — {an,,am, }. Die Menge {z|d(x) = am, }

heifit Annahmebereich und somit stellt die Menge {x|d(z) = ag,} den Ablehnungsbereich
bzw. kritischen Bereich dar.

Aufgrund der jeweils betrachteten Stichprobe z kénnen Fehlentscheidungen auftreten:

Liegt eine Grundgesamtheit vor, bei der ¥ € Hy gilt und betrachtet man eine Stichprobe,
die bei dem verwendeten Test d zur Ablehnung fiihrt, so begeht man einen Fehler 1. Art (H
wird zu Unrecht abgelehnt). Liegt eine Grundgesamtheit mit ¢ € H; vor, und man entscheidet
sich fiir die Annahme der Hypothese, so macht man einen Fehler 2. Art (Hy wird zu Unrecht
angenommen).

Die Wahrscheinlichkeit fiir die Fehler 1. und 2. Art sollen méglichst klein sein. Dabei hilft die
im Folgenden definierte Funktion.

15.37 Definition (Giitefunktion):
Gegeben sei ein Testproblem Hy : Hi1 und ein Hypothesentest d. Dann heifst die Funktion
B:0 —(0,1) mit

B(9) = Py (d(z) =ap,) , VI €O

die Giitefunktion von d.

Damit beschreibt §(¢) fiir ¥ € Hp die Wahrscheinlichkeit fiir einen Fehler 1. Art und die
Funktion 1 — §(¢), auch Operationscharakteristik genannt, die Wahrscheinlichkeit fiir einen
Fehler 2. Art. Gesucht sind demnach Hypothesentests, fiir die 4 moglichst klein auf Hy und
moglichst grof auf H; ist. Diese scheinbar widerspriichlichen Forderungen lassen sich wie folgt
umsetzen:

)
&/

Abbildung 15.3: Der typische Verlauf einer Giitefunktion fiir ein einseitiges Testproblem.
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15.38 Definition:
Es seien d: R" — {am,,am, } ein Hypothesentest fiir Hy : Hy und o € (0,1). Dann heifst d
Test zum (Signifikanz-) Niveau «, falls gilt

Py (d(l’) = aHl) <a, V¥ e H,.

Betrachtet man eine Teilmenge D der Menge aller Tests zum Niveau o fiir Hy : Hy. Fin Test
d' aus dieser Teilmenge D heifit trennscharf, falls gilt

Py (d’(a;) = CLHI) = ma:cdeDqu (d(l’) = CLHl) R Vi € Hy.

Liefert ein Test zum Niveau « also d(z) = ag,, so wird Hp abgelehnt und die Wahrschein-
lichkeit, dass dies zu Unrecht geschieht ist < o. Man sagt dann, die Ablehnung von Hy zum
Niveau « sei statistisch gesichert.

Die Aufgabe der mathematischen Statistik ist es nun, fiir verschiedene Testfragestellungen
trennscharfe Tests zum Niveau « herzuleiten. Wie eine solche Fragestellung und der zugehori-
ge Test aussehen, soll an folgendem Beispiel verdeutlicht werden.

15.39 Beispiel:

Es seien z1,...,x, Realisierungen unabhéngiger, normalverteilter Zufallsvariablen mit dem
unbekannten Erwartungswert g und der bekannten Varianz 0(2). Es wird angenommen, der
Erwartungswert sei ug, d.h. es wird die Hypothese u = ug aufgestellt.

Wenn alle X; mit po und 08 normalverteilt sind, so ist das arithmetische Mittel X, :=

2
%Z?:l X; normalverteilt mit dem Erwartungswert pg und der Varianz %0. Folglich ist

n —
Y, = £(Xn—,uo)
o0

standardnormalverteilt.

Die Hypothese 1 = pg ist dann abzulehnen, wenn der Betrag von Y,, ,,zu grof3” wird, d.h.:

o !
Buo(Ya] > 17) = a

Da Y, standardnormalverteilt ist, ergibt sich t* = Ui_sg, also das 1 — § - Quantil der Stan-
dardnormalverteilung. Die Hypothese p = pg wird also abgelehnt, falls

@(Yn - MO)

> Up_a
oo 2

ist.

Weitere Hypothesentests, die sich auf Fragestellungen bzgl. Stichproben z, die Realisierungen
unabhéngiger normalverteilter Zufallsvariablen sind, beziehen, gibt nachstehende Tabelle an.
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Zusammenfassung der Einstichproben - Tests bei Normalverteilungsannahme
Testgrofie T Nullhypothese Hy | Alternative H; | Ablehnungsbereich
Gauf} - Test = o [T |T| > uy—g
(009 bekannt) w < o > o T >uj—q

T(x) = L% (T, — pio) = 1< pg T < ug
t - Test K= o W F o T > tp-11-2
(0p unbekannt) uw < 1o > o T>th—1;1-a
T(z) = f (T — 10) 1> o 1< po T < th 1
x? - Test o? =0} o # 0} T < Xi—l;%
oder T > X%—l;l—%
o? < o? 02> o2 T > X72’Lfl;17a
T(z) = (n—1)% > o} 0? < of T <3 ia
Zusammenfassung der Zweistichproben - Tests bei Normalverteilungsannahme
Testgrofle Nullhypothese | Alternative Ablehnungsbereich
T Hy H;
Gauf} - Test p1 = po p F# 2 T > ui-g
(01,02 bekannt) w1 < o 1 > o T < ug
\/1 2+ T2 M1 2> 2 p1 < o T>uiq
t - Test p = piz p # p2 T > tmin—21-2
(01,02 unbekannt, aber gleich!) w1 < o 1 > o T < tmin—2:a
) = | e e p1 = p2 p1 < p2 T > tmin-21-a
F - Test 0?2 =03 o} # o3 T <Fy1n-1g
oder T > Fm—l,n—l;l—%
o7 < 03 o7 > 03 T>Fn1n-11-a
T(z,y) = % o} > o3 0} < o3 T < Fpin-ta

15.40 Beispiel:

Bei der Herstellung von Biiroklammern sollen etwa 100g pro Beutel abgepackt werden. Die
Standardabweichung sei bekannt und betrage oy := 0.4. Das Abwiegen von n := 10 Beuteln
ergab:

101g, 98g, 97g, 102g, 99g, 99g, 101g, 98g, 100g, 102g
Getestet wird die Hypothese p = pg := 100g zum Signifikanz-Niveau a = 5%.
Es ist X,, = %7 Damit folgt zunéchst

n,— 10 3
Yin) = 70( — Ho) = Vi V10 - <—10> ~ —2.372.

Fiiru, a/—2gllt<l>( o ) F1=®(u, Oé)—0046<04und681st]Y|~2372>u o = 2.

D.h. die Hypothese ist abzulehnen (Slehe auch Mathematica-Notebook zu diesem Belsplel )
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15.41 Beispiel (Gut-Schlecht-Priifung):
Bei der statistischen Qualitdtskontrolle wird tiberpriift, ob die Ausschulwahrscheinlichkeit
einer Produktion vereinbahrungsgemaf nicht grofler als pg sei, d.h. es wird die Hypothese

Hy:p < po

aufgestellt, wobei p die tatséichliche (unbekannte) Ausschuwahrscheinlichkeit der Produktion
ist. Die Hypothese Hy wird mittels einer der Produktion entnommenen Stichprobe vom Um-
fang n und der darin enthaltenen Anzahl X defekter Stiicke iiberpriift. Diese Anzahl X héngt
von der Wahl der Stichprobe ab, als ihre Verteilung wurde in Stochastik I die Binomial-, die
Hypergeometrische und die Poissonverteilung betrachtet.

Die Hypothese Hy wird abgelehnt, wenn die Anzahl X der defekten Stiicke in der Stichprobe
"zu grof}” ist, d.h. grofler als die sog. Annahmezahl c¢. Ist X ”hinreichend klein”, d.h. X < ¢
so wird Hp nicht verworfen. Beide Schliisse konnen natiirlich falsch sein, was auf die Begriffe
der Fehler 1. und 2. Art fiihrt.

Zur Minimierung dieser Fehler wird in der Qualitéitssicherung in der Regel die Operations-
charakteristik an Stelle der Giitefunktion betrachtet, sie lautet

L(p) :==1—-p(p) = P(X < ¢).

Um die Fehler 1. und 2. Art zu minimieren, mufl die Operationscharakteristik fiir p < pg
moglichst grof} sein, fiir p > pg hingegen moglichst klein.
Bei der Konstruktion von (n — ¢) - Stichprobenplidnen wird dies erreicht, indem die Operati-
onscharakteristik durch zwei vorgegebene Punkte, die die Zielsetzungen von Lieferanten und
Abnehmer abbilden, gelegt wird (sieche Abbildung 15.4).

A
I 4—
1-a
p
0 » P
Pia Pg

Abbildung 15.4: Beispiel einer Operationscharakteristik
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Kapitel 16

Bedingte Erwartung und bedingte
Verteilung

Dieses Kapitel stellt in gewisser Weise eine Fortsetzung des Kapitels iiber die bedingten
Wahrscheinlichkeiten aus der Stochastik I dar. Im Folgenden wird der Begriff der bedingten
Erwartung eingefithrt und die bedingte Verteilung fiir den Fall kontinuierlicher Wahrschein-
lichkeitsverteilungen definiert.

Schliisselworter: Bedingte Erwartung, Waldsche Gleichung, bedingte Verteilung,
bedingte Dichte, Randverteilungsdichte, Randverteilung.
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16.1 Bedingte Erwartung

In Stochastik I in Kapitel 3 wurde der Begriff der elementaren bedingten Wahrscheinlichkeit
behandelt. Fiir einen Wahrscheinlichkeitsraum (€2, §, P) und fir A, B € § mit P(B) > 0
wurde

P(ANB)

P(AIB) = =5

(16.1)
elementare bedingte Wahrscheinlichkeit von A unter der Bedingung bzw. unter der Hypothese
B genannt und P(-|B): § — [0, 1] stellte sich als ein Wahrscheinlichkeitsma$ auf (€2, §) heraus.

Der Begriff der elementaren bedingten Wahrscheinlichkeit lédsst sich sofort auf reellwertige
Zufallsvariablen X, Y auf (Q2,§, P) ausdehnen, wenn man Y zunéchst als diskret voraussetzt
und analog zu Gleichung (16.1)

P(X € B,Y =v)

P(X € BlY =y):= P({X € B}|{Y = y}) := PO =)

(16.2)

fir alle B € B und y € R mit P(Y = y) > 0 festgelegt. Fiir jedes dieser y definiert
P(X € - |Y = y) ein Wahrscheinlichkeitsmafl auf (R,B), das spéter bedingte Verteilung
von X gegeben Y = y genannt wird und mit Py|y—, bezeichnet wird. Der zugehorige Erwar-
tungswert

E[X|Y = 4] /ac APy y_, (1) = P(Yl_) / X(w) dP(w)  (16.3)

R {w]Y (w)=y}

heiflt, sofern er existiert, bedingter Erwartungswert von X gegeben Y = y.
Zu beachten ist hier, dass unter der Annahme eines diskreten Y die bedingte Verteilung und
der bedingte Erwartungswert gegeben Y = y nur fiir P - fast alle y definiert ist.

Offensichtlich versagt dieses Konzept und verliert auch seine Anschaulichkeit, wenn Y keine
diskrete Zufallsvariable ist. Denn in diesem Fall kann P(Y = y) =0 V y € R gelten, so dass
die Festlegungen (16.2) und (16.3) keinen Sinn mehr machen wiirden.

Wir betrachten zunéchst weiter den Fall der diskreten Zufallsvariable Y, setzen D := {y |
P(Y = y) > 0} und nehmen an, dass X beschrinkt ist, d.h. |X| < k. Damit gilt auch
|E[X]Y = y|| < k und die Funktion

_ JEXY=y], yeD
Fy) = { 0 ,  sonst

bildet eine durch k beschriankte, messbare Funktion. Folglich ist E[X|Y] := f(Y) eine be-
schrinkte, §-o (Y )-messbare Zufallsgrole, wobei o(Y') die von Y erzeugte o—Algebra bezeich-
net. E[X|Y] nennt man (als Funktion von y) bedingte Erwartung.

Wir gehen weiter davon aus, dass X eine Zufallsvariable ist, deren Realisierung nicht beobach-
tet werden kann, der Wert von Y sei jedoch bekannt. Gesucht ist nun eine Approximation in
Abhéngigkeit von Y, d.h. eine §-o(Y )—messbare Zufallsgrofie, die X moglichst gut abbildet.
Es wird sich zeigen, dass dies genau die bedingte Erwartung ist.
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Dazu wird zunéchst festgestellt, dass fiir jedes A := {w | Y (w) € B}

[ By ar = [ EXY =) dry)

{YeB} BND

= Y EX[Y =y|P(Y =y)

yeBND
1

= > — / X dP | P(Y =y)
yeBND -y Y=y}

— X dP.
{YeB}

Damit hat man folgende Eigenschaften, durch die die bedingte Erwartung P - fast sicher
eindeutig bestimmt wird:

1) Die Zufallsgroie E[X|Y] ist §-0(Y)—messbar.

2) /E[X\Y] dpP = /X dP fiir alle A € o(Y).
A A

Die Eindeutigkeit ldsst sich wie folgt zeigen:
Sei Z eine weitere §-o (Y )-messbare Zufallsvariable mit

/de = /XdP VA € o(Y),
A A

dann folgt fiir alle A € o(Y):

/(E[X\Y] —Z) dP =0.
A

Daraus ergibt sich mit Stochastik I Satz 9.40 und der §-o(Y)-Messbarkeit von E[X|Y] — Z:

E[X|Y]-Z=0 P— fs.

Betrachtet man obige Eigenschaften, so fillt auf, dass sie von Y nur iiber o(Y") abhéngen, sie
konnen demnach auch wie folgt fiir eine beliebige o—Algebra & C § formuliert werden:

1’) Die Zufallsgrofie E[X|®] ist &—messbar.

2') /E[X\qs] dP = /X dP fiir alle A € ®.
A A

Es bleibt die Frage, beziiglich welchem Abstandsbegriff E[X |®] tatsichlich die beste Appro-
ximation von X bildet. Eine Antwort darauf liefert die folgende Bemerkung und der anschlie-
Bende Satz.
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16.1 Bemerkung:
a) Aus der Eigenschaft 2’) und der Beschrinktheit von X und E[X|®] erhilt man fiir alle
®-messbare Zufallsvariablen Y mit E[|Y|] < oc:

EXY]=EEX|6]Y] , dh E}Y: (X —E[X|&])]=0.
Damit ergibt sich fiir jede &—messbare Zufallsvariablen Y mit E[|Y2H < 00!

E[(X-Y)!] = E[(X -E[X|6])’] +E[(E[X|6] - V)]
+2E[(E[X]6] - V) (X — E[X[®])]
E[(X - E[X|6])’| + E [(E[X\@] . Y)Q]

> E

(
(X~ E[x[8])].

Die gesuchte Metrik, in der E[X|®] tatséichlich die beste Approximation von X bildet,
ist demnach die Abstandsfunktion auf dem Raum Ls (2, §, P):

do(X,Y) = (E[|X - Yﬂ)é .

b) Mit L, (Q,F, P) wird der Vektorraum der reellen, p - fach P - integrierbaren Funktionen
auf (£2,§) bezeichnet. Dieser Raum ist unter der L, - (Halb -)Norm

IX[, == (B[ X]”])"

vollsténdig, d.h. ein (Pseudo-)Banachraum. Es wird hier der Begriff Halbnorm benutzt,
da die Eigenschaft einer Norm, aus [|X|[, =0 X = 0 zu folgern, nur P - f:s. gilt.
Die aus dieser Halbnorm induzierte Abstandsfunktion

dp(X,Y) = | X = Y], = (B]X - Y]

heiit L, - (Pseudo-)Metrik.
Fiir den Fall p = 2 wird durch
(X,Y) = E[XY]

ein Skalarprodukt definiert, welches obige Halbnorm wie folgt induziert:
2
X5 = (X, X).

Damit ist Lo (2, §, P) ein (Pseudo-)Hilbertraum, auf welchem orthogonale Projektionen
existieren.

Eine orthogonale Projektion Bg x von X € Lo (2, §, P) auf den Ly (2, &, P) mit & C §,
kann als eindeutige Losung des Minimierungsproblems

|X = Be,xlly = minyer,.0.p) IX =Y,

angesehen werden.

Mit diesen Voriiberlegungen ldsst sich nun die bedingte Erwartung konstruieren:
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16.2 Satz (Konstruktion der bedingten Erwartung):

Seien (Q,F, P) ein Wahrscheinlichkeitsraum, & eine beliebige o - Algebra mit & C § und
X € Ly (2,8, P). Dann erfillt die P - f.s. eindeutige orthogonale Projektion B x von X auf
den Lo (2,8, P) die Eigenschaften 1°) und 2’).

Beweis:

Die Existenz, die Eindeutigkeit und die & - Messbarkeit der orthogonalen Projektion P x
ergeben sich aus Bemerkung 16.1 b). Damit bleibt nur die Eigenschaft 2’) zu zeigen.

Fiir orthogonale Projektionen gilt selbstverstdndlich:

(X —Pox,Y) =E[(X —Pox) Y]|=0 VY € L(26,P).

Daraus ergibt sich fiir alle A € &:

/(X—E[X|Q5]) dP = (X —E[X|®],14) =0, dalye Ly(Q®,P).
A

16.3 Definition (bedingte Erwartung):

Es seien X eine Zufallsvariable auf (2, F, P) mit E[|X|] < oo und & eine beliebige o—Algebra
mit & C §. Die in Satz 16.2 beschriebene P - fast sicher eindeutige orthogonale Projektion
PBo x von X auf den Ly (2, &, P), die die Eigenschaften

(i) BE[X|&] ist &-messbar,

(ii) /E[X\@] P = /X AP fiir alle A € &,
A A

erfillt, heifit bedingte Erwartung von X gegeben & und wird mit E[X|®&] bezeichnet.

Die bedingte Erwartung E[X |®] ist demnach die beste Approximation von X im Lo (2, &, P).
Da er P - f.s. eindeutig bestimmt ist, bezeichnet man jede zuldssige Wahl auch als Version
der bedingten Erwartung von X gegeben &.

Die bedingte Erwartung kann alternativ auch iiber den Satz von Radon - Nikodym konstruiert
werden, dabei geht jedoch die Anschaulichkeit, dass E[X|®] die beste Approximation von X
ist, verloren:

16.4 Definition (u—absolut—stetig):
Wenn aus u(A) = 0 stets folgt, dass v(A) = 0 gilt, so heifit v p—absolut-stetig, in Zeichen
v M.

16.5 Satz (Radon—Nikodym):
Es seien p und v Mafle auf (Q,F).

a) Ist u o—endlich, so sind folgende Aussagen dquivalent:

(i) v besitzt eine Dichte f beziiglich .
(ii) v ist p—stetig und o—endlich.
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b) f ist dann p—fast—iberall eindeutig bestimmdt.

Beweis:

Siehe H. Bauer: ,,Wahrscheinlichkeitstheorie und Grundziige der Mafitheorie”, 5. Auflage,
Walter de Gruyter, Berlin, 2002; Kapitel 17 ,,Mafle und Dichten”.

16.6 Satz:

Es sei X Zufallsvariable auf (2, §, P) mit E[|X|] < co. & sei Unter-o—Algebra von §. Dann
existiert E[X|®] und ist P—fast—iiberall eindeutig bestimmit.

Beweis:

Es wird zunéchst angenommen, dass X > 0 P—fast—sicher gilt und es wird fiir alle G € &
definiert:

Q(G) = G/X ip.

Damit ist @ nach Definition 16.3 ein Mafl auf & mit Q(2) = E[X] < oco. Sei nun Pg die
FEinschriankung von P auf &. Es gilt ) < Pg. Jede Nullmenge beziiglich P ist auch Nullmenge
beziiglich Q. Damit folgt aus dem Satz von Radon—Nikodym, dass @) eine Pg—fast—iiberall
eindeutige &-—messbare Dichte f beziiglich Pg hat, d.h. es ist

Q(G):G/XdP:G/fdP@.

Es ist dann E[X|®] (w) := f(w) die fast iiberall eindeutig bestimmte bedingte Erwartung von
X gegeben &. Da @ endlich ist, ist auch f endlich.

Sei nun X beliebig mit E[|X|] < co. Dann ist E[X|&] := E[XT|&] — E[X ~|8] die fast iiberall
eindeutig bestimmte bedingte Erwartung von X gegeben &. Die Differenz ist &-—messbar, da
beide Funktionen dies sind. Die Integrale sind, wegen der o—Additivitét, gleich. Dies liefert
(siehe z.B. H. Bauer: ,,Wahrscheinlichkeitstheorie und Grundziige der Mafitheorie”, Kapitel
54) die Eindeutigkeit. |

16.7 Beispiel:
Es seien Q := {0,0, A, %, 0}, § := B(Q), P := (5,5 4 5 5)> © := o({0,0}, {4, x}{V})

und X := (1,2, %, —4,15). Dann folgt:
EX]=1-2+42-24+35 -3+ (-4) -1 +15- § =12 sowie
1.l_|_2.l
EX6](0) = ——5° = ; = E[X[8](0),
376
3h-ad
E[X[6](x) = 1,1~ -1 = E[X[6] (L),
4 8
15- 3
EX|6](©) = — 5. =15
8
Damit folgt insgesamt: E[X|6] = (%, %, —1,-1,15) und
EEX|¢]l=%-(3+3)-1-(3+3)+15- 1 =¥ =E[X]
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16.8 Satz (Eigenschaften der bedingten Erwartung):
Es seien X, Y Zufallsvariablen auf dem Wahrscheinlichkeitsraum (2, §, P) mit E[|X|] < oo
und E[|Y]] < co. Weiter sei & C § eine o-Unteralgebra von §.

(1) Aus X =c¢ mit c € R folgt E[X|®] =c¢ P — f.s.

(ii)) Aus X <Y P-f.s. folgt E[X|&] <E[Y|8] P — f.s.
(11i) Fir a,be R gilt E[aX + bY |®] = aE[X|8] + bE]Y |®] Pf.s.
(iv) Ist o(X) unabhingig von &, so folgt E[X|8] = E[X].

(v) Es gilt E[E[X|&]] = B[X].

Beweis:
(i) Die Behauptung folgt aus der Tatsache, dass die konstante Funktion X = ¢ G-messbar
ist.

(ii) X <Y P-fs. impliziert
/XdPS/YdPVAE@.
A A

Hieraus ergibt sich aufgrund der Definition der bedingten Erwartung

/E[X](’ﬁ] ipP < /E[Y\@] dP Y A€ ®.
A A

Mit Hilfe von Stochastik I Satz 9.41 schliefit man E[X|8] < E[Y|&] P — fs.

(iii) Fir alle A € & gilt:

/[aX+bY]dP = /aXdP+/bYdP:a/XdP+b/YdP
A A

A A A
_ a/E[X|Q5] dP+b/E[Y|Q5] ip
A A
_ /aE[X!(’S] dP+/bE[Y|Q§] qP
A A
- /[aE[X|Q5] + bE[Y|8]dP.
A

(iv) Die Abbildung Y': 2 — R sei definiert durch Y (w) := E[X] fiir alle w € Q. Nach (i) ist
Y ®&-messbar und es gilt

/YdP:E[X]-P(B) V Be®.
B
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Also:

Ud\

E[X|®]dP = /XdP: /XIBdP = E[X 5]
B Q

— E[X]-E[lp] = E[X]- P(B).

Folglich gilt
/E[X|®] dP—/YdP
B

B
und deshalb E[X|8] =Y P — {.s.

(v) Es gilt
Emmwn:/Ememp
Q
Wegen 2 € & ist aber

!Emme:!mszmy

Damit wird

E[E[X|8]] = E[X].

16.9 Satz:
(Xn)nen sei eine Folge von Zufallsvariablen iber (Q,§, P) und & C § sei eine Unter-o-
Algebra von §.

(i) Ist (Xp)nen eine monoton wachsende Folge und gilt X, > 0 fir alle n € N, so gilt:

sup E[X,,|6] =E [Sup Xn|(’5] .
neN nelN
(ii) Ist Xp, >0 fiir alle n € N, so gilt:

> Xl

nelN

E = E[X,|8].

neN

(iii) Es sei'Y eine auf Q definierte reellwertige und P-integrierbare Zufallsvariable. Aujfer-
dem gelte | X,| <Y fiir alle n € N und X, L5 X Dann gilt:

n—oo

lim E[X,|6] = E[X|8].

n—oo
Beweis zu Satz 16.9:
Siehe G. Alsmeyer: ,,Wahrscheinlichkeitstheorie”, 3. Auflage, Skripten zur Mathematischen
Statistik Nr. 30 der Westfalischen Wilhelms Universitdt Miinster, Miinster, 2003; Kapitel VIII
,,Bedingte Erwartungswerte und Verteilungen”.
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16.10 Satz:
Es seien X,Y Zufallsvariablen auf dem Wahrscheinlichkeitsraum (2, §, P) mit E[|X|] < oo
und E[Y|] < co. Auflerdem sei & C § eine Unter-o-Algebra von § und X sei -messbar.
Dann gilt:

E[XY|8] = X -E[Y|®] P — fs.

Beweis:
1. Wir stellen zunéchst fest, dass E[Y|®] &-messbar ist. Der Beweis erfolgt so dann mit
algebraischer Induktion. Fiir X = Ip, B € &, gilt:

XE[Y|6]dP = |[IgE[Y|6]dP= [ E[Y|&]dP
/ e |

A ANB

= / Y dP (Definition der bedingten Erwartung)
ANB

= /IBYdP:/XYdP
A A

n
2. Wir setzen nun X = > ¢;Ip, mitn € N, ;e Rund B; € ,i=1,...,n.
i=1

/XE[Y|@] P = /(icﬂgi) E[Y|®]dP = zn:ci/IBiE[Yw] dP
A =1

A =1

= > a / Ip,YdP (Teil 1)
=1 A

= / > clpYdP = / XYdP.
A =1 A

Fiir nichtnegative und allgemeine messbare Abbildungen X folgert man die Behauptung aus
Satz 16.9 (i) und (iii). [ |

16.11 Satz (Waldsche Gleichung):

FEs sei (Q,§, P) ein Wahrscheinlichkeitsraum und N und (Xy)nen seien Zufallsvariablen dber
(Q,3,P). N habe Werte in N und (X, )nen sei eine Folge von unabhingigen und identisch
verteilten Zufallsvariablen mit Werten in R. Auferdem seien N und X;, j € N, unabhdingig.

FEs set
N(w)

Sw)= ) Xiw)Vwe
=1
Dann gilt:

(i) E[S] = E[N] - E[X4], sofern E[N] < co und E[X;] < cc.

(ii) Var[S] = E[N]- Var[X|] + Var[N] (E[X1])?, sofern Var[N] < co und Var{X;] < co.
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Beweis:
(i) Wir wenden Satz 16.8 an, wonach

E[S] = E[E[S|N]] = E[E[S|N"!(B)]]

gilt. N=1(%8) wird durch die abzihlbar vielen Mengen A; := {w|N(w) =i}, i € N, mit
UjenA; = € erzeugt.

E[S] = E[E[S|N]]=E[E[SIN"'(B)]] =E Z E[S|A;] L4,
P(5)>0
- E ZiE[Xj\Ai]IAi =E|Y E[Xi]I4 | =E[X; - N]
i€N j=1 1€EN
— E[X{] E[N].

(ii) Der Beweis verlauft dhnlich wie Teil (i).

16.2 (Regulir) bedingte Verteilung

Ausgehend von Definition 16.3 der bedingten Erwartung lasst sich nun auch der Begriff der
bedingten Wahrscheinlichkeit verallgemeinern.

16.12 Definition (bedingte Wahrscheinlichkeit):
Es sei & C § eine Unter-o—Algebra. Die bedingte Wahrscheinlichkeit von A € § gegeben &
ist definiert als

P(A|®) :=E[I4]8].
Sie existiert in verschiedenen Versionen und ist eine ®—messbare Zufallsgrofie.

Es dréngt sich die Frage auf, ob P(-|®)(w) fiir alle w ein Wahrscheinlichkeitsmaf darstellt.
Ein Antwort darauf liefert der folgende Satz:

16.13 Satz:
Die bedingten Wahrscheinlichkeiten haben die folgenden Eigenschaften P—fast-sicher:

(i) P(A|®) >0,
(i) P(Q|&) =1,

(111) (AP, paarweise disjunkt => P (U A;
i=1

@) - iP(Aims).
i=1

Beweis:
Aussage (i) ergibt sich unmittelbar aus Satz 16.8, wihrend Aussage (ii) bereits der Definition
16.3 zu entnehmen ist. Es bleibt also die o—Additivitét zu zeigen:
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Es seien Ay, Ao, ... disjunkte Elemente aus §. Es wird

n [e.e]
Yn:ZZIAi und Y::ZIAi
i=1 i=1

definiert. Somit gilt Y;, T Y und es folgt fast—sicher

P(GA,- @) —E iIAZ.
=1 =1

Es ergibt sich jetzt das Problem, ob (iii) fiir beliebige, d.h. im Allgemeinen fiir iiberabzihl-
bar viele Folgen, erfiillt ist. Es konnte aber sein, dass die Vereinigung iiber alle Ausnahme—
Nullmengen in (iii) keine Nullmenge mehr ist. Es gibt Fille, in denen man P(:|®) nicht so
definieren kann, dass P(:|®)(w) fiir fast alle w € Q ein Wahrscheinlichkeitsmaf ist. So kommt
man zu dem Begriff der regulér bedingten Verteilungen.

(G

= E[I4,|6] =) P(A;|®).
=1 i=1

16.14 Definition (regulir bedingte Wahrscheinlichkeit, reguléir bedingte Verteilung):
a) Fine Version von P(-|®)(w) heifit requlir bedingte Wahrscheinlichkeit, wenn sie fiir fast
alle w € Q ein Wahrscheinlichkeitsmaf auf (2, ®, Pg) ist.

b) Es seien Y: (,F,P) — (,F) messbar und & C § Unter-o—Algebra. Dann heifst
P&)():FxQ—R

reguldr bedingte Verteilung von Y unter &, wenn

~

(i) fiir jedes F' € § P(F'|®) eine Version von P(Y € F'|®) ist.
(ii) fiir jedes w € Q P(:|®)(w) ein Wahrscheinlichkeitsmaf auf (¥, F') ist.

Die Existenz regulir bedingter Verteilungen ergibt sich aus dem folgenden Satz:

16.15 Satz:
a) Es sei (Y, §') ein Borelraum, d.h. ein vollstindiger, separabler, metrischer Raum, dann
existieren requldre bedingte Verteilungen.

b) (R™,B") und (R*°,B*°) sind Borelrdume.

Beweis des Satzes 16.15:
Siehe H. Bauer: ,,Wahrscheinlichkeitstheorie und Grundziige der Mafltheorie”, 5. Auflage,
Walter de Gruyter, Berlin, 2002; Kapitel 17 ,,Mafle und Dichten”.

Im Folgenden werden stets die Zufallsvariablen X, Y : Q — R mit E[|X|] < co und E[|Y]] < o0
betrachtet. Fiir diesen Fall lassen sich die Begriffe des bedingten Erwartungswertes und der
bedingten Verteilung vereinfacht darstellen.

16.16 Beispiel:

1. Fiir die Produktion von speziellen Baugruppen werden verschiedene mit j = 1,...,k
durchnumerierte Typen von Bauteilen benotigt. Es werden zwei Zufallsvariablen ein-
gefiithrt:
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e Fiir die Wahrscheinlichkeit, dass ein Bauteil vom Typ j benétigt wird, wird P(Y =
j), j € E:={1,...,k} geschrieben.

e Die technische Eigenschaft der Bauteile werde duch die reellwertige Zufallsvariable
X beschrieben.

Insbesondere hat man fiir jeden Typ j von Bauteil Kenntnis von
P(XeA|lY=j) VAecB, jeE.

Von jedem Typ j von Bauteil wird die Einhaltung eines Toleranzbereiches C; gefordert.
Es soll die Wahrscheinlichkeit P((X,Y’) € C') berechnen werden, dass ein beliebiges fiir
die Produktion angefordertes Bauteil die geforderte Spezifikation erfiillt. Dazu wird das
Ereignis {(X,Y) € C} in der Form

{(x,v)eC}=|J{xeC;, Vv =4}
JEE

zerlegt. Da die Mengen {X € C;, Y = j}, j € E, paarweise disjunkt sind, gilt

P(x.v)eO) =P || J{xeC, Y=41]| = PXeq,Y =),
jEE jeE

wofiir man auch
P(X,Y)eC)=> P(X€C;|Y =j)-P(Y =)
jEE

schreiben kann. Bezeichnet Py das Bildmafl von P unter Y, so kann man den letzten
Ausdruck auch durch die Gleichung

P(X.Y) € C) = [ POY € ClY =) dPy () (16.4)
E
ersetzen. Diese Gleichung ldsst sich in zwei Richtungen interpretieren:

Die zweidimensionale Verteilung P((X,Y’) € ) ldsst sich mit Hilfe von P(X € Cj |
Y =y) und Py erzeugen. Umgekehrt existiert zu P((X,Y) € C) und Py eine Funktion
P(X € Cy|Y =y), so dass (16.4) gilt.

. Es sei (9, F, P) ein Wahrscheinlichkeitsraum. Besitzt der Zufallsvektor (X,Y): Q — R2

eine Dichte f und gilt fiir die Randverteilungsdichte fy von f bzgl. Y fy(y) >0 Vy €
R, so kann die Funktion P(X € C,, | Y = y) mit

PU(X,Y) € C) = /P(X €C,|Y = y)dPy(y) (16.5)
R

fiir jede Menge C' € B2 und ihren korrespondierenden y—Schnitt C, := {z € R | (z,9) €
C'} ebenso leicht konstruiert werden. Als Beispiel wird

C:={(z,y) eR* |z <a, y<b}
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gewihlt. Der zugehdorige y—Schnitt C, ist dann

. JA{x]x<a}, y<b
6 =tol@pecy={ Elo=d v=h

Deshalb gilt:
Pixec,|v =y ={ 7=
Damit wird

/P(X €Cy|Y =y)dPy(y) = / P(X €Cy|Y =vy) dPy(y)
R —00

[e.o]

+/P(X €eCy|Y =y) dPy(y)

b
b

= [P <aly =y drv)
Es wird versuchsweise
P(X<a|Y =y) = 7f( ) d
<z =y) = S, S
fY(y)i Y

gesetzt. Damit ergibt sich

b

HZ P(X €Cy |V = y)dPy(y) _ZO fyl(y)é F(s,9) ds> aPy (y)
- Z o 4 £(s:9) ds> Fr(w) dy
(-
_ OO 4 o)

= P(X <a,Y <V).

Der Ausdruck
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macht zunéchst nur fir fy(y) > 0 einen Sinn. Dies ist jedoch keine wesentliche Ein-
schrankung, da die Ausnahmemenge N := {(x,y) € R | fy(y) = 0} eine P-Nullmenge
ist. Denn es gilt:

— / f(z,y) do dy = / /f(fr,y) dz dy
N {vlfy (y)=0} R

= / fy(y) dy = 0.
{ylfy (y)=0}

Auf dieser Ausnahmemenge N kann der Wert von fx|y(x|y) also beliebig abgeindert
werden, ohne dass sich dadurch der Ausdruck (16.5) verindern wiirde. Es wird weiter
gezeigt, dass fx|y(z|y) eine Dichte auf R definiert. Da offensichtlich fxy (z[y) > 0 gilt,
bleibt nur noch

[ ety do =1
R
zu zeigen. Es gilt:

/fX|Y zly) do = / Ixy (z]y) dx+/fX|Y (zly) d

R\N
flay)
fY(y)

R\N ]R\N

1
= m'fY(y) = L

Deswegen definiert man:

16.17 Definition (bedingte Dichte, bedingte Verteilung):
Es seien (Q,F,P) ein Wahrscheinlichkeitsraum und (X,Y): Q@ — R? ein Zufallsvektor.
(X,Y) besitze die Dichte f(x,y) und die Randverteilungsdichte von f bzgl. Y sei fy.

a) Die Funktion

f(z,y) o 2
. fiir (2,y) € R? mit fy (y) > 0
Pavely): { 0, fir(z.y) € R? mit fy(y) =0

heifit eine bedingte Dichte von X gegeben Y = y.

b) Firy € R und A € B heifit die Abbildung

P(X€A|Y =y):= { {fX|Y(x\y) dr , fy(y) >0
0 , fr(y) =0

die bedingte Verteilung von X gegeben Y = y. Anstelle von P(X € A |Y = y) schreibt
man auch Pxy—,(4).
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16.18 Beispiel (bedingte Dichte):
Es seien (Q, §, P) ein Wahrscheinlichkeitsraum und (X,Y): Q — R? ein stetiger Zufallsvektor

mit einer Dichte

F,y) = L exp (—1<x2 - 2y2>) . (e,y) € R

2 2

1. Es wird zunéchst gezeigt, dass f eine Dichte definiert. Es gilt f(x,y) > 0 fiir alle
(7,y) € R? und es ist

//f(a:,y) dr dy = exp
R R

(*): Es ist [ exp (—3(z

(1
2
]R]R
1// 1
= — ex =
o P73
R R
1// 1
= — e —
o xp | —5(
R R
(_*)1/
2w
R

= — V21 = 1
2
-v)?)

z? — 2xy + 2y )) dzr dy

1
(22 — 2zy +y )) dx exp (—2y2> dy

1
—y 2> dx exp <—2y2) dy

y)?) dx = 2m bzw. [;exp (—3y%) dy = v2m, denn es gilt:

42 2 2 2
</ exp (—) dt) = //exp <_a:1+:cQ> dzy dzo
R 2 R JR 2
2T oo T2
()
o Jo 2
r2\1°°
= 27 [— exp <—>] = 27.
2 /1o
2. Die Randverteilungsdichte fx von f bzgl. X lautet:
1 1
= /%exp (—2($2 — 2zy + 2y2)) dy
R
1 122 1 (22 5
= — ). (= — 2wy +2 d
2Wexp<22> /exp(2<2 Ty + y>> Y
R

fx(x)
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Mit 2 := 2y — % ergibt sich:

1 122 1 1,
fx(z) = o eXP (—22) 7 /exp (—2,2 ) dz
R

=27, s.o.
_ 1 122 27
o P\ 7272 )
1 1 122
= ———exp|—= , x€R.
V22r p( 22

3. Die Randverteilungsdichte fy von f bzgl. Y ist:

fr(y) = 217T/6Xp (—;(x2_2xy+2y2)> dx
R
1

1 1
=5 [ exp (—2(952 —2xy + y2)> exp (—2y2> dx
R

1 1, 1 )
=5 exp( 5Y > /exp( 2(35 Y) > dx
R

=V 2m, s.o.

V2T < 1 2>
= oL P T5Y

2

1 14
= — exp|—= , e R.
N p( 2y> Yy

4. X und Y sind nicht unabhingig, da f(z,y) # fx(x) - fy(y) ist.

5. Die bedingte Dichte fx|y(z|y) ergibt sich zu

f(z,y) (27)~Lexp (—%(ZE2 —2xy + 2y2))

P =R T T Ve e ()
1 1
= mexp (—2(:E - y)2> , z€R.

16.19 Satz:
Es seien (9, F, P) ein Wahrscheinlichkeitsraum und (X,Y): Q — R? ein Zufallsvektor mit
der Dichte f. Die Randverteilungsdichte von f bzgl. Y sei fy. Dann gilt fiir alle A,B € §
und C € B2:

(i) P(X € A, YeB):gP(Xe/HY:y) Fr(y) dy.

(i) P(X € A) :]}f{P(X €AY =y) fr(y) dy.
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(iii) P(X,Y) e C) = [P(X €Cy|Y =y) fr(y) dy,
R
wobei Cyy == {z € R| (x,y) € C} der y-Schnitt von C bedeutet.
Beweis:

(i) Es sei wieder N := {(x,y) € R?| fy(y) = 0}. Unter Beachtung der Beziehung
P(Y € B\N)=P(Y € B)— P(Y € N) = P(Y € B) erhilt man

/ P(X€A|Y =y) fr(y) dy = / (/ P () dx) fr(y) dy
B

B\N \A

B f(z,y) N
- /(A = d) fr(y) dy

B\N

= / f(z,y) dz dy
AxB\N

= P(X’y)(AXB\N)

= P(X€A YeB\N)

(ii) Man ersetze in (i) B durch R.

(iii) Die Menge C' lésst sich als disjunkte Vereinigung von Mengen C; := A; x B; darstellen,
da B2 von den Rechtecken erzeugt wird. Fiir y € R gilt dann

cy, = {:BEIR(w,y)E UCJ}

JEN
= J{zeRl@y) €0y}
jeEN
= U(Cj)y

jEN

:UAJ

JEN
yEB;

= |J @« xB)

jEN
yEB;

und das zeigt

P((X,Y)eC)=> P(X,Y)eCj)=) P(X€A;Y €By)
JEN jEN
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sowie

/ P(X €Y =9)f,(s) dy = / / Fxiy(ly) dz f,(y) dy

R R Cy

— [X [ favtel) do fylo) dy

jEN
R IS (c,

= Z//fxw(ﬂy) dz f,(y) dy
A

iENp A,
= > [P e Y =) dy
JEN,

= Y P(X€A;YEB)).
JEN

16.20 Bemerkung:

Ebenso wie im diskreten Fall lassen sich auch im stetigen Fall die vorangegangenen Betrach-
tungen auf Ausdriicke wie z.B. P(X € A |Y =y, Z = z) oder P(Xp,41 € A1,..., X4k €
Ag | Xo = xo,..., X, = x,) ausdehnen. Die entsprechenden Aussagen ergeben sich analog
zum zweidimensionalen Fall.

16.21 Satz:
Es seien (Q,5, P) ein Wahrscheinlichkeitsraum und (X,Y): Q — R? ein Zufallsvektor mit
der Dichte f. h: R? — R sei (B?,8)-messbar.
a) Fiir alle A € B gilt:
P((X,Y) € A|Y =y) = P(h(X,p) € A|Y =)
fiir Py —fast alle y € R, wobei Py die Randverteilung von (X,Y) bzgl. Y bedeutet.

b) Sind h(X,Y) und Y stochastisch unabhdingig, dann gilt

PWMX,Y)eA|Y =y) = P(h(X,y) € A) Pyfs.

Beweis:
a) Bs wird zunichst gezeigt, dass Z := (X,Y) und Y eine gemeinsame Dichte g: R? — R*
mit

Py [y, y=y
g(:v,y,y)-—{ 0 somst
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besitzen. Fiir C := C; x Cy € B2 und B € B gilt:

/ ( [ st/ d(x,y’>) dy = / / flay) do | dy

B C
= way )dy
BNC>

:P(XY)EClx(BﬂCg))
ZP((X,Y)601XCQ, YEB)
=P(ZeC, Y eB).

Die bedingte Dichte von Z bzgl. Y lautet:

/ 9(z,y',y)

T, ="
f(z,y) —
= fY(y) ’ y - y
0 , sonst

_ { fxy(ly), y=9

0 , sonst.

Damit erhilt man fiir C € 982:

P((X.Y)eC|Y =y) = / gz (@ 9)y) d(z, )

Da aber
XeCy={zeR|(z,y) €C} & (z,y) el

ist, folgt
PXeCy Y =y) = P(X,y) eC|Y =y).

Indem man C := h~!(A) wihlt, erhilt man die Behauptung.

b) Mit a) bleibt zu zeigen, dass P(h(X,y) € A|Y =y) = P(h(X,y) € A) Py-f.s. gilt wenn
h(X,y) und Y stochastisch unabhéngig sind.

Es sei zunéchst fy(y) > 0. Dann gilt:

P(h(X,y) € AlY =y) = /fx,y(h(x,y)]y) dx:/ Md

= /fX fY dx—/fX (z,y) dz
= //f (,9),9) dy dv = P(h(X,y) € A,Y € R)
= hMX,y) € A).
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Der Fall fy(y) = 0 tritt aber Py-f.s. nicht auf, da {y|fy(y) = 0} eine Py-Nullmenge
ist, denn:

Py({ylfy (y) = 0}) = /{ o Pwa=o
Yy \y)=

16.22 Beispiel:

In einen Produktionsprozess seien zwei gleichartige Maschinen integriert, deren Ausfallzeiten
(Zeitspanne zwischen zwei aufeinanderfolgenden Ausfillen) X1, X9 stochastisch unabhéngige
und exponentiell verteilte Zufallsgroen mit den Parametern a3 = as = a > 0 sind. Nach-
dem eine dieser Maschinen ausgefallen ist und repariert wird, iibernimmt die jeweils andere
Maschine die anstehende Arbeit. Aufgrund einer statistischen Erhebung ist bekannt, dass die
Reparaturzeit Y exponentiell verteilt ist mit dem Parameter 8 > 0, wobei unterstellt wird,
dass die ZufallsgroBlen X1, X9 und Y stochastisch unabhéingig sind.

0.B.d.A. wird angenommen, dass die erste Maschine zu einem Zeitpunkt ¢ = 0 nicht mehr in
Betrieb genommen werden kann und es wird nach der Wahrscheinlichkeit, dass wéhrend der
Reparatur dieser Maschine nicht auch noch die andere ausfillt, gefragt. Da die Restlaufzeit
der zweiten Maschine ebenfalls exponentiell verteilt ist mit dem Parameter o > 0, ist die
gesuchte Wahrscheinlichkeit

P(Xy>Y) = /P(Xg >Y Y =y fy(y) dy.
R
Unter Beriicksichtigung des Satzes 16.21 erhilt man mit h: R2 — R, h(z,y) ;=2 —y

P(Xy>Y) = P(X;—Y >0)

= /P(XQ—Y>O\Y:y)-ﬁ-e_ﬁydy

R+
= /P(Xg—y>0)-ﬂ-eﬁydy
R+
= /P(X2>y)-ﬂ-eﬁy dy = /eay‘ﬂ'eﬁy dy
R+ R+
1 o0
— 3. —(a+B)y — 3. [ ) e (atB)y
g [ty = 5 (<) e
R+
.
a+p’

16.23 Beispiel (Warum steht man so oft in der falschen Warteschlange 7):

Stehen fiir die Abfertigung wie im Supermarkt oder bei der Bahn mehrere Kassen zur Aus-
wahl, so neigt man dazu, diejenige mit der kiirzesten Warteschlange auszuwéhlen. Doch of-
fensichtlich garantiert diese Strategie nicht, dass man auch schneller abgefertigt wird. So
entsteht der Eindruck, in der ,,falschen Warteschlange” zu stehen. Da die Arbeitsauftriage
der einzelnen Kunden zufillig schwanken, kénnte es sein, dass in der langen Warteschlange
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zufillig viele kleine Auftrige akkumuliert sind, wihrend in der kurzen Warteschlangen grofle
Auftrige vorherrschen.

Als Beispiel werden zwei gleichartige Bediensysteme betrachtet. In dem einen warten zum
Zeitpunkt der Ankunft m, in dem anderen n Kunden, wobei angenommen werden soll, dass
m kleiner oder gleich n ist. Stehen m Kunden in der Schlange und sind die aufeinander
folgenden Bedienzeiten der Kunden stochastisch unabhéngige und mit dem Parameter pu > 0
exponentiell verteilte Zufallsvariablen, dann ist die mittlere Wartezeit W, Erlang-verteilt
mit den Parametern p und m:

—_

P(W(m) >t) = e M. Z (N}d) (t>0)
k=0 '

(siehe Stochastik I, Satz 11.35).

Damit lauft die Fragestellung auf den Vergleich zweier Erlang—verteilter Zufallsgrofien hin-
aus, wobei die eine Erlang—verteilt ist mit den Parametern g und m und die andere Erlang-
verteilt ist mit den Parametern p und n. Gefragt ist also nach der Wahrscheinlichkeit, dass
Wim) groBer ist als W, in Zeichen: P (W(m) > W(n)). Diese Wahrscheinlichkeit kann mit
dem Instrumentarium der bedingten Verteilung ausgerechnet werden. Indem man die Ge-
setzméfBigkeiten der Erlang—Verteilung ausnutzt, und beriicksichtigt, dass fiir eine mit dem
Parameter p exponentiell verteilte Zufallsgrofie Z gerade E[Zq = 0!/ut gilt, erhilt man

P (Winy > W) = / P(Wimy > Wiy | Wiy =) - fur,, (8) dt

R+

m-1 k -1
_ / ot N (St
R+

P (W > We) = 5 T A Bl
k=0
1ot g (k= 1)
2 (- &R (2Rl
B 1 m—1 (7’L+I{7 . 1)' (1>n+k—1
2 & (n—1)k! \2
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1SR k-1 1\
-2 (05)6)

C(I\TE k=1 (1)
() ()6

Wertet man diese Formel fiir verschiedene m und n aus, so ergibt sich Abbildung 16.1.

Abbildung 16.1: Darstellung von P (W(m) > W(n)) in Abhéngigkeit von m und n

In der Abbildung ist deutlich zu sehen, dass die Wahrscheinlichkeit P (W(m) > W(n)) fiir
m > n relativ grof ist. Es ist aber auch zu sehen, dass sie fiir m < n sich immer noch deutlich
von 0 unterscheidet.

Der bedingte Erwartungswert lidsst sich nun vereinfacht darstellen als:

16.24 Definition (bedingter Erwartungswert):

Es seien (Q,5, P) ein Wahrscheinlichkeitsraum und (X,Y): Q — R? ein Zufallsvektor mit
Dichte f: R?> — R und Randverteilungsdichte fy: R — R bzgl. Y. Der zugehirige Erwar-
tungswert

EX|Y =y] = f%(y)/x f(z,y) dzx
R

heif§t, sofern er existiert, bedingter Erwartungswert von X gegeben Y = y.

16.25 Beispiel:
In Beispiel 16.18 wurde der Zufallsvektor (X,Y): Q — R? mit der Dichte f: R? — R,

1

fl@,y) = 5—exp (—%(ﬂc2 — 2zy + 2y2))
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zugrunde gelegt. Dies fiihrte fiir fy zu dem Ergebnis

fr(y) = \/12—7Te><p (;zﬂ) . yeR.

Damit wird

1 1
EX|Y =y] = /:v exp <—(w—y)2> dr =y, yelR.
\/2 2
& T
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Kapitel 17

Erneuerungstheorie

Mit Hilfe der Erneuerungstheorie lassen sich eine Vielzahl von realen Problemen, wie zum
Beispiel das Ausfallverhalten von Maschinen, beschreiben und analysieren. Erneuerungspro-
zesse treten aber auch eingebettet in anderen Prozessen auf und bieten deshalb auch eine
Handhabe zur Untersuchung allgemeinerer Prozesse.

Schliisselworter: Erneuerungsprozess, Erneuerungsfolge, Laplace-Transformierte,
Faltung, Zahlprozess, Poissonprozess, Erneuerungsfunktion, Erneuerungsgleichung,
Vorwartsrekurrenzzeit, Riickwértsrekurrenzzeit, direkte Riemann-Integrierbarkeit,
stationdrer Zustand, arithmetisch verteilt, Blackwell’sches Erneuerungstheorem,
Fundamentalsatz der Erneuerungstheorie, modifizierter Erneuerungsprozess, stati-
onérer Erneuerungsprozess, Uberlagerungsprozess, abbrechender Erneuerungspro-
zess, rekurrent, transient, periodisch.
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17.1 Erneuerungsfunktion und Erneuerungsgleichung

Wir betrachten eine Beleuchtungseinrichtung mit einer Glithlampe, die nach Ausfall un-
verziiglich durch eine neue und gleichartige ersetzt wird. Die Zufallsvariablen S,, n € N,
beschreiben die aufeinanderfolgenden Zeitpunkte, an denen die Glithlampen ausgetauscht
werden. X, bezeichne die Lebensdauer der n-ten Glithlampe, n = 1,2, .... Offensichtlich gilt:
Sn = Sp1+ X, n = 1,2,... mit Sy := 0. Man kann nun z.B. nach der Anzahl der Er-
neuerungen innerhalb eines Intervalls [0, {] oder nach der zum Zeitpunkt ¢ noch verbleibenden
Zeit bis zur ndchsten Erneuerung fragen. Diese und #hnliche Fragen kénnen mit Hilfe der
Erneuerungstheorie beantwortet werden.

17.1 Definition (Erneuerungsprozess, Erneuerungsfolge, Lebensdauer):

Es bezeichne (X, )nen eine Folge von stochastisch unabhdngigen, identisch verteilten, nicht-
negativen Zufallsvariablen iber einem gemeinsamen Wahrscheinlichkeitsraum (Q,§, P) mit
P(X,, = 0) <1 fir alle n € N. Der zur Folge (Xy)nen gehorende Partialsummenprozess
(Sn)ne]No mat

n
So:=0 und Sy, 1= ZXk
k=1
heif$t gewohnlicher oder auch einfacher Erneuerungsprozess (zuweilen auch Erneuerungsfolge

genannt). X, wird Lebensdauer und S, Zeitpunkt der n—ten Erneuerung genannt. F' sei die
Verteilungsfunktion von X,,.

Die Verteilungsfunktion F,(t) := Fg, (t) der ZufallsgroBe S,, kann man rekursiv berechnen:
t

Fo(t) = Fs, (t) = P(S, <t) = P(Sp—1 + X, <t) = /Fn_l(t —s)dF(s) (n=1,2,...),
0

wobei
1, t>0
Fo(t)‘_{ 0, t<0.

Zur rechentechnischen Vereinfachung der Faltungsoperation bietet es sich an, charakteristische
Funktionen zu benutzen. Da im vorliegenden Fall allerdings ausschlieflich mit nichtnegati-
ven Zufallsvariablen operiert wird, kann man ebensogut die etwas einfacher zuhandhabende
Laplace-Transformation verwenden.

17.2 Definition (Laplace—Transformierte):
Es sei X eine nichinegative Zufallsvariable mit der Verteilung Px bzw. der Verteilungsfunktion
F. Dann heifit

Ux(s):= E[e_SX] = /e_SX dPx = /e‘sm dF(x), s>0,
R+ R+

die Laplace—Transformierte der Zufallsvariable X bzw. der Verteilung Px bzw. der Vertei-
lungsfunktion F.

100



17.1. Erneuerungsfunktion und Erneuerungsgleichung

Wie im Fall der charakteristischen Funktion (siehe Definition 13.5) ist die Verteilungsfunktion
F durch ihre zugehorige Laplace-Transformierte eindeutig bestimmt und umgekehrt. Da

Vg, (s) = / e dFy(z) =e-s-0=1
R+

gilt, folgt aus
Ug, (s) = E[e_ss"] = E[e_S(S”*1+X")} = E[e_SS”*l] Ele %] = Tg, ,(s)Tx,(s) (n=1,2,...
sofort .

Us,(s) = [[Txi(s) = (Tx,(s)"  (n=1,2,..).

i=1
Wir konnen deshalb auch allgemein
F.(t) = P(S, <t)=F"(t), t e,

schreiben.

17.3 Definition (Zihlprozess, Erneuerungsprozess):

Die Folge (N¢)ier+ mit Ny := maz{k > 1|S < t}, wobei max@ := 0 sei, heifit der zum
Erneuerungsprozess (Sn)nenN, gehdrende Zihlprozess (zuweilen auch Erneuerungsprozess).
N; zdhlt die Anzahl der Erneuerungen bis zum Zeitpunkt t, wobei der Zeitpunkt t = 0 nicht
als Erneuerungszeitpunkt gezdhlt wird.

17.4 Satz:
Es gilt fiir allet € R*:
P(Ny=n)=F,(t) — Fry1(t).

Beweis:
Zur Berechnung der Wahrscheinlichkeitsverteilung von N; wird der folgende Zusammenhang
benutzt:
{N; >n} <= {5 <t}
Folglich gilt:
= P(S,<t) = P(Nt=n)+ P(Sp4+1 <1)
= P(N;y=n) = P(S, <t)—P(Sp11<t) = F,(t) = Fori(t), teRT.

17.5 Beispiel (Poissonprozess):
Es sei X; < Exp(\). Dann gilt (Stochastik I, Satz 11.35):

n—1 i
S, £ Erlang(n,\) bzw. P(S, <t)=1—e ™ Z @, teRT.
i!
=0
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Folglich ist

P(Ny=n) = Fu(t) = Fua(t)

n—1 ; n ;
_ e (A e (A
= 1o Zi!_<1_e 2 il
=0 i=0

(A" e

= —e (n=0,1,2,...), te R",
n.

N, ist also Poisson—verteilt mit dem Parameter At.

17.6 Bemerkung:
Alternativ zu Definition 17.3 kann man den Z#hlprozess (IVi);er+ auch iiber die Beziehung

Ny = Tjoy(Sn)
n=1

entwickeln.

17.7 Definition (Erneuerungsfunktion):
Die Funktion R: RT >t — R(t) := E[N;] € Rt heifit Erneuerungsfunktion (renewal functi-
on) und gibt die mittlere Anzahl von Erneuerungen im Zeitraum [0,t] an.

17.8 Satz:
Es gilt fiir alle t € RY:

a) R(t) = EIN] =Y Fu(t),
n=1

b) R(t) < oc.
¢) R(t) ist monoton nichtfallend und rechtsseitig stetig.
Beweis:
a) Es gilt:
E[N] =Y n-P(N;=n) =Y n(Fu(t) = Foa(t)) = Y _Fu(t), t e R,
n=1 n=1 n=1
b) Da F(0) = P(X; = 0) < 1 ist und F rechtsseitig stetig ist, existiert ein b > 0, so dass
F(b) < 1 ist.
1.) Es wird k& € N so gewihlt, dass ¢t < kb ist. Dann gilt
P(Sy <t) < P(S, <kb)<1—P(X;>b,.... Xp>b)=1-(1-F0b)r=1-a

mit a > 0, da F(b) < 1 ist.

102



17.1. Erneuerungsfunktion und Erneuerungsgleichung

2.) Es gilt fiir m, k € No:

P(Spmip <t) < P(Sp—So<t,...,5mk — Smk—k < 1) = (P(Sk -~ S0 < )"
=0

—_
N>

— (P(Se<t)m L (1— o)
3.) Da P(Spktj <t) < P(Spmi < t) fiir j € Ny gilt, folgt:

mk+k—1
> P(Sp<t) <k P(Spr < t).

n=mk

Damit ergibt sich insgesamt:

R(t) = > P(S,<t)= Z Z P(S, <t)

INE
i
Mz L
??‘
?T
IA
:~¢.
|/\5
8
ol
=
|
2

k
— < oo da a>0.
a

c) Wir zeigen nur die rechtsseitige Stetigkeit. Es seien ¢ > 0 fest, N; = k und (tn)nen,
Zeitpunkte mit Sy < ¢, < Sgy1 und lim, . t, = t. Dann gilt:
R(to) — R(t) = E[Ny]—E[N]
= E[Ny, — Ny
- E[Nto ~ lim Ntn}
n—oo
- E[ lim (N, — Ntn)}
n—oo
= lim E[Ny, — Ny,| (Satz 9.42 von der monotonen Konvergenz)
n—oo
= lim (E[Nto] — ENtn)
n—oo
n—oo
= R(tg) — lim R(t,) (da R(t) <ooVteRT),
n—oo

woraus

R(t) = lim R(t,)

n—oo

folgt.

17.9 Bemerkung:
Setzt man R(t) = 0 fir t € R™, dann definiert R(¢) eine maBdefinierende Funktion auf R.
Fiir das von R induzierte (endliche) Maf auf (R, B) gilt:

ur((a,b]) = R(b) — R(a) V a,b € R mit a <b.
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17.10 Belsplel
Essei X; = Exp(ﬂ). Dann ist S, Erlang(n, 3)-verteilt. Die Erlangverteilung ist ein Spezialfall
der Gammaverteilung:

fm P~ le~br dx, bpeR*", t>0
I = o0 ()
v () {0 , t<O.

Mit b := § und p := n erhélt man

t

/ﬁ(ﬁS)n_l . (:__ﬁi)' dS y t Z 0

0

,t<0.

Mit Hilfe von F),(t) ldsst sich die Erneuerungsfunktion wie folgt berechnen:

R(t) = ZF Z/ﬂ i)! ds
0

n=1 n=1

¢
[e.9]
= /ﬁz Eﬁs) ‘e_ﬁs ds  (Satz 9.42 von der monotonen Konvergenz)
n —_—
0

n=1

= /Bds = pBt, teRt.
0

17.11 Satz:
Es sei f: Rt — R messbar, dann gilt:

Rf = f

if]

Beweis:
Der Satz wird mit algebraischer Induktion bewiesen:

a) Es sei zunéchst f = [, . Dann gilt:

Rf = [ T@dR(@) = un(s.1)
= R() ~ R(9) = BIN] ~B[N] = BN, - N

= E|> Ijpg(Sn mes]

= E|> Ig(Sn)

1
3
I 8
R
I—I
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b) Gilt die Behauptung fir f; > 0,i=1,...,k, so folgt

k k
/R+ ;Ozifi($)dR(x) = ;ai /R+ fi(x)dR(z) =

k 0 oo k o0
> B> fi(Sn) YD aifilw)| =) E
=1 n=1 n=1

n=1i=1

=E

k

Fiir nichtnegative messbare Abbildungen wendet man den Satz von der monotonen Konver-
genz an. Allgemeine messbare Abbilundungen behandelt man, in dem man ihren Positiv- und
Negativteil separat behandelt. ]

Faltungen
Im Weiteren erweist es sich als zweckméfig, den Begriff der Laplace-Transformierten und der
Faltung auf andere Funktionenklassen auszudehnen.

Im Folgenden bezeichne M die Menge der mafidefinierenden Funktionen auf R, die in (—o00, 0)
verschwinden. B stehe fiir die Menge der auf R definierten messbaren reellen Funktionen, die
auf jedem Intervall der Form [0,¢] beschrénkt sind (sogenannte lokalbeschrénkte messbare
reelle Funktionen).

Folgerung: M C B.

17.12 Definition (Faltung):
Ist F € M und g € B, so heifst die durch

/g(t—s)dF(s) , t>0
(F'xg)(t) == [0,¢]
0 , <0

erklirte Funktion die Faltung von F' und g.

17.13 Satz:
Es gilt: (F xg) € B.

Beweis:

|(F + g)(t)] S/!Q(t—S)\dF(S) < sup Ig(S)!/dF(S)— sup |g(s)| F(t) <oo, ViteR.
0 0

0<s<t 0<s<t

17.14 Satz (Eigenschaften der Faltung):
Es seien FF1,Fy, F3€ M, g,91,92 € B und c € R. Dann gilt:
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a) (Fy x Fy) « F5 = Fy x (Fy x F3),
b) (F1+ Fy)xg = Fi*xg+ Fyxg,
¢) Fx(g1+92) = Fxgi+Fxg,
d) Fxg1 < F*go, falls g1 < g,

e) Fx(cg) = c(Fxg),

f) F1* Fy = Fy* Iy,

9) Fxg=F-g.

Beweis:
a) Es gilt

0—
(F = Fj)(0—) = / F;(0—s)dF;(s) =0 furi,j=1,2,3, i#j.
0
Damit folgt:

((Fl*FQ)*Fg)(t) = /Oth(t—S) d(Fl*FQ)(S)

— ; (Fy * F3)(t — u) dFy(u)
= (F1 *(FQ*Fg))(t), teR.

(%), (%) und (sx): Die Integration verlduft jeweils iiber folgende Bereiche:
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_N

b) Wegen der Linearitit des Integrals gilt:
t
(F+F)x9) = [ glt=9) dFa(s) + Pa(s)
0

= /Og(t—s) dF1(8)+/Og(t—s) dFy(s)
= (Fixg)(t)+ (Fa*xg)(t), teR.

c) Gilt wegen der Linearitdt des Integrals.

e

)

d) Folgt mit der Monotonie des Integrals.
) Gilt wegen der Linearitéit des Integrals.
)

f) Es gilt

/ dF;(y / dF;(y) = Fi(x) firi=1,2.
Damit folgt:

(Fy = Fy)(t) = /th ) dFy(z //mng dF; (z

//tde1 dFy(y /Flt y) dFy(y)

= FZ*Fl)()a teR.

(*): Die Integration verlduft iiber folgenden Bereich:

0

g) Es seien F) die Verteilung der Zufallsvariable X; und Fy die Verteilung der Zufallsva-
riable Xo. Dann ist F} % Fy die Verteilung von X; + Xo, siehe Definition 17.1. Damit
gilt:

Fis Fo(s) = Ble (0% | — e ] B[] = Fi(s) - Fy(s), s€R.
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Im Folgenden mégen diese Schreibweisen gelten:
o F* .= FxF,
o F¥* = FxF*» =FxFxF,

o [M* 4 Fx — F(n+m)*

17.15 Satz:
Die Erneuerungsfunktion R(t) geniigt der Integralgleichung

Rt)=Ft)+ (F*R)(t) (teR™).

Beweis:
X, ist der Zeitpunkt der ersten Erneuerung. Wir behaupten:

1+R(t—z) , x <t,
R B S
Der zweite Fall ist klar: Da die erste Erneuerung erst zum Zeitpunkt z > t¢ stattfindet,
kann vorher keine Erneuerung eingetreten sein. Ist ¢ jetzt jedoch grofler x, so ist bekannt,
dass mindestens eine Erneuerung stattgefunden hat. Da die Zuw#chse X; jedoch stochastisch
unabhéngig sind, regeneriert sich der Erneuerungsprozess zum Zeitpunkt X; = x. Deswegen
entspricht die mittlere Anzahl an Erneuerungen im Intervall [z, ¢] gerade der mittleren Anzahl
an Erneuerungen im Intervall [0,¢ — z]. Diese Argumentation wird als Erneuerungsargument
bezeichnet.
Somit folgt:

R(t) = E[E[N;|X; = 2]]
E[N| X1 = z] dF(z)

I
g

(1+ R(t —x))dF(x) + / 0-dF(x)

x>t

dF (z) + / R(t — z)dF(z)

t)+ (F*R)(t), teR".

8

N~ A~

x

= F

—~

Bemerkung:
Die Gleichung h = g + F « h mit F' € M und h, g € B heifit Erneuerungsgleichung.

17.16 Satz:
Die Erneuerungsgleichung h =g+ F «h mit FF € M und h,g € B hat genau eine Losung in
B, ndmlich

h:=g+Rx*g.
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Beweis:
1. Schritt: Es wird zunédchst gezeigt, dass h eine Losung der Erneuerungsgleichung ist.

h = g+Rxg

g+ (F+Fx«R)xg (Satz 17.15)
g+ F*xg+ Fx(Rxg)

= g+ Fx(g+Rxg)

= g+ Fxh.

2. Schritt: Fiir den Beweis der Eindeutgkeit werden zwei Losungen h := g + F' * h und
I := g+ F * I/ betrachtet. Es folgt

di=h—h =Fxh—Fxh'=Fx(h-1n).

Die Differenz d geniigt also der Gleichung d = F'«d. Iteriert man diese Gleichung, erhalt
man

d = Fxd=F"xd=--=F"xd=...
Aus R(t) =Y 07 | F™(t) < oo folgt aber lim,, .o F™*(t) =0V t € R, so dass gilt

t

d(®)] = lim / d(t — 2)dF™ ()

n—oo
0
< sup |d(t— )| im F"™(t) = 0.
0<z<t n—0o0

3. Schritt: Zu zeigen bleibt noch, dass h lokal beschrankt ist, d.h. dass h € B gilt.

s )] < s lo(o)]+ / {Oi‘if; |g<x>\} dR(x)
< sup Jgs)]- {1+ RO} < .

0<s<t

17.17 Bemerkung:
e Viele Groflen in der Erneuerungstheorie kénnen auf die Losung einer Erneuerungsglei-
chung zuriickgefithrt werden.

e Mit den Definitionen

Ais) = / e~ Tdh(z), F(s) = / e~ Tdg(z), F(s):= / =T AP ()

Rt R+ Rt

folgt aus h = g+ F = h (siehe Satz 17.14 g)):

Bi(s) = 3(s) + F(s)i(s) = T(s) = —2&)

109



Kapitel 17. Erneuerungstheorie

17.18 Beispiel:
Fiir die Exponentialverteilung F(z) := 1 — ™, 2 > 0, gilt:

F(s) = / e SdF (x) = / e e Mdx

R R
_ . / et gy A —a(rs)
A+s 0
R+
A
A +s
Aus der Integralgleichung R(t) = F(t)+(F+R)(t) aus Satz 17.15 folgt R(s) = F(s)+F(s)-R(s)
bzw. R(s) = 15%9()5)‘ Damit lédsst sich die Erneuerungsfunktion R(¢) berechnen:
— F(S) )\A A
Ris)=——— =2 =2 — R(t)= )\t
1- F(S) Ats §
denn es gilt:
_ A <A
R(s) = /e_St)\ dt = —Ze 5t =72,
0o S

17.2 Vorwiarts— und Riickwartsrekurrenzzeit

Wir betrachten einen Erneuerungsprozess im zeitlichen Verlauf und fixieren einen Zeitpunkt
t € RT (siehe Abbildung 17.1).

U M
| | |

— — } Zeit
ss | ss s
t
Abbildung 17.1: Darstellung der Erneuerungszeitpunkte auf einem Zeitstrahl

Die Zeitspanne von t bis zur néchsten Erneuerung wird die Restlebenszeit oder auch die
Vorwirtsrekurrenzzeit genannt und mit V; bezeichnet, und die Zeitspanne von der letzten
Erneuerung bis ¢ wird Alter oder auch Riickwértsrekurrenzzeit genannt und mit U; bezeichnet.
Diese Zeiten kénnen durch folgende Gleichungen mathematisch beschrieben werden:

‘/t:SNt+1_t und Ut:t—SNt.

17.19 Satz:
Fiir den Erwartungswert der Vorwdrtsrekurrenzzeit gilt:

E[V] = E[X))- (1+R(t) —t (teR).
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Beweis:
Aus der Definition von V; folgt der Ansatz

E[V/] = ElSx+1 — t] = E[Sx41] — .

Es wird nun E[Sy,+1] =: A(t) gesetzt. Um den Erwartungswert von A(t) zu berechnen, wird
das Erneuerungsargument benutzt.

_ <
E[SN,+1|X1 = 2] :{ TrAl-o) oSt

x , T >t.
Damit wird
A(t) = E[E[Sy41|X1 = 2]
= /E[SNt+1‘X1 = r|dF ()
R+
= [arae-aare)+ [ oar
[0,¢] (t,00)
= x dF(x)+ | A(t —z)dF(x)
]R[ [O/ﬂ
= E[Xi]+ /A(t—x)dF(:U)

[0.¢]
= E[Xi]+ (A+ F)(t)

= E[Xi]+ /E[Xl] dR(z)  (Erneuerungsgleichung, Satz 17.16)

[0,¢]

~ Bl 1+/dR(x)
0.
_ B[Xi)(1+ R()).

17.20 Beispiel:
Es sei X; < Exp(A). Dann folgt E[X1] = } und nach Beispiel 17.10 gilt R(t) = A - t. Es folgt
mit Satz 17.19:

E[Vt]:E[X1](1+R(t))—t:%(1+)\-t)—t:§.

Das Ergebnis verwundert angesichts der Gedéchtnislosigkeit der Exponentialverteilung nicht.

17.21 Satz:
Fir die Verteilung der Vorwdrtsrekurrenz gilt:
t4v
— — >
PV; < v) = /(1 F(t+v—y))dR(y) , v>0

t
0 , v <0.
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Beweis:
Es wird zuniichst das Ereignis {V; < v} betrachtet. Es gilt:

{Vi <v} <= {Sn,+1 <t+v} <= {Sn, <t;t < Sn41 <t+v}.
Es lasst sich also schreiben

PV, <wv) = P(U{Sngt;t<5n+1 St—i—v})

n=0

= Y P(Sy <t,t< Spy1 <t+v)

n=0

= F(t+v)=F(t)+ Y P(Sy <t,t < Spjy1 <t+v)

Mit Hilfe von Satz 17.11 und der Beziehung E[Y 7 | X,,] = > >° | E[X,,] fiir X, > 0 schlieBen
wir weiter:

P(V;<wv) = F(t+v)—Ft)+ [ Pt—y < Xpp1 <t+v—1y) dR(y)

= F({t+v)—F@t)+ [(Ft+v—y)—F(t—1)) dR(y)

S O~

t+v

= F(t+v)+ / F(t+v—vy)dR(y)— F(t) — /F(t —y) dR(y)
0 0
t+v

~ [ Fle+o-y) dng).
Mit R=F + F*x R bzw. FF= R — F x R folgt nun:
t+v

PV, <wv) = R(t—i—v)—(F*R)(t+v)—|—/F(t+v—y) dR(y) — R(t) + (F' = R)(¢)

~+
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_ /<1 — F(t+v—y)) dR(y).

~+

17.22 Beispiel:
Es sei X; < Exp()\). Beispiel 17.10 zufolge ist dann R(t) = A-t, t € R . Damit gilt nach Satz
17.21:

t+v

t+v
P(V;g < 1)) _ / 67/\(t+vfy))\ dy _ e*)\(f‘FU*y) -1_ ef)\v’
t
t

womit die Gedéchtnislosigkeit der Exponentialverteilung ein weiteres Mal gezeigt wiire.

17.23 Satz:
Fiir die Verteilung der Riickwdrtsrekurrenzzeit gilt:

PU, < u) = /(1—F(t—7))dR(T) , u>0

t—u

0 , u<0.

Beweis:
Analog zum Beweis von Satz 17.21 gilt:

PU;<u) = P(t—Sn <u)

= P(Sy,>t—u)
= P<U{t—u<5n<t;5n+1>t}>
n=0
o

= Y Pt—u<S8, <t;Su1 >t)
n=0

t
t

Die Behauptung folgt nun mit Satz 17.11. |
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Bemerkung:
FEine alternative Herleitung fiir Satz 17.23 wére:

{U; > 2} <= {keine Erneuerung in [t — z,t]} < {Vi_, > z}.

17.24 Beispiel:
Es sei X; 4 Exp()). Nach Beispiel 17.10 folgt dann R(¢t) = A - t. Damit gilt nach Satz 17.23:

t—u

¢ t
t
F(z):=PU <u)= / e M=) dR(z) = X - / e M) g = AT =1—e

t t

Dies gilt fiir alle 0 < u < t. Es folgt:

B[] = /(1 _F@) de = /e_)‘x dz = %(1 _ e,
0

R+

17.3 Anwendungsbeispiel 1

Problem:

Eine Einbahnstrafle bestehe aus r» Spuren, deren Breiten variabel und die in Hohe des Fuf3-
géngeriiberweges durch (r — 1) Strafleninseln voneinander getrennt sind. In den r Spuren
sei der Verkehr unabhéngig mit einer Poisson—Verteilung verteilt; die Parameter n; fiir die
i—te Spur (i = 1,...,7) seien im Folgenden fest. Ein Fufiginger iiberquert die Strafie in r
Etappen, wobei sich jede seiner r Einzel-Wartezeiten nur nach dem Verkehr in der jeweils
vor ihm liegenden Spur richtet; es sei Z, die Gesamtwartezeit bei r Spuren. Es geht darum,
durch geschickte Wahl der Spurbreiten diese Gesamt—Wartezeit zu minimieren.

Losung:

Gegeben sind r Spuren mit den Nummern 1,...,r, deren jeweilige Breite durch die Zahl b;
(¢ =1,...,7) beschrieben sei. Die Breite der Strafle ist somit by + - -- 4 b, =: b.

Poisson (n;) —= b,
Poisson (N; ) ——= b,
Poisson (n;) ——= by
Poisson (n,) —= b,
Poisson (n,) ——= by

Uberwea

Annahmen:
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(1) Die Ankunftszeiten der Fahrzeuge am Uberweg bilden Poissonprozesse mit Parametern
n; :=,,mittlere Anzahl von ankommenden Fahrzeugen in Spur ¢ pro Minute”. Einzelne
Spuren sind unabhéngig.

(2) Der FuBginger iiberquere die Strafle in r Etappen. Der Fuflginger iiberquert die Spur
sofort, wenn ein Auto vorbeigefahren ist und der Abstand zum n#chsten grofler ist, als
die Uberquerungszeit.

Weitere Parameter:
e T bezeichne die Uberquerungszeit fiir die ganze Strafle.

o T, :=1T- % bezeichne die Uberquerungszeit fiir die Spur 7. Dabei wird angenommen,
dass der Fulgidnger die Fahrbahn mit konstanter Geschwindigkeit iiberquert und zwar
jeder Fufigéinger mit der gleichen Geschwindigkeit.

e W; sei die Wartezeit vor der Uberquerung der i—ten Spur.

o 7. =Wi+---+ W, sei die Gesamtwartezeit.

Losung fiir eine Fahrspur

Wegen der Unabhingigkeitsannahme in (1) ist die Verteilung von Z, gleich der Faltung der
Verteilungen der W; (i =1,...,7). Es wird daher zunéchst folgende Situation betrachtet:

%

Gegeben sei eine Spur der Breite b mit der Uberquerungszeit T'. Der Verkehr ist ein Poisson-
prozess mit Parameter n. Die Wartezeit wird durch W beschrieben.

Es sei Ij, die Zeit zwischen der Ankunft des (kK — 1)-ten und k—ten Autos. Da es sich beim
Verkehr um einen Poissonprozess handelt, bilden die I eine i.i.d. Folge von exponential—
verteilten Zufallsgroflen, d.h. zu einem beliebigem Zeitpunkt ¢ ist die Zeit bis zur Ankunft des
néchsten Autos verteilt nach Exp(n).

Es sei S := I 4+ -- - + I, die Ankunftszeit des k—ten Autos. Si ist Erlang—verteilt mit den
Parametern n und k.

Wegen Annahme (2) ist W fast sicher gleich Sy, fiir ein & € Ny. Folglich gilt fiir alle Borel-
mengen A C R:

PWeA) =

M8

PW e AW ==5,) = Y PWeAW =5 P(W = S)
k=0

B
Il
o

P(S € A)- P(W = Sj).

I
M8

i
o

Definiert man Qy, := P(Sk € A) und py := P(W = Si) fiir k € Ny so gilt:

P(WGA):ZQk-pk mit ZkaI.
k=0 k=0
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Folglich hat W eine gewichtete Erlangverteilung mit Gewicht py bei Erlang(n, k).
pei=PW=25,)=PI1 <T,.... Iy <T,Ijy1 >T) = (P(I < T))*(1 — P(I; < T)).
Mit der Definition p := py := P(I; < T) =1 — e T gilt also:
pr=1"-(1-p) (k € No).

Da P(W € A) = > 12, P(Sk € A) - pi gilt, folgt fir die charakteristische Funktion der

Verteilung von W:
(o9}
V= Drtr,
k=0

wobei ¢ die charakteristische Funktion der Verteilung von Sy, ist, d.h. die charakteristische
Funktion der Erlang—Verteilung mit den Parametern n und k.
Laut Beispiel 13.6.7 besitzt die Erlang(c, k)—Verteilung die charakteristische Funktion
1
K(Q) = —=
T

Damit folgt:

k=0
-1
g D
=)
1—i&
= (1_p) 1—p)—l%
. =p—it+p
- ( p) (1 7p) . Z%
p(1—p) ) p
- (1- f
(1 p)—i_(l—p)—zg r |- i< <1
Nach Satz 13.16 ¢) gilt ¢/(0) = iE[W]. Es ist
, —p(1—p) (%) p(1 —p)i
W(e) = nl - _
(€) ((1—p)—i%)2 n<(1_p)p_2(1;7p)l<_%)
_ p(1 —p)i
n(l—p)2—2(1—p)i¢ — &
Also gilt 1/(0) = L2 = P was
P
E[W
W] n(l—p)

nach sich zieht.
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Losung fiir alle Fahrspuren

Mit n =n; und p =1 — e ™7 gilt

1—emili enili 1

W] nienili n;
Damit ergibt sich als Gesamtergebnis:
roonT; n;b;T/b r
e 1 e 1
E Z = = — J—
[ T] zz—; i =1 i =1 i
Bei gegebenen ni,...,n,, b und T ist das Minimum von E[Z,] (b1, ..., b,) unter der Neben-

bedingung by + - - - + b, = b gesucht. Dazu dquivalent ist

r=1 nibT/b np(b—by—-—byr_1)T/b "1
Z (& (& Z
E[ZT] - n; * Ny B ;i,

i=1 =1
was beziiglich b1, ..., b,_1 ohne Nebenbedingungen zu minimieren ist. Es ist
OE|[Z,] 1 T T, 1 T by
- ;.. — .Yy . ._1.f.”7°(bb1 br—1)T'/b
8bj nj nj b € +n7~ ’I’LT( ) b €
_ T ) (en]-bjT/b _ en,«(b—bl—n-—br,l)T/b)
5 .
Mit der notwendigen Bedingung fiir ein Minimum folgt fiir j = 1,...,r — 1:
OE[Z,] 0
ob; N
e b T/b _ pne(b=bi——br—1)T/b
<~ njbj:nr(b—bl—-u—br_l).
Die b1, bs, ..., b, ergeben sich aus dem Gleichungssystem
b = bi+---+b,
nyb, = n;b; j=1,...,r—1.

Es ergibt sich b; = Z—;br. Eingesetzt in die 1. Gleichung liefert dies

'
1
b — <nr+..._}_m>brznrbr E —.
s Ny j:ln‘]

Folglich gilt:

1 1
by =b- - umd  b=b
> >
J=1 Jj=1
Da nq,...,n, gegeben sind, sind die b; die optimalen Spurbreiten. Es gilt
njbj% = r

" 1
2
k=1
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und somit ist unsere Gesamtwartezeit gegeben durch

T 1
E[Z,] = | exp{ — -1 .
> =1
j=1"

17.4 Stationirer Zustand

Bisher wurden die Kenngroflen von Erneuerungsprozessen jeweils zu einem festen Zeitpunkt
t € R betrachtet. Es stellt sich deshalb die Frage, wie sich diese Kenngrofien fiir t — oo
verhalten.

17.25 Definition (arithmetisch verteilt, Gitterkonstante):

Eine diskrete Zufallsvariable X, die nur Werte der Form x,, := m -d mit d > 0 und m €
Z annehmen kann, heifit arithmetisch verteilt. Das grdfste d mit dieser Figenschaft heifst
Gitterkonstante.

17.26 Satz (Blackwell’sches Erneuerungstheorem (1949)):

Es sei (Xp)nen, ein (einfacher) Erneuerungsprozess mit der Verteilungsfunktion F, Erwar-
tungswert pu := E[X1] und Erneuerungsfunktion R(t). Ist F' nicht arithmetisch, dann gilt fir
ein festes h > 0:

t—o0 0, pu=oc.

lim(R(t)—R(t—h)):{ joo pso

Zum Beweis des Blackwell’schen Erneuerungstheorems werden zunéchst einige Hilfsergeb-
nisse zur Verfiigung gestellt, die im Wesentlichen die charakteristische Funktionen bzw. die
Fourier—Transformierte betreffen. Dabei soll der Begriff der Fourier—Transformierten hier auf
Lebesgue—integrierbare (kurz: A-integrierbare) Funktionen f : R — R durch die Definition

f(t) == / e f(x)dx
R
ausgedehnt werden. Dariiberhinaus sei im Folgenden fiir A C R,

1 ,z€A
0 , sonst

1a(z) == {

17.27 Lemma: A
Sei ho(7) = (20 — [2])1(Z20,20) (%) fiir a > 0. Dann ist ho € Cy und ho € Cp mit

~ sin®(at)

ha(t) = ——53— (t#0) und ha(0) = 1.

Aufserdem ist (hq + hgj = iza + izﬁ > 0 fiir alle o, B € R mit % ¢ Q.
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Beweis:

Die Darstellung der Fourier—Transformierten kann direkt unter Verwendung der iiblichen
Additionstheoreme fiir trigonometrische Funktionen nachgerechnet werden. Offensichtlich ist
dann hg + izg > 0. Gleichheit gilt genau fiir sin at = sin §t = 0. Dies ist genau dann der Fall,
wenn t € Z7ZN “Z ist. Fiir & ¢ @ ist diese Menge aber leer. |

Das nachfolgende Lemma wird in einer etwas allgemeineren Version in der Literatur als
Parseval-Gleichung bezeichnet. Hier soll allerdings nur ein Spezialfall aufgefiihrt werden.

17.28 Lemma (Parseval-Gleichung):
Es seien p ein endliches Mafl mit charakteristischer Funktion ¢ und h eine nichtnegative

A-integrierbare Funktion mit Fourier—Transformierter h. Dann gilt

[ h@uta) = [ @i

Beweis:
Nach Definition sind

go(t):/]Reimd,u(x) und ﬁ(t):/Reimf(x)dx

Die Behauptung kommt nun unmittelbar aus dem Satz von Fubini. |

17.29 Lemma (Riemann-Lebesgue-Lemma):
Ist f A—integrierbar mit Fourier-Transformierter f, so ist

lim f( ) =

[t|—o0

Beweis:
Fir f = 1(43) fiir beliebige a,b € R folgt die Behauptung unmittelbar aus

. 6ibt o ezat
t p—
Sei nun f eine beliebige A-integrierbare Funktion und € > 0. Dann existieren paarweise
disjunkte Intervalle I1,...,1I, und ¢q,...,¢c, € C, so dass
/|f x)|dr <e fir g—chll

7=1
gilt. Damit folgt fiir alle t € R

0 -500| = | [ ) - tonas] < [ 1500~ gl v < <.

Da ¢ nach Definition eine Linearkombination der Funktionen 1 1; ist, gilt

lim g(t) =0

[t|—o0

und es folgt die Behauptung. |
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Dass folgende Lemma verallgemeinert den Stetigkeitssatz von Lévy, indem statt fiir die schwa-
che Konvergenz endlicher Mafle ein Kriterium fiir die vage Konvergenz lokal endlicher Mafle
angegeben wird.
17.30 Lemma:

Es sei (pin)nen €ine Folge lokal endlicher MafSe auf R. Gilt fiir eine in 0 stetige Funktion g
und eine strikt positive Funktion h € C

lim [ e®@h(x)du,(x) = g(t)

n—oo R

fiir alle t € R, so existiert ein lokal endliches Maf p1, so dass ji, — p und

ot) = | ehia)duta) (17.1)

fiir alle t € R gilt.

Beweis:
Definiere die Folge von Maflen (fin,)nen durch dfi, = h dpy,, d.h.

/ln(A)Z/Ahdun (Ac®).

Dann sind alle fi,, endlich, da fi,(R) = ¢(0) < oo ist. Ihre charakteristischen Funktionen sind

/ eCh(x)dp, (z),
R
die nach Voraussetzung gegen die in 0 stetige Funktion g konvergieren. Nach dem Stetig-

keitssatz von Lévy 14.13 existiert ein endliches Mafl /i mit charakteristischer Funktion g und
N w A . 1 9~
fin, — fi. Wird nun dp = 5.dji, d.h.

ua) = [ i (aew)

definiert, so folgt wegen der Positivitéit von A fiir jedes beschrinkte Intervall 1

(1) Silg{h(lx)}ﬂ(f) < 00,

d.h. p ist lokal endlich.
Fiir eine beliebige Funktion f € Cy ist auch % € Cp und es folgt

lim/fdun: lim/fdﬂn:/fdﬂ:/fdu,
n—oo Jp n—oo g h R D R
also [, —— L.

Die Darstellung (17.1) folgt unmittelbar aus der Definition von p und daraus, dass g die
charakteristische Funktion von f ist. ]
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Beweis des Blackwell’schen Erneuerungstheorems:
Die Erneuerungsfunktion R ist monoton nichtfallend und rechtsseitig stetig, definiert also ein
MaB i auf R (auch Erneuerungsmaf} genannt), fiir A € B gilt damit

[i(A) = ZP(Sn € A).
n=0

Es wird nun eine Familie von Maflen i auf R durch g%(A) := fi(a + A) definiert (a + A :=
{a+z: x € A}) und gezeigt, dass

v 1
pt — =X (a—o0)
I
gilt. Speziell folgt dann

R(t) — R(t — h) = ((t — by 1]) = GE((~h,0)) = ;A«—h, 0)) =

==

(Fiir 4 = oo erhélt man jeweils die Konvergenz gegen 0.)

Zum Nachweis der vagen Konvergenz der (%) wird im Wesentlichen Lemma 17.30 angewendet
- allerdings auf die leicht modifizierten Mafle 7, 0%, die durch

7(A) = p(A)(—=A) und 9(A) = p*(A) + p*(-4) (A€ B)

definiert sind. Da fi(A) =0 fiir A C R~ gilt, ist das Grenzverhalten von % und 0% gleich.

Eine geeignete Funktion h zur Anwendung von Lemma 17.30 ist, wie noch zu zeigen ist, eine
Funktion h = hy + hg mit irrationalem Quotienten % aus Lemma 17.27, denn es gilt dann

. 1 -
lim [ e"h(z)dv®(z) = / e h(x)d\(z). (17.2)
@ IR HJR

Es verbleibt also noch, diese Identitdt nachzuweisen.

Zu diesem Zweck werden einige Hilfsmafle definiert. In Verallgemeinerung von ji =: fi; bzw.
v =: 1 werden Mafle ji; und 75 fiir s € (0,1) durch
fis(A):=) 5" P(Sp € A) und  7y(A) = fis(A) + fis(—A), AeB
n=0

definiert. Fiir s — 1— konvergieren die fi; vage gegen o (und damit auch 7 LN V), da
s—1—

fis(B) — [(B) fiir alle beschréankten B € B (vergleiche Satz 14.11).

Anders als fi sind alle fi; (und damit auch alle ), s € (0, 1), endliche Mafe mit fis(R) = 1.
Ist ¢ die charakteristische Funktion von X7, so erhélt man (™ als charakteristische Funktion
von S, und fiir s € (0,1)

o 1
= n- nzi
Ve nzos LA P

als charakteristische Funktion von fis und

ws(_t) + ws(t) = %(t) + ¢s(t) = 2Re(¢s)(t)
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als charakteristische Funktion von .
Der Grenzwert

1
t):= li )= ——
0(O) 1= lim ) = 1=
exisitiert zwar fiir ¢ # 0, ist aber nicht die charakteristische Funktion von fi, da zu g als
unendlichem Maf} keine charakteristische Funktion existiert.
Mit diesen Bezeichnungen gilt

17.31 Lemma:
Sei b > 0 beliebig und p = E[X;] < co. Dann ist Re()) A—integrierbar auf [—b,b] und fir alle
feCy gilt

mf

0, [
2 / 1) Relw) (0.

s—1—

b
lim / F0) Relih) ()t =

Der Beweis dieses Lemmas wird zuriickgestellt und es wird zunéchst der Nachweis der Iden-
titdt (17.2) fortgesetzt. Analog zu 7* werden die Mafle 7¢ durch

s

V3(A) :=Ds(a+ A) = i s"(P(S, —a€A)+ P(—-S,—acA) (AecB)
n=0

definiert. Die charakteristische Funktion von ¢ ist nach Satz 13.16

2e "% Re(1)s) ().

Mit der Bezeichnung hy(z) := h(x — t) ist hy(x) = eh(z). Unter Verwendung von Lemma
17.28 folgt damit

e}

/]Re’ xh(m)dﬁg(az):/]Rht(a;)dﬁg(x):/ 2e7 " Re(hs) (x) he(z)dx. (17.3)

— 00

Nun folgt (17.2) durch drei Schritte aus (17.3):
(i): Grenziibergang s — 1— auf der linken Seite von (17.3).
(ii): Grenziibergang s — 1— auf der rechten Seite von (17.3).

(iii): Grenziibergang a — oo auf der rechten Seite.

Zu (i): Es gilt

lim [ *h(x)di%(z) = / e (2)di® (). (17.4)
s—1— R R

Zum Nachweis sei € > 0 beliebig. Wahle nun N € N so grof}, dass

1
Zﬁ<€

n>N
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ist und s < 1 so grof}, dass

N . A~ N . ~

| eh@ain) - [ b <

—N -N
(Existenz von N und s folgt aus der Konvergenz der Reihe ) n—lg sowie aus 72 —— D%).
Auflerdem sind die Differenzen R(t + a) — R(t) fiir festes a > 0 durch eine Konstante
C, € R beschrinkt, wie man unter Verwendung des Erneuerungsarguments schlielen
kann. Dazu sei t + y der erste Erneuerungszeitpunkt in (¢,¢ + a). Es folgt

Rt+a)—R(t)=1+R(t+a)—R(t+y)=1+R(a—y) <1+ R(a) =: Cq,

speziell ist R(t + 1) — R(t) < C fiir alle t € R*. Damit folgt

n+1 n+1
/ dvé(z) < / dv(z) < C
C/

mit einer von n € Z unabhéngigen Konstanten C. Da iL(.CE) < 7z mit einer weiteren
Konstanten C’ gilt, folgt

/]R et h(z)di(z) — /R e h(x)di®(z)

IN

/_ J]VV ¢ty (2)di (z) — /_ J]VV ¢ty () d" ()

/ e h(x)do? (x)
R\[-N,N]

/n " e () dir? () /n " e () di (x)

+ / et h(z)di®(z)| +
R\[-N,N]

(o]
< 6—|—Z(
n=N

+

)

N

< e—l—C';;(/nanﬂg(m) L /n"“dﬁa(x)>
! CZNOOH [ anw|+| [ aw))

|
n=N

Zu (ii): Es wird b > 0 so gewihlt, dass [—b,b] den Triger von hy umfasst (hy € Cp, da h € Cp).
Wird nun in Lemma 17.31 f(x) = 2¢~"h(z — t) gesetzt, so folgt

0o b

liria 2e" Re(1hs ) (x)hy(2)dx = hr{l 2e" Re (15 ) (x)h(z — t)dx
s—1- ) _ s—1—=J_y

27 b —iax _ T
_ uh(—t)—i—/_b% Re (1) (2)h(z — £)d.
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Einsetzen dieser Identitét sowie von (17.4) in (17.3) liefert

b

ity ~q _21 o efiaz e T T — 7
/]Re h()di (z) = T h( t)+/ 2¢19% Re () (2)h(x — t)da.

—b

Formuliert man Satz 13.13 fiir allgemeine Fourier—Transformierte, so erhélt man

1 [ .
M) = o / ¢ty () dar

und damit

b (2)di® (x _1 Ooeit‘”Ax T ’ e T Re x)h(x — t)dx
/]Re h(z)dv®(z) = / h(z)d. +/ 2 Re(v)(z)h(x — t)dx. (17.5)

K J—so —b

Zu (iii): Es wird nun der Grenziibergang a — oo betrachtet. Das letzte Integral entspricht der
Fourier—Transformation einer nach Lemma 17.31 A-integrierbaren Funktion und nach
Lemma 17.29 verschwindet es beim Grenziibergang.

Damit ist (17.2) gezeigt und zum vollstindigen Beweis des Blackwell’schen Erneuerungstheo-
rems bleibt nun noch der Beweis von Lemma 17.31 nachzutragen.

Beweis (von Lemma 17.31):

Im ersten Schritt wird die A-Integrierbarkeit von Re(v)) auf [—b,b] gezeigt. Wegen ¢ = ﬁ
und p(t) # 0 fiir ¢ € [—b,b] \ {0} ist Re(y)) auf [—b,b] \ {0} stetig und es geniigt die
Integrierbarkeit auf einem Intervall [—e,e] fiir ein beliebig kleines ¢ > 0 zu zeigen. Hier
wird e so klein gewihlt, dass |p(t) — 1] > % fiir alle t € [—e,¢€] ist. Dies ist moglich, da
limy_¢ % = ¢'(0) = ip (vergleiche Satz 13.16(c)) gilt. Dann ist

€ e € Re(l—7
/_sRe(w)(t)dt:/_aRe(l_tp(t))dt:/_a |1(i go((i;\(;)dtzo

Re(1 —o)(t ) g — 4 [ E[1 — cos(tXy)]
t2 w o $2

und
dt.

Re(w) (1)t < /

—€

Nach dem Satz von Fubini ist

cE[l— X €1 — X eX1 —
[ C;S(t U, _ g [/ C?;(t l)dt} & [\Xﬂ/ thStdt]
0 0

*© 1 - t
E|Xi) | ——pdt < .
0 t2

IN

Im zweiten Teil des Beweises muss noch die Integralformel nachgewiesen werden. Dazu wird

fiir beliebiges f € Cy

— /f £) Re(t) 1)dt = /f (1_S(p 1i@>dt
- /_bf“)u:g;n Re( ) w
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definiert. Zu zeigen ist
lim I(s,b) =0.

s—1—
Der Integrant von I(s,b) konvergiert auf [—b,b] \ [—¢,¢] fiir s — 1— gegen 0, also gilt
I(s,b) — I(s,e) =5 0.

Daher bleibt nur I(s,¢) fiir ein beliebig kleines € > 0 zu untersuchen. Wegen

p(1 — sp) (1 -9) 44

) ) =Re [ ) () = (s— 1 ) (¢

Re (“0=2) 0 =re (=2 ) 0~ - 0re (122 ) )

ist I(s,e) = I1(s,e) + I2(s,€) mit

Il(s,e):/sf(t) s 1 Re<90(19")>(t)dt

P T T

und

i (s —1)? 2

B2 == [ 10 oo Re(w) ).

—e 1= sp(t)]
Wegen |1 — sp(t)] > 1 — s ist der Integrand von Is(s,e) unabhéngig von s beschrinkt und
mit dem Satz von der majorisierten Konvergenz folgt lim,_,1 I2(s,e) = 0 fiir alle € € (0, b], so
dass nur noch der Term I;(s,¢) zu untersuchen ist.
Wihle dazu 7 € (0,1) beliebig und definiere die Funktion g

|1 — se(t)]”

g(S,t) = (1 _ 8)2 +/,62t2

und die auf [—¢, €] stetige Funktion h durch

h(t) = — f(£) Re <“’(11__;)> (t), t#0 und h(0) = F(0).

Die Stetigkeit von h kommt dabei aus

t) _¢'0)
0 J0) "

. 1—¢
lim
®

t—01 —

Damit gilt dann

a0 1—s _ [T ht(1-s) 1
Lils,e) = /5 (st (92 2™ = / oo t(1— o) 1+ 2"

— =

)

Erneute Benutzung von ¢'(0) = ip liefert

lim lim g(s,?) — iy | fg)l _ 190(2)|
t—0s—1— t—0 1 t 1

=1,

was die Existenz eines ¢ € (0,b) zeigt, so dass fiir alle s € [1 —¢,1) und ¢t € [—¢,¢] die
Ungleichungen
h(t) 1+n

D T

1-n<g(s,t)<1+n und ——h(0)<
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gelten. Fiir s € [1 — ¢, 1) folgen

1 o dt 1 h(0 1—nmh(0
Il(s,g)g”h(())/ =T O md  ns,e) > L=nTMO
i oo LA pfts 1= p L+n n
Da 1 > 0 beliebig vorgegeben war und h(0) = f(0) ist, folgt
lims o 1(s,b) = =0
1
und damit die Behauptung. |

17.32 Bemerkung:
Das Blackwell’sche Erneuerungstheorem kann auch fiir den arithmetischen Fall formuliert
werden. Mit p := E[X;] und Gitterkonstante d gilt hier

=

n—oo

lim (R(nd) — R(nd — 0)) = —.
1
In Vorbereitung auf den Fundamentalsatz der Erneuerungstheorie erldutern wir zunéchst den

Begriff der direkten Riemann—Integrierbarkeit.

17.33 Definition (direkte Riemann—Integrierbarkeit):
Es sei g eine reellwertige Funktion auf RY. Fiir ein § > 0 und n € Ny werden

D = (0-n,6-(n+1)],

mé = inf{g(t)|t € I} und M = sup{g(t)|t € I°},

o(8) = 6. mj und 7(0) = 6- Y M)
n€Ng n€Np

gesetzt. g heifst direkt Riemann—integrierbar, falls o(§) und 5 (3) beide fir alle § > 0 absolut
konvergieren und

lim((6) — 2(9)) =0

ist. Im Folgenden bezeichne R die Menge der direkt Riemann—integrierbaren Funktionen auf
RT.

Bemerkung:
Ersetzt man den Definitionsbereich von g durch ein Kompaktum, erhélt man den Begriff der
gewoOhnlichen Riemann-Integrierbarkeit.

17.34 Beispiel:
e Essei g(x) :=e ®, z € RT. Dann ist

md = inf{g@)|t eI’} = g(6-(n+1)) = e+,
M = supl{g(t)te I3} = g(6-n) = e

126



17.4. Stationidrer Zustand

Die beiden unendlichen Reihen ¢g(d) und 7 (9) sind absolut konvergent:

2 = 3 Tt 5 () =t
n€Ng neNg —e
70) = oy e =a Y () = b
n€Ng neNg 1—e¢

Es gilt weiter:

. 1) de 0 . 61 —e 0
— = lim =
51_1)1(1) 1—e9 1—e9 5—0 1—e9 ’

d.h. g(x) ist direkt Riemann-integrierbar (vgl. auch Satz 17.36).
o Es sei

o0 hn—i—%(m—n), fir -5 <z-n<0
f(@) '—;I[_@,“gb](ﬂf—”)‘{ B — P (g — ), fir 0 <z —n <

Wn

(x)
A

h,

Wh

Der Graph der Funktion f, besteht aus lauter Dreiecken. Das n-te Dreieck beginnt
dabei bei n — 3, erreicht bei n seinen héchsten Punkt (nédmlich (n, h,)) und endet bei

n+ 5. Es sei w, <1, d.h. die Dreiecke iiberlappen sich nicht. Es sei w,, —— 0 und
n—oo

hp, —— oo mit der Bedingung > >° | hpwy, < co. Dann gilt:
n—oo

00 o0 1
/0 f(z) dx = Z ihnwn < 00,
k=1
d.h. f ist Riemann—integrierbar. f ist aber nicht direkt Riemann—integrierbar, da:

a(l)=1- Z M} = Z sup{f(t)|[t € (n,n+ 1]} = Z hy, = 0.

n€lNg n€Ng neNg
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17.35 Satz:
Es sei g eine reellwertige Funktion auf RY. Ist g direkt-Riemann-integrierbar, dann ist g auch
uneigentlich Riemann-integrierbar auf R und es gilt:

li 0) =lima(§) = t)dt
lin o(5) = lim7(8) = [ g(t)at,
R+
wobei fIR+ g(t) dt das uneigentliche Riemann-Integral von g bezeichnet.

Beweis:
Aufgrund der Voraussetzung gilt () < 0o, o(d) < oo sowie

0 = lim(5(5) — o(5)]
T 5 s 5

“im . =)

>11m Z - { }
0 imo<a

Womit gezeigt ist, dass g zumindest iiber [0, a] Riemann-integrierbar ist.
Dad(d) < ooV 6 > 0 ist, kann geschlossen werden, dass zu jedem ¢ > 0 ein a := a(e) existiert
mit Y, , M} < e. Fiir alle § > 0 gilt deshalb:

oo Moo= > My-S<) My-l<e
nin-6<a nln-6>a n>a
(i) Da g direkt-Riemann-integrierbar ist, gilt:

lim 7 () =
5%0() oo < 00

bzw.
log —a(0)| <e Vo <dp.

(ii) Da g Riemann-integrierbar ist auf [0, a] gilt:

ZM56 / t)dt| <eVo <oy

niné<a

(iii) Zusammenfassung:

a a

ao—/g(t) dt| = oo —5(@) +5(0)— 3 MIs+ 3 M;z-a—/g(t) dt
0

0 n|né<a niné<a

IN

o0 —(0)| + |[F(0) = > My-8|+| Y. M6 —/g(t)dt
0

niné<a niné<a

<3¢ V6 < min(do,dl, 1)
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17.36 Satz:
Ist g > 0 nichtwachsend, dann gilt g € R genau dann, wenn g Riemann—integrierbar ist.

Beweis:
Es wird angenommen, dass g nicht wachsend und Riemann-integrierbar ist.

[e.o] o)

oo>/g(t)dtzz / g(t)dtZZg((n-i—l)é)'(S

(

0 =0 nd n=0

=63 glln+1)8)=6-Y_ md =0(d).
n=0 n=0

AuBlerdem gilt:

N

N N
SMy5=Y mb-5=05-> [g(n-6) —g((n+1)-9)]
n=0 n=0 n=0

=6-[9(0) = g(N +1)] —— - [g(0) — g(o0)] < oo.

N—oo

Daraus folgt:
7(0) <00 <= g(d) < o0,
7(0) — a(0) <d-[g(0) — g(o0)].

Schlussfolgerungen:

(i) o(0) < o0,

(ii) 7(0) < oo,

(iii) a(d) —a(d) — O fiir § — 0.
Die Umkehrung folgt aus Satz 17.35. |

17.37 Satz:
Ist g Riemann-integrierbar auf [0,00) und g < z, z € R, dann ist auch g € R.

Beweis:
Siehe S. I. Resnick: ,,Adventures in Stochastic Processes”, Birkhéuser, Bosten, 1992 in Kapitel
3.10.

17.38 Satz (Fundamentalsatz der Erneuerungstheorie (Smith, 1955)):
Es sei (Xp)nen, ein (einfacher) Erneuerungsprozess mit der Verteilungsfunktion F, Erwar-
tungswert p := E[X1] und Erneuerungsfunktion R(t). Auferdem sei g € R.

a) Ist F nicht arithmetisch, dann gilt

1OO
= [g(@)de , p<oo
Ko

0 , U= 00.

lim (R * g)(t) =

t—o00
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b) Ist F' arithmetisch mit der Gitterkonstanten d, dann gilt fir alle ¢ > 0

d
— c+nd) , p<oo
T (R g)etnd) = p o2, T

0 , W= 00.

Beweis:

Der Beweis soll hier nur fiir den nichtarithmetischen Fall gefithrt werden. Dazu seien g eine
direkt Riemann-integrierbare Funktion und (fiir § > 0) IS, md und M? wie in Definition
17.33. Dariiberhinaus seien

gs(z) := imilzg (z) und  g¢(x):= i M1 ().
n=0 n—=0
Mit dieser Notation ist
o(6) = /0 " gs@)de, () = /O " ()
und gs(z) < g(z) < ¢°(z) fiir alle z € RT. Withle nun 6 € (0,1) und N € N so groB, dass

> |

n>N

<0

ist.

Die Differenzen R(t + a) — R(t) sind fiir festes a > 0 unabhéngig von ¢t € R durch eine
Konstante C, beschriankt, wie schon im Beweis des Blackwell’schen Erneuerungstheorems
gezeigt wurde. Damit folgt

PR = ng(R(t—n&—R(t—(nH)a))
n=0

< i M?(R(t —nd) — R(t — (n+ 1)8)) + Cy.
n<N

Unter Verwendung des Blackwell’schen Erneuerungstheorems ergibt sich damit

limsup ¢® * R(t) < Z M? tlim (R(t—nd) — R(t— (n+1)0)) + Cyd

t—o0 n<N

00 2 2
- EE M3+Ca5§1/ Pyr+ v =D Lo
n= o p pooop

Daraus folgt

5) o2 1 [
limsup g * U(t) < lim limsupg® * U(t) < lim <J() +—+ C’a5> = / g(x)dx.
t—o0 =0+ t—oo 6—0+ 2 H Kt Jo

Entsprechend erhélt man auch
1 oo
liminf g« U(t) > / g(x)dx,
o0 K Jo

was zusammen den Fundamentalsatz im nichtarithmetischen Fall liefert. [ |
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17.39 Lemma (Cesaro s Lemma):
Es sei (Bn)nen eine reellwertige Zahlenfolge mit

lim 3, =0.
n—oo
Dann gilt:

1 n
lim — - ﬁk = 0.
n—oo N,
k=1

Beweis:
Aufgrund der Voraussetzung existiert eine Konstante K mit |3,| < K V n € N. Auflerdem
existiert zu jedem € > 0 ein ng € N mit |5,]| < ¢ V n > ng. Damit wird

Pi+ ...+ Bng

n

Bro+1+ -+ Bn
n

_l’_

n

ng- K n-—n
<0 + 0~5<2€

n n
fiir fast alle n. [ |

17.40 Satz:
Es bezeichne (Xp,)nen eine (einfache) Erneuerungsfolge mit Lebensdauerverteilung F. Ist F
nicht arithmetisch und E[X1] < oo, dann gilt:

R(t) 1

lim —~ = .
ot E[Xi]

Beweis:
Es sei 8, := R(n) — R(n — 1), n € Ny. Dem Blackwell schen Erneuerungstheorem entnimmt
man

1
n T S 3¢
o B
Mit Hilfssatz 17.39 folgt dann
1 1 n 1 n R(n)
= lim —- — lim = - _ 1) = i MM
R T R

Es bezeichne |z]| die grofite ganze Zahl < z. Da R monoton nicht fallen ist, gilt wegen
[t] <t<[t]+1
R([t]) < R(t) < R([t] +1)

bzw.

1] R(t) _ R@) _ R +1) 1] +1
t-t]  — ot —  |t]+1 t
Indem man den Grenziibergang ¢t — oo durchfiihrt, erhélt man:
1 R(t) 1

< lim —= < .
E[X1] t—oo t E[Xﬂ
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17.41 Satz:
Ist Ny die Anzahl der in [0,t] gelegenen Erneuerungen eines Erneuerungsprozesses Sy und ist
p=E[X;] =E[S; — S;_1] < o0, so gilt

Beweis:
Die Aussage bezieht sich direkt auf Ny, nicht auf E[NV;]!
Es ist nach Definition Sy, <t < Sn,+1 und damit

%< t <SNt+1_SNt+1‘Nt+1‘

i — 17.6
Ny = Ny Ny Ne+1 N (17.6)
Ferner gilt fiir alle n € N
lim P(N; > n) = lim P(S, <t)=1
t—o0 t—o0
also Ny — oo fiir ¢ — oo fast sicher. Daher gilt
N +1
N, P 1 P-fs.
in Gleichung (17.6). Mit Sy, = X1 + ... + X, folgt
S Xi4+...+X
oNe A F AN (17.7)

N N

Alle Lebensdauern X; haben nach Voraussetzung dieselbe Verteilung mit p = E[X;] < oo.
Wende daher auf die rechte Seite in Gleichung (17.7) das starke Gesetz der grofien Zahlen an:

lim SN, — lim Xi1+...+Xn, ~ lim Xi+...+ X, _
t—o0 Nt  tooo Nt  nsoo n K

P-fs.

Fiir t — oo liefert nun (17.6) fast sicher

d.h.
lim — =p P-fs.

In einem Erneuerungsprozefl gilt nach Voraussetzung P(X; = 0) = F(0) < 1, d.h. esist u > 0
und mit Kehrwertbildung folgert die Behauptung. [ ]

17.42 Satz (Grenzverteilung der Vorwirtsrekurrenzzeit):
Ist X1 nicht arithmetisch verteilt und p = E[X1] < oo, dann gilt fir die Grenzverteilung der
Vorwdrtsrekurrenzzeit

L F)dy L vz0
Ko

0 , v <0.

lim P(V; <w) =

t—o00
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Beweis:
Die folgende Gleichung stammt aus dem Beweis zu Satz 17.21:

P(Vy<v) = F(t+v)-— +/ (t+v—y)—F(t—y)) dR(y)
0
= F(t+v)—F(@t)+ [ (1-F(t—y)) (1-F(t—v—vy)) dR(y).
o focrecm - i

Da F(t +v) — F(t) — 0 fiir t — oo folgt aus dem Fundamentalsatz der Erneuerungstheorie:

1OO 1OO
lim P(V; <w :/1— d—/ F(v+ dy
Jim P(V; <) A v= Y)
0
1]@ F(y)) d
= — [(1-F(y)) dy.
W

0

17.43 Satz (Erwartungswert Grenzverteilung der Vorwirtsrekurrenzzeit):
Ist X1 nicht arithmetisch verteilt mit u := E[X1] < oo und o2 := Var[Xi] < oo, dann gilt
fiir den Erwartungswert E[Vy| der Grenzverteilung der Vorwdirtsrekurrenzzeit

. o? + 12
B[V = lim B[Vi) = =

Beweis:
Satz 17.42 gibt die Verteilungsfunktion von V,, an. Deren zugehorige Dichte existiert und ist
gegeben durch

PV <) = 5 (1= F))

Hieraus folgt fiir den zugehorigen Erwartungswert:
Vi 1
E[Vyx] = /:U(l — F(z)) dx.
; 2
Fiir eine nichtnegative Zufallsgrofie Y gilt bekanntlich
E[Y"] = 7‘/3:7"1(1 — F(2)) dx.
0

Folglich ist
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17.44 Satz (Grenzverteilung der Riickwirtsrekurrenzzeit):
Es sei X1 nicht arithmetisch—verteilt und sei E[X1] < oo, dann gilt fir die Grenzverteilung
der Riickwdrtsrekurrenzzeit
1 u
— (1 —F(x))d >0
i Py <) — 4 (0 FlaDde

t—o00

0 , u<O.

Beweis:
Fiir die Verteilungsfunktion der Riickwértsrekurrenzzeit gilt

P(U; < u) = /(1—F(t—x)) dR(z)  0<u<t.

t

Es wird
_J1-F(2) ,0<z<u
g(Z)—{ 0 722,“

gesetzt und der Fundamentalsatz der Erneuerungstheorie angewandt:

t o) u

1 1
tlim P(Ui<u) = tlim g(t—z) dR(z) = tlim — [ g(x)dx = — /(1—F(m))dm.
0 K 0 a 0
|
17.45 Satz:
Es seien (X,)nen ein (einfacher) Erneuerungsprozess mit u = E[Xi] < oo und o? :=

Var(Xi] < co. Dann gilt fir den zugehirigen Zihlprozess (Ni¢)ier+:

Ny —t-pt
lim P (t E_ < a:) — ®(z), z€R,
t—o00
wobei ®(x) die Verteilungsfunktion der Standardnormalverteilung bezeichnet, d.h. Ny ist asym-
ptotisch normalverteilt mit dem Erwartungswert E[Ny| = t/p und der Varianz Var[N; =
t-o?/ud.

Beweis:
Es bezeichne (Sy,)nen, den mit (X,,)nen korrespondierenden Erneuerungsprozess. Da die auf-
einanderfolgenden Lebensdauern X; eine i.i.d. Folge bilden, geniigt S,, dem zentralen Grenz-
wertsatz:

nli_)rgOP (Sn\/_ﬁngu < ac) =®(z), z € R.

Mit der Festlegung
Et):=x-t-o2 pd+tu?

gilt

Ny —tu~t
Pt <o) = POV, < k(1))
to—2'u/_3
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Aus der Gleichwertigkeit der Ereignisse {V; < n} und {S,,+1 > ¢} kann gefolgert werden

Sikty+1] — 1 (k) +1) S £(1)
o-Vk(t)+ 1 ’

P(Ny < k(t)) = P(S|ky41) > t) =P (

wobei
_ t—p- (k(t)+1)

o-\Ek(t)+1

£(t)
ist. Da aber

t—u-le-/t-o2-u=3+t-u1+1
lim €(t) = lim L1 ooptrtpm 4

t—o0 t—o0 o- k(t) +1
. o—xJortpt—p . —x(e?to V2ot
= lim = lim
=0 o /h(t) +1 t=oo (k(t) + 1)V k(1)
g 2 71/2
=—z-—- (0 cu=—x
e

gilt, folgt schlieflich
N, —t- L S — - (k(t) +1
tim P ML ) g p (SO T RO
t—o0 t-o?-pu3 t—00 o-Vk(t)+1
=1—-&(—z)=d(x), zcR".

17.5 Anwendungsbeispiel 2

Problem:

Fiir eine Fabrikation benttigt man 200 gleichartige Vorrichtungen. Aus vorangegangenen Pro-
duktionen weifl man, dass die Vorrichtungen eine mittlere Lebensdauer von 1000 Stunden
haben. Eine statistische Analyse ergab auflerdem, dass die Lebensdauern einer 2-Frlang—
Verteilung geniigen. Die Vorrichtungen sind in jedem Monat 500 Stunden lang in Betrieb.
Man moéchte nun gerne wissen, wie viele Vorrichtungen man im ersten, zweiten, dritten usw.
Betriebsmonat ersetzen muss.

Losung:

Modellannahmen: Die Lebensdauern der einzelner Vorrichtungen sind unabhéingig vonein-
ander verteilt nach Erlang(c,2) mit Erwartungswert 1000 Stunden. Die Zeit wird in Ein-
heiten von 1 Monat gemessen, was einer Betriebsdauer der Vorrichtungen von 500 Stunden
entspricht. Dann ist 2 die erwartete Lebensdauer, % = 2, also o = 1. Fortan sei V; die Anzahl
der Erneuerungen einer festen Maschine im Zeitintervall (0,¢] mit einem ¢ > 0. T, mit k € N
bezeichnet den Zeitpunkt der k—ten Erneuerung dieser Maschine. Dann ist

T, 2 Erlang(a, 2)¥* = Erlang(a, 2k) und E[N] = Z Fy(t), teRT,
k=1
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wobei Fy, die Verteilungsfunktion von T}, ist. Bezeichnet man die Dichte von Fj, mit f, so gilt

Z/fk(S) ds = /ka(s) ds, teR".
0 0

k=1 k=1

Hierbei ist

2k1

oo 2% 0o
_ Zk: 1 e — —as +
= = R™.
ka > o’ > G e
k=1 k=1
Beachtet man, dass e* —e % =3 %( - (=D =22 %},C fir £ ungerade ist, so folgt
[e.e]
- 1
; 2311 —) =3 (em — efx) = sinh z,

also

E[N] =

t
7015 « 72043 aQ —2as
_ - ds = — —
"2 / "7 2 ( )
0

1 —2«x
<t+2a(e 21ﬁ—1)), teR*.

Hier war a = 1, also gilt mit ¢ > O:

DO R O ——_
o
m\
Q
vy
N =
—~
)
Q
w

1 1
E[Nt] = 5 <t+2(€_2t—1)> s t€R+

Fiir t — oo erhilt man mit dem Satz von Blackwell:

lim (E[N,] — B[N,_1]) =

t—o00 2

Die erwartete Gesamtzahl von Erneuerungen in (0,t] ist dann (wegen der vorausgesetzten
Unabhéngigkeit)

1
200 - E[N;] = 100 - <t + 5(6_% - 1)) , teRT.
Die asymptotische mittlere Anzahl von Erneuerungen in (¢ — 1,¢] ist

200 - E[N; — N;_1] = 100.

t # Erneuerungen | # Erneuerungen
(Monate) in (0, ] in (t—1,¢
1 56.77 56.77
2 150.92 94.15
3 250.12 99.20
4 350.02 99.90
5 450.00 99.98
6 550.00 100.00
00 100.00
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17.6 Modifizierte Erneuerungsprozesse

Aus verschiedenen Griinden erscheint es zweckméafig, fiir die erste Erneuerungszeit eine andere
Verteilung als fiir die iibrigen Erneuerungszeiten zuzulassen. Denn nicht immer kann man
die Beobachtungszeitpunkte so wihlen, dass der Ursprung der Zeitrechnung mit der ersten
Erneuerung zusammenfllt.

17.46 Definition (modifizierter Erneuerungsprozess):

Sind X1, Xo, ... unabhdingige nichtnegative Zufallsgrofien jeweils mit den Verteilungsfunktio-
nen Fi(t) := P(X; <t) und F(t) = P(X; <t) firi=2,3,... und F(0) < 1, so heifit die
gemdf

Sy =0 und S = ZXk
k=1

gebildete Folge (S))nen, ein modifizierter Erneuerungsprozess.

Fiir die modifizierten Erneuerungsprozesse lasst sich nun eine analoge Theorie aufbauen, wobei
sich zeigt, dass die Verteilung der ersten Erneuerung gar keine so grofie Rolle spielt. Daher
sollen im Folgenden nur Ergebnisse angegeben werden:

Fiir die Erneuerungsfunktion eines modifizierten Erneuerungsprozesses gilt

1,t>0

/ _ o (k—1)= + ; 0% -
R(t)—E[Nt]—;Fl*F (t), teR™, wobei F (t)'_{(),t<0.

R'(t) geniigt der Erneuerungsgleichung
R(t) = Fi(t)+ (F+ R)(t), teR"

Die Verteilung der Vorwértsrekurrenzzeit eines modifizierten Erneuerungsprozesses lautet

t+v

P(V/ <v)= /“‘F(Hv—y))dR’(y) , v>0
t 0 , v <0.

Somit gilt fiir den stationéren Zustand

J1—=F(z))dz , v>0 A E[X3] < oo
0
0 ,7)<0\/E[X2]:OO.

lim P(V/ <v) =< E[X,]

t—o0

Ein analoges Resultat gilt fiir die Riickwartsrekurrenzzeit:

0 , u<0
t
PU} <u) = /(1—F(t—y))dR’(y) ,0<u<t
t—u
1 , u >t
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Der stationdre Zustand der Riickwartsrekurrenzzeit ist

1 u
1-F d > E[X
lim P(U] < u) = E[Xg]({( (@))dz , u>0 A E[Xa] < oo
o 0 , u<0 Vv E[Xy] = o0
Entsprechend gilt:
h R'(t) 1
1. / _ / _ _ 1 R(t) _ |
tinQoR (t)— R'(t—h) E[X)] und Jim = B

Stationdre Erneuerungsprozesse

Ein spezieller modifizierter Erneuerungsprozess ist der stationédre Erneuerungsprozess. Wahlt
man Fj(z) := P(Vx < z), so entspricht das der Betrachtungsweise, dass zur Zeit ¢ = 0
der Erneuerungsprozess schon ,,unendlich” lange gelaufen ist. Man vermutet, dass in dem so
modifizierten Erneuerungsprozess die asymptotischen Aussagen von Anfang an gelten, dass
also der Prozess in diesem Sinne ,,stationér” ist.

17.47 Definition (stationir):
Ein modifizierter Erneuerungsprozess heifit stationdr, wenn X1 und Vi dieselbe Verteilung
besitzen.

17.48 Satz:
Es seien F(0) = 0, F keine Einpunktverteilung und E[X3] < oo. Dann gilt: (S])nen, ist
genau dann stationdr, wenn

t
R(t) =
(t) E%
fir alle t > 0 gilt.
Beweis:
Es gilt fiir die Laplace-Transformierte von R':
— IC
(o) = )
1—-F(0)

Ebenso gilt nach Voraussetzung

R0 = 55 0/ (1= F(y) dy

Es folgt
ﬁl(e) . /eit9 dFl(t) = E[;(Q] /eite(l _ F(t)) dt
0 0

138



17.7. Die Uberlagerung von Erneuerungsprozessen

und mit partieller Integration

— 1 7 1 . 1
Fl(0) = — | e d(1 - F(t) — =
0 = g |- [ e a0 - o) - 5
0
1 (71 1
= —e'" dF(t) — —
E[X3] /z‘@e -7
0
1= F(9)
 i0E[Xo)]
Somit folgt insgesamt
— 1 , t
= t) = .
FO="3mm,) — "= g
[ |
17.49 Satz:
Fiir einen stationdren Erneuerungsprozess gilt
L J1-F)dz , v>0
PV <v)=¢ E[X]y 0TS
0 , v<0.
Beweis:
t+v
PV <o) = [(-Fleto-y)dr(
t
1 t+v
= 1—F(t -
sy [ (- F+o—u) dy
t
1 / (1 - F(a) d
= — F(z)) dz.
E[X5]
0
[ |

17.7 Die Uberlagerung von Erneuerungsprozessen

Eine Uberlagerung oder Superposition von Erneuerungsprozessen liegt vor, wenn n > 2

unabhéingige Erneuerungsprozesse (Nt(i))teT, i = 1,...,n gleichzeitig laufen. Der Prozess
(NZ)er mit

NE =S N (17.8)
i=1
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heifit der zugehorige Uberlagerungsprozess. Verteilungen und Parameter des Uberlagerungs-

prozesses werden fortan mit einem grofien Sigma (X) gekennzeichnet. Die Uberlagerung von
Erneuerungsprozessen ist deshalb von Interesse, weil man den Prozess der Anrufwiederholung
als Uberlagerungsprozess von einfachen Erneuerungsprozessen auffassen kann. Eine besondere
Rolle spielt dabei der Poissonprozess.

17.50 Definition (Poissonprozess):

Ein Poissonprozess (Yi)ier ist ein Prozess mit unabhdingigen Zuwdichsen fiir den Yy = 0 fast
sicher gilt und dessen Zuwdchse (Y; —Ys) (0 < s < t) eine Poissonsche Verteilung mit dem
Parameter Ay — Ay besitzen,

ke - (At - As)
k!

wobei Ay eine nichtnegative, nichtabnehmende Funktion von t ist. (Yi)ier heiffit homogen,
wenn Ay = Xt (A > 0) gilt, andernfalls inhomogen.

P((Y; —Yy) = k) = (Ay — Ay) - (k€N 0< s <t), (17.9)

17.51 Satz:

Es sei (X,)nen eine einfache Erneuerungsfolge mit Verteilungsfunktion F(z) := 1 — e * fiir
x >0 und F(z) = 0 fir x < 0. Der mit (X,)nen assoziierte Erneuerungsprozess ist ein
homogener Poissonprozess mit Parameter \.

Einen Beweis fiir diesen Satz findet man in der Monographie von J.W. Cohen (1969).

Die Bedeutung des Poissonprozesses fiir die Erneuerungs— und Warteschlangentheorie wird
durch den nachfolgenden Satz herausgestellt. Er besagt, dass bei der Uberlagerung von un-
abhéngigen, identischen einfachen Erneuerungsprozessen im Allgemeinen die Eigenschaft der
Einzelprozesse (z.B. die Unabhéngigkeit und die Verteilungsgleichheit der X,,) verlorengehen.
Die mathematische Analyse, aber auch die Simulation der aus der Superposition beliebiger
Erneuerungsprozesse hervorgehenden Punktprozesse erfordern einen grofien Aufwand. Aufler-
dem ist dieses Thema in der Literatur noch nicht erschépfend behandelt worden, so dass der
Gestaltung der Wiederholungsprozesse gewisse Grenzen gesetzt sind.

17.52 Satz:

Gegeben seien n > 2 unabhdngige, identische einfache Erneuerungsprozesse mit der Vertei-
lungsfunktion F(x). Es wird vorausgesetzt, dass F(x) keine Gitterverteilung ist. Dann gilt:
Der zugehirige Uberlagerungsprozess ist genau dann ein Erneuerungsprozess, wenn die Ein-
zelprozesse (und damit auch der Uberlagerungsprozess) homogene Poissonprozesse sind.

Beweis:

,=: Die Aussage ist in einem Satz enthalten, der bei J.L. Doob (1967) aufgeschrieben ist.
Danach ist ein Erneuerungsprozess (allgemeiner noch ein Punktprozess) genau dann ein
homogener Poissonprozess, wenn fiir jede endliche Menge von punktfremden Intervallen
(ui, t;], i =1,..., k gilt:

k k -
P (ﬂ(Ntz — Nui = mz)) = H M . efk(tifu") (m, € No; A > 0).

; : m;!
=1 =1
(17.10)

Die zu (17.10) analoge Formel fiir den Summenprozess (N;*);er kann wegen der Un-
abhéngigkeit der Einzelprozesse leicht berechnet werden. Man stellt fest, dass man in
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(17.10) lediglich den Parameter A durch n\ ersetzen muss. Also ist (N;*)er ein Pois-
sonprozess mit dem Parameter \> = n\.

»,<=": Da die Einzelprozesse identisch sind, werden ihre Parameter und Verteilungen im wei-
teren Text nicht indiziert. Es ist

woraus

folgt. Es ist dann aber auch

00 00 n

- ro) 4y - (E[j(]) | Ja-rwyay) . (17.11)

v v

In Gleichung (17.11) darf 1 — F>(y) durch (1 — F(y))" ersetzt werden, denn es gilt:

P(XP>y)=P (N;U —0,..., N = o) = (P(X; > y)" = (1 — F(y))"

Differenziert man (17.11) nach v und potenziert beide Seiten mit 1/(n — 1), so erhélt
man:
1-Fv)=w- /(1 —F(y)dy, w:= "_\1/71 -E[XT] /(E[X1])". (17.12)

v

Aus (17.12) gewinnt man das Anfangswertproblem

d
%G(U) =—w-GW), G(0)=1, (17.13)
wobei G(v) := 1 — F(v) gesetzt wurde. Die Losung von (17.13) aber ist G(v) = e™“".
Die Behauptung folgt jetzt aus Satz 17.51.

|

17.8 Abbrechende Erneuerungsprozesse

In den zuriickliegenden Abschnitten wurde stets vorausgesetzt, dass die Lebensdauervertei-
lung F eine eigentliche Verteilungsfunktion darstellt (d.h. limy_,o, F(t) = 1). Fiir weitere
Zwecke erweist es sich als zweckméfBig, den Begriff des Erneuerungsprozesses etwas allgemei-
ner zu fassen und lim; .o F'(t) < 1 zuzulassen. In diesem Fall kann es vorkommen, dass der
Erneuerungsprozess nach einer zufilligen Zeit abbricht, d.h. das

sup Ny < 00
teR+

gilt.
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17.53 Definition (rekurrent, transient, periodisch):
Es sei (X,)nen eine (einfache) Erneuerungsfolge mit Lebensdauerverteilung F. (X,,)nen heifSt

rekurrent, wenn tlim F(t) =1 ist,
—00

transient, wenn tlim F(t) <1 ist,
— 00

periodisch, wenn F arithmetisch ist.

aperiodisch, wenn F arithmetisch ist mit d = 1.

Es wird

N :=sup NV;
teR

gesetzt, dann gilt
P(N=k)=[1-F(x)]-F(x)*  (k=0,1,2,...).

Die Grifle
L :=sup{S, | S, < oo}

wird als Lebensdauer eines transienten Erneuerungsprozesses bezeichnet.

17.54 Satz:
Es bezeichne (Sp)nen, eine (einfache) Erneuerungsfolge mit Lebensdauerverteilung F und
Erneuerungsfunktion R. Dann gilt:

P(L<t)=1—F(c0)+R(t)-[l — F(0)], teR".

Beweis:

PL>t)=P(L>t|t<X;<o0)+P(L>t]|X;<t)
t
P(L>t|X1::r)dF(a:)+/P(L>t\X1:x)dF(x)

0

“\8 “\8

1dF (z) + /P(L >t —1x)dF(x)
0

= F(c )+ [ P(L>t—2)dF(z), teR".

o —

Die Losung dieser Erneuerungsgleichung ist

P(L>T)=F(c0 )+ F(t —z)]dR(x)

o\ﬁ

= F(00) — F(t) + F(00) - R(t) — | F(t —x)dR(z), teRT.

O\_,H
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Da die Erneuerungsfunktion der Gleichung
R(t) = F(t) + (F+ R)(t), t€R*,

bzw.
(F+R)(t) = R(t) — F(t), teR",

geniigt, erhdlt man

P(L >t)=F(oo) — F(t) + F(o0) - R(t) — R(t) + F(t)
= F(c0) 4 [F(o0) — 1] - R(t), te€RT,

bzw.
PL<t)=1—-P(L>t)=1-F(c0)+ [l —F(0)]-R(t), teR".
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Kapitel 18

Regenerative stochastische Prozesse

Beobachtet man ein Warteschlangensystem (z.B. die Warteschlangen vor den Check—In—
Schaltern auf einem Flughafen oder vor den Fahrkartenschaltern in den Service—Zentren der
Bahn), so stellt man fest, dass die Systeme von Zeit zu Zeit immer wieder leerlaufen und
die Warteschlangen sich danach nach demselben Prinzip wie in den vorangegangenen Zyklen
entwickeln. Dieses Prinzip der steten Erneuerung wird in der Stochastik durch das Prinzip
der regenerativen Prozesse nachgebildet und ist der Schliissel zu vielen praktischen Problem-
stellungen.

Schliisselworter:  Filtration, Stoppzeit, regenerativer stochastischer Prozess, Re-
generationspunkte, Regenerationszyklen.
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18.1 Einleitung

In diesem Kapitel beschéftigen wir uns mit einer speziellen Klasse stochastischer Prozesse. Un-
ter einem stochastischen Prozess versteht man eine Familie Z = (Z;)ier von Zufallsvariablen
iiber einem gemeinsamen Wahrscheinlichkeitsraum (2, §, P) mit Werten in einem Messraum
(E, &), wobei T eine nichtleere Indexmenge bezeichnet. In der Regel setzen wir 7' = Ny bzw.
T = R* und bezeichnen Z entsprechend entweder als zeitdiskreten oder zeitstetigen Prozess.
Fiir jedes t € T ist Z; als Funktion von w (§, £)-messbar. Fiir festes w € €2 heifit die Funktion
t — Ziy(w), t € T, eine Realisierung oder Trajektorie von Z.

18.1 Definition (Filtration):
Es sei (Q,§) ein Messraum. Fine Folge (Fi)ier von o-Algebren mit §s C §¢ C § fir alle
s,t € T mit s <t heifst Filtration auf (€2, F).

18.2 Definition (Stoppzeit):

Es sei (0,8, P, (Z)ter) ein stochastischer Prozess und (§¢)ier mit §¢ := o0(Zs,s € TN[0,t]),
t € T, seine kanonische Filtration. Eine Zufallsgrifie T: Q — T U {oo} heifit Stoppzeit bzgl.
(FY)ter bzw. (Zp)ier, falls {t <t} eFVteT.

18.3 Definition (regenerativer Prozess):

FEin stochastischer Prozess Z = (Q,§, P, (Z)ier) mit Werten in einem Messraum (E, E) heifit
regenerativer Prozess, falls es einen Erneuerungsprozess (Sp)neN, mit den Lebensdauern (Zu-
wdchsen) X1, Xo, ... gibt, so dass folgende Bedingungen erfillt sind:

a) (Ziys,)iers (Xi)k>n) und ((Zt)ternio,s,)s S0, S1; - - -, Sn) sind stochastisch unabhdngig
fiir alle n € Ny.

b) Die Prozesse ((Ziys, )ter, (Xk)k>n), n € No haben alle dieselbe Verteilung.

18.4 Bemerkung:

Die Definition 18.3 besagt, dass ein regenerativer stochastischer Prozess in aufeinanderfol-
gende Zyklen (Z;);crn(s,_,,5,), * € N, zerfillt, die nicht nur identisch verteilt sondern auch
stochastisch unabhéngig sind.

Insbesondere kann zu jedem Zeitpunkt ¢ € T und fiir jedes n € N allein anhand der Kennt-
nis iiber §; entschieden werden, ob das Ereignis {S, < t} eingetreten ist oder nicht. Die
Zeitpunkte (Sy)nen, stellen also Stoppzeiten bzgl. Z dar und werden Regenerationspunkte
genannt. Das Intervall [S,_1,S,) bezeichnet man als n-ten Regenerationszyklus. Aufgrund
der besonderen Struktur eines regenerativen stochastischen Prozesses ist auch sofort klar,
dass mit (Z¢)ier auch (f(Z:))ier ein regenerativer Prozess ist, sofern f: (E,&) — (E',&')
messbar ist.

18.5 Satz:
Es sei Z = (0,5, P, (Zt)1cr+) ein regenerativer Prozess mit Zustandsraum (R,B) und ein-
gebettetem Erneuerungsprozess (Sp)nen,- F bezeichne die Verteilungsfunktion von Si und
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R = (R(t))ier+ die zu (Sn)nen, gehirende Erneuerungsfunktion. Ferner sei 4 (t) := P(Z; €
ASy>t) YV AeB undV t € RT. Dann gilt:

P(Zye A) =W 4(t) + /wA(t—s) dR(s)V A€ B undV t € RT.

[0,¢]

Beweis:

P(ZtEA) = P(ZtEA,Sl>t)+P(Zt€A,51§t)
= P(Z €A S >t)+P(Zi_s, € A)

= pa(t) + /P(Zt_s cA)dF(s)VAc®B, tcR".

Die eindeutige Losung dieser Erneuerungsgleichung liefert

P(Z, € A) = /1/1,415—3 dR(s), Ae®B, teR".
0.t

18.2 Zeitstetige regenerative stochastische Prozesse

18.6 Satz:

Es sei Z ein zeitstetiger regenerativer Prozess mit Zustandsraum (R,B) und eingebettetem
Erneuerungsprozess (Sp)nen. Ist S1 nicht arithmetisch verteilt mit Erwartungswert E[S1] <
oo und ist ¥ 4 uneigentlich Riemann—integrierbar, dann gilt:

z, Y 7.

Beweis:
Satz 18.5 und der Fundamentalsatz der Erneuerungstheorie (Satz 17.38) besagen, dass

P(Z* e A)= hm P(Z; € A)

/‘IJA dSVAE%
0

gilt, sofern ¥ 4 direkt—Riemann—integrierbar ist. Zunéchst gilt
Uut)=P(Z1 €A, 81 >t)<P(S1>t)=1-F(t), Ac®B, te R,

wobei F' wieder die Verteilungsfunktion von S ist. Da 1 — F(¢) nichtnegativ, nicht wachsend
und wegen

) dt < oo
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auch uneigentlich Riemann-integrierbar ist, ist 1 — F'(t) nach Satz 17.36 direkt-Riemann-in-
tegrierbar. Die direkte Riemann—Integrierbarkeit von W4 folgt nun aus Satz 17.37. Es bleibt
zu zeigen, dass P(Z* € A) eine Wahrscheinlichkeitsverteilung bildet. Dazu wird gezeigt, dass
P(Z* € R) =1 gilt:

P(Z*eR) = E[g’l] O/Q,Z)]R(s) ds = E[lSl] O/P(ZS €eR,S1 >s)ds
1 7 1
- = O/(l—P(Slgs))ds = Fg S = L

Im Folgenden geht es um Aussagen iiber das Integral

¢
/Zs(w)ds, weQ,
0

ldngs eines Pfades t — Z;(w) von (Z;);cr+ und den zugehorigen Erwartungswert

t t

E /zs ds :/ /Zs(w)ds AP (w).

0 Q Lo
Wir fordern deshalb die Messbarkeit der Abbildung

Zi: Rt x Q= RY, (tw)— Z4(w)
bzgl. BT @ § und BT. Erfiillt (Z;),cr+ diese Bedingung, nennt man (Z;);cg+ messbar.

18.7 Lemma:
Es sei (Xp)nen eine Folge von stochastisch unabhingigen und identisch verteilten Zufalls-
grofien iber (Q,§, P) mit E[|X,|] < oo fiir alle n € N. Dann gilt:

X
lim =® =0  P-fs.

n—oo 1,

Beweis:
Es sei F(z) die Verteilungsfunktion von |X,|. Dann gilt fiir alle ¢ > 0:

E[|X,[] <00 — /(1 — )z < oo = 3 (1- F(ne)) < oo
0 n=1

o0
= Y P(|Xn|>ne) < oo = P(|Xu|>ne) —— 0
n—oo

n=1

X
e P(Xy| <ne) ——1 e ol g pis
n—oo

n n—0o00
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Mit Hilfe von Lemma 18.7 kann man nun zeigen:

18.8 Satz:
Es sei Z = (0,5, P, (Zi)1ecr+) ein messbarer regenerativer Prozess mit dem zugehirigen Zu-
standsraum (R™,B71). Der eingebettete Erneuerungsprozess sei (Sp)neN,- S1 sei nicht arith-

S
metisch verteilt mit E[S1] < co und E| [ Zs ds| < oo. Dann gilt:
0
S1
t E f Zs ds
1
lim — [ Zsds = ———5— P-fs.
SNV T
0
Beweis:
Wir definieren
Yi(w) := Zs(w)ds VYweQundVkeN.

[Sk—1(w),Sk(w))

Der zu (Sp)nen, gehorende Zéhlprozess sei (Ng);ecr+. Dann gilt:

t SNy +1 SNy +1
1 1 1
t/ZSdS = ; / sts—g / stS
0 0 t
) Nyt ) SNy+1
= ¥ZY,€—¥ / Z, ds
k=1 f
SNy+1
Ni+1 ¢
Ne+1 1 1
= - = Zs d teRT.
Sty [ zods te
k=1 )
Satz 17.41 besagt
Ny 1
— s —— P—f
t  E[S)] ®
und aufgrund des starken Gesetzes der groflen Zahlen gilt
| Nt
Y E[Y;] P —fs.
N +1 ; b — BN °

SNy +1
Es bleibt folglich zu zeigen, dass der Ausdruck ¢! [ Zs ds P-f.s. gegen 0 konvergiert. Es
t

ist aber
SNy+1 SNy+1
/ Zs ds < / Zs ds =Yn,4+1
t SN,
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Nach Voraussetzung ist E[Yn,11] = E[Y1] < co. Lemma 18.7 besagt, dass Nt () Pfs.

N+l
gilt. Aufgrund der Bezichung
NM+1 YN _ YN
t Ny +1 t
und der Voraussetzung E[S1] < co muss deshalb dasselbe auch fiir YNt“ gelten. |

18.9 Satz:
Es sei (Z)icr+ ein messbarer regenerativer Prozess mit Zustandsraum (R,B) und einge-
bettetem Erneuerungsprozess (Sp)neN,- S1 sei nicht arithmetisch verteilt mit E[Si] < oco.

Auferdem sei E [f f(z ds] < oo und f: R — R sei (B, B)-messbar. Dann gilt

hm E[f /f ) ds| /E[Si].

Beweis:
Es sei zunéchst f > 0 angenommen. Fiir ein beliebiges ¢ > 0 sei f¢ := min{f, c}. Mit Hilfe
des Erneuerungsargumentes folgt

E[f°(Z)] = E[f(Z),5 >t +E[f(Z),5 <]

= E[f(Z),% > ]+ [ E[f*(Zi—s)] dF(s), teR",

o —

wobei F' die Verteilungsfunktion von Sy bezeichnet. Da f€¢ lokal beschrénkt und S; mit Wahr-
scheinlichkeit Eins endlich ist, existiert nicht nur E[f¢(Z;), S1 > ¢] fiir alle ¢ € R, sondern
aulerdem ist E[f(Z;), S1 > t] als Funktion von ¢ auch direkt Riemann-integrierbar. Es folgt
deshalb aus dem Fundamentalsatz der Erneuerungstheorie, dass

lim B[f*(2)] = E[gl] /E[fC(ZS),Sl > 5] ds < 0o (18.1)
0

gilt. Aufgrund des Satzes von Fubini kann man das Integral in (18.1) auch in der Form

E[fC(Zt),Sl >t] E Zt) I{Sl>t} dt = E fc (18.2)
/ - [ e/

schreiben. Die Gleichungen (18.1) und (18.2) ergeben zusammen

hm E[f /fc ) ds| /E[S1].

Durch den Grenziibergang ¢ — oo und dem Satz von der monotonen Konvergenz erhélt
man die Aussage des Satzes 18.9 fiir beliebige nichtnegative messbare Abbildungen f. Mit
f = f*t— f folgert man die Behauptung fiir beliebige messbare Abbildungen. [ |
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18.10 Bemerkung (Zeitmittel — Raummittel):
Die Kombination von Satz 18.8 und Satz 18.9 ergibt

¢
1
lim n Zs ds = E[Z7].

t—o0
0
Dieses wichtige Ergebnis wird in der Literatur hiufig unter dem Stichwort ,,Zeitmittel gleich
Raummittel“ zitiert.

18.3 Zeitdiskrete regenerative stochastische Prozesse

Grundsétzlich lassen sich alle Ergebnisse iiber zeitdiskrete regenerative stochastische Prozesse
aus den Sétzen iiber zeitstetige regenerative stochastische Prozesse herleiten, indem man fiir
allet € RT und k£ € N

Zy =W, fir telkk+1)

vereinbart. Allerdings ist bei zeitdiskreten regenerativen stochastischen Prozessen zu beach-
ten, dass die Lebensdauerverteilung F(x) := P(X; < z) arithmetisch ist. Im Hinblick auf
Grenzwertbetrachtungen muss man insbesondere zwischen den Féllen d = 1 (aperiodischer
Fall) und d # 1 (periodischer Fall) unterscheiden.

18.11 Satz:

Es sei W = (0,5, P, Wi)ren,) ein zeitdiskreter regenerativer stochastischer Prozess mit
Zustandsraum (R,B), und eingebettetem Erneuerungsprozess (Si)ken,. Die zugehirige Er-
neverungsfunktion sei (R(k))ren,- Ferner sei ya(k) = P(Wy € A,S1 > k) fir k € No und
A €B. Dann gilt

P(W, € A) = +Z‘1’A —n)-[R(n)—R(n—1)], ke Ny, AecB.

Beweis:
Es gilt

PWpe A)=PW,e A, S, >k)+ P(W,e A, S <k)
= P(Wk €A S > ki) —l—P(Wk_Sl € A)
k

=Wa(k)+ Y P(Wi—n€A)-P(S1=n), AcB, keN,.

n=1

Die Losung dieser diskreten Erneuerungsgleichung ist

P(W, € A) = +Z‘I’A —n)-[R(n)—R(n—1)]V AecB.
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18.12 Satz:

Es set W := (0,8, P, Wg)ken,) ein zeitdiskreter regenerativer stochastischer Prozess mit
Zustandsraum (R,B) und eingebettetem Erneuerungsprozess (Sk)ken,- Ist S1 arithmetisch
mit d = 1 und E[S]] < 0o, dann gilt:

i.V.

Wi, — W*.

Beweis:
Aufgrund der Voraussetzung gilt

Y Ta(n) =Y P(W, €A S8 >n) <) P(S>n)
n=0 n=0

n=0
—E[S1] VA€ B,

Damit lésst sich der Fundamentalsatz der Erneuerungstheorie fiir den arithmetischen Fall mit
d =1 und c := 0 anwenden und man erhélt

P(W* € A) = lim P(W; € A) Z\I/A , A€ B.

Auflerdem gilt

P(W*eR) = Z\I}R [ ZPW €R,S; >n)
n=0
-ZP(S’1>n): ! "E[S1] =1. |
1] — E[S)]
18.13 Satz:
Es set W := (0,8, P, Wi)ken,) ein zeitdiskreter regenerativer stochastischer Prozess mit

Zustandsraum (R*,B) und eingebettetem Erneuerungsprozess (Sk)ren,- Ist Sy arithmetisch
mit d = 1, E[S1] < oo und ist E[Zflz_ol Wk} < o0, dann gilt:

o B[R w
fim LY Wes =g P

Beweis:
(Np)nen, sei der mit (Sy,)nen, assoziierte Z&hlprozess. Mit derselben Argumentation wie im
Beweis von Satz 18.8 ergibt sich dann:

1 - SNy 411 SNy 411
ESweL S we Y
k=0 k=0 k=n
Das elementare Erneuerungstheorem und das starke Gesetz der groflen Zahlen besagen:
S1—1

1 SN, _q1+1—1 +1 Np_1+1 |:Z Wk:|
—. W, = N1 Wy — —=k=0_ 1 pfg
n Z k= n N, 1 +1 Z k E[S]
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und 1 Zk Sn,_ Wk strebt aufgrund der Abschétzung

Sanl SN7L71+1_1

Ywme Yy w

k=n k=Sn, _,
und Lemma 18.7 P-f.s. gegen 0. |
18.14 Satz:
Es sei W = (Q,F,P,(Wg)ken,) regenerativer stochastischer Prozess mit dem Zustands-

raum (R,B) und eingebettetem Erneuerungsprozess (Sk)ken,- Ist S1 arithmetisch mit d =1,
E[S1] < 00 und E 221:61 (Wn)} < 00. Dann gilt

| E[S55! (W)

P-f.s.

Beweis:
Mit Hilfe des Erneuerungsarguments und des Fundamentalsatzes der Erneuerungstheorie de-
duziert man wie im zeitstetien Fall:

Jim E[f¢(Wy)] ZE (W, S1 > n)].
51 Z E[f (W) - Iisi5m)]
n=0
S1—1
B[ ]
Die weiteren Beweisschritte sind mit dem kontinuierlichen Fall identisch. [ |
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Kapitel 19

Instandhaltungsstrategien

Die Instandhaltung ist ein Teilgebiet der in Stochastik I eingefiihrten Zuverldssigkeitstheorie.
Sie beschéftigt sich mit der Untersuchung und Optimierung von Mafinahmen zur Erhaltung
bzw. Wiederherstellung der Funktionstiichtigkeit von Systemen. Es werden unterschiedliche
Strategien zur optimalen zeitlichen Planung von Instandhaltungsmafinahmen betrachtet, de-
ren Effektivitdt anhand von Kriterien wie Kostenrate oder Verfiigbarkeit verglichen werden.

Schliisselworter:  vollstindige Erneuerung, minimale Reparatur, Kostenrate,
Verfiigharkeit, altersunabhéngige Erneuerung, altersabhéingige Erneuerung, Blocker-
neuerung, prophylaktische Erneuerung, Havarieerneuerung.
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19.1 Einleitung

Zu den Aufgabenstellungen der Zuverldssigkeitstheorie gehoren u.a. die Modellierung des Aus-
fallverhaltens und der Abnutzung von Systemen, sowie die Untersuchung und Optimierung
von Malnahmen zur Erhaltung bzw. Wiederherstellung der Funktionstiichtigkeit von Syste-
men. Der erste Punkt wurde bereits in Stochastik I behandelt. Der Zweite fiihrt auf die sog.
Instandhaltungstheorie, welche folgende Mafinahmen umfasst:

e Pflege und Wartung
e Inspektion, z.B. Uberpriifung und Diagnose

e Instandsetzung

Der Schwerpunkt liegt in diesem Kapitel auf den Mafinahmen zur Instandsetzung einfacher
bindrer Systeme, d.h. von Systemen mit den Zustédnden intakt und ausgefallen. Man un-
terscheidet dabei zwischen prophylaktischer Instandsetzung (vorbeugende Mafinahmen) und
Havarieinstandsetzung (wiederherstellende Mafinahmen). Gesucht ist die optimale zeitliche
Planung solcher Vorgehensweisen, die durch unterschiedliche Strategien beschrieben und hin-
sichtlich der Grofien Kostenrate und Verfiigbarkeit auf ihre Effektivitdt untersucht werden.

Zunichst werden dafiir einige Grundbegriffe aus der Zuverldssigkeitstheorie wiederholt:

19.2 Wiederholung der Zuverlissigkeit

19.1 Definition (Lebensdauer, Lebensdauerfunktion, Zuverlissigkeitsfunktion):
Als Lebensdauer einer Maschine oder Komponente wird die Zeit zwischen Inbetriebnahme und
Ausfall bezeichnet. Sie wird durch eine nichtnegative Zufallsgrifie T beschrieben.

Die Lebensdauerfunktion sei die Verteilungsfunktion der Lebensdauer T', d.h.

Fit):=P(T<t), tecR".

Mit Hilfe der Lebensdauerfunktion lisst sich die Uberlebens- bzw. Zuverlissigkeitsfunktion

F(t) der Komponente als
F(t):=1-F{t)=P(T>t), tecR*t

definieren.

19.2 Definition (Ausfallrate):
Es sei F' eine stetige Verteilungsfunktion. Dann heifst

1
t):= lim ~Pt<T<t+h|T>t
a(t) = lim - P( <t+h| )
die Ausfallrate eines Bauteils mit der Lebensdauer T'.

Ah - a(t) ist die Wahrscheinlichkeit dafir, dass eine Komponente nach Erreichen des Le-
bensalters t innerhalb der Zeitspanne Ah ausfdllt.
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19.3 Satz:
Es seia(t) die Ausfallrate eines Bauteils mit stetiger Lebensdauerverteilung. Dann gilt fiir die

Zuverlissigkeitsfunktion:
t
F(t) = exp </ a(u) du> .
0

Neben der Ausfallrate ist die bedingte Restlebensdauer, d.h. die Lebensdauerverteilung unter
der Bedingung, dass das Bauteil bereits bis zum Zeitpunkt ¢q iiberlebt hat, von Interesse.

19.4 Definition (Bedingte Restlebensdauer, bedingte Uberlebenswahrscheinlichkeit):
Es seq

- F(t+ty) 1—F(t+to)
Fi(t) = P(T >t+1t|T > tg) = —= =
die bedingte Uberlebenswahrscheinlichkeit ab dem Zeitpunkt to € RY, d.h. die Verteilung der
Restlebensdauer unter der Annahme, dass das Bauteil bereits bis zum Zeitpunkt to € RT

diberlebt hat. Demgegeniiber stellt

Fy,(t) :=1—Fy(t) = P(T < t + to|T > to) = F(t +;)()t_) F(to)
0

die bedingte Restlebensdauer dar.

Die betrachteten Lebensdauerfunktionen F'(t) lassen sich in die parametrische und die nichtpa-
rametrische Klasse unterteilen. In der ersten Klasse werden die Lebensdauern durch bekannte
Verteilungen modellieren, wie z.B. Exponentialverteilung, Weibullverteilung oder logarithmi-
sche Normalverteilung. Die Lebensdauerverteilung ist dann durch die entsprechenden Para-
meter der gewdhlten Verteilungsfunktion charakterisiert. In der nichtparametrischen Klasse
wird die Verteilungsfunktion der Lebensdauern durch die Eigenschaften der Ausfallrate bzw.
der Uberlebenswahrscheinlichkeit beschrieben.

19.5 Definition (IFR, DFR):
Eine Verteilungsfunktion F(t) heifft Increasing Failure Rate (IFR) Verteilung bzw.
Decreasing Failure Rate (DFR) Verteilung, wenn die bedingte Uberlebenswahrscheinlichkeit

Fy,(t) bei beliebigem, aber festem t > 0 monoton in to fillt bzw. in ty wéichst.

19.3 Einfiihrung

Bei den weiteren Untersuchungen zu den verschiedenen Instandsetzungsmafinahmen und Stra-
tegien wird davon ausgegangen, dass die folgenden allgemeinen Voraussetzungen erfiillt sind:

1. Der Ubergang vom Arbeitszustand in den Ausfallzustand des Systems erfolgt sprung-
haft.

2. Es wird immer ein hinreichend langer Zeitraum untersucht, so dass Aussagen iiber
Grenzwerte getroffen werden kénnen.

3. Falls nicht anders angebeben, wird davon ausgegangen, dass die Instandsetzungsmaf-
nahme fiir das System in vernachldssigbarer Zeit erfolgt.
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4. Nach einer Instandsetzungsmafinahme geht das System sofort wieder in den Betriebs-
zustand iiber.

5. Bei den Lebensdauern wird eine IFR (Increasing Failure Rate)—Verteilung vorausgesetzt.

Die Mafinahmen zur Instandsetzung lassen sich wie folgt unterteilen:

19.6 Definition (totale Erneuerung, Havarieerneuerung, prophylaktische Erneuerung):
e Fine vollstindige oder auch totale Erneuerung versetzt das System beziiglich seines
Ausfallverhaltens in den Neuzustand zuriick. Wird bei Ausfall des Systems eine tota-
le Erneuerung durchgefiihrt, spricht man auch von Havarieerneuerung. Fine totale Er-
neuerung nach einer bestimmten Betriebsdauer T, um einem Ausfall vorzubeugen, heifit
prophylaktisch.

e Fine minimale Reparatur bei einem Ausfall zum Zeitpunkt t versetzt das System beziig-
lich seines Ausfallverhaltens in den Zustand unmittelbar vor dem Ausfall. Die Lebens-
dauerverteilung nach einer minimalen Reparatur lautet

F(t +E) — F(t)

Fy(z) = F0)

F; ist die Verteilungsfunktion der restlichen Lebensdauer eines Systems, dass bereits t
Zeiteinheiten gearbeitet hat.

Die in diesem Kapitel betrachteten Instandhaltungsstrategien basieren darauf, dass die be-
treffenden Systeme nach zufilligen oder vorher festgelegten Zeitrdumen vollstdndig erneu-
ert werden. Die Betriebszeit kann demnach in Zyklen unterteilt werden. Im Folgenden be-
zeichne (T;);en, diejenigen Zeitpunkte, zu denen das System vollsténdig erneuert wird. Die
Lénge des i—ten Zyklus sei Y; :=T; — T;_1, ¢ € N. Diese Zufallsgrolen sind unabhéngig und
identisch verteilt.

Weiter sei (Z;);cr+ der Zustandsprozess des Systems. In diesem Kapitel werden nur binére
Systeme betrachten, daher kann Z; lediglich zwei Werte annehmen. Es gilt Z; = 1, wenn das
System zum Zeitpunkt ¢ in Betrieb, kurz up, ist und Z; = 0, wenn das System zum Zeitpunkt
t auler Betrieb, kurz down, ist.

Es lasst sich folgendes feststellen:

o (Zi)icr+ ist ein regenerativer Prozess mit den Regenerationspunkten (7;);eny,-

e Die Punkte (7;)ien, definieren einen gewohnlichen Erneuerungsprozess.

Damit werden nun Funktionen fiir die Kostenrate, d.h. die Instandsetzungskosten pro Zeit-
einheit, und die Verfiigbarkeit, also die Wahrscheinlichkeit fiir ausfallfreies Arbeiten zu einem
festen Zeitpunkt, bestimmt.

Es sei fi die Kostenfunktion des Systems in Abhéngigkeit des Betriebszustandes, d.h. up oder
down. Somit sind die kumulativen Kosten C; des i—ten Zyklus gegeben durch

T;
C; = / fk(Zt)dt.
Ti 1
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Die zeitabhéngige Kostenrate des Gesamtsystems lautet daher:

t
K@) =7 [ sz
Zur Erinnerung:

19.7 Satz (vgl. Satz 18.6):
Es sei Z ein regenerativer Prozess mit eingebettetem Erneuerungsprozess (1;)ien,, dessen
Verteilungsfunktion nicht arithmetisch ist. Gilt E[Ty] < oo und P(Z; € ATy > t) ist

Riemann—integrierbar, so folgt Z, ~> Z*.

Die Voraussetzungen des Satzes sind hier erfiillt: Es liegt eine Riemann—integrierbare IFR—
Lebensdauerverteilung vor, somit ist E[T}] < co. Man kann hier also von einer Konvergenz
in Verteilung gegen eine stationiren Prozess Z* ausgehen. Damit gilt fiir die stationire Ko-
stenrate K:

]. t o~ i.V. *
- / Fo(Zi(@))dt Y /Q [ 2 (@) dPw) = K
0
fiir fast alle @ € Q. Fiir t = T,, folgt

und es gilt fast sicher

1~ v
’Hooﬁzz'ﬂ i

Falls also E[C]] < co und E[Y]] < oo gilt, so gilt fast sicher
1 & 13
E[C}] :JL%O”;Ci, E[Y1] :nlingonzl}ﬁ
1= 1=

Damit kann die stationédre Kostenrate K wie folgt berechnet werden:

_ E[¢4]
- EM]

(19.1)

Analog zur Kostenrate ldsst sich eine Formel fiir die stationdre Verfiigbarkeit herleiten:
Die Betriebszeit, d.h. up—time, im ¢—ten Regenerationszyklus B; ist gegeben durch

T;
B, = / Zdt.
Ti—1

V) (w) = = /0 Zi(w)dt.

Die zeitabhéngige Verfiigbarkeit sei

t

Folgt man nun dem oben aufgezeichneten Rechenweg, so gelangt man zum Ergebnis fiir die
stationédre Verfligbarkeit:
E[B]

V = By

(19.2)

Mit den bisher erzielten Ergebnissen sollen nun spezielle Strategien zur Instandhaltung un-
tersucht werden. Man unterteilt die hier vorgestellten Strategien in drei Bereiche:
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1. Altersunabhingige Erneuerung, d.h. Instandsetzungsmafinahmen werden nur bei Ausfall
ergriffen.

2. Altersabhéngige Erneuerung, auch streng periodische Erneuerung genannt. Bei diesen
Strategien werden Instandsetzungsmafinahmen sowohl bei Ausfall, als auch vorbeugend
nach einer gewissen Betriebsdauer 7 durchgefiihrt.

3. Blockerneuerung, d.h. bei Ausfall und zu festen Zeiten werden Mafinahmen zur Instand-
setzung verlangt.

Die nachfolgende Darstellung ist stark an die Lehrbiicher von F. Beichelt ,,Zuverlassigkeits—
und Instandhaltungstheorie”, Teubner, Stuttgart, 1993 und F. Beichelt/P. Franken ,,Zu-
verlédssigkeit und Instandhaltung: Mathematische Methoden”, Hanser-Verlag, Miinchen, 1984
angelehnt.

19.4 Altersunabhingige Erneuerungen

Strategie 0 — Bei Ausfall Totalerneuerung

4

QfTotalerneuerung x Ausfall

Abbildung 19.1:

Die erste Strategie, die hier untersucht werden soll, ist die totale Erneuerung beim Ausfall
des Systems, sie wird auch als Ausfallstrategie bezeichnet. In der Praxis kann dies wie folgt
aussehen: Steht ein Reservesystem zur Verfiigung, so kann beim Ausfall des Systems ohne
nennenswerte Zeiteinbuflen auf dieses umgeschaltet werden.

Das hier genutzte mathematische Modell ist der Erneuerungsprozess. k, stehe fiir die mittleren
Kosten fiir eine totale Erneuerung. E[X] bezeichne die mittlere Lebensdauer des Systems.
Nach Gleichung (19.1) gilt somit fiir die stationire Kostenrate:

— kv
- E[X]

Fiir die stationére Verfiigharkeit gilt bei Vorhandensein eines Reservesystems V' = 1, da das
Umschalten auf das Reservesystem in vernachléssigbarer Zeit erfolgt und somit das System
stédndig in Betrieb ist.

Wird davon ausgegangen, dass kein Reservesystem zur Verfiigung steht, und die totale Er-
neuerung somit eine mittlere Zeit d,, beansprucht, so ist dies nur eine leichte Abwandlung. Es
gilt dann:
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Strategie 0’ — Bei Ausfall minimale Reparatur

V4 V4

 minimale Reparatur 3§ Ausfall

Abbildung 19.2:

Bei dieser Strategie fithrt man bei jedem Ausfall eine minimale Reparatur durch. Totale
Erneuerungen treten hier iiberhaupt nicht auf.

Es gibt hier im Allgemeinen keine Erneuerungspunkte und keine Zyklen. Fiir die Kostenrate
gilt allgemein

t—o0

1
K = lim Z(,,mittlere Kosten im Intervall [0,¢]”).
Zur Zeit t gibt fiir kleines At folgender Wert die Wahrscheinlichkeit fiir einen Ausfall an:
a(t) - At + o(At).

Es entstehen Kosten ky, im Intervall [¢, ¢ + At] mit Wahrscheinlichkeit a(t)At 4 o(At). Damit
ist a(t) die Dichtefunktion der Kosten und die mittleren Kosten im Intervall [0, ¢] ergeben sich
aus

/O ona(s)ds = /0 a(s)ds = ko A()

Dabei heifit A(t) kumulative Ausfallrate. Es folgt:

1 A
K = tlim ;k:mA(t) = mtlim ﬂ

Fiir eine unbeschrinkte Ausfallrate a(t) ist also auch K unbeschrinkt. Bei im Alter quasi
“alterungsfreien” Systemen, d.h. fiir beschrinkte a := lim;_. a(t), gilt K = k,a.

19.5 Altersabhingige Erneuerung

Strategie 1 — Bei Ausfall und nach Betriebsdauer ¢ erfolgt Totalerneuerung

Bei dieser Stratgie werden nicht nur sogenannte Havarieerneuerungen durchfiihrt, d.h. totale
Erneuerungen bei Ausfall des Systems, sonderen auch prophylaktische Erneuerungen nach
einer bestimmten Betriebsdauer #, um so einem Ausfall vorzubeugen. Der Vorteil in der Praxis
liegt dabei darin, dass sich eine prophylaktische Erneuerung wesentlich besser planen lasst,
wenn man zum Beispiel Service—Teams anderer Firmen zur Instandsetzung benotigt. Bei der
prophylaktischen Erneuerung sind im Allgemeinen sowohl mittlere Kosten als auch mittlere
Erneuerungszeit niedriger als bei der Havarieerneuerung.
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—

0 T THU 2T+

WTotalerneuerung x Ausfall

Abbildung 19.3:

Es sei X, die zufillige Zeit zwischen zwei benachbarten Havarieerneuerungen und X, die
zufillige Zeit zwischen zwei prophylaktischen Erneuerungen. Y bleibt die zufillige Zeit zwi-
schen zwei Erneuerungen beliebigen Typs.

Xp, Xp und Y definieren jeweils einfache Erneuerungsprozesse.

Fiir einen Zeitpunkt ¢ existiert ein n € Ng mit nf < ¢ < (n + 1). Damit ergibt sich die
Wahrscheinlichkeit, dass der Abstand zwischen zwei Havarieerneuerungen grofler als ¢ ist aus
der Wahrscheinlichkeit, dass das System n mal prophylaktisch erneuert wurde und dann die
Zeit t — nt iiberlebt hat:

P(Xp>t)=P{X1>t}n---n{X, >t} N{Xps1 >t —nt}) = (F(t))"F(t — ni).
Somit folgt
P(X, <t)=1— (F(t)"F(t — nt).

Fiir die zufillige Zeit bis zur nichsten Totalerneuerung Y = min(X, ) gilt:

F(t) ,0<t<t
P(Y<t):{ i) t>7

Damit ergeben sich:

E[X;] = /MHXpth
0
. (n+1)t~7 B
= > F@)" / F(t —ni)dt
n=0 mf
= T;(F(t))" /O F(t)dt
1 [
= 5 /0 F(t)dt (19.3)
und i
E[Y] = /tF(t)dt (19.4)
0
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Es bezeichne N(f) = 1/E[Y] die mittlere Anzahl von Erneuerungen je Zeiteinheit, d.h. die
Erneuerungsrate. Analog sei Nj,(t) = 1/E[X}] die Rate der Havarieerneuerungen und N,(t) =
1/E[X,] die Rate der prophylaktischen Erneuerungen. Es gilt:

N (%) = Nu(t) + Ny(2). (19.5)
Setzt man (19.3) und (19.4) in (19.5) ein, so folgt
E[X,] = F%) /0 F(t)dt. (19.6)

Fiir das Monotonieverhalten der Raten Nj(#) und N, (%) folgt aufgrund der angenommenen
IFR—Verteilung fiir die Lebensdauer:

19.8 Satz:
Fiir stetige Lebensdauerverteilungen F(t) vom Typ IFR gilt mit wachsendem t > 0:

1. Ny(t) ist monoton steigend,

2. Np(t) ist monoton fallend.

Beweis:

Vgl. Beichelt/Franken, S. 103f. [

Optimierung der Kostenrate

Es seien kj, die mittleren Kosten fiir eine Havarieerneuerung und k, die mittleren Kosten fiir
eine prophylaktische Erneuerung. Dann gilt fiir die Kostenrate:
K(&) = k- Nu(t) + k- Np()
kp- F(t) + k- F(t)
— .
Jo F(t)dt

(19.7)

19.9 Bemerkung:
Zur Gleichung (19.7) gelangt man auch, wenn man von K = E[K]| /E[Y1] ausgeht. Dabei ist

E[K1] =k, F(t) + k,F (1)

Aus Gleichung (19.7) und obigem Satz sieht man, dass bei zunehmendem # die durch Ausfille
bzw. durch Havarieerneuerungen verursachten Kosten zunehmen, die Kosten fiir prophylak-
tische Erneuerungen jedoch zuriickgehen. Gesucht ist nun ein optimales Erneuerungsintervall
t* um diese gegenliufigen Tendenzen auszugleichen.

Fiir das gesuchte optimale ¢* gilt K (#*) < K(#) fiir alle f € R*. Das Minimum von K wird

nun durch Differentation von (19.7) bestimmt:

dK _ knf (D) = kpf(t)  KknF (D) + kpF(f) 1 ).

At (TR (ﬁf@ﬁﬁ

Setzt man K’ = 0 und beachtet, dass der Nenner immer groer ist als Null, so folgt:
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(kn — ko) (D) JLF(D)dt = FE)(F@) (kn — ky) + ky)
= a() [y F@)ydt = F(E)+ 52

Man setzt k := kp/kp, < 1, da die Kosten fiir eine prophylaktische Erneuerung niedriger sind
als fiir eine Havarieerneuerung. Es ergibt sich die folgende zu lésende Gleichung:

t
- — - k
a(d) / Flt)dt — (i) = — . (19.8)
0 1—-k
Diese Gleichung ist nicht einfach aufzulésen. Mit Hilfe des folgenden Satzes kénnen jedoch in
Satz 19.11 Aussagen iiber die Existenz einer Losung getroffen werden.

19.10 Satz:
a(t) fg F(t)dt — F(t) ist monoton wachsend.

Beweis:
Es sei 0 < x <t < ty. Weil a(z)F(z) = f(x), und a(z) monoton wachsend ist, folgt

0 <a(t)F(z) - f(z) < a(t2) F(z) — f(2).
Durch Integrieren ergibt sich
at)) [ Fl@) - f@)de < alts) / "Fl) - f)da.
0 0

Durch Ausdehnen des Integrationsbereiches erhélt man aufgrund der Nichtnegativitdt des
Integranden

at)) [ F(x) - fla)dz < alts) /O “Fla) - fla)da.

0
|
19.11 Satz:
Es sei
~ 1
lim a(f) > ————— 19.9
f—o0 Q E[X](1-k) (19.9)
dann gibt es genau ein t* mit K(t*) < K(t) fir alle t > 0.
Beweis:
Betrachtez man die Gleichung (19.8) fiir £ — oo so ergibt sich:
~, i’i ~ ~,
Jim a(?) / Flt)dt — F()) = lim a(DB[X] -1,
t—o0 0 t—o0
wenn also &
lim a(f)-E[X] -1 > ——
t—00 1—-k
gilt, so folgt die Behauptung. [ |
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19.12 Bemerkung:
Die Voraussetzung aus Satz 19.11 ist natiirlich erfiillt, falls a(t) 2% o0 gilt, die Ausfallrate
des Systems also immer gréfler wird, d.h. das System altert.

Die Kostenrate fiir das optimale t* lautet:
K(tN*> (127) (kh - ?ff(£*> + kp
Jo F(t)dt
(kn — Ky [ @) [ F(t)dt — 5] + ky
Jy F(tyat

Ve

(19.8)

A

e
~(kn — k) 7 +

JEF(t)ar
= (kn —kpa(t?) (19.10)

= (kn—kp)a(t") +

Optimierung der Verfiigbarkeit

Bei einer Optimierung beziiglich der Verfiigbarkeit des Systems wird wie folgt vorgegangen:
Es sei dj, die mittlere Zeit, die fiir eine Havarieerneuerung benotigt wird und d,, die mittlere
Zeit fiir eine prophylaktische Erneuerung. Wie zu Beginn dieses Teilkapitels angedeutet, kann
0 < d, < dj < oo vorausgesetzt werden.

Die Betriebszeit des Systems in einem Zyklus ist Y := min(X, ). Die Zykluslinge L betrigt

I X +dy , min(X,t) = X (mit Wahrscheinlichkeit F(t))
T t+d, , min(X,f) =1 (mit Wahrscheinlichkeit F'(%)).

Somit berechnet sich der Erwartungswert

E[L] = [L|X<ﬂ F#)+E[L| X >1]-F()

<ng +dh) Fi) + (i +dy) - F(i)

t
= / z)dx + dp F(t) + d, F(?). (19.11)
0
Damit ergibt sich die stationére Verfiigbarkeit aus (19.2), (19.4) und (19.11):
Ei
. F(x)d
Jo Fl@)d (19.12)

V(t) = —— - —.
Jo F(z)dx + dpF(t) + dpF (1)

Das Problem besteht in der Maximierung von V (£). Hierzu nutzt man (19.7) und (19.8), da
1/V(f) — 1 und K(#) sich nur durch die Konstanten kj,, k, und dp, d,, unterscheiden. Das
Problem der Maximierung von V (f) ist demnach #quivalent zum Problem der Minimierung
von K ().
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Das optimale ¢* fiir die Maximierung von V (#) lisst sich also durch das Lésen von (19.8) mit
k := d,/dj, berechnen. Die Beziehung (19.9) sichert die Existenz der Losung. Die zugehétrige
maximale Verfiigbarkeit betridgt somit:

(19.13)

19.6 Blockerneuerungen

Wendet man Strategie 1 an, sind die Zeitpunkte, zu denen prophylaktische Massnahmen statt-
finden, zu Beginn des Arbeitsprozesses nicht genau bekannt. Die geplanten Erneuerungen nach
jeweils ¢ Einheiten werden lediglich mit der Wahrscheinlichkeit F'() durchgefiihrt. Erfordern
prophylaktische Erneuerungen eine sorgfiltige Vorbereitung, ist diese Strategie daher nicht ge-
eignet. Statt dessen greift man auf die nachfolgend beschiebenen Blockerneuerungen zuriick,
bei denen die Zeitpunkte fiir prophylaktische Erneuerungen zu Arbeitsbeginn des Systems
bereits fest vorgegeben sind.

Im Folgenden werden dieselben Bezeichnungen wie bei Strategie 1 benutzt.

Strategie 2 — Bei Ausfall und zu festen Zeiten erfolgt Totalerneuerung

P i
% %
| |

0 T 27 Ri

WTotalerneuerung x Ausfall

Abbildung 19.4:

Bei dieser Strategie erfolgt bei Ausfall und zu fixierten Zeiten nt, n € N, eine vollstandige
Erneuerung des Systems. Der Betriebsprozess zerfillt in statistisch dquivalente Zyklen [nt, (n+

1)#]. In einem Zyklus lduft ein gewohnlicher Erneuerungsprozess mit Erneuerungszeit X <.
Es sei R(t) die Erneuerungsfunktion, also der Erwartungswert fiir eine Havarieerneuerung.
Dann betragen die mittleren Kosten pro Zyklus

E[C] = k, + kyR(F)

Die Kostenrate ist dementsprechend

N k, + k‘hR(f)

K(#) t (19.14)

Eine optimale Zyklusléinge t* ergibt sich aus der Gleichung
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dilf — khpil(f) _ k;n‘Hth(g) =0
dt t t2

= tR/(f) — R(f) = 32, (19.15)

ko

dabei ist R'(t) die Erneuerungsdichte. Existiert ein optimales Erneuerungsintervall * dann
betrégt die minimale Kostenrate nach (19.14) und (19.15)

K(#) = kR (7).

Der Nachteil dieser Strategie ist offensichtlich: Es werden unter Umstédnden recht neue Systeme
erneuert.

Strategie 2’ — Nur zu festen Zeiten erfolgt eine Totalerneuerung

Y4 Y4

WTotalerneuerung x Ausfall

Abbildung 19.5:

Diese Strategie ist der vorherigen dhnlich, es wird jedoch auf die totale Erneuerung bei einem
Ausfall verzichtet. Das System wird demnach nur zu den festen Zeiten nt, n € N, erneuert.
Fallt das System in der Zeit zwischen diesen Erneuerungszeitpunkten aus, steht es bis zur
néchsten Wiederherstellung still. Bei einem solchen Stillstand entsteht jedoch ein finanzieller
Verlust, der durch eine monoton wachsende Funktion v(¢) beschrieben wird. Zusétzlich wird
angenommen, dass v differenzierbar ist und v(0) = 0 gilt. Dann ergibt sich die Kostenrate
aus (19.1):

K(i) - kp+ [y vt — t)dF(t)_

St

Eine optimale Zykluslinge t* erhélt man durch Losen folgender Gleichung:
E ~ ~ ~
/ t'(t—t)—v(l —t)dF(t) = k.
0
Es existiert eine Losung, falls lim; .o v(¢)/t = co. Die optimale Kostenrate ist dann
e
K(t%) :/ V(£ = t)dF(t).
0

Es sind noch viele weitere Modifikationen moglich, die grundsétzlich auf den Strategien 2 und
2’ beruhen. Zum Beispiel:
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e Ausgefallene Systeme werden durch gebrauchte ersetzt, zum Beispiel Systemen aus
fritheren prophylaktischen Erneuerungen.

e Ist das System zum Zeitpunkt nt noch jiinger als ein vorher festgelegter Wert 7', 0 <
T < t, so wird die prophylaktische Erneuerung auf den Zeitpunkt (n 4 1)f verschoben.

e Das System wird zu festgelegten Zeitpunkten nt vollstindig erneuert. Bei einem Ausfall
wird im Allgemeinen eine Totalerneuerung durchgefiihrt. Sollte das System jedoch im
Intervall [nt — T,nt], 0 < T < t, ausfallen, so wird auf die Totalerneuerung verzichtet.

Die meisten der vorgestellten Strategien beschrinken sich auf die Planung vollstdndiger Er-
neuerungen. Die folgenden Strategien enthalten nun auch die Option der minimalen Repara-
tur:

Strategie 3 — Bei Ausfall minimale Reparatur und zu festen Zeiten Tota-
lerneuerung

NV IRy N .
* *

0 T 27 3t

QfTotalerneuerung x Ausfall

/ minimale Reparatur

Abbildung 19.6:

In dieser Strategie wird bei einem Ausfall eine minimale Reparatur durchgefiihrt. Das gesamte
System wird zusétzlich zu festen Zeiten nt, n € Ny, total erneuert.

Die vollstindigen Erneuerungen erzeugen Zyklen konstanter Linge . Die mittleren Kosten
je Zyklus setzen sich zusammen, unter zu Hilfenahme der Ergebnisse von Strategie 0’, aus
den mittleren prophylaktischen Kosten je Zyklus und den Kosten einer minimalen Reparatur
multipliziert mit der kumulierten Ausfallrate:

E[C] = ky + kn, - A(f)

Es folgt die Kostenrate

_mﬂ:@+?ﬁm

)

und ein optimales £* ergibt sich wieder durch Nullsetzen von dI /dt:

ta(t) — A(t) = ::; (19.16)

Die optimale Kostenrate lautet somit
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K(F) = k- a(f).

Beziiglich der Verfiigbarkeit ergibt sich folgendes: Sind die Zeiten fiir eine vollstdndige Er-
neuerung d, und eine minimale Reparatur d,, nicht vernachlédssigbar klein, so gilt fiir die
Verfiigharkeit des Systems:

- i
V() = = . .
®) t+ dnA(t) + d,

Das optimale * ist, wie bereits in Strategie 1 beschrieben, die Losung der Gleichung (19.16)
mit d,/dy, statt k,/kp,. Es ergibt sich die maximale Verfiigbarkeit

e 1
ViE) = 1+ dma(t)

Strategie 4 — Bei Ausfall minimale Reparatur und bei erstem Ausfall nach

fester Zeit Totalerneuerung

Vs Vs
® X% 2

0 T 27 Ri

QfTotaIerneuerung x Ausfall

/ minimale Reparatur

Abbildung 19.7:

Bei dieser Strategie wird bei einem Ausfall im Allgemeinen eine minimale Reparatur durch-
gefithrt. Beim ersten Ausfall nach einer festen Zeit nt, n € Ny, jedoch gibt es eine Totaler-
neuerung.

Die Kosten fiir einen Zyklus sind analog zu Strategie 3:

E[C] = kp + kn, - A(D).
Die Zykluslange ist in diesem Fall aber
ElY] =1+ E[X{]

mit X; als der Restlebensdauer des Systems nach t Zeiteinheiten. Fiir den Erwartungswert
der Restlebensdauer gilt:
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Es ergibt sich damit die Kostenrate

o kp ke A®D)
K(O) =5 5

Das optimale ¢* ist die Losung der folgenden Gleichung, die man wieder durch Differenzieren
und Nullsetzen der Kostengleichung erhélt:

<A(£> L 1) (B = 7.

m
Im Falle der Existenz eines t* betriigt die optimale Kostenrate demzufolge:

Py _ _km_
K(E) =3

Neben den hier Vorgestellten sind noch weitere Strategien anwendbar. Zum Beispiel:

e Ausgefallene Systeme werden nach Strategie 4 vollstindig wiederhergestellt, mit dem
Zusatz, dass eine Erneuerung spitestens ¢ Zeiteinheiten nach der letzten Erneuerung
stattfindet.

e Nach den ersten n—1 Ausfillen wird das System jeweils durch eine minimale Reparatur
instand gesetzt und erst nach dem n - ten Ausfall erfolgt eine vollstindige Erneuerung.

e Ein System kann durch verschiedene Typen ausfallen. Dementsprechend unterschiedli-
che Erneuerungsstrategien werden zur Instandsetzung angewendet.
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Monte—Carlo—Simulation

Stochastische Systeme, die aufgrund ihrer Komplexitét keiner analytischen Untersuchung
zugénglich sind, kénnen experimentell mit Hilfe von Monte-Carlo—Simulationen untersucht
werden. Dabei kann es sich z.B. um die Ausbreitung einer ansteckenden Krankheit, den Mate-
rialfluss durch ein Produktionssystem oder die zeitliche Entwicklung von Borsenkursen han-
deln. Will man solche Systeme in der Praxis erforschen, um Abhéngigkeiten herauszufinden
oder Vorhersagen zu treffen, muss man umfangreiche Experimente durchfiihren, die kostspie-
lig und langwierig sind. Oft scheitern solche Experimente aber auch daran, dass das das reale
System iiberhaupt nicht manipuliert werden kann, oder die Zeit nicht ausreicht, um alle Un-
tersuchungen durchzufiihren. Ziel der Simulation ist es daher, die realen Abléufe durch ein
stochastisches Experiment auf dem Computer zu ersetzen. Wozu die Natur Tage und Jahre
braucht, kann auf diese Weise in wenigen Sekunden oder Minuten nachgestellt werden. Als
Ergebnis erhélt man Daten, die mit Hilfe statistischer Verfahren ausgewertet werden kénnen.

Schliisselworter:  Buffonsches Nadelexperiment, Zufallszahlen, linearer Kon-
gruenzgenerator, Periodenlénge, Diskrepanz, Gitterverteilung, nicht—gleichverteilte
Zufallszahlen, Inversionsmethode, Verwerfungsmethode, Monte—Carlo—Integration,
,,Hit or Miss”-Methode, Sample Mean-Methode, stochastische Simulation von War-
teschlangen.
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20.1 Einleitung

Das Buffon’sche Nadelexperiment ist méglicherweise das élteste Monte-Carlo-Experiment, das
in der wissenschaftlichen Literatur dokumentiert ist. Es dient der naherungsweisen Berech-
nung der Zahl 7.

Auf eine ebene Flidche werden Parallelen im Abstand L gezeichnet. Es wird eine Nadel der
Lénge | < L auf die Fldche geworfen und nach der Wahrscheinlichkeit gefragt, dass die Nadel
eine der Parallelen schneidet.

iyl

(-sing

v

Esist 0 <y < L,0< ¢ < (aus Symmetriegriinden).
Q = {(y,p) eRI0<y<L;0<p <7}

Die Nadel schneidet genau dann eine Parallele, wenn sie sich in den Positionen (y, ) mit
y < [ -sin ¢ befindet.

= A={(y.p) eR*o<y<L,0<p<my<l-sinp}

»
»

y(9)=/-sing

I(A) = /l-singp do = [—1- cos g
0
= —l-cosm—(=l)-cos0=1+1=2]
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14 21
= P(A) = @ =
entsprechend
1A 2l N 21
rh(A) = Q) = T h(E) L

Man erzeuge sich auf Q gleichverteilte Tupel (y, ¢) und frage ab, ob y <1 -sin ¢ ist.

Da man in der Praxis nicht immer Nadeln fallen lassen oder Wiirfel werfen kann, stellt sich
die Frage, wie man auf einem Computer auf algorithmischem Weg Zahlenfolgen generieren
kann, die vorgegebenen Wahrscheinlichkeitsverteilungen geniigen (im Fall des Buffon’schen
Nadelproblems z.B. auf einem Rechteck gleichverteilte Tupel und ein auf [0, 27] gleichverteilter
Winkel).

Algorithmen zur Erzeugung von Zufallszahlen werden Zufallszahlengeneratoren genannt. Man
unterscheidet zwei Arten von Zufallszahlengeneratoren:

e Generatoren echter Zufallszahlen:
Echte Zufallszahlen lassen sich mit Hilfe von Computern nur schwer erzeugen, da Com-
puterprogramme immer deterministisch ablaufen. Zur Erzeugung echter Zufallszahlen
werden oft physikalische Experimente verwendet (thermisches Rauschen bzw. Span-
nungsschwankungen in bestimmten Bauteilen, radioaktiver Zerfall, in Form von stati-
schem Rauschen aufgenommene elektromagnetische Wellen, usw.).

Echte Zufallszahlen werden besonders in der Kryptographie bendétigt, da fiir sie gilt,
dass aus den ersten n Zahlen nie die n + 1-te Zahl vorhergesagt werden kann.

e Pseudo-Zufallszahlen Generatoren:
Diese Generatoren erzeugen streng genommen keine wirklichen Zufallszahlen, sondern
nur Zahlenfolgen, die gewisse Eigenschaften von Zufallszahlen aufweisen. Meist wird
eine bestimmte Verteilung nachgebildet. So erfiillen beispielsweise schon die Zahlen

b— b— b— b—
a+0~7a,a+1~ a,...,a+(n—1)~ a,a+n~ a
n n n n

die Eigenschaft auf [a,b] gleichméBig verteilt zu sein, dennoch sind diese Zahlen alles
andere als zufillig.

Fiir die meisten Simulationsanwendung geniigt es, wenn die Zahlen pseudo-zufillig sind.
Daher werden in diesem Kapitel nur Pseudo-Zufallszahlen Generatoren behandelt.

Die Erzeugung von Pseudo-Zufallszahlen erfolgt in zwei Schritten:

1. Zunéchst werden auf [0, 1) gleichverteilte Pseudo-Zufallszahlen erzeugt. Dafiir wird iibli-
cherweise die in diesem Abschnitt behandelte lineare Kongruenzmethode verwendet.

2. Danach werden die Zahlen so transformiert, dass sie als Realisierungen einer vorgegebe-
nen Zufallsvariable und Wahrscheinlichkeitsverteilung angesehen werden konnen. (Diese
Transformationen werden im néchsten Abschnitt behandelt.)
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20.2 Erzeugung gleichverteilter Zufallszahlen

Die gebrauchlichsten Algorithmen zur Erzeugung gleichverteilter Zufallszahlen basieren auf
der von D.H. Lehmer und A. Rotenberg vorgeschlagenen linearen Kongruenzmethode. Aus-
gehend von einem Startwert xg € Ng werden ganze Zahlen x, nach der Vorschrift

Tpt1 = G- Ty + b (mod m) (20.1)

berechnet. Die Briiche
Up 1= — (n=0,1,2,...)
m

werden dann als Stichprobe einer auf [0,1) gleichverteilten Zufallsvariable verwendet. Der
Modul m, der Multiplikator a, das Inkrement b sowie der Startwert xy sind hierbei vorzu-
gebende nichtnegative ganze Zahlen mit 0 < a,b,z9 < m. Der Kongruenzgenerator heifit
gemischt, wenn b # 0 ist, andernfalls heiffit er multiplikativ. Die Spezifikation eines linearen
Kongruenzgenerators erfolgt kurz durch das Quadrupel (m,a,b, o).

20.1 Bemerkung:

Um die Zahlen ug, uy, ... als Realisierung von stochastisch unabhéngigen auf [0, 1) gleichver-
teilten Zufallsvariablen Uy, Uy, ... mit der gemeinsamen Verteilungsfunktion
0, <0
F(r):=qz, 0<z<1,
1, =z>1

-0.5 0.5 1 1.5

Abbildung 20.1: Verteilungsfunktion F'(z) der Gleichverteilung auf [0, 1]

dem Erwartungswert

o] 1 xz . X
E[U] = /$dF($)=/x~1dx: >l =3
—00 0 0
und der Varianz N
1
Var[U] = /(a: — E[U])? dF (z) = 5

auffassen zu konnen, miissen eine Reihe von Bedingungen erfiillt sein, die man durch geeignete
Manipulationen der Parameter a, b und x( herbeizufiihren versucht.

174
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Zunichst lasst sich feststellen, dass Zufallszahlen, die auf einer Menge {0, %, R mT_l} c[0,1)
gleichverteilt sind, fiir m — oo gegen eine Gleichverteilung auf [0, 1) konvergieren. Deshalb

reicht es fiir viele Anwendungen aus, einen Zufallszahlengenerator zu verwenden, der fiir ein

hinreichend grofies m auf {0, -, ..., =1} C [0,1) gleichverteilte Zufallszahlen liefert.
20.2 Satz:
FEs sei X, eine auf der Menge M := {0, %, e ’"T_l} C [0,1) gleichverteilte Zufallsvariable

und F, die zugehorige Verteilungsfunktion. Dann gilt

lim F,(z)=F(x) VzeR

m—00
mit
0, =<0
Fz):=<z, 0<x2<1
1, x=>1.
Beweis:

Die zu X,, gehorende Verteilungsfunktion lautet

0, z <0

F(x) = m=1

" Z I[O,z}(%) '%, ZL'ZO.

k=0

Mit % <z <= k <z -m und den Eigenschaften der GauBlklammer (ganzzahliger Anteil)
gilt fiir z € [0, 1]:

m—1
k 1
k=0
x-m—{x-m}

1
_— = — .
m m m— 00

(Dabei ist {z} =2 — [z].) |

I
—

Gesucht ist damit also ein Zufallszahlengenerator, der auf einer Menge obiger Form gleich-
verteilte Zufallszahlen liefert.

Als Nichstes wird man verlangen, dass die aufeinander folgenden Zahlen ug, u1, .. . als Reali-

sierungen stochastisch unabhéingiger Zufallsvariablen angesehen werden kénnen.

20.3 Bemerkung (Stochastische Unabhéingigkeit und n—dimensionale Diskrepanz):
Da fiir stochastisch unabhéngige auf [0,1) gleichverteilte Zufallsvariablen Uy, Uy, ... unter
anderem

P(a1 < UZ' < bl,...,an < Ui+n—1 < bn)
= [F(b1) = F(a1)] - [F(b2) = F(az)] - ... [F(bn) — F(an)]

(b — ag)

Il
—=

b
Il

1

175



Kapitel 20. Monte—Carlo—Simulation

fiir 0 < a; < b; <1 gilt, wird man verlangen, dass die n—dimensionale Diskrepanz

n
| Sup {(ui - wign1) [ ar < wipgy < b}l —m- ] (b — ax)
=1,...,n k=1

0<ap<b,<l1
fiir alle n > 1 moglichst klein ist.
Diese Bedingung ist gleichbedeutend damit, dass die aufeinanderfolgenden n-Tupel
(i, ..., Uj+n—1) den Einheitswiirfel gleichméfig ausfiillen. Eine (unendliche) Zahlenfolge, die
diese Forderung fiir alle n exakt erfiillt, wird vollstindig gleichverteilt genannt. Deswegen
wird man nun verlangen, dass ein Zufallszahlengenerator nicht nur auf [0,1) gleichverteil-
te Zufallszahlen produziert, sondern auch iiber eine ausgewogene Gitterstruktur im [0,1)"
verfiigt.

Da die Groflen z, nur Werte zwischen 0 und m — 1 annehmen konnen, liefert jede Rekursion
der Form (20.1) zwangsldufig eine periodische Zahlenfolge, wobei auch noch eine gewisse
Vorperiode auftreten kann.

20.4 Definition (Periodenlinge):
Es sei (m,a,b,xo) ein linearer Kongruenzgenerator. Die kleinste natiirliche Zahl
L := L(m,a,b,xg), fir die es ein iy gibt derart, dass

TitL = X4 fiir alle © > g

gilt, heifit die Periodenlinge des Generators. Es gilt immer L < m.

Um eine moglichst feine Unterteilung des Einheitswiirfels [0,1)™ zu erzielen, ist es folglich
notwendig, dass der Generator eine moglichst grofie Periodenliéinge aufweist. Die nachfolgenden
Beispiele zeigen, dass die Periodenlédnge ganz wesentlich von der Wahl der Parameter a und
xg abhéngt.

20.5 Beispiel:
Im Falle des Generators

Tiy1 =x; +3 (mod 11) (20.2)
erhilt man unabhingig von der Wahl des Anfangswerts xg jedesmal die maximale Peri-
odenlédnge L = 11:

zo=1: 1,4,7,10,2,5,8,0,3,6,9, 1,
z0=2 2,5,8,0,36,9,1,4,7, 10, 2,
z0=3 3,6,9,1,4,7 10,2, 5,8,0, 3,

Wéhlt man dagegen in der Rekursion (20.2) anstelle von a := 1 den Multiplikator a := 10,
erhélt man

zo=0: 0,30,
rzo=1: 1,2, 1, ...
ro=2: 2,1,2...
ro=3: 3,0,3,..
g =4: 4,10, 4,

(Siehe auch Mathematica-Notebook zu diesem Beispiel.)
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Aussagen dariiber, wie die maximale Periodenléinge zu erzielen ist, trifft der Satz 20.9, fiir
dessen Beweis aber zunéchst einige Hilfsmittel aus der Algebra und der Zahlentheorie benttigt
werden.

20.6 Satz:

Esseim=m'-m" mitm' ,m" €N und ggT(m/,m") = 1. Die Periodenlinge L des durch
(m,a,b,xg) bestimmten linearen Kongruenzgenerators ist das kleinste gemeinsame Vielfache
der Periodenlinge L', L" der durch (m',a,b, xo) bzw. durch (m", a,b, xo) bestimmten linearen
Kongruenzgeneratoren, d.h.

L=kgV(L L"),

Beweis:
Sei (y;)ien die (nicht modulo m reduzierte) Folge mit

Yi = ayi—1+0b, yo = wo.

"

Ferner seien (l’;)i@N und (z; )ien die von den linearen Kongruenzgeneratoren zu (m’,a,b, o)
und (m", a,b, xo) erzeugten Folgen in {0,1,..., m'} bzw. {0,1,..., m”}. Nach der Definition
der Periodenléngen gilt fiir alle natiirlichen Zahlen n

! !
mod m mod m
I ! .. . .
Yiinl! = Tnr = Ti = y;  fir alle ¢ > 4
und
1" 1"
mod m mod m
_ " o _ ) f H > N
YinL = T = T = Yi tir alle ¢ > 1.
. . / " .
Damit gibt es ¢, ,,, ¢; , € Z mit

Yivny =Yi T c;n -m  und Yisnr = Yi T c;/n .m’
fiir alle 7 > g := max(i, 4y ). Setzt man nun

Lo:=kgV(L ,L'Y=n"-L' =n"-L" firn' ,n" eN,
dann gilt fiir alle ¢ > ig:
Wegen ggT(ml, mN) = 1ist m’ ein Teiler von c;in,,, d.h. c;:n,, = ¢;-m’ mit ¢; € N. Somit folgt

YirLo =Yi+ciom om =y +eiom i alle i > d.

Damit findet man x;4r, = x; mod m und wegen 0 < z; < m dann auch z;; 1, = z; fiir alle
i > 19. Da L minimal gew#hlt ist, gilt Lo = kgV(Ll, LN) > L. Deshalb muss L ein Teiler von
Ly sein, andernfalls wiirde sich ein Widerspruch zur Minimaleigenschaft der Periodenlénge
ergeben. Andererseits erhélt man entsprechend aus

! 1" . .
YirL =X;+¢ci-m=x;+¢;-m -m  fiir alle i > 4

/ 1"

mit ¢; € N, dass x;, ; = :17; und entsprechend z,, ; = :13;/. Also sind L' und L” und damit
auch Lo = kgV (L', L") Teiler von L. Insgesamt gilt daher L = kgV (L', L"). [ |
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20.7 Bemerkung:
Durch wiederholte Anwendung der Gleichung 20.1 erhélt man

zi=a -xo+ (@ +.. .. +a+1)b (modm), (20.3)
d.h.
x; = o tzl,bl (mod m) ’ ﬁ}r o=l (20.4)
a'ro+ %= -b (mod m), fira#1.

Wegen Satz 20.6 werden also im Folgenden die Ausdriicke a’ — 1 (mod p®), wobei p eine
Primzahl und e eine natiirliche Zahl ist, ndher zu betrachten sein.

20.8 Satz:
Fiir eine Primzahl p und ein natirliche Zahl e mit p© > 2 gilt:
Aus
z=1 (modp®) und x %1 (mod p°™)
folgt
2 =1 (mod p*™) und 2P # 1 (mod p*™?).
Beweis:

Wegen der Voraussetzungen ist x = 1 4 ¢gp® mit einer ganzen Zahl ¢, die kein Vielfaches von
p ist. Damit gilt also

aP = (1+qp°)F = i (1;) (qp°)’

=0

1 1 1
=1+ qpe+1 . |:1 4= <p> qpe 4= <p> q2p26 4.+ = <p> qplp(pl)e:| ]
p\2 p\3 p\p

Hierbei sind fiir 2 < ¢ < p die Binomialkoeffizienten

(p) _pp—1)...(p—it])

q 7!

durch p teilbar, da die Binomialkoeffizienten stets ganze Zahlen sind und hier im Zé#hler die
Primzahl p > i auftritt. Daher sind fiir alle ¢ mit 2 <4 < p die Terme

1 ) )
- <p> qulp(zfl)e
D \1?

durch pli—Ve teilbar. Der letzte Term ist ¢? p®~Ye=1 der durch p teilbar ist, da wegen
p¢ > 2 die Ungleichung (p — 1)e > 1 gilt. Also bekommen wir fiir 2P die Darstellung

P =1—qp*™t (14 np) mitneN,

d.h.
P =1 (mod p*) und o £ 1 (mod p*2)
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20.9 Satz:
Der Lehmer—Generator hat genau dann die Periodenlinge m, wenn die folgenden Bedingungen
erfillt sind:

a) b ist relativ prim zu m, d.h. b{m,
b) a — 1 ist Vielfaches von p fiir alle Primteiler p von m, und

c) a—1 ist Vielfaches von 4, falls 4 Teiler von m ist.

Folgerung:
Insbesondere hat damit jeder Lehmer—Generator der Form 41 = x, + b mod m mit bt m
die maximale Periodenlénge m.

Vorbemerkung zum Beweis:

Wegen Satz 20.6 hat der lineare Kongruenzgenerator mit Modul m genau dann die maximal
mogliche Periodenlénge m, wenn die entsprechenden linearen Kongruenzgeneratoren mit den
Primzahlpotenzen aus der Primfaktorenzerlegung p$* - p§? - . . .- p¥ von m jeweils die maximal
mogliche Periodenléinge pjj besitzen.

Daher kann im Folgenden angenommen werden, dass m = p® gilt, wobei p eine Primzahl und
e eine natiirliche Zahl ist.

Der Beweis wird fiir beide Félle a = 1 und a > 1 getrennt durchgefiihrt.

Fiir a = 1 hat der Generator wegen Gleichung (20.4) genau dann die Periodenlinge p¢, wenn
b teilerfremd zu p® ist. Also ist in diesem Fall die Behauptung des Satzes richtig.

Es bleibt der Satz fiir den Fall @ > 1 zu beweisen. Es wird gezeigt:

,,=": Besitzt der Generator maximale Periodenlidnge, so gelten die Bedingungen a) - c).

,,<": Gelten die Bedinungenen a) - c), so hat der Generator maximale Periodenlinge.

Beweis:

,,»=": Da die Periodenlénge p°® nur dann erreicht wird, wenn jede der moglichen ganzen Zahl
x mit 0 < x < p® in der Periode auftritt, kann 0.B.d.A. auch noch x¢y = 0 angenommen
werden. Also ergibt sich aufgrund der Gleichung (20.4) fiir das n—te Element der Folge
die Darstellung

a”—1

a—1

Ty = -b (mod p°). (20.5)
e Nachweis von Bedinungen a):
An obiger Gleichung erkennt man, dass ggT(b, p®) jedes z,, teilt und daher gleich
1 sein muss. Die Bedingung aus Satz 20.9 a) ist also notwendig.

e Nachweis von Bedinungen b):
Weiterhin erkennt man aus (20.5), dass die Periodenlénge genau dann p€ ist, wenn
der kleinste Wert von k mit x;, = xg = 0 gerade k = p° ist.

Um die Notwendigkeit der Bedingungen b) und c) aus Satz 20.9 zu zeigen, sei also
k = p® vorausgesetzt. Dann gilt mit (20.5) insbesondere

(&
al —1

a—1

b=0 (mod p°). (20.6)
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Angenommen, es gelte a # 1 (mod p); dann ist 20.6 dquivalent zu
a’ —1=0 (mod p°).
Hieraus folgt insbesondere
a’” =1 (mod p).

Aber nach dem Satz von Fermat gilt a? = a (mod p), woraus

= '=...=d’=a (mod p)
und damit a =1 (mod p) folgt. Dieser Widerspruch zur Annahme zeigt, dass die
Bedingung b) notwendig ist.

e Nachweis von Bedinungen c):
Um die Notwendigkeit der Bedingung c) zu iiberpriifen, wird angenommen, dass
p = 2 ist. Dann ist wegen a) das Inkrement b ungerade. Wére jetzt der Multiplikator
a gerade, so wéren alle x; fiir j € IN ungerade, was nicht sein kann. Es bleibt also
noch zu zeigen, dass auch a =3 (mod 4) zum Widerspruch fiihrt. In diesem Falle
hiitte man ¢ =1 (mod 2) und @ Z 1 (mod 2?), also mit Satz 20.8

a?>=1 (mod 2%) und a?#1 (mod 2°).

Man rechnet aber sofort nach, dass a> =9 =1 (mod 23) gilt, was den gewiinsch-
ten Widerspruch liefert. Also ist auch die Bedingung c¢) notwendig und damit die
Richtung ,,=" des Satzes bewiesen.

,,<=": Gesucht ist der kleinste Wert n, so dass x,, = g ist, d.h.

(@™ —1)(zo(a —1) +b)
a—1

=0 (mod m).
Nach den Voraussetzungen a) und b) ist xo(a—1)+b relativ prim zu m. Es wird demnach
der kleinste Wert n gesucht, so dass gilt:

a” —1

a—1

=0 (mod m).

Es wird gezeigt, dass dieser kleinste Wert n gleich dem Modul m = p® ist.
Da die Bedingung b) des Satzes erfiillt ist, ldsst sich schreiben:

a=1+kp', k[fp, k#0, feN.

p! ist demnach die maximale Potenz von p, die in @ — 1 enthalten ist, d.h.

a=1 (mod p/)und a #1 (mod p/*h).
Im Fall m = p = 2 sind die Bedingungen a) - ¢) trivialerweise hinreichend.

Sei nun p > 2 oder f > 1. Dann ist auch p/ > 2 und damit Satz 20.8 anwendbar. Man
erhéalt dann fiir alle natiirlichen Zahlen g:

a” =1 (mod p/*9) und ¢?’ #1 (mod p/T9+).
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Daher gelten:

bzw.

a?’ —1 a?’ —1 1
o =0 (mod p?) und T Z 0 (mod p?™!)
1 Pt
aa—l =0 (mod pY) undaa_1 # 0 (mod pY)
und insbesondere fiir g=eund g =e — 1
a” —1 a? -1

o =0 (modp)undﬁgé 0 (mod p°).

Damit hat der lineare Kongruenzgenerator die maximale Periodenlénge p€, und folglich
sind die Bedingungen a) - ¢) in Satz 20.9 auch hinreichend.

20.10 Bemerkung:

In den Bedingungen von Satz 20.9 a) - ¢) kommt der Startwert g nicht vor. Also erhélt man
fiir jeden Startwert xp mit 0 < z¢p < m geméif der Rechenvorschrift (20.1) eine reinperiodische
Folge mit maximaler Periodenldnge m, wenn die Bedingungen a)-c) von Satz 20.9 erfiillt
sind. Daher bezeichnet man in diesem Fall die Gleichung (20.1) auch ohne Angabe von xg
als linearen Kongruenzgenerator. Durch die Wahl von zy bestimmt man dabei lediglich, an
welcher Stelle man in der Periode beginnt.

20.11 Beispiel:

Es sei z,,41 = 5z, + 1 mod 16. Damit ergibt sich folgende Rekursion:

1 - 6 —- 15 — 12 —- 13 —» 2 — 11 — &8

T

!

0 «— 3 « 10 «~ 5 «— 4 «— 7 «— 14 «— 9

Triagt man die aufeinanderfolgenden Tupel (1,6), (6,15), (15,12), ...in ein Koordinatensy-
stem ein (siehe Abbildung 20.2), so stellt man fest, dass sie auf nur 4 Hyperebenen zu liegen

kommen.

14}
12|

10/

Abbildung 20.2: Darstellung der Tupel (z,, zy,+1)
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Gitter und Gitterbasen

Um zu guten Gleichverteilungen in [0, 1)™ zu gelangen, muss man deshalb die Anzahl paralleler
Hyperebenen, auf denen die aufeinanderfolgenden Tupel liegen, und deren Abstand zueinander
untersuchen. Dabei spielt die Menge

T o= {1 := (Wi, tit1, - Uitn—1)|[i = 0,1,2,...,m — 1}

der aufeinanderfolgenden n—Tupel eine besondere Rolle. Der Einfachheit halber wird T}, zu
der Menge
Gp={u+zlueT,, zcZ"}

in alle Koordinatenrichtungen mod 1 periodisch fortgesetzt. Fiir die linearen Kongruenz-
generatoren stellt die Menge G, ein Gitter bzw. die Vereinigungsmenge von endlich vielen
verschiedenen Gittern dar.

Fiir die weitere Betrachtung soll zunéichst der Begriff der Gitterbasis eingefiihrt werden:

20.12 Definition (aufgespanntes Gitter, Gitterbasis):
Es seien g1, ..., Gn n linear unabhdngige Vektoren im R™. Die Menge

n
G::{gERn : gzzzzgz 2 €7, 1§2§n}
i=1

wird das von g1, . . ., gn aufgespannte Gitter genannt; g1, . . ., Gn wird als Gitterbasis bezeichnet.

20.13 Bemerkung:

Zu einem Gitter gibt es verschiedene Basen, die das Gitter erzeugen. Durch eine Basistransfor-
mation mit einer unimodularen Matrix, d.h. mit einer ganzzahligen Matrix U mit det U = +1,
erhiilt man aus einer Gitterbasis wieder eine solche. Jedoch ist |det(gi, ..., g,)| unabhingig
von der betrachteten Gitterbasis g1, ..., gn.

20.14 Beispiel (Natiirliches Gitter):

Die Punkte im R"™ (als Vektoren ausgefasst) mit ganzzahligen Koordinaten bilden ein Gitter,
das von den Einheitsvektoren (der Orthonormalbasis des R™) erzeugt wird. Dieses Gitter wird
auch als natiirliches Gitter bezeichnet.

Zu einem durch (m, a, b, xo) bestimmten gemischten Kongruenzgenerator sei fiir eine natiirli-
che Zahl n

Vo i={&=(xi,...,%n1)" : j=axrj1+b (modm), i<j<i+n, 0<i<m}

die Menge von allen erzeugten Punkten ; diese liegen im n-dimensionalen Wiirfel [0, m)". Es
werde die Menge V,, zu der unendlichen Menge

G, ={g=Z+mz2: Te€V,, z€Z"} (20.7)

periodisch mit Periode m fortgesetzt. Mit dieser Bezeichnung gilt der folgende Satz.
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20.15 Satz:
Der durch (m,a,b,xg) bestimmte lineare Kongruenzgenerator habe die mazximale Perioden-
linge m. Dann bildet die in (20.7) definierte Menge G, fir alle xog mit 0 < xg < m ein um
den Vektor

Go:=00,1,1+a,....1+a+...+a" 27T

verschobenes Gitter mit der Gitterbasis

gl = (1,&,.. 7an71)T7
g? == (07m707 7O)T7
go = (0,0,...,0,m)"

Beweis:
Zu zeigen: G, = {g = x + mz|x € V,,, z € Z"} stellt das beschriebene Gitter dar.

1. Alle Punkte von G, liegen auf dem im Satz definierten Gitter.

2. Alle Gitterpunkte lassen sich als Punkte aus der Menge G,, darstellen.

e Zu 1.
Da nach Voraussetzung der Generator die maximale Periodenldnge m hat, werden fiir
jedes xp mit 0 < 9 < m alle Zahlen p mit p € {0,1,...,m — 1} erzeugt. Analog zur

Gleichung (20.3) erhélt man fiir den k-ten Nachfolger von z;
zip=a zi+b-(14+a+...+d"1) (mod m). (20.8)
Daher besteht G, fiir alle 2y aus den Punkten ¢ der Form

g = (M,au+b,...,aku+b(1+a+...+ak71),...,a"*1,u
+b(14+a+...+a" 2N +m-(z1,...,20)7F
= (0,b,....,b(0+a+...+a" ) +ul,a,....,a" N +m-(21,...,2)7,

wobei i von 0 bis m — 1 variiert und z1,..., 2, alle ganzen Zahlen durchlaufen. Also
lasst sich jeder Punkt von G, in der Form

g’: _)0 —|—,LL§1 —FZl(TTL,O, s 7O)T + 22§2 +...+ ann (209)
und wegen
(m,0,....,007 =mgy —ago — ... —a" 1§, (20.10)
als
=G0+ (n+2m)dL + (22 — 210)Go + . .. + (20 — 216" 1) Gy, (20.11)
mit 0 < p < m und 2y, ..., 2, € Z darstellen. Also liegen alle Punkte von G,, auf dem

in der Behauptung des Satzes beschriebenen Gitter.

e Zu 2.
Es bleibt zu zeigen, dass sich umgekehrt auch jeder Punkt

J =G0+ 2101 + 2552+ 2,Gny 21,02, €D
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in der Form (20.11) darstellen ldsst. Dies ist aber mit

/
21 ’ ’ ’ -1
z1 = {mJ , =2y — 21my 29 i= 2y + 21G, . .., Zn = 2, + 210" (20.12)

erfiillt. Wegen det(d, ..., J,) = m™ ! sind die Vektoren gi,...,§, linear unabhingig
und erzeugen ein Gitter mit dem Gittervolumen m”™~!.

Der Nachteil dieser Beschreibung ist, dass die Basisvektoren fiir ein solches Gitter nicht ein-
deutig sind. Dies fiihrt zu dem im Folgenden definierten Begriff der reduzierten Basis von
Minkowski. Dabei beschreiben die Basisvektoren gerade das kleinste in das Gitter einge-
schriebene Parallelogramm. Die Bestimmung dieser reduzierten Basis ist relativ aufwendig.
Es liefert jedoch ein weiteres Mass fiir die Giite eines Gitters.

20.16 Definition (Minkowski-reduzierte Basis):
Eine Gitterbasis €1, . . . , €, heifit Minkowski—reduziert, wenn jeder Vektor €y, die kiirzeste Linge
unter allen Vektoren der Form zpgk + ...+ zngn, 2i € Z, g9T(z1,...,2,) = 1 hat.

Auch die Minkowski—reduzierten Basisvektoren eines Gitters sind nicht eindeutig bestimmt.
Doch ldsst sich zeigen, dass die von zwei Minkowski-Basen aufgespannten Parallelepipede
stets kongruent sind. Da die Vektoren einer Minkowski—Basis aufgrund der Definition der
Grosse nach geordnet sind, kann man zur Beurteilung der Gitterstruktur den sogenannten
Beyer—Quotienten heranziehen.

20.17 Definition (Beyer—Quotient):
Der Beyer—Quotient q, ist definiert durch

1
qn ‘= ’

n

=

1

o

mit €, als dem kiirzesten und €, als dem lingsten Gitter—Basisvektor.

Liegt der Beyer—Quotient nahe bei 1, so bedeutet dies, dass alle Basisvektoren nahezu gleich
lang sind. Wenn ausserdem alle Winkel zwischen je zwei Basisvektoren annéhernd 90° sind, so
kann davon ausgegangen werden, dass die Punkte des Gitters den Einheitswiirfel gleichméssig
ausfiillen. Von einem guten Zufallszahlengenerator wird man deshalb verlangen, dass seine
Beyer—Quotienten ¢, fiir moglichst viele n nahe bei 1 liegen.

20.3 Erzeugung nichtgleichverteilter Zufallszahlen

Nichtgleichverteilte Zufallszahlen werden durch geeignete Transformation aus auf [0, 1) gleich-
verteilter Zufallszahlen gewonnen. Viele dieser Verfahren basieren auf der sogenannten Um-
kehrmethode und dem Transformationssatz fiir Dichten.

Um die Umkehrmethode einfithren zu kénnen, wird zunéchst der Begriff der Pseudo—Inversen
benétigt.
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20.18 Definition (Pseudo—Inverse):
Es sei g: R — R eine monoton nichtfallende rechtsseitig stetige Funktion und es seien

a = inf{g(z) | z € R} und B :=sup{g(x) | z € R}.

1

Dann ist auf dem offenen Intervall (o, 3) die Pseudo-Inverse g~ von g durch

g ' (y) =inf{lz € R | g(z) >y}, a<y<p,

erkldrt.

20.19 Satz (Eigenschaften der Pseudo-Inversen):
Es sei g: R — R eine monoton nichtfallende rechtsseitig stetige Funktion und g~' ihre
Pseudo-Inverse. Dann gilt:

a) g=1 ist auf (o, B) monoton nichtfallend und linksseitig stetig.
b) Es gilt (g~ (y)) >y fiir alle o < y < 3.
Ist g in g~ (y) stetig, so gilt g(¢g~'(y)) =y fiir alle a <y < 3.
c) Es gilt g7 (g(x)) > z fiir alle o < g(z) < 5.
Ist g=1 in g(z) stetig, so gilt g71(g(x)) = x fiir alle a < g(z) < .
d) Esgilt: y < g(x) < ¢ 'y) <z fira<g(x), y<p.

Beweis:

Ubung. ]

20.20 Satz (Umkehrmethode):
Es sei (2,8, P) ein Wahrscheinlichkeitsraum und U: Q — R eine auf dem Intervall [0, 1]
Rechteckverteilte (gleichverteilte) Zufallsvariable. Ferner sei @ ein Wahrscheinlichkeitsmaf
auf B mit Verteilungsfunktion F. Die Pseudo-Inverse von F sei F~1. Dann besitzt die fiir
alle w € Q durch .

X(w) e { F (U((,U)) ) U(w) € (07 1)

0 , Sonst

definierte Zufallsvariable X : 0 — R die Verteilung Px = Q.

Beweis:
Zunéchst wird gezeigt, dass X messbar ist. Bezugnehmend auf Definition 20.18 ist o := 0
und 3 := 1. Aus der linksseitigen Stetigkeit von F'~! erhilt man:

X on =0 (F7)7H({0n) LU (—o0, 01U [1,00).

Wegen (F~1)~71({0}) € (0,1)NB und U~ ((—o0,0] U [1,00)) € B ist X 1({0}) € F . Sofern
0 ¢ B C *B ist, ergibt sich wegen (F~1)~1(B) € (0,1) N8B auch

X'B) =" (FHHB)) €3
Mit Hilfe von Satz 20.19 d) schliefit man weiter:
P(X <z)=P(FYU)<z)=PU< F(z)) = F(z) fiir0< F(z) <1,
wobei P(U ¢ (0,1)) = 0 ist. n
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20.21 Beispiel (Rechteck—verteilte Zufallsvariablen):
Es sei U eine auf dem Intervall [a,b], a < b, Rechteck—verteilte Zufallsvariable. Die zu U
gehorende Verteilungsfunktion lautet:

0, z<a
Flz):=q =4, a<x<b
1, z>0b.

Offensichtlich ist
Fly)=ylb—a)+a firo<y<l.

Hieraus folgt: Ist U eine auf [0, 1] gleichverteilte Zufallsvariable, dann ist X := U(b —a) + a
eine auf [a, b] gleichverteilte Zufallsvariable.

20.22 Beispiel (Exponentiell verteilte Zufallsvariablen):
Fiir die Verteilungsfunktion F' einer mit dem Parameter A exponentiell verteilten Zufallsva-
riablen gilt:

1—e M , x>0

Flz):= { 0 , x<0.
Die Umkehrfunktion lautet
1
Fl(y) = — In(1 - z) fir0<y<l.
Hieraus folgt: Ist U eine auf [0, 1] gleichverteilte Zufallsvariable, dann ist X := —% In(1-0)
eine mit dem Parameter A > 0 exponentiell-verteilte Zufallsvariable. Da wegen
Pl-U<z)=PU>1—-2)=PU>1—-2)=1-(1—2)==x

mit U auch 1 — U auf [0, 1] gleichverteilt ist, ist auch X := —} In(U) eine mit dem Parameter
A > 0 exponentiell verteilte Zufallsvariable.

20.23 Beispiel (Cauchy—verteilte Zufallsvariablen):
Fiir die Dichte f einer mit den Parametern o > 0 und 8 > 0 Cauchy—verteilten Zufallsvaria-

blen gilt:
fla) J

Al (@)
Die zugehorige Verteilungsfunktion ist

z € R.

1 _
F(z) ::§—|—7r_1arctan <xﬂa> , z€R,

(vgl. Stochastik I Kapitel 7.3). Die zugehorige Inverse lautet

F—l(y):a—i—ﬁtan(W[y—;]) :a_tan(ﬁﬂy)’ 0<y<l.

Mit anderen Worten: Ist U auf [0, 1] gleichverteilt, dann ist

__B
tan(mU)

Cauchy—verteilt mit den Parametern o > 0 und g3 > 0.

X =«

186



20.3. Erzeugung nichtgleichverteilter Zufallszahlen

20.24 Beispiel (Weibull-verteilte Zufallsvariablen):
Fiir die Dichte f einer mit den Parametern A > 0 und 3 > 0 Weibull-verteilten Zufallsvaria-
blen gilt:

)\'ﬁ'xﬂ_l-e_)‘xﬁ , 0< <@

flx) =
0 , ¢ <0.
Die zugehorige Verteilungsfunktion lautet
l—e X 2>0
F(x) := U=
(z) { 0 , x<0.

Die zu F Inverse ist

1 B
Fl(y) = (—Aln(l - y)) fir 0 <y < 1.

Mit anderen Worten: Ist U eine auf [0, 1] gleichverteilte Zufallsvariable, dann ist

X = (—iln(l - U))

Weibull-verteilt mit den Parametern A > 0 und 3 > 0.

@l

20.25 Beispiel (Bernoulli-verteilte Zufallsvariablen):
Es sei X eine Bernoulli—verteilte Zufallsvariable mit P(X = a) = pund P(X =b) = 1—p, a <
b. X hat die Verteilungsfunktion

0, z<a
Flx):=¢ p, a<z<b
1, >0

Die Pseudo-Inverse lautet

1 _Ja, O0<y<p
F (y)_{b,p<y§1.

Bernoulli-verteilte Zufallszahlen erzeugt man also, indem man zunéchst auf [0, 1) gleichver-
teilte Zufallszahlen erzeugt und dann entscheidet: Fillt w in das Intervall (0,p] setzt man
x = a, fallt v in das Intervall (p, 1], setzt man x = b.

20.26 Beispiel (Geometrisch-verteilte Zufallsvariablen):
Gesucht ist die Realisierung einer geometrisch verteilten Zufallsgrosse. Es gilt fiir ¢« € N:

k

. i ; 1_pk+l
P(X =i)=p'(l-p) = F(k)zzp(lfp)z(lfp)ﬁzl—p’f“.
i=0
Gesucht ist nun das kleinste k, fiir das F(k) = 1 — p*t! > U gilt.
In(1 —
1-U>p* = 1 -0U)>(k+1)lnp — k+1zn(lU)
np

w0 e
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Das von Box und Muller stammende Verfahren zur Erzeugung N (0, 1)—verteilter Zufallszahlen
basiert auf folgendem Satz.

20.27 Satz:
Es seien Uy und Us stochastisch unabhingige R ([0, 1])-verteilte Zufallsvariablen. Dann sind
die Zufallsvariablen

X1:=+v/—2InUj - cos(2mU3) und X9 :=+/—2InU - sin(27U3)
stochastisch unabhdingig und jeweils N (0, 1)—verteilt.

Beweis:
Wir setzen G: (0,1)? — R? mit

G(u1,uz) := (z1,22) := (V—anul - cos(2mug), v/ —2Inwuy -sin(27ruQ)> . (u1,u2) € (0,1)2

und wenden den Transformationssatz fiir Dichten an. Die zu G gehorende Funktionaldeter-
minante lautet

G,  0Gy cos(2mus) :

et AN _ORETY) o/ —2Tnu - sin(2
ouy Oua urv—2Inwu " nuy - sin(2mu)
0Go 0Go sin(27uz2)

e du —m 21/ —2Inuy - cos(2mus)

27 cos? (27usz) N 2 sin?(27musz)

Ul (5]
27
=
Es ist ) )
22+ 23 =—2Ilnu; bzw. wu; =exp (—W) , (w1,72) € R
Damit erhalt man
1
fx,x0) (1, m2) =
) aG
det (52(G1 (@1, 22)) )|

- U1l - 1 _;c%+ac% 2

=5 =5-¢ % (x1,22) € R?,
und 1 e 123 1

fx, (z1) :/%e 2 drg = %62/62(1@ = me*T, z1 € R
R R
bzw.
frae) = —=c %, meR
x9) = e 2, x .
X, (T2 Jon 2

Also sind X7 und X3 jeweils A/(0, 1)-verteilt und stochastisch unabhéngig. ]

20.28 Bemerkung:
Bekannte andere Transformationsmethoden sind die Verwerfungsmethode und die Quotien-
tenmethode.
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20.4 Monte—Carlo—Integration

Die Losung mathematischer Probleme mittels stochastischer Experimente soll zunéchst an-
hand der Monte-Carlo-Integration demonstriert werden.

Es sei g(z) eine reelle auf [a, b] integrierbare Funktion mit 0 < g(z) < ¢ fiir alle = € [a, b] und
ein ¢ € R. Es wird das Problem der Berechnung von

b

p:/@@mx

a

betrachtet. Dazu werden die beiden folgenden Mengen definiert:

A={(z,y)[a<2<b0<y<g(x)} und  D:={(,y)la<z<b0<y<ch
c D
/~— glx)
)lfh\_/f
s —+— A (unter g(x))
-
a b

Abbildung 20.3: Die Mengen A und D bezogen auf eine Funktion g(x)

Sei nun (€2, F, P) ein Wahrscheinlichkeitsraum und Z := (U,V): Q — D ein auf D gleichver-
teilter Zufallsvektor, d.h. Z besitzt eine Dichte der Form

—L - (u,v) €D

fZ(u,’U) = f(u’ U) = { C(baa) | (u7 U) ¢ D.

Dann gilt:
b
P(ZGA)://f(u,v)dudv:C(bl_a)/ dUdU:M
_c(b—a)'

Sei weiter (Z;);en eine i.i.d. Folge von auf D gleichverteilten Zufallsvektoren. Es sei

n

6y = clb—a) ZIA(Zi)'
=1

Da E[Is(Z1)] = P(Z1 € A) =: 8 < oo gilt, folgt mit dem starkem Gesetz der grofien Zahlen
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Wenn es also geldnge, mit Hilfe eines physikalischen Experiments oder eines linearen Kongru-
enzgenerators Realisierungen eines auf () gleichverteilten Zufallsvektors zu erzeugen, kénnte
man 07(3) als Schatzverfahren fiir I verwenden. Diese Vorgehensweise zum Schétzen von I wird

,,Hit or Miss” genannt.

20.29 Beispiel:
Bei der numerischen Integration des Integrals

™

/sin T dr

0

erzeugt man sich zundchst auf D := [0, 7] x [0, 1] gleichverteilte Punkte (u,v) und setzt die
Anzahl der Treffer ((u,v) € A) in Beziehung zum Umfang der Stichprobe.

h(A)

0 0.5 1 1.5 2 2.5 3

Abbildung 20.4: Im Beispiel ist a := 0, b := 7, ¢:= 1, N := 50 und die Anzahl der Treffer 32.

Damit folgt:

™

/Siﬂ(EdZ’%l-(ﬂ'—O)

0

. 3—§ ~ 2.010619298 ,

was dem tatséchlichen Wert 2 schon sehr nahe kommt.
(Siehe auch Mathematica-Notebook zu diesem Beispiel.)

Algorithmus zur ,,Hit or Miss”-Methode:
1. Erzeuge auf [0,1) x [0, 1) gleichverteilte Tupel (u1,w1),. .., (un, wN).
2. Ng =0

3. Fir¢=1,..., N fiihre aus:
Berechne z; := a + u;(b — a)
Berechne g(z;)
Falls g(z;) > cw;, dann setze Ny = Ny + 1.

4. Fiithre aus I =~ ¢(b — a)NTH.
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Zur ,,Hit or Miss”-Methode gibt es noch eine interessante Alternative, die sogenannte
,,5ample Mean”-Methode (Mittelwertmethode). Dazu bezeichne X eine auf dem Intervall
[a, b] gleichverteilte Zufallsvariable, d.h. die Verteilung von X : Q — [a, b] besitzt eine Dichte
der Form

1
fx(@):=f(x):=1 b—a’

0 , sonst.

fira <z <b (a<b),

Dann lasst sich schreiben:

b

1 [otwte = [9D s00 — m [ 8]~ g 1]

f(x) f(X) f

a

Dieser Zusammenhang legt fiir I den Schétzer
1~ g(Xy) b—aw
9(2) = — v = g X
" n; f(Xi) n ; (%)

nahe, wobei (X;);en eine i.i.d. Folge von auf [a,b] gleichverteilten Zufallsvariablen ist. Das
starke Gesetz der grofien Zahlen liefert fiir 8(2) ebenfalls

Algorithmus zur ,,Sample Mean”-Methode:

1. Erzeuge eine Folge uq,...,uy stochastisch unabhéngiger, auf [0, 1) gleichverteilter Zu-
fallszahlen.

2. Berechne z; :==a+wu;(b—a) firi=1,..., N.
3. Berechne g(z;) fuiri=1,...,N.
4. Fithre aus I ~ (b — a)+ Z,fil g(x;).

Beide Schitzer sind erwartungstreu. Denn es gilt:

m@ﬂ}: Ey

c(b—a)- %ZIA(Zi)
i=1

_ c(b—a) ‘ ZEG 14(Z)]
i=1

= c(b—a) Eg[la(Z1)]
= ¢ (b—a)-P(Z € A)
= c-(b—a)-0
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Fiir die zugehorige Varianz gilt:

Vary {9

S

Vary [Hnl)} =

=1
= Oy, (14(20)
c2(b—a)2 2 2
_ - (Bg [(1a(21))?] — (Bg [1a(Z1)))?)
A(b—a)? 2
= (B [La(20)] - (Bo [1a(20))
A(b—a)? 2
= = (P(Z1 € A) ~ (P(Z1 € A)))
~ A(b—a)? I r
o n c-(b—a) 2 (b—a)2>
= eb-a-1)
1 g(Xi)
Vare[ 2 f(Xi)]
1 ¢ e | 9050)
n2;V ’ [f(XZJ
1 9(Xy
ﬁVarg [f(Xl)
1 90\ (g [950 ]
n<E" (fixy) |- (= [f(Xl)D>
b
L [9@) oy ge P2
(7 e
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b
1 2
_ /9 () de — I?
n ()
) b
= — (b—a)-/gQ(ac)d:lc—I2
n
1 b
< —|elb—a)- /g(x) dx — I* (da g(z) < ¢V x € R vorausgesetzt war)
n

a

= Loy 1om),

3

woran man erkennt, dass 6?7(12) gleichméflig besser ist als 9,(11).

20.5 Stochastische Simulation von Warteschlangen

Warteschlangen sind aus betriebswirtschaftlicher Sicht meist nicht wiinschenswert. Denn die
Zeit, die man in der Warteschlange zubringt, ist Untétigkeitszeit, die weder den Kunden noch
dem Betreiber des Systems zugute kommt. Den wirtschaftlichen Einfluss von Warteschlangen
kann man am besten am Beispiel der Produktion verdeutlichen. Lange Durchlaufzeiten durch
die Produktion haben zur Folge, dass man neue Produkte nicht schnell genug auf den Markt
bringen kann und der Konkurrenz das Feld iiberlassen muss. Da lange Durchlaufzeiten mit
hohen Bestédnden korreliert sind, entstehen durch die auf Bearbeitung wartenden Halbfertig-
fabrikate auflerdem hohe Kapitalbindungskosten, die sich negativ auf das Betriebsergebnis
auswirken.

Das Phénomen des Wartens wird seit fast einem Jahrhundert wissenschaftlich erforscht. Be-
reits 1917 publizierte der dénische Ingenieur und Mathematiker A.K. Erlang, der bei ei-
ner Kopenhagener Telefongesellschaft beschéftigt war, eine mathematische Formel, mit de-
ren Hilfe man Fernsprechvermittlungsstellen dimensionieren konnte. Nach Erlang waren es
hauptsichlich Nachrichtentechniker, die mathematische Verfahren benutzten, um den Tele-
fonverkehr durchgéngiger und effizienter zu machen. Mitte des vergangenen Jahrhunderts hief3
es, dass die Lander, die iiber die schlechtesten Telefonsysteme verfiigten, die besten Mathema-
tiker auf dem Gebiet der Warteschlangentheorie hervorbringen wiirden. Mit dem Aufkommen
der Datenverarbeitung wurden diese Methoden auch zur Konzeption von Rechensystemen ver-
wendet. Ziel der Analysen ist es, bereits im Vorfeld der Planung Engpésse und Schwachstellen
zu erkennen. In letzter Zeit wird die Warteschangentheorie auch immer héufiger auf Fragen
der Produktion, des Verkehrs und der Modellierung von Geschéftsprozessen ausgedehnt. Mitt-
lerweile sind mehr als 10000 wissenschaftliche Publikationen {iber Warteschlangenprobleme
erschienen, die sich auf die unterschiedlichsten Bereiche des téglichen Lebens beziehen.

Beschreibung von Bediensystemen

Die Warteschlangentheorie verwendet zur Beschreibung von Bedienungssystemen ein einfa-
ches Grundmodell. Dieses Modell ist in Abbildung 20.5 dargestellt. Es besteht aus dem so-
genannten Bedienungsschalter, der iiber eine oder mehrere parallel arbeitende gleichartige
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Maschinen bzw. Arbeitsplitze verfiigt, und aus einem Warteraum. Die Kunden treffen ein-
zeln und zu zufilligen Zeitpunkten vor dem Bedienungssystem ein. Ein neu ankommender
Kunde wird bedient, sofern mindestens eine der Maschinen frei ist, andernfalls muss er sich
in die Warteschlange einreihen.

Die Begriffe Kunde und Schalter kénnen in der Praxis unterschiedliche Bedeutungen haben:
Fahrzeuge, die an einer Verkehrsampel warten; Computerprogramme, die in einem Rechner-
verbund zirkulieren; Telefonanrufe, die an einer Vermittlungsstelle einfallen; Werkstiicke, die
von einer Maschine bearbeitet werden; Patienten, die in einer Arztpraxis auf ihre Behandlung
warten, usw.

Ankunftsstrom

—

Abgangsstrom

Warteraum

Abbildung 20.5: Grundmodell eines Bedienungssystems

Das Grundmodell kann auf vielfdltige Weise variiert werden:

Die Kunden werden nicht einzeln, sondern gruppenweise bedient
(Systeme mit Gruppenbedienung)
Anwendung: Losfertigung in einem Produktionsbetrieb, Pendel-Busse.

Einige Kunden verlassen das System, bevor sie bedient worden sind
(Wartesysteme mit Zeitbeschrankungen)
Anwendung: Lagerhaltung von verderblicher Ware.

Nicht alle Bedienungsgerite stehen jedem Kunden zur Verfiigung

(Bedienungssysteme mit eingeschrinkter Erreichbarkeit)

Anwendung: Fertigungsstraffien mit dedizierten Maschinen, Koppelanforderungen in ei-
nem Fernsprechnetz.

Einige Kunden scheuen sich, in das Bedienungssystem einzutreten, weil ihnen die War-
teschlange zu lang erscheint

(Wartesysteme mit ungeduldigen Kunden)

Anwendung: Ubliches Kundenverhalten an einem Post—, Bank— oder Fahrkartenschalter.

Ein Kunde hoherer Prioritdt verdringt einen Kunden niedrigerer Prioritdt aus dem
Bedienungsprozess

(Bedienungssysteme mit Prioritétensteuerung)

Anwendung: Expre—Los—Steuerung in einem Fertigungsprozess.

Ein Kunde, der bei seiner Ankunft nicht sofort bedient werden kann, geht verloren
(Verlustsysteme)
Anwendung: Telefonate in einem Fernsprechnetz.
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Die Kunden fallen zu den zufélligen Zeitpunkten (7},)nen in das System ein. Die Zeitspanne
I, :=T, — T,_1 zwischen der Ankunft des (n — 1)~ten Kunden und des n—ten Kunden wird
als Zwischenankunftszeit bezeichnet, wobei Ty = 0 gesetzt wird. Von den Zufallsvariablen I,,,
n=1,2,..., wird vorausgesetzt, dass sie stochastisch unabhéngig und identisch verteilt sind
mit der Verteilungsfunktion F7(x), dem Erwartungswert E[/] und der Varianz Var[l]. Der
Kehrwert

1

~ ElI]

heifft Ankunftsrate und gibt an, wieviele Kunden im Durchschnitt pro Zeiteinheit in das
System einfallen.

Die Bedienungszeiten S,, n = 1,2,..., der aufeinanderfolgenden Kunden werden ebenfalls
als stochastisch unabhéingige und identisch verteilte Zufallsvariablen aufgefasst. Die Vertei-
lungsfunktion der Bedienungszeiten wird mit Fg(z) bezeichnet. Fiir den zugehorigen Erwar-
tungswert und die zugehorige Varianz werden die Symbole E[S] und Var[S] verwendet. Der
Kehrwert

1

" s
heifit Bedienrate und gibt an, wieviele Kunden im Durchschnitt pro Zeiteinheit von einem
Bedienungsgerit abgefertigt werden koénnen. Sind mehrere parallele und gleichartige Bedie-
nungsgerite vorhanden, erhéht sich die Bedienungsrate entsprechend der Anzahl der Geréte.

Die Bedienungsregel legt fest, in welcher Reihenfolge die wartenden Kunden abgefertigt wer-
den sollen. Folgende Regeln und Bezeichnungen sind gebriuchlich:

FIFO (FCFS) First In, First Out (First Come, First Served). Die Bedienung erfolgt in der
Reihenfolge der Ankiinfte.

LIFO (LCFS) Last In, First Out (Last Come, First Served). Die Bedienung erfolgt in um-
gekehrter Reihenfolge der Ankiinfte.

SIRO Selection In Random Order. Der néchste Kunde wird zufillig ausgewahlt.

Non—preemptive Priority relative Prioritdt. Manche Kunden werden gegeniiber anderen
Kunden vorrangig behandelt. Der laufende Bedienungsprozess wird jedoch nicht unter-
brochen.

Preemptive Prioritdt absolute Prioritéit. Besitzt der neu ankommende Kunde gegeniiber
den anderen Kunden im System eine hohere Prioritét, so wird der laufende Bedienungs-
prozess unterbrochen und mit der neuen Forderung fortgesetzt. Die alte Forderung wird
zuriickgestellt.

RR Round Robin. Jeder Kunde kann den Bediener jeweils nur fiir ein bestimmtes Zeitinter-
vall in Anspruch nehmen. Kunden, deren Abfertigung mehr Zeit benttigt, miissen sich
deshalb mehrmals hintereinander in die Warteschlange einreihen.

Zur symbolischen Kennzeichnung der Bedienungssysteme haben D.G. Kendall und B.W. Gne-
denko die Notation

A/B/c/m
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eingefiihrt. Die Buchstaben A und B markieren hierbei den Verteilungstyp der Zwischenan-
kunfts— und Bedienungszeiten. Der Buchstabe c¢ steht fiir die Anzahl der parallelen Bediener,
m bezeichnet die Kapazitdt des Warteraums.

Fiir den Verteilungstyp sind folgende Abkiirzungen gebriuchlich:

D Deterministische Verteilung,
M  Exponentialverteilung,
(M steht fiir die sogenannte Markov—FEigenschaft der Exponentialverteilung),
Ej  Erlang—Verteilung mit den Parameter k (k =1,2,...),
Hj  Hyperexponentialverteilung mit dem Parameter k (kK =1,2,...),
PH Phasen—Typ—Verteilung,
G Allgemeine Verteilung.

20.30 Beispiel:

Die Notation M/G/3/o0 z.B. kennzeichnet ein Bedienungssystem mit exponentialverteilten
Zwischenankunftszeiten, beliebig verteilten Bedienungszeiten, drei parallelen Bedienern und
unendlicher Warteraumkapazitét.

20.31 Definition (Anzahl der Kunden im System, Verweilzeit, Durchlaufzeit):
Die Leistungsbewertung von Bedienungssystemen erfolgt auf der Basis folgender stochastischer
Prozesse:

e Die Anzahl der Kunden im System (Ni)i>0.

Dieser Prozess gibt an, wie viele Kunden sich zur Zeit t im Bedienungssystem (ein-

schlieflich Schalter) aufhalten.

e Der Prozess der aufeinanderfolgenden Verweilzeiten (bzw. Durchlaufzeiten) (Vi )nen-

Die Zufallsvariable V,, bezeichnet die Zeit, die der n—te Kunde im Bedienungssystem
verweilt.

e Der Prozess der aufeinanderfolgenden Wartezeiten (Wy)nen-

Die Zufallsvariable Wy, bezeichnet die Zeit, die der n—te Kunde in der Warteschlange
verbringt, bevor er bedient wird.

Simulation von Warteschlangensystemen

Fiir einfache Warteschlangenmodelle (insbesondere fiir M/M/1/00) existieren umfangreiche
Theorien zur analytischen Bestimmung der zugehorigen Kenngrofien (siehe Stochastik 1V).
Aber bereits fiir das Warteschlangenmodell G/G/1/00 ist bis heute keine analytische Losung
bekannt, weshalb man auf stochastische Simulationen angewiesen ist. Die dafiir erforderli-
che Technik soll exemplarisch am Prozess (W, )nen der aufeinanderfolgenden Wartezeiten
erlautert werden.

Offensichtlich gilt W,, = 0 genau dann, wenn der n-te Kunde erst bei oder nach Verlassen
des (n — 1)-ten Kunden in das System eintrifft. Unter Beriicksichtigung der oben benutzten
Bezeichnungen kann diese Situation mathematisch wie folgt charakterisiert werden:
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Wn=0<& T,>2T, 1 +Wy_1+ Snfl

n
s L, >Wh 1+85,1 <da T, = ZIk>
k=1
= Wn—l < In — Sn—l (n = 1,2, .. .),

wobei als Anfangsbedingung Wy := Sy := 0 gesetzt wird. Im Fall T,, < T,_1 + Wy_1 + Sn—1
erhélt man die Wartezeit des n-ten Kunden, indem man von der Verweilzeit V,,_; des (n —1)-
ten Kunden die Zwischenankunftszeit I,,, d.h. die Zeit zwischen der Ankunft des n-ten und
(n — 1)-ten Kunden abzieht:

W,=Vp_1—1I,=W,_1+S,-1— 1, (n = 1,2,...).
Fasst man beide Bedingungen zusammen, erhélt man:

Wo = 0
W, = max(Wy_1— I+ S,-1,0) = Wp_1 — I, +S,-1)T (n=1,2,...).

Um die charakteristischen Grofien von W,, wie z.B. E[W,,] zu ermitteln, wird das Prinzip der
wiederholten Versuche angewandt, d.h. man erzeugt sich unabhéngige Realisierungen

(Ink)neN1<k<N und (Snk)neN1<k<N

der aufeinanderfolgenden Zwischenankunfts— und Bedienzeiten und schétzt E[W,,] mit Hilfe
des Stichprobenmittels

1 N
Wn = N;ka’

wobei Wn,k = (Wn—l,k — In,k + Sn—l,k:)+7 n € N1<k<N, und W(),k = SO,k := 0 fir
k=1,...,N ist. (Siehe auch MatLab-Programm zur Simulation von Warteschlangen.)

In der Praxis wird man feststellen, dass die Werte W), fiir grole n vergleichsweise stark
streuen. Fiir Spezialfille (z.B. des Bediensystems M/M/1/00) kann bewiesen werden, dass
0 — 1 Var[W,] — oo nach sich zieht, so dass man bei der Simulation Schwierigkeiten haben
wird, E[W,,] hinreichend genau einzugrenzen. Deshalb stellt sich die Frage nach Techniken,
mit denen die Varianz des Schiitzers geeignet reduziert werden kann.

Varianzreduktion

Die Verfahren zur Varianzreduktion basieren auf Prinzipien der antithetischen (gegenldufigen)
Variablen und der sogenannten Kontrollvariable.

Varianzreduktion mittels antithetischer Variablen

20.32 Satz:

Es seien X undY zwei identisch verteilte Zufallsvarablen mit Var[X] < co und Var]Y] < co.
Dann gilt:
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o) B[4(X +Y)] = ELX],
b) Var[3(X +Y)] = 3 (Var(X]+ COV[X,Y]).

Beweis:
a) E[3(X +Y)] = 3(E[X +Y]) = 3(E[X] + E[Y]) =

)Var[ (X+Y)] =3 Var[X +Y] =
1(Var[X] + Var[Y] + 2COV [X,Y]) = (2 Var[X] + 2COV [X,Y]) = 1(Var[X] +
COV[ Y. u

D[
[NV}
=
>
[
=
>

Dieser Satz kann fiir die Simulation in folgender Weise genutzt werden:
Sind Trgl) und T7g2) zwel erwartungstreue Schétzer fiir o(6), die identisch verteilt und negativ
1

korreliert sind, dann ist T}, := 5 (Tfll) + T, ng)) ebenfalls ein erwartungstreuer Schétzer fiir

0(0), der aber eine geringere Varianz besitzt als T, Y bzw. 7Y, Indem in Satz 20.32 X mit
T,Sl) und Y mit T7§2) identifiziert wird, erhilt man

E[l,] = E B (70 + T,(f))] ~E[1")]
und
Var|[T,] = Var B (T,gl) + Téz))} [Var[ S )] + COV [ 7! ), ,@H < %Var [T,gl)] .

Bei dieser Vorgehensweise wird also die Varianz um mindestens die Hélfte reduziert. Demge-
geniiber steht eine Verdopplung des Aufwandes bei der Stichprobenerhebung.

20.33 Satz:
Es bezeichne U eine R([0, 1])-verteilte Zufallsvariable. Dann gilt:
1
CoviU,1-U]=—-—.
[ ? ] 12
Beweis:

Mit U ist auch 1 — U R([0, 1])—verteilt. Deshalb gilt:

1
z2 11
U] = B[l - U] /xdx =3
0
und
1 3
E[U?] = E[(1 — 2:/2 :.1’:7‘
[U?] [(1-0U)7] x* dx T 10=3
0

Damit wird

Ul-E[U?] —E[U(1 - E[U])]
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Es seien nun F7 die Verteilungsfunktion der Zwischenankunftszeiten und Fg die Verteilungs-
funktion der Bedienzeiten. Die Erkenntnisse aus den Sétzen 20.32 und 20.33 kann man sich im
Zusammenhang mit der Simulation eines G/G/1/co—Bediensystems in der folgenden Weise
zunutze machen:

Es seien (U(lli) und (U (ZD Sequenzen stochastisch unabhéngiger
) neN,1<k<N M) neN,1<k<N

R([0, 1])—verteilter Zufallsvariablen. Hiermit korrespondieren die Folgen der aufeinanderfol-
genden Zwischenankunftszeiten I, = F, ! (Ur(blli) und Bedienzeiten S, x = Fg ! (Uf,l),
n € Nund 1 < k£ < N, wobei F; die Verteilung der Zwischenankunftszeiten und Fg
die Verteilung der Bedienzeiten bedeuten. Angesichts Satz 20.33 erzeugt man hierzu Fol-
gen I;L’k = Ffl (1 — Uéllg) sowie S;L,k = Fgl (1 — Uf,g), ne€Nund 1 <k < N, und ersetzt
das Stichprobenmittel W, durch den Schétzer

N
Wn 1 Wn,k =+ W;L’k'

NXT 3
wobei
War = [Wars—FrH(U) + F5? (U7§2_)17,<:)]+ ,
e = Wi - P (10 + F5t (1-02, )] ’

ist. Man kann nun zeigen, dass sich die Gegenlédufigkeiten der Variablen Ur(:,z und 1-U (1,2 bzw.

n,

Uf,i und 1 — Uf,i auf die Zufallsvariablen W,, ;. und W;Lk iibertragen, so dass sich tatséchlich

ein Effekt in der Form )
Var [Wn} < 3 Var Wn]

einstellt (vgl. Mitchell, B.: Various Reduction by Antithetic Variates in GI/G/1 Queueing
Simulation, Oper. Res. 21, 1973, 988-997). Hierbei spielt die Monotonie von F; und Fg bzw.
Fy ! und Fg ! eine wesentliche Rolle.

Varianzreduktion mittels Kontrollvariablen

Das Prinzip der Kontrollvariablen nutzt folgenden Zusammenhang aus:

20.34 Satz:
Es seien X und Y Zufallsvariablen mit Var(X] < oo, Var[Y] < co und ¢ € R. Dann gilt:

(i)
E[X +¢(Y —E[Y])] = E[X]
VarX + c¢(Y —E[Y])] = Var[X]+c* VarlY]+2cCOV[X,Y].
(ii) Die Funktion f: c— Var(X + c(Y — E[Y])] nimmt ihr Minimum an fir

. COV[X,Y]
T Var]Y]
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Beweis:
(i) Es gilt:
EX +c¢Y - E[Y])] = E[X]|+c¢E[Y]-E[Y]) =E[X]
Var[X + c¢(Y —E[Y])] = Var[X]+ Var[c(Y —E[Y])] +2COV [X, (Y — E[Y])]

= Var[X]+ ¢? Var[Y] + 2¢cCOV [X,Y].
(ii) Es wird
f(c) = Var[X] + ¢ Var[Y] + 2cCOV [X,Y], VceR

gesetzt und differenziert

%f(c) =2c- Var[Y]+2COV [X,Y], VceR.

d
Die Bedingung - f(¢) = 0 fiihrt auf
c

. COV[X,Y]
c=c Var|Y]
Und wegen % f(c) =2Var[Y] > 0 ist ¢* Minimum von f. [ |

In der Praxis kann dieses Prinzip wie folgt genutzt werden:
Ist X := T, ein erwartungstreuer Schétzer fiir o(6) und Y eine Zufallsvariable mit bekanntem
Erwartungswert E[Y] und bekannter Varianz Var[Y], dann ist

Ty := T, + ¢* (Y — E[Y])
ebenfalls ein erwartungstreuer Schétzer fiir o(f), wobei
Var [Tn} < Var|T,]
gilt. Ein Nachteil der Methode ist, dass die Kovarianz COV [T,,,Y] nur empirisch anhand
eines Verlaufs geschétzt werden kann.

20.6 Statistik regenerativer Prozesse

Die Theorie der regenerativen Prozesse lidsst sich zur Auswertung von Simulationen nutzen.
Aufgrund der Definition eines regenerativen Prozesses weifl man, dass die Zufallsvektoren

(Ylu X1)7 (}/27X2)7 ceey (Ym XTL); CIEaE

mit
S;—1
Y; = / f(Zs)ds  bzw. Yj:= Z f(Zn)
[Sj-1,5;) n=5j-1

und X; := 5; — Sj_1, 7 € N, unabhéngig und identisch verteilt sind.
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Es soll das Problem der Schitzung von r := E[f(Z*)] := limy_ E[f(Z;)] betrachtet wer-
den. Aufgrund der Sdtze 18.8 und 18.9 ist dies gleichbedeutend mit der Schéitzung von
E[Y1] /E[X]. Ebenfalls interessant ist die Berechnung eines Konfidenzintervalles fiir unsere
Schitzung 7, d.h. eines Intervalls, in dem der gesuchte Wert mit einer gewissen Wahrschein-
lichkeit liegt.

Hierfiir werden die Zufallsvariablen V; :=Y; — X, j € N, betrachtet. Die Folge (V});en ist
eine i.i.d. Folge. Fiir Vj gilt insbesondere:

BIV;] = BIY;] - rB{X;] = B[y - (i ) - Blx] 0.

Wir nehmen 0 < 0? = Var[V;] = E [Vﬂ < oo an und setzen

Somit gilt

Mit Hilfe des zentralen Grenzwertsatzes schliefit man, dass fiir z € R gilt

<x> = lim P<V'J\/ﬁ§x>

lim P <V
n—oo o

7 Jim
= nhf;op<wﬁ§$) = JL%P(WﬁZ) = ®(z), z€R,

wobei ® die Standardnormalverteilung bezeichnet und 7 := £ als Schétzer fiir » verwendet

wurde.

<=l

Man geht nun davon aus, dass der Fehler standardnormalverteilt ist. Es sei nun zg := ®~1(1—
%) bzw. ®(z5) =1 — g das Quantil der Ordnung 1 — 6 der Standardnormalverteilung. Damit
gilt

1imP<—z6‘§\/M§zg> - limP<?—z00 <r<?F+ ZOJ) = 1-0.

Hieraus ergibt sich das Konfidenzintervall zum Niveau 1 — 6

Xn

Das Problem hierbei ist, dass die Streuung o unbekannt ist. Sie lidsst sich aber wie folgt
schétzen:

ri=7

o’ = E[(Yl — er)z] = Var[Y1] —2-r- COV|[Yy, Xi| + r2. Var[X] ~ s11 — 2r's12 + 72599,
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wobei

1 1
= Y, -Y)? =
o1 n—1 Z( J ) n—1
7=1
1 < - 1
= X —X)? =
522 n—1 Z( J ) n—1
7j=1
1 n
s12 = DY -V)(X;-X) =
n—1+4
7j=1
Zusammenfassung:

e Man beobachtet n Regenerationszyklen.

e Daraus lassen sich fiir jeden Zyklus Y; und X; berechnen.

e Aus Y, und X; kénnen Y, X, 7, s11, S12, S22 und s2 bestimmt werden.

e Man berechnet r =7+

20.35 Beispiel:

Mittlere Wartezeit in einem G/G/1/oco—System:

1. Stichprobe:

w2
w3
Wy
Wy =

wr
wsg
Wy
wio =

2. Es gibt n := 5 Zyklen.

*
20"

Xv/n'

w12
w13

wi4 -

w15
w16

w17

w18
w19

w0 -

12
18
18
10

16

w21
w22
w23
W24
w25
W26
war
wasg
w29
w30

10

14
14
13
10

12
13
23

w3y -

w32
w33
W34
w35
w36
w3t
w3y
w39
W40

wyq1 -

O = 0 ©
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X; = 10,
X, = 6,
X3 = 2
X, = 14,
X; = 8,

3. Berechnung weiterer Grofien:

~i
|
o]
|'M
=

_ 1 &
X = 5-2)(@
=1
Fo= Y/X =
1 .y
511 = Z 7
=1
S12 = 217.5
S99 = 20
2 = 21

4. Konfidenzintervall zum Niveau 0.9:

I =105%+

10

Y, = Zwi = 100
=1
16

Y, = Zw@- = 67
=11
18

Y; = Zwi = 16
=17
32

Y, = Zwi = 150
=19
40

Yy = Zwi = 87
1=33

= 84

= 8

10.5

3 =10.5 £0.4214.
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Anhang A

Alternative Definition der
Laplace-Transformierten

Oftmals wird die Laplace-Transformation auch wie folgt definiert:
g(s) == /e“g(t) dt.
R+
Die zugehorige Faltung lautet dann:
/91 t—s)ga(s)ds , t>0

(91%g2)(t [0,4]
0 , £ <0.

Die Sétze 17.13 und 17.14 gelten fiir diese Definition ebenfalls:
Analog zu Satz 17.13 gilt: Fiir g1, g2 € B gilt g1%g2 € B, denn:

t
(g132)( / (t— )| 1g(s)ds < sup |g1(s)| - sup lga(s)| - ¢ < oo,
) 0<s<t 0<s<t

Mit den Voraussetzungen F, Fl, Fy, F3,9,91,92 € B und ¢ € R gilt Satz 17.14 ebenfalls fiir
die Laplace—Transformation f und die Faltung %. Wie oben sind nur die Punkte a), f) und g)
zu zeigen (alle anderen folgen wie oben direkt aus Eigenschaften des Integrals):

a) Es gilt:

(Fef)ef)(t) = /0 (i fa)(t — ) fs(s) ds

—

*

0
= / (i fo) () f(t — u)(—1) du
/ /u filu—v)fa(v) dv f3(t —u) du
0 0
t 0
) /0 /u Fu(w) ol — w)(=1) dw f(t —u) du

~
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- t [ At = w)sate — ) dw a

() /Ot /wt fi(w) fa(u —w) f3(t — u) du dw
0

(r5) /Ofl(w) 5 folt —w — z) f3(z)(~1) dz dw

- /0 Fr(w) (fo ) (t — w) duw
= (fix(foxf3))(2).

(%): Substitution von s durch u := t — s, (*%): Substitution von v durch w := u — v,

(x#x): Die Integration verlduft iiber folgenden Bereich:

w
4
tT /

(#): Substitution von u durch x := ¢ — u.

f) Mit der Substitution u :=t — s und % = —1 gilt:

0
(grige)(t) = /Otgl(t—s)gz(s) is = [ ot —)(-1) do
t
= /Ogl(u)gg(t—u) du = (g2%g1)(t).
g) Es gilt:
I " et fag)(s) ds
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(%): Die Integration verlduft iiber folgenden Bereich:

u
3
0——

0 0

(*x): Substitution von s durch v :=s — u.
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Anhang B

Tabelle der

v>—Verteilung

F(z) Anzahl der Freiheitsgrade
1 2 3 4 5 6 7 8 9 10
0.001 0.00 0.00 0.02 0.09 0.21 0.38 0.60 0.86 1.15 1.48
0.005 0.00 0.01 0.07 0.21 0.41 0.68 0.99 1.34 1.73 2.16
0.01 0.00 0.02 0.11 0.30 0.55 0.87 1.24 1.65 2.09 2.56
0.025 0.00 0.05 0.22 0.48 0.83 1.24 1.69 2.18 2.70 3.25
0.05 0.00 0.10 0.35 0.71 1.15 1.64 2.17 2.73 3.33 3.94
0.1 0.02 0.21 0.58 1.06 1.61 2.20 2.83 3.49 4.17 4.87
0.25 0.10 0.58 1.21 1.92 2.67 3.45 4.25 5.07 5.90 6.74
0.5 0.45 1.39 2.37 3.36 4.35 5.35 6.35 7.34 8.34 9.34
0.75 1.32 2,77 4.11 5.39 6.63 7.84 9.04 | 10.22 | 11.39 | 12.55
0.9 2.71 4.61 6.25 7.78 9.24 | 10.64 | 12.02 | 13.36 | 14.68 | 15.99
0.95 3.84 5.99 7.81 9.49 | 11.07 | 12.59 | 14.07 | 15.51 | 16.92 | 18.31
0.975 5.02 7.38 9.35 | 11.14 | 12.83 | 14.45 | 16.01 | 17.53 | 19.02 | 20.48
0.99 6.63 9.21 | 11.35 | 13.28 | 15.09 | 16.81 | 18.48 | 20.09 | 21.67 | 23.21
0.995 7.88 | 10.69 | 12.84 | 14.86 | 16.75 | 18.55 | 20.28 | 21.96 | 23.59 | 25.19
0.999 | 10.83 | 13.82 | 16.27 | 18.47 | 20.52 | 22.46 | 24.32 | 26.13 | 27.88 | 29.59
F(z) Anzahl der Freiheitsgrade
11 12 13 14 15 16 17 18 19 20

0.001 1.83 2.21 2.62 3.04 3.48 3.94 4.42 4.90 5.41 5.92
0.005 2.60 3.07 3.57 4.07 4.60 5.14 5.70 6.26 6.84 7.43
0.01 3.05 3.57 4.11 4.66 5.23 5.81 6.41 7.01 7.63 8.26
0.025 3.82 4.40 5.01 5.63 6.26 6.91 7.56 8.23 8.91 9.59
0.05 4.57 5.23 5.89 6.57 7.26 7.96 8.67 9.39 | 10.12 | 10.85
0.1 5.58 6.30 7.04 7.79 8.55 9.31 | 10.09 | 10.86 | 11.65 | 12.44
0.25 7.58 8.44 9.30 | 10.17 | 11.04 | 11.91 | 12.79 | 13.68 | 14.56 | 15.45
0.5 10.34 | 11.34 | 12.34 | 13.34 | 14.34 | 15.34 | 16.34 | 17.34 | 18.34 | 19.34
0.75 13.70 | 14.85 | 15.98 | 17.12 | 18.25 | 19.37 | 20.49 | 21.60 | 22.72 | 23.83
0.9 17.28 | 18.55 | 19.81 | 21.06 | 22.31 | 23.54 | 24.77 | 25.99 | 27.20 | 28.41
0.95 19.68 | 21.03 | 22.36 | 23.68 | 25.00 | 26.30 | 27.59 | 28.87 | 30.14 | 31.41
0.975 | 21.92 | 23.34 | 24.74 | 26.12 | 27.49 | 28.85 | 30.19 | 31.53 | 32.85 | 34.17
0.99 24.73 | 26.22 | 27.69 | 29.14 | 30.58 | 32.00 | 33.41 | 34.81 | 36.19 | 37.57
0.995 | 26.76 | 28.30 | 29.82 | 31.32 | 32.80 | 34.27 | 35.72 | 37.16 | 38.58 | 40.00
0.999 | 31.26 | 32.91 | 34.53 | 36.12 | 37.70 | 39.25 | 40.79 | 42.31 | 43.82 | 45.32

Beispiel: Bei 3 Freiheitsgraden ist F' = 0.99 fiir x = 11.35.
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Anzahl der Freiheitsgrade

F(z) 21 22 23 24 25 26 27 28 29 30
0.001 6,4 7,0 7,5 8,1 8,7 9,2 98 | 10,4 | 11,0 | 11,6
0.005 8,0 8,6 9,3 99 | 10,5 | 11,2 | 11,8 | 12,5 | 13,1 | 13,8
0,01 8,9 9,5 | 10,2 | 10,9 | 11,56 | 12,2 | 12,9 | 13,6 | 14,3 | 15,0
0,025 | 10,3 | 11,0 | 11,7 | 12,4 | 13,1 | 13,8 | 14,6 | 15,3 | 16,0 | 16,8
0,05 11,6 | 12,3 | 13,1 | 13,8 | 14,6 | 154 | 16,2 | 16,9 | 17,7 | 18,5
0,1 13,2 | 14,0 | 14,8 | 15,7 | 16,5 | 17,3 | 18,1 | 18,9 | 19,8 | 20,6
0,25 6,3 | 17,2 | 18,1 | 19,0 | 19,9 | 20,8 | 21,7 | 22,7 | 23,6 | 24,5
0,5 20,3 | 21,3 | 22,3 | 23,3 | 24,3 | 25,3 | 26,3 | 27,3 | 28,3 | 29,3
0,75 24,9 | 26,0 | 27,1 | 28,2 | 29,3 | 30,4 | 31,5 | 32,6 | 33,7 | 34,8
0,9 29,6 | 30,8 | 32,0 | 33,2 | 34,4 | 35,6 | 36,7 | 37,9 | 39,1 | 40,3
0,95 32,7 | 33,9 | 35,2 | 36,4 | 37,7 | 38,9 | 40,1 | 41,3 | 42,6 | 43,8
0,975 | 35,5 | 36,8 | 38,1 | 39,4 | 40,6 | 41,9 | 43,2 | 44,5 | 45,7 | 47,0
0,99 38,9 | 40,3 | 41,6 | 43,0 | 44,3 | 45,6 | 47,0 | 48,3 | 49,6 | 50,9
0,995 | 41,4 | 42,8 | 44,2 | 45,6 | 46,9 | 48,3 | 49,6 | 51,0 | 52,3 | 53,7
0,999 | 46,8 | 48,3 | 49,7 | 51,2 | 52,6 | 54,1 | 55,5 | 56,9 | 58,3 | 59,7
F(z) Anzahl der Freiheitsgrade
40 50 60 70 80 90 100 > 100 (N&herung)
0,001 | 17,9 | 24,7 | 31,7 39,0 46,5 54,2 61,9 (h —3,09)2/2
0,005 | 20,7 | 28,0 | 35,5 43,3 51,2 59,2 67,3 (h —2,58)2/2
0,01 22,2 | 29,7 | 37,5 45,4 53,5 61,8 70,1 (h—2,33)2/2
0,025 | 24,4 | 32,4 | 40,5 48,8 57,2 65,6 74,2 (h —1,96)2/2
0,05 26,5 | 34,8 | 43,2 51,7 60,4 69,1 77,9 (h—1,64)2/2
0,1 29,1 | 37,7 | 46,5 55,3 64,3 73,3 82,4 (h —1,28)2/2
0,25 33,7 | 42,9 | 52,3 61,7 71,1 80,6 90,1 (h—0,67)2/2
0,5 39,3 | 49,3 | 59,3 69,3 79,3 89,3 99,3 h2/2
0,75 45,6 | 56,3 | 67,0 77,6 88,1 98,6 | 109,1 (h+0,67)2/2
0,9 51,8 | 63,2 | 744 85,5 96,6 | 107,6 | 118,5 (h+1,28)2/2
0,95 55,8 | 67,5 | 79,1 90,5 | 101,9 | 113,1 | 124,3 (h+1,64)2/2
0,975 | 59,3 | 71,4 | 83,3 95,0 | 106,6 | 118,1 | 129,6 (h+1,96)2/2
0,99 63,7 | 76,2 | 88,4 | 100,4 | 112,3 | 124,1 | 135,8 (h+2,33)2/2
0,995 | 66,8 | 79,5 | 92,0 | 104,2 | 116,3 | 128,3 | 140,2 (h +2,58)2/2
0,999 | 73,4 | 86,7 | 99,6 | 112,3 | 124,8 | 137,2 | 149,4 (h+3,09)2/2

In der letzten Spalte ist h = v/2m — 1
(m = Anzahl der Freiheitsgerade)
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Anhang C

Tabelle der
Standardnormalverteilung

1 z x2
D(z) = / ez dx
V2T J o

z 0 1 2 3 4 5 6 7 8 9
0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359
0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753
0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517
0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224
0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549
0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852
0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133
0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389
1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621
1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830
1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015
1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177
1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319
1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441
1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545
1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633
1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706
1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767
2.0 | 09772 | 0.9777 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9807 | 0.9812 | 0.9816
499 844 083 217 248 178 007 738 372 911

2.1 ] 0.9821 | 0.9825 | 0.9829 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9849 | 0.9853 | 0.9857
356 708 970 142 226 224 137 966 713 379

2.2 | 0.9860 | 0.9864 | 0.9867 | 0.9871 | 0.9874 | 0.9877 | 0.9880 | 0.9883 | 0.9886 | 0.9889
966 474 906 263 545 755 894 962 962 893

2.3 | 0.9892 | 0.9895 | 0.9898 | 0.9900 | 0.9903 | 0.9906 | 0.9908 | 0.9911 | 0.9913 | 0.9915
759 559 296 969 581 133 625 060 437 758

2.4 1 09918 | 0.9920 | 0.9922 | 0.9924 | 0.9926 | 0.9928 | 0.9930 | 0.9932 | 0.9934 | 0.9936
025 237 397 506 564 572 531 443 309 128

2.5 1 0.9937 | 0.9939 | 0.9941 | 0.9942 | 0.9944 | 0.9946 | 0.9947 | 0.9949 | 0.9950 | 0.9952
903 634 323 969 574 139 664 151 600 012

2.6 | 0.9953 | 0.9954 | 0.9956 | 0.9957 | 0.9958 | 0.9959 | 0.9960 | 0.9962 | 0.9963 | 0.9964
388 729 035 308 547 754 930 074 189 274

2.7 1 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9971 | 0.9972 | 0.9973
330 358 359 333 280 202 099 972 821 646

2.8 |1 09974 | 0.9975 | 0.9975 | 0.9976 | 0.9977 | 0.9978 | 0.9978 | 0.9979 | 0.9980 | 0.9980
449 229 988 726 443 140 818 476 116 738

2.9 1 0.9981 | 0.9981 | 0.9982 | 0.9983 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986
342 929 498 052 589 111 618 110 588 051
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Beispiel: ®(2.01) = 0.9777844 .
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Anhang D

Quantile der
Standardnormalverteilung

Up = (I)_l(p)

p 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.50 | 0.0000 | 0.0251 | 0.0502 | 0.0753 | 0.1004 | 0.1257 | 0.1510 | 0.1764 | 0.2019 | 0.2275
0.60 | 0.2533 | 0.2793 | 0.3055 | 0.3319 | 0.3585 | 0.3853 | 0.4125 | 0.4399 | 0.4677 | 0.4959
0.70 | 0.5244 | 0.5534 | 0.5828 | 0.6128 | 0.6433 | 0.6745 | 0.7063 | 0.7388 | 0.7722 | 0.8064

p 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.800 | 0.8416 | 0.8452 | 0.8488 | 0.8524 | 0.8560 | 0.8596 | 0.8633 | 0.8669 | 0.8705 | 0.8742
0.810 | 0.8779 | 0.8816 | 0.8853 | 0.8890 | 0.8927 | 0.8965 | 0.9002 | 0.9040 | 0.9078 | 0.9116
0.820 | 0.9154 | 0.9192 | 0.9230 | 0.9269 | 0.9307 | 0.9346 | 0.9385 | 0.9424 | 0.9463 | 0.9502
0.830 | 0.9542 | 0.9581 | 0.9621 | 0.9661 | 0.9701 | 0.9741 | 0.9782 | 0.9822 | 0.9863 | 0.9904
0.840 | 0.9945 | 0.9986 | 1.0027 | 1.0069 | 1.0110 | 1.0152 | 1.0194 | 1.0237 | 1.0279 | 1.0322
0.850 | 1.0364 | 1.0407 | 1.0450 | 1.0494 | 1.0537 | 1.0581 | 1.0625 | 1.0669 | 1.0714 | 1.0758
0.860 | 1.0803 | 1.0848 | 1.0893 | 1.0939 | 1.0985 | 1.1031 | 1.1077 | 1.1123 | 1.1170 | 1.1217
0.870 | 1.1264 | 1.1311 | 1.1359 | 1.1407 | 1.1455 | 1.1503 | 1.1552 | 1.1601 | 1.1650 | 1.1700
0.880 | 1.1750 | 1.1800 | 1.1850 | 1.1901 | 1.1952 | 1.2004 | 1.2055 | 1.2107 | 1.2160 | 1.2212
0.890 | 1.2265 | 1.2319 | 1.2372 | 1.2426 | 1.2481 | 1.2536 | 1.2591 | 1.2646 | 1.2702 | 1.2759
0.900 | 1.2816 | 1.2873 | 1.2930 | 1.2988 | 1.3047 | 1.3106 | 1.3165 | 1.3225 | 1.3285 | 1.3346
0.910 | 1.3408 | 1.3469 | 1.3532 | 1.3595 | 1.3658 | 1.3722 | 1.3787 | 1.3852 | 1.3917 | 1.3984
0.920 | 1.4051 | 1.4118 | 1.4187 | 1.4255 | 1.4325 | 1.4395 | 1.4466 | 1.4538 | 1.4611 | 1.4684
0.930 | 1.4758 | 1.4833 | 1.4909 | 1.4985 | 1.5063 | 1.5141 | 1.5220 | 1.5301 | 1.5382 | 1.5464
0.940 | 1.5548 | 1.5632 | 1.5718 | 1.5805 | 1.5893 | 1.5982 | 1.6072 | 1.6164 | 1.6258 | 1.6352
0.950 | 1.6449 | 1.6546 | 1.6646 | 1.6747 | 1.6849 | 1.6954 | 1.7060 | 1.7169 | 1.7279 | 1.7392
0.960 | 1.7507 | 1.7624 | 1.7744 | 1.7866 | 1.7991 | 1.8119 | 1.8250 | 1.8384 | 1.8522 | 1.8663
0.970 | 1.8808 | 1.8957 | 1.9110 | 1.9268 | 1.9431 | 1.9600 | 1.9774 | 1.9954 | 2.0141 | 2.0335
0.980 | 2.0537 | 2.0749 | 2.0969 | 2.1201 | 2.1444 | 2.1701 | 2.1973 | 2.2262 | 2.2571 | 2.2904
0.990 | 2.3263 | 2.3656 | 2.4089 | 2.4573 | 2.5121 | 2.5758 | 2.6521 | 2.7478 | 2.8782 | 3.0902

p | 0.0000 | 0.0001 | 0.0002 | 0.0003 | 0.0004 | 0.0005 | 0.0006 | 0.0007 | 0.0008 | 0.0009

0.9990 | 3.0902 | 3.1214 | 3.1559 | 3.1947 | 3.2389 | 3.2905 | 3.3528 | 3.4316 | 3.5401 | 3.7190

Fiir p-Werte mit 0 < p < 0.5 gilt: u, = —u1_,
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Anhang E

Zeichenerklarungen

N Menge der natiirlichen Zahlen
Q Menge der rationalen Zahlen
R Menge der reellen Zahlen
C Menge der komplexen Zahlen
M Menge der mafdefinierenden Funktionen auf R, die in (—o00,0) ver-
schwinden
B Menge der nichtnegativen reellen Funktionen, die auf jedem Intervall der
Form [0, t] beschrénkt sind
m Menge der links offenen und rechts abgeschlossenen Intervalle im R”,
neN
B" :=o0(I") “o—Algebra der Borelschen Mengen des R™”
R ;=R U {—o00,+o0}
B :={B,BU{—0}, BU{+00}, BU{—00,+x}|B € B}
PB(M) Potenzmenge von M
(a,b] = {z]a < z < b} “links offenes, rechts abgeschlossenes Intervall”
n! =n...(n—1)----- 2.1 “Fakultdat von n”
(N)p =M=N-(N-1)---- (N —n+1) “n—te untere Faktorielle von N”
n!
() = W= k) “n iiber k"
F(a—0) meint den linksseitigen Limes von F'(a)
T konvergiert von unten gegen
x4 Exp(\) X ist exponential-verteilt
d

X=Y X und Y sind identisch verteilt
Re(x) Realteil der komplexen Zahl z
) Imaginérteil der komplexen Zahl z
O(n), o(n)  seien die Landau-Symbole.
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Anhang F

Literatur

Stochastik 1

Folgende Biicher werden als begleitende Literatur zum Teil I des Skriptes empfohlen:

e H. BAUER:
Mafs- und Integrationstheorie,
Walter de Gruyter, Berlin, 1990.
ISBN: 3110127725
Preis: 26.95 €
Kurzbeschreibung:
,, Viele Gebiete der Mathematik und ihrer Anwendungen |...] erfordern solide Kenntnisse
aus der Maf- und Integrationstheorie. Das Lehrbuch [...] fithrt den Leser [...] schnell,
verlésslich und préazise zu den wichtigsten Ergebnissen der Maf- und Integrationstheo-
rie hin. [...] Zahlreiche Beispiele erldutern die Bedeutung der erzielten Ergebnisse.]...]
Ubungsaufgaben laden den Leser zum vertieften Eindringen in den behandelten Stoff

ein.”

e H. BAUER:
Wahrscheinlichkeitstheorie,
5. Auflage, Walter de Gruyter, Berlin, 2002.
ISBN: 3110172364
Preis: 36.95 €
Kurzbeschreibung:
,,Das vorliegende Buch soll dem Studierenden als Wegfiihrer in die Wahrscheinlichkeits-
theorie dienen. Der Leser soll dabei mit den wichtigsten Ideen, Methoden und Resultaten
dieser sich heute schnell entwickelnden und verzweigenden mathematischen Theorie be-
kanntgemacht werden. [...] Da heutzutage die Wahrscheinlichkeitstheorie unléslich mit
der Maf3- und Integrationstheorie verbunden ist, verfolgt das Buch zugleich aber auch
ein zweites Ziel, ndmlich den Leser mit den Grundziigen der Mafitheorie vertraut zu
machen. [...]”

e W. BEHNEN, G. NEUHAUS:
Grundkurs Stochastik,
3. Auflage, Teubner-Verlag, Stuttgart, 1995.
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ISBN: 3930737698

Preis: 24.00 €

Kurzbeschreibung:

,,Eine integrierte Einfithrung in die Wahrscheinlichkeitstheorie und Mathematische Sta-
tistik fiir Mathematiker, Wirtschaftsmathematiker, Informatiker und Physiker.

Es enthilt: Wahrscheinlichkeitsmodelle, Anwendungspostulat und statistische Tests;
mehrstufige Zufallsexperimente und grundlegende diskrete Modelle; Wahrscheinlich-
keitsmodelle iiber euklidischen Rédumen; Koppelung von allgemeinen Zufallsexperimen-
ten (Satz von Fubini); Parameterschitzung (auch in approximativen Modellen); Konfi-
denzbereiche fiir Modellparameter; das Testen von Hypothesen.”

M. A. BERGER:

An Introduction to Probability and Stochastic Processes,

Springer—Verlag, New York, 1992.

ISBN: 3540977848

Kurzbeschreibung:

,,This is a textbook which will provide students with a straightforward introduction
to the mathematical theory of probability. It is written with the aim of presenting the
central results and techniques of the subject in a complete and self-contained account.
(...) Any student who has a familiarity with calculus and basic algebra will be able to
use this text and throughout there are a wide variety of exercises to illustrate and to
develop ideas. [...]”

O. BEYER, H. HACKEL, V. PIEPER, J. TIEDGE:

Wahrscheinlichkeitsrechnung und mathematische Statistik,

7. Auflage, Teubner-Verlag, Stuttgart, 1995.

ISBN: 3-8154-2075-X

Kurzbeschreibung:

,,Die Reihe ,,Mathematik fiir Ingenieure, Naturwissenschaftler, Okonomen und Land-
wirte” umfasst den [...] Lehrstoff fiir die Mathematikausbildung der genannten Diszi-
plinen, bietet Moglichkeiten zur Vertiefung sowie Spezialisierung und unterstiitzt die
Individualisierung des Studiums. [...] Das Lehrwerk ist nach modernen fachlichen und
hochschulpédagogischen Prinzipien aufgebaut. [...]”

P. BILLINGSLEY:

Probability and Measure,

2nd edition, John Wiley and Sons, New York, 1986.

ISBN: 0471007102

Preis: 102.90 €

Kurzbeschreibung:

,,Jntertwines measure theory and modern probability: probability problems generate
an interest in measure theory and measure theory is then developed and applied to
probability. Illustrates the connections probability theory has with applied mathematics
on the one hand and with pure mathematics on the other.”

M. Fisz:
Wahrscheinlichkeitsrechnung und mathematische Statistik,

220



Kapitel F. Literatur

VEB, Deutscher Verlag der Wissenschaften 1989.
ISBN: 3326000790

Kurzbeschreibung:
,,Dieses Buch ist in der Hauptsache fiir Mathematiker bestimmt; es diirfte aber auch
[...] solchen Lesern zugénglich sein, die [...] iiber gewisse Kenntnisse in der hoheren

Mathematik verfiigen und sich fiir die Anwendungen der Wahrscheinlichkeitsrechnung
interessieren. Der Leser findet in diesem Buch eine Einfithrung in die moderne Wahr-
scheinlichkeitsrechnung und die moderne mathematische Statistik. [...] Das Buch enthélt
zahlreiche Anwendungsbeispiele. |...]”

P. GANSSLER UND W. STUTE:

Wahrscheinlichkeitstheorie,

Springer—Verlag, Berlin, 1977.

ISBN: 3540084185

Kurzbeschreibung:

,,Fiir das Versténdnis des vorliegenden Textes sind [...] Grundkenntnisse aus einer Vor-
lesung ,,Einfithrung in die Wahrscheinlichkeitstheorie und Mathematische Statistik”
wiinschenswert. [...] Auf eine Diskusion diskreter Modelle ist deshalb bewusst verzich-
tet worden. Die [...] getroffene Stoffauswahl umfasst eine zweisemestrige Vorlesung iiber
Wabhrscheinlichkeitstheorie. Neben der Vermittlung klassischer Grundlagen liegt der me-
thodische Schwerpunkt auf der Konstruktion stochastischer Modelle unter besonderer
Beriicksichtigung einiger fiir die Anwendungen in der Mathematischen Statistik wichti-
gen Resultate. [...] 7

M. GREINER/G. TINHOFER:

Stochastik fir Studienanfinger der Informatik,

Hanser, Miinchen, 1996.

ISBN: 3-446-18636-0

Kurzbeschreibung:

,,Dieses Lehrbuch bietet einen Grundstock an Lehrstoff aus Wahrscheinlichkeitstheorie
und Statistik, wie er in der Informatik benétigt wird und verbindet diesen Lehrstoff
mit der Begriffswelt, die Informatiker in ihrem Berufsalltag vorfinden. Hierbei wird be-
sonderes Gewicht auf die Aspekte Methodik und Modellierung gelegt. Der Leser soll
[...] zukiinftig in der Lage sein, Fragen aus seinem Berufsalltag in ein geeignetes sto-
chastisches Modell umzusetzen und die ermittelten Resultate anschlieBend im Rahmen
der urspriinglichen Fragestellung zu interpretieren.[...] Mehr als hundert Beispiele, Auf-
gaben und deren Losungen sowie ein Kompromiss zwischen mathematischer Strenge
und ausgewogener textlicher Darstellung des Stoffes motivieren den Leser zur aktiven
Teilnahme an der Entwicklung und Losung von Problemen aus der Stochastik.”

E. HENZE:

Einfihrung in die MafStheorie,

Bibl. Institut, Mannheim, 1971.

ISBN: 341100505X

Kurzbeschreibung:

,,Bei dieser Einfithrung in die Maf- und Integrationstheorie werden gleichzeitig die not-
wendigen Ergebnisse und Methoden fiir den Einstieg in die moderne Wahrscheinlich-
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keitstheorie bereitgestellt. Das Buch wendet sich in erster Linie an Studenten der Ma-
thematik, der Informatik und der Physik, kann aber auch anderen interessierten Lesern
von Nutzen sein.”

E. HENZE:

Stochastik fiir Finsteiger,

Bibl. Institut, Mannheim, 1997.

ISBN: 3528368942

Kurzbeschreibung:

,»[.--] Dieses Buch soll dem Leser einen Einstieg in die Stochastik, die Kunst des ,,ge-
schickten Vermutens”, vermitteln und ihn in die Lage versetzen [...] kritisch und kom-
petent mitreden zu kénnen. Es enthilt 160 Ubungsaufgaben mit Losungen. [...] Als
Lehrbuch zwischen gymnasialem Mathematikunterricht und Universitéit wendet es sich
unter anderem an: [...] Studienanféinger an Universitidten, Fachhochschulen und Berufs-
akademien; Quereinsteiger aus Industrie und Wirtschaft.”

H. HEUSER:

Lehrbuch der Analysis. Teil 2 Mathematische Leitfiden,

Teubner, Stuttgart, 2002.

ISBN: 3519522322

Kurzbeschreibung:

,,Bei der Abfassung des zweiten Bandes [...| wollte ich die Theorie ausfiihrlich und
fasslich darstellen, ausgiebig motivieren und durch viele Beispiele und Ubungen zum si-
cheren Besitz des Lesers machen. Auflerdem wollte ich Briicken schlagen zu den Anwen-
dungen analytischer Methoden in den allerverschiedensten Wissenschaften. [...] Dabei
stehen diesmal im Vordergrund der Uberlegungen Funktionen, deren Argumente und
Werte Vektoren aus dem R?P oder sogar Elemente aus noch viel allgemeineren Rdumen
sind. [...]”

K. HINDERER:

Grundbegriffe der Wahrscheinlichkeitstheorie,

Springer—Verlag, 1980.

ISBN: 3540073094

Kurzbeschreibung:

,,Das Buch [...] bietet eine solide, gut motivierte Darstellung mit einer Fiille konkre-
ter Beispiele, erginzt durch sorgfiltig ausgesuchte Aufgaben nach jedem Paragraphen.
Sowohl die historischen als auch die weiterfithrenden Bemerkungen geben eine gute
Ubersicht iiber Probleme und Fragestellungen aus der Wahrscheinlichkeitstheorie.”

G. HUBNER:

Stochastik. Fine Finfihrung fir Mathematiker, Informatiker und Ingenieure.,

4. Auflage, Vieweg Verlag, 2003.

ISBN: 3528254432

Preis: 22.50 €

Kurzbeschreibung:

,,Dieses Buch soll Informatiker, Ingenieure und Mathematiker in die Lage versetzen,
konkrete Vorginge mit Zufallseinfluss in den wesentlichen Aspekten zu verstehen, zu
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modellieren und daraus Prognosen und Entscheidungshilfen abzuleiten. [...] Das Buch
[...] richtet sich [...] an [...] Informatiker, Ingenieure, Mathematiker und Mathematik—
Lehrer, die sich grundlegende Kenntnisse in stochastischer Modellierung und erste Ein-
blicke in Anwendungsbereiche verschaffen wollen. [...] Besonders auf die Belange der
Informatik zugeschnitten ist die Einbeziehung von Modellen und Bewertungen fiir Be-
dienungsprobleme und Kommunikationsnetze auf elementarem Niveau. |...]”

U. KRENGEL:

Einfithrung in die Wahrscheinlichkeitstheorie und Statistik,

6. Auflage, Vieweg, 2002.

ISBN: 3528672595

Preis: 22.90 €

Kurzbeschreibung:

,,Dieses Buch wendet sich an alle, die [...] in die Ideenwelt der Stochastik eindringen
mochten. Stochastik ist die Mathematik des Zufalls. [...] Die beiden Hauptgebiete der
Stochastik sind Wahrscheinlichkeitstheorie und Statistik. In der Wahrscheinlichkeits-
theorie untersucht man zufillige Prozesse mit festen als bekannt angenommenen steu-
ernden Wahrscheinlichkeiten. [...] Dariiber hinaus liefert die Wahrscheinlichkeitstheorie
Grundlagen fiir die Statistik, in der aus beobachteten Daten Schliisse iiber unbekannte
Wabhrscheinlichkeiten und iiber zweckmifliges Verhalten gezogen werden sollen. |...]”

K. KRICKEBERG/H. ZIEZOLD:

Stochastische Methoden,

4. Auflage, Springer—Verlag, Berlin, 1995.

ISBN: 3-540-57792-0

Kurzbeschreibung:

,,Jm Vordergrund [...] stehen die eigentlichen ,,stochastischen” Ideen und ihre prakti-
schen Anwendungen, insbesondere in der Statistik, ohne dass mathematische strenge
und Schénheit zu kurz kommen. Uber die iiblichen Grundlagen hinaus finden sich Kapi-
tel iber Simulation, nichtparametrische Statistik und Regression- und Varianzanalyse.
[...] Besonderer Anziehungspunkt dieses Buches ist die ,,genetische” Entwicklung der
verschiedenen Typen von Wahrscheinlichkeitsverteilungen, ausgehend von der hyper-
geometrischen Verteilung. [...]"

J. LEEN/H. WEGMANN:

Einfithrung in die Statistik,

4. Auflage, Teubner, 2004.

ISBN: 3519320711

Preis: 22.90 €

Kurzbeschreibung:

,,Eine elementare Darstellung statistischer Schéitz— und Testverfahren einschliellich der
zugrundeliegenden Modellbildung fiir Mathematiker, Informatiker, Wirtschaftswissen-
schaftler, Naturwissenschaftler und Ingenieure.

Es enthélt: Methoden der Beschreibenden Statistik; Zufallsvariablen und ihre Vertei-
lungen; Gesetze der Groflen Zahlen und ihre Eigenschaften; Tests bei Normalvertei-
lungsannahmen; y2-Tests und Kontingenztafeln; verteilungsunabhéngige Tests; einfache
Varianzanalyse und Regression.”
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e R. MATHAR/D. PFEIFFER:

Stochastik fir Informatiker,

Teubner, 1990.

ISBN: 3519022400

Kurzbeschreibung:

,,Das vorliegende Buch [...] wendet sich vor allem an Informatikstudenten und Mathe-
matikstudenten mit Nebenfach Informatik mit dem Ziel, stochastische Grundbegriffe
unter besonderer Beriicksichtigung Informatik—spezifischer Aspekte zu vermitteln. |...]
Ziel des Buches ist es daher, eine einheitliche und méglichst geschlossene Ubersicht
iiber die zum Versténdnis benotigten Grundlagen zu geben. [...] Trotz des iiberwiegen-
den Lehrbuchcharakters dieses Textes haben wir uns allerdings auch bemiiht, neuere
Entwicklungen, die z.T. bisher nur in Originalarbeiten vorliegen, mit einzubeziehen, um
dort, wo es im Rahmen unseres Zugangs moglich ist, Anschluss an Fragestellungen der
aktuellen Forschung zu erlangen. |[...]”

J. PFANZAGL:

FElementare Wahrscheinlichkeitsrechnunyg,

Gruyter, Berlin, 1988.

ISBN: 3110114194

Kurzbeschreibung:

,,Die vorliegende Einfiihrung der Wahrscheinlichkeitsrechnung ist ,,elementar” in dem
Sinne, dass weder Kenntnisse aus der Mafitheorie noch aus der Funktionentheorie vor-

ausgesetzt werden. [...] Das Anliegen des Buches ist die Entwicklung anwendungsbe-
zogenen stochastischen Denkens. Diesem Ziel dient eine verhéltnisméflig grofie Anzahl
von Beispielen, die [...] zeigen sollen, dass es sich bei der Wahrscheinlichkeitsrechnung

um ein Teilgebiet der Mathematik handelt, das durch Anwendungen immer wieder neue
Facetten erhélt. [...]”

P. P. SpiEs:

Grundlagen stochastischer Modelle,
Hanser, Miinchen, 1982.

ISBN: 3446137114

Literatur speziell zu Kapitel 4

e J. BANKS:

Principles of Quality Control,
John Wiley and Sons, New York, 1989.
ISBN: 0471635510

D.C. MONTGOMERY:

Introduction to Statistical Quality Control,

2nd edition, John Wiley and Sons, New York, 1991.

ISBN: 0471656313

Kurzbeschreibung:

,, This book is about the use of modern statistical methods for quality control and im-
provement. It provides comprehensive coverage of the subject from basic principles to
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state-of-art concepts and applications. The objective is to give the reader a sound under-
standing of the principles and the basis for applying them in a variety of both product
and nonproduct situations. While statistical techniques are emphasized throughout, the
book has a strong engineering and management orientation. [...] By presenting theory,
and supporting the theory with clear and relevant examples, Montgomery helps the
reader to understand the big picture of important concepts. |...]”

e H. RINNE UND H.—J. MITTAG:
Statistische Methoden der Qualitdtssicherung,
3. Auflage, Carl Hanser Verlag, Miinchen, 1995.
ISBN: 3446180060
Kurzbeschreibung:
,,Dieses Buch ist bewusst anwendungsorientiert geschrieben und zeichnet sich durch eine
besonders sorgfiltige didaktische Gestaltung aus. Es enthélt: Zahlreiche Abbildungen
und Fotos; mehr als 100 Ubungsaufgaben mit ausfiihrlichen Losungen; viele durchge-
rechnete Anwendungsbeispiele; verstindnisfordernde, zusammenfassende Ubersichten;
kommentierte Literaturangaben.”

e W. UHLMANN:
Statistische Qualitdtskontrolle,
2. Auflage, Teubner—Verlag, Stuttgart, 1982.
ISBN: 3519123061
Kurzbeschreibung:
,,Ein Lehrbuch fiir Statistiker, Mathematiker, Ingenieure und Wirtschaftswissenschaft-
ler. Es enthilt: Wahrscheinlichkeitstheoretische Grundlagen; statistische Grundlagen;
Eingangs- und Endkontrolle; kostenoptimale Priifpléne; sequentielle Tests; Kontrollkar-
ten; Kosten und Kontrollabstand; kontinuierliche Stichprobenpléine.”

Literatur speziell zu Kapitel 8

e . BEICHELT:
Zuverldssigkeits— und Instandhaltungstheorie,
Teubner, Stuttgart, 1993.
ISBN: 3519029855

Kurzbeschreibung:
,,Das Buch ist eine moderne Einfithrung in die Zuverléssigkeits— und Instandhaltungs-
theorie auf der Grundlage stochastischer Modellbildung.[...] Zahlreiche numerische Bei-

spiele erleichtern dainhaltliche Verstdndnis. Das Buch wendet sich an Praktiker und
Studierende mathematisch-naturwissenschaftlich-technischer Fachrichtungen. |...]”

e K.-W. GAEDE:
Zuverldssigkeit — Mathematische Modelle,
Hanser, Miinchen, 1977.
ISBN: 3446123709
Kurzbeschreibung:
,,Dieses Buch behandelt in leicht versténdlicher und mathematisch sauberer Form die
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Problemstellungen der Zuverldssigkeitstheorie und die zu ihrer Losung nétigen ma-
thematischen Modelle. Die erforderlichen Begriffe und die ausfiihrlich beschriebenen
Losungsverfahren werden an praxisorientierten Beispielen erldutert. [...] Damit ist das
Buch [...] auch zum Selbststudium fiir alle Ingenieure, Informatiker, Physiker und Ma-
thematiker geeignet, die in der Praxis Zuverlédssigkeitsprobleme zu bearbeiten haben.”

P. GEsSSNER/H. WACKER:

Dynamische Optimierung,

Hansa, Miinchen, 1972.

ISBN: 3446115390

Kurzbeschreibung:

,,Dieses Buch wendet sich an den Praktiker. Es versucht im Bereich der dynamischen Op-
timierung #hnlich wie bei der linearen Optimierung das Modelldenken einzufiihren. |...]
Alle jene Optimierungsprobleme der Unternehmensforschung werden behandelt, bei de-
nen es darum geht, zeitabhéngige Prozesse optimal zu steuern oder zu beeinflussen. |...]
Hierzu werden viele realistische Beispiele diskutiert. [...] Fiir den an der Theorie weniger
interessierten Praktiker sind fiir jedes Modell die Rechenschritte fiir sich versténdlich
aufgelistet. [...]”

K. NEUMANN:

Dynamische Optimierung,

Bibliographisches Institut AG, Mannheim, 1969.

ISBN: 3411007141

Kurzbeschreibung:

,,Das vorliegende Taschenbuch ist aus einer Vorlesung [...] entstanden. Der Stoff der Vor-
lesung ist durch Anwendungsbeispiele aus den verschiedensten Gebieten (Lagerhaltung,
chemische Reaktortechnik, Regelungstechnik, Zuverlassigkeitstheorie, Produktions- und
Wirtschaftssteuerung u.a.) [...] ergénzt worden. [...]”

Stochastik 11

Die nachfolgenden Biicher eignen sich zum Nacharbeiten des Teil II:

e A.O. ALLEN:

Probability, Statistics and Queueing Theory,
Academic Press, London, 2nd. Edition, 1990.
ISBN: 0120510510

G. ALSMEYER:
FErneuerungstheorie,
Teubner-Verlag, Stuttgart, 1991.
ISBN: 3519027305

G. AUMANN/O. HAUPT:

Finfiihrung in die reelle Analysis, Band I,
de Gruyter, Bln., 1981.

ISBN: 3110019701
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F. BEICHELT/P. FRANKEN:

Zuwverldssigkeit und Instandhaltung: Mathematische Methoden,
Hanser-Verlag, Miinchen, 1984.

ISBN: 3446139060

U.N. BHAT:
Sizty years of queueing theory,
Management Science 15,280-294, 1969.

E. BROCKEMEYER, H.L.. HALSTROM, A. JENSEN:

The Life and Works of A.K. Erlang,

Acta Polystechnica Scandinavia, Mathematics and Computing Machinery Series, 6,
1960.

J.A. BuzacorT/J.G. SHANTIKUMAR:
Stochastic Models of Manufacturing Systems,
Prentice Hall, 1993.

ISBN: 0138475679

Preis: 90.90 €

Y.S. CHow/H. TEICHER:

Probability Theory - Independence, Interchangeability, Martingales,
Springer-Verlag, New York, 1988.

ISBN: 0387406077

E. CINLAR:

Introduction to stochastic processes,
Prentice—Hall, 1975.

J. W. COHEN:
The single server queue,
North Holland Publishing Company, Amsterdam, 1969.

G.H. FICHTENHOLZ:

Differential- und Integralrechnung 11,

VEB Deutscher Verlag der Wissenschaften, Berlin, 1974.
ISBN: 3817112793

Preis: 34.80 €

D. Gross/C.M. HARRIs:

Fundamentals of Queueing Theory,

John Wiley and Sons, New York, 2nd. Edition, 1986.
ISBN: 0471170836

Preis: 108.50 €

D. L. IGLEHART/G. S. SHEDLER:

An Introduction to the Regenerative Method for Simulation Analysis,
Springer—Verlag, Berlin, 1977.

ISBN: 3540084088

227



Kapitel F. Literatur

e D. L. IGLEHART/G. S. SHEDLER:
Regenerative Simulation of Response Times in Networks of Queues,
Springer—Verlag, Berlin, 1980.
ISBN: 3540099425

e S. KARLIN/H.M. TAYLOR:
A first course in stochastic processes,
Academic Press, 1975.
Preis: 83.50 €

e L. KLEINROCK:
Queueing Systems, Volume 1,
John Wiley ans Sons, 1975.

e .. KLEINROCK:

Queueung Systems, Volume 2,
John Wiley and Sons, 1976.

e J. KoHLAS:
Stochastische Methoden des Operations Research,
Teubner, 1977.
ISBN: 3519023423

e M. KOLONKO:

Stochastik I, Skriptum zur Vorlesung,
TU Clausthal, 2005.

e M. KOLONKO:

Stochastik II, Skriptum zur Vorlesung,
TU Clausthal, 2006.

e S.S. LAVENBERG:
Computer Performance Modeling Handbook,
Academic Press, San Diego, 1983.
ISBN: 0124387209

e S. I. RESNICK:
Adventures in Stochastic Processes,
Birkh&auser, Boston, 1992.
ISBN:0817635912
Preis: 65.50 €

o T.L. SAATY:
Elements of Queueing Theory with Applications,
Mc Graw Hill, New York, 1961.
ISBN: 0486645533

e P. TRAN-GIA:
Analytische Leistungsbewertung verteilter Systeme,
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Springer-Verlag, Berlin, 1996.

ISBN: 3540606661

Kurzbeschreibung:

,,Dieses Buch vermittelt die gingigen Methoden der Modellbildung und Analyse verteil-
ter Systeme, die in der Leistungsbewertung von Rechner- und Kommunikationssystemen
sowie von Fertigungssystemen angewendet werden. Zunéchst werden die Grundlagen der
Wabhrscheinlichkeitsrechnung, der stochastischen Prozesse, der Markov- und der Erneue-
rungsprozesse behandelt, die zum Verstdndnis der analytischen Leistungsbewertungs-
verfahren erforderlich sind. Grundmodelle der klassischen Nachrichtenverkehrstheorie
und des Operations Research werden eingehend beschrieben, wobei Modellierungs- und
Anwendungsaspekte im Vordergrund stehen. Abschlieend werden moderne Analyseme-
thoden vorgestellt, z.B. zeitdiskrete Analyseverfahren und Algorithmen sowie die Klasse
der matrixanalytischen Methoden.”
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Anhang G

Historie

In der folgenden Auflistung werden einige fiir die Entwicklung der Stochastik bedeutende
Mathematiker mit ihren Lebensdaten und kurzen Beschreibungen ihrer Wirkungsfelder auf-
gefiihrt. Die Liste erhebt keinen Anspruch auf Vollsténdigkeit. Insbesondere fehlen wichtige
Mathematiker, die nicht direkt im Bereich der Stochastik gewirkt haben, durch ihre Arbeiten
zur Maf}- oder Integrationstheorie die moderne Stochastik aber erst ermdglichten.

e Thomas Bayes
(* 1702 in London, England; 1 17. April 1761 in Tunbridge Wells, Kent, England)

Thomas Bayes studierte ab 1719 Theologie an der Universitit in Edinburgh und be-
schéiftige sich nebenbei mit Mathematik. 1733 wurde er Pfarrer der presbyterianischen
Kapelle in Tunbridge Wells, 35 Meilen siidéstlich von London. 1742 ernannte man Bayes
zum Mitglied der Royal Society, obwohl der bis zu diesem Zeitpunkt noch keinerlei
mathematische Arbeiten verdffentlich hatte. Insgesamt publizierte Bayes selbst nur 2
Arbeiten. Seine wichtigten Forschungsergebnisse, die unter anderem auch den spéter
als ,,Formel von Bayes” benannten Satz enthielten, wurden erst aus seinem Nachlass
bekannt.

e Richard Ernest Bellman
(* 26. August 1920 in New York; t 19. Mérz 1984 in Santa Monica, Californien)

Bellman studierte bis 1943 am Brooklyn College (B.A.) sowie an der University of
Wisconsin (M.A.) Mathematik. Danach arbeitete er 2 Jahre in Los Alamos in der theo-
retischen Physik. Seit 1965 lehrte er an der Universitdt von Southern California, Los
Angeles, als Professor fiir Mathematik, Elektroingenieurwesen und Medizin.

1953 stellte Bellman die Methode der dynamischen Programmierung auf, die fiir die
Entscheidungstheorie sowie fiir die Variationsrechnung und optimalen Steuerung we-
sentlich ist. Bellman beschéftige sich auch mit der Modellierung biologischer Prozesse
und der Theorie der unscharfen Mengen.

e Familie Bernoulli
Die schweizer Gelehrtenfamilie Bernoulli hat tiber mehrere Generationen hinweg sehr
grofle Beitrage zur Mathematik geleistet.

Im Folgenden werden nur die beiden Mitglieder der Bernoulli-Familie aufgefiihrt, die
sich wesentlich mit stochastischen Fragestellungen beschéftigt haben. Insbesondere wer-
den Jakob Bernoulli II, Johann Bernoulli I, Johann Bernoulli II, Johann Bernoulli III,
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Niklaus Bernoulli I und Niklaus Bernoulli II, die allesamt bedeutende Mathematiker
waren, hier nicht ndher erwihnt.

— Daniel Bernoulli
(* 8. Februar 1700 in Groningen; t 17. Mérz 1782 in Basel)

Daniel Bernoulli interessierte sich hauptséchlich fiir Anwendungen der Mathema-
tik. Er entwickelte das Prinzip zur Losung algebraischer Gleichungen mit Hilfe
von rekurrenten Reihen (,,Methode von Bernoulli”) und untersuchte Kettenbriiche.
AuBlerdem lieferte er wichtige Beitrdge zur Wahrscheinlichkeitstheorie, die spéter
teilweise von Laplace in seine Theorie aufgenommen wurden.

— Jakob Bernoulli I
(*x 27. Dezember 1654 in Basel; T 16. August 1705 in Basel)

Jakob Bernoulli I ist der erste Gelehrte in der Familie der Bernoullis und {iber-
haupt der erste bekannte Schweizer Mathematiker. Er befasste sich {iberwiegend
mit analytischen Fragestellungen (er stand u.a. mit Leibniz, der gerade eine In-
finitesimalmethoden aufgestellt hatte, in Kontakt), sowie mit stochastischen Pro-
blemen. Seine Arbeit baute auf den Ergebnissen von Huygens iiber das Gliicks-
spiel auf. In einer, erst nach seinem Tode durch seinen Neffen Niklaus Bernoulli
I veroffentlichten Arbeit, stellte Jakob Bernoulli 1 bereits das Gesetz der grofien
Zahlen auf und verallgemeinerte viele kombinatorische Ansétze von Huygens.

e Emile Borel

(+ 7. Januar 1871 Saint-Affrique; 1 3. Februar 1956 in Paris)

Borel beschiéiftige sich zunédchst mit Funktionentheorie. Nach seiner Tétigkeit als For-
schungsbeirat im Kriegsministerium von 1914-1918 iibernahm er den Lehrstuhl fiir
Wabhrscheinlichkeitsrechnung und mathematische Physik an der Sorbonne. Wahrend
seiner Arbeit in der Funktionentheorie prige Borel den Begriff des Mafles und der
iiberabzéhlbaren Uberdeckung. Ab 1905 befasste sich Borel mit den Nutzungsmoglich-
keiten seiner Mafitheorie in der Wahrscheinlichkeitstheorie. Auflerdem ist Borel Mitbe-
griinder der Spieltheorie und bewies das Minimax-Theorem fiir 3 Spieler.

Guido Fubini
(* 19. Januar 1879 in Venedig; T 6. Juni 1943 in New York)

Zu den wichtigsten Arbeiten Fubinis gehort der 1907 von ihm bewiesene und spéter nach
ihm benannte Satz. Dariiber hinaus befasste sich Fubini mit projektiver Differentialgeo-
metrie sowie der Theorie diskontinuierlicher Gruppen und automorpher Funktionen.

Andrej Nikolajewitsch Kolmogorov
(* 25. April 1903 in Tambow; 20. Oktober 1987 in Moskau)

Kolmogorov gilt als einer der bedeutensten Mathematiker der Gegenwart. Er befasste
sich vorwiegend mit Wahrscheinlichkeitstheorie, mathematischer Statistik und Logik,
Maf- und Integrationstheorie, Funktionnalanalysis sowie Informations- und Algorith-
mentheorie. Nebenbei entwarf er Lehrpléine und Schulbiicher fiir den Mathematikunter-
richt und pragte so zu groflen Teilen den Mathematikunterricht in der Sowjetunion.

Mit seiner Arbeit ,,Grundbegriffe der Wahrscheinlichkeitsrechnung” von 1933 léste er
das 6. Problem der beriihmten 23 von Hilbert gestellten mathematischen Probleme.
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e Pierre Simon Marquis de Laplace
(* 28. Mérz 1749 in Beaumont-en-Auge; t 5. Mérz 1827 in Paris)

Laplace befasste sich sehr viel mit partiellen Differential- und Differenzengleichungen.
Seine Entwicklung der Laplace-Transformation diente ihm dazu, Naturerscheinungen
analytisch zu erfassen. Neben vielen Arbeiten zu physikalischen Themen befasste er sich
mit Themen der Wahrscheinlichkeitsrechnung. Seine 1812 erschienene Theorie stellte ei-
ne umfassende Darstellung der damals bekannten Wahrscheinlichkeitstheorie dar. In ihr
wurde der Begriff der Wahrscheinlichkeit definiert, sowie die mathematische Erwartung
erortert. Zudem greift Laplace in seiner Arbeit das, von J. Bernoulli gefundene Gesetz
der groflen Zahlen auf.

Auf Laplace geht auch die Idee zuriick, dass das Geschehen in einem physikaischen Sy-
stem exakt vorherbestimmbar sei, wenn nur alle Anfangszustinde bekannt sind (,,La-
placescher Determinismus”).

Laplace war neben seiner Tétigkeit als Forscher ab 1794 Vorsitzender der Kommission
fiir Mafle und Gewichte und unter Napoleon Bonaparte Minister des Inneren.

e Henri Lebesgue
(* 28. Juni 1875 in Beauvais (Frankreich); { 26. Juli 1941 in Paris)

Lebesgue erkannte, dass viele zu seiner Zeit giiltigen Theorien fiir eine Reihe von Frage-
stellungen unzureichend waren. 1902 verallgemeinerte er den Riemannschen Integralbe-
griff zu dem wesentlich leistungsfihigeren Lebesgueschen Integral. Lebesgues Resultate
wurden zunédchst nur zégernd aufgenommen, stellen heute aber die Grundlage fiir die
moderne Analysis dar.

e Andrej Andrejewitch Markov
(* 14. Juni 1856 in Gouvernement Rjasan; T 20. Juli 1922 in Petrograd)

Markov studierte von 1874-1878 unter anderem bei Tschebyscheff und beschéftigte sich
zunichst hauptsétlich mit Fragestellungen der Zahlen— und Funktionentheorie. Spéter
befasste er sich {iberwiegend mit Wahrscheinlichkeitsrechnung. Dabei legte er wichtige
Grundlagen zur Entwicklung der Theorie der stochastischen Prozesse. Auflerdem ent-
wickelte Markov die Theorie der spater nach ihm benannten Markovschen Prozesse bzw.
Ketten.

e Pafnuti Lwowitch Tschebyscheff
(* 16. Mai 1821 in Okatowo; t 8. Dezember 1894 in Petersburg)

Tschebyscheff befasste sich zunichst {iberwiegend mit Zahlentheorie. Unter anderem
wirkte er an der Herausgabe der zahlentheoretischen Manusskripte Eulers mit. Spéter
beschiiftige er sich dann iiberwiegend mit wahrscheinlichkeitstheoretischen Fragestel-
lungen. Insbesondere erarbeitete er die GesetzméfBigkeiten von Summen unabhéngiger
Summanden. Er verdeutlichte die Wichtigkeit solcher Begriffe wie Zufallsgrofie oder Fr-
wartungswert, verallgemeinerte das Gesetz der grofien Zahlen und vereinfachte dessen
Beweis erheblich.

¢ Bernhard Georg Friedrich Riemann
(* 17. September 1826 in Breselenz bei Dannenberg; 1 20. Juli 1866 in Selasca in Italien)
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Riemann studierte ab 1846 an der Universitidt in Gottingen zunéchst Theologie und
Philosophie, wechselte dann aber bald zur Mathematik. In seiner 1854 vorgelegten Ha-
bilitationsschrift fithrte Riemann das spéater nach ihm benannte Riemann-Integral ein.
Neben der Integrationstheorie befasste er sich mit vielen weiteren mathematischen Ge-
bieten. So forschte Riemann u.a. auf dem Gebiet der partiellen Differentialgleichungen,
sowie in der Zahlentheorie und der nichteuklidischen Geometrie. Die Ideen Riemanns
sind bis heute von grofier Bedeutung: Die Riemannsche Hypothese iiber die Nullstellen
der (-Funktion wird in sehr vielen Sétzen der Zahlentheorie verwendet. Beweisen lies
sich die Riemannsche Hypothese allerdings bis heute nicht.

Weitere Informationen und diverse Biographien finden sich unter:

S. GorTwALD, H.-J. ILcAUuDS, K.-H. SCHLOTE:

Lexikon bedeutender Mathematiker,
Verlag Harri Deutsch, Thun, 1990.
ISBN: 3-8171-1164-9

Turnbell Server, Biographies
http://www-groups.dcs.st-and.ac.uk/

Mathematik.ch: Bedeutende Mathematiker
http://www.mathematik.ch/mathematiker/

Wikipedia (Kategorie: Mathematiker)
http://de.wikipedia.org/wiki/Kategorie:Mathematiker
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Historie

Huygens begriindet mit seinem
Buch ,Uber das Wiirfelspiel* die

Wahrscheinlichkeitstheorie. Er
flhrt u.a. den Erwartungswert ein.

,Gesetz der groRen Zahlen* (aus
Jakob Bernoullis Nachlass von
seinem Neffen Niklaus Bernoulli |
veroffentlicht)

Formel von Bayes (aus Bayes
Nachlass verdéffentlicht)

Laplace verdffentlich seine Wahrscheinlichkeitstheorie. In
ihr wird der Begriff der Wahrscheinlichkeit exakt definiert,
auBerdem wird darin der Erwartungswert erortert.

Riemann fiihrt den spater nach
ihm benannten Integralbegriff ein

schebyscheff befasst sich mit Summen unabhangiger
Zufallsvariablen und verallgemeinert das Gesetz der grofien
Zahlen. Tschebyscheff versuchte die Wahrscheinlichkeits-
theorie so auszubauen, dass sich mit ihr ein groRer Teil der
Vorgange der Wirklichkeit bescheiben lasst.

Borel pragt den
Begriff des Males
Markov befasst sich mit stochastischen Prozessen und zeigt

dass das starke Gesetz der grofRen Zahlen und der zentrale
Grenzwertsatz unter allgemeineren Voraussetzungen gelten

Probleme, darunter als 6. Problem: Axiomatisierung der

ilbert formuliert seine 23 bedeutenden mathematischen
ahrscheinlichkeitstheorie

G_ebesgue verallgemeinert den Integralberiff von Riemann

orel beschreibt Nutzungsmaglichkeiten der MaRtheorie fir
die Wahrscheinlichkeitstheorie

Warteschlangentheorie (in seinem Fall zu Dimensionierung

rlang veroffentlich die erste Arbeit zur
on Fernsprechvermittiungenen)

olmogorov I6st mit seiner Arbeit ,Grundbegriffe der
Wahrscheinlichkeitsrechnung® das 6. Problem von Hilbert

@aratheodory beweist die beiden MaRfortsetzungssatze

)/___,1761_

\ 4

1812——

1854—

1]

1900
1900=

1905—]

1917 —

1933—
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1625 * Christiaan Huygen

1654 * Jakob Bernoulli

95 1 Christiaan Huygen
00 * Daniel Bernoulli
02 * Thomas Bayes

16
17
17
1705 t Jakob Bernoulli

1749 * Piere Simon Marquis de Laplace

1761 1 Thomas Bayes

1782 t Daniel Bernoulli

1821 * Pafnuti Lwowitsch Tschebyscheff
1826 * Bernhard Georg Friedrich Riemann
1827 t Piere Simon Marquis de Laplace

856 * Andrej Andrejewitsch Markov
862 * David Hilbert o .

866 1 Bernhard Georg Friedrich Riemann
1871 * Emile Borel

1873 * Constantin Caratheodory

1875 * Henri Lebesgue

1878 * Agner Krarup Erlang

1894 t Pafnuti Lwowitsch Tschebyscheff
1903 * Andrej Nikolajewitsch Kolmogorov

Andrej Andrejewitsch Markov

1922 ¥
1929 T Agner Krarup Erlang

1 1 Henri Lebesgue
3 1 David Hilbe

0 1 Constantin Caratheodory
6 t Emile Borel

1987 1 Andrej Nikolajewitsch Kolmogorov
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