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19.3 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
19.4 Altersunabhängige Erneuerungen . . . . . . . . . . . . . . . . . . . . . . . . . 160
19.5 Altersabhängige Erneuerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
19.6 Blockerneuerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

20 Monte–Carlo–Simulation 171
20.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
20.2 Erzeugung gleichverteilter Zufallszahlen . . . . . . . . . . . . . . . . . . . . . 174
20.3 Erzeugung nichtgleichverteilter Zufallszahlen . . . . . . . . . . . . . . . . . . 184
20.4 Monte–Carlo–Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
20.5 Stochastische Simulation von Warteschlangen . . . . . . . . . . . . . . . . . . 193
20.6 Statistik regenerativer Prozesse . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A Alternative Definition der Laplace-Transformierten 207

B Tabelle der χ2–Verteilung 211

C Tabelle der Standardnormalverteilung 213

D Quantile der Standardnormalverteilung 215

E Zeichenerklärungen 217
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Vorwort

Die Stochastik II ist Teil eines viersemestrigen Zyklus, den ich seit 1993 regelmäßig für Stu-
dierende der Mathematik und Informatik an der Technischen Universität Clausthal abhalte.
Das Skriptum ist bereits an den speziellen Anforderungen des neuen Bachelor-Studiengangs
,,Angewandte Mathematik” und den darauf aufbauenden Master-Studiengängen ,,Angewand-
te Mathematik” und ,,Operations Research” ausgerichtet und beinhaltet deshalb neben den
weiterführenden Kapiteln der Wahrscheinlichkeitstheorie (charakteristische Funktion, schwa-
che Konvergenz, zentraler Grenzwertsatz, bedingte Erwartung, bedingte Verteilung) und der
Einführung in die Theorie der stochastischen Prozesse (Erneuerungstheorie und regenerati-
ve Prozesse) auch Anwendungen aus den Bereichen Statistik, Instandhaltung, Monte Carlo-
Integration und stochastische Simulation.

Dank der finanziellen Unterstützung durch die ELAN-Initiative des Landes Niedersachsen
(elearning academic network Niedersachsen) kann auch dieses Skriptum wieder als Online-
Version zur Verfügung gestellt werden:

http://www.stochastik.tu-clausthal.de/Stochastik2Skript/

Für die tatkräftige Zuarbeit danke ich Frau Dipl.-Math. Sylvia Arns, Herrn Dipl.-Math.
Alexander Herzog und unserem Hilfsassistenten Herrn Hendrik Baumann. Meinem ehema-
ligen Kollegen Prof. Dr. Joachim Hilgert, der nach einer Vorversion dieses Skriptums im SS
2002 die Stochastik II gelesen hatte, verdanke ich einige wichtige Korrekturhinweise.

Thomas Hanschke Clausthal, April 2007
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INHALTSVERZEICHNIS

0.1 Mit der Stochastik II zusammenhängende Vorlesungen

Die Stochastik II Vorlesung ist Teil einer Reihe weiterführender Veranstaltungen, die man der
nachstehenden Grafik entnehmen kann.

(Siehe auch PowerPoint-Präsentation zum Stochastik–Vorlesungsplan.)
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Kapitel 13

Charakteristische Funktionen

Der Begriff der charakteristischen Funktion ist grundlegend für die Wahrscheinlichkeitstheo-
rie. Es wird sich zeigen, dass viele mit dem asymptotischen Verhalten von Folgen von Zufalls-
variablen zusammenhängende Fragestellungen sehr einfach und elegant mit Hilfe charakteri-
stischer Funktionen beantwortet werden können.

Schlüsselwörter: Komplexwertige Zufallsvariable, Fourier–Transformierte oder
charakteristische Funktion, Satz von Bochner, Umkehrformel, Summen stochastisch
unabhängiger Zufallsvariablen, Momenten–Berechnung aus charakteristischen Funk-
tionen.
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Kapitel 13. Charakteristische Funktionen

13.1 Komplexwertige Zufallsvariablen

Um den Begriff der charakteristischen Funktion einführen zu können, werden Kenntnisse über
komplexwertige Zufallsvariablen X : Ω→ C benötigt. Indem man

X = ReX + i ImX

setzt, wobei ReX der Realteil von X, ImX der Imaginärteil von X und i die imaginäre
Einheit bedeuten, kann die Behandlung komplexwertiger messbarer Abbildungen dem bereits
behandelten Kalkül untergeordnet werden.

13.1 Definition (komplexwertige Zufallsvariable):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω→ C eine Abbildung. X heißt
komplexwertige Zufallsvariable genau dann, wenn ReX und ImX F–B–messbare Abbildungen
von Ω in R sind.

13.2 Definition (P–integrierbar über Ω, Erwartungswert von X über Ω):
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und X eine komplexwertige Zufallsvariable über
(Ω,F, P ). X heißt genau dann P–integrierbar über Ω, wenn ReX und ImX P–integrierbar
sind. Dann heißt ∫

Ω

X dP :=
∫
Ω

ReX dP + i

∫
Ω

ImX dP

der Erwartungswert von X über Ω. Er wird wie im reellen Fall mit EP [X] (oder einfach mit
E[X], wenn das Wahrscheinlichkeitsmaß aus dem Kontext heraus klar ist) bezeichnet.

13.3 Satz:
(Ω,F, P ) sei ein Wahrscheinlichkeitsraum und X,Y : Ω→ C seien komplexwertige Zufallsva-
riablen.

a) Ist X P–integrierbar, dann ist auch X P–integrierbar und es gilt:∫
Ω

X dP =
∫
Ω

X dP.

b) Ist X P–integrierbar, so ist auch cX P–integrierbar für jedes c ∈ C und es gilt:∫
Ω

cX dP = c

∫
Ω

X dP.

c) Sind X und Y P–integrierbar, dann ist auch X + Y P–integrierbar und es gilt:

E[X + Y ] = E[X] + E[Y ] .

d) X ist genau dann P–integrierbar, wenn |X| P–integrierbar ist.

e) Ist X P–integrierbar, so gilt ∣∣∣∣∣∣
∫
Ω

X dP

∣∣∣∣∣∣ ≤
∫
Ω

|X| dP.
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13.1. Komplexwertige Zufallsvariablen

f) Sind X und Y stochastisch unabhängig und P–integrierbar, so gilt

E[X · Y ] = E[X] ·E[Y ] .

Beweis:
Die Eigenschaften a) bis c) folgen unmittelbar aus dem Ansatz X = ReX + i ImX bzw. für
b) außerdem aus dem Ansatz c = a+ ib.

d) Aufgrund der Definition des P–Integrals von X folgt aus der P–Integrierbarkeit von X
die P–Integrierbarkeit von ReX und ImX. Mit Hilfe der Äquivalenz

f ist µ–integrierbar ⇐⇒ |f | ist µ–integrierbar

kann aus der P–Integrierbarkeit von ReX und ImX auf die P–Integrierbarkeit von
|ReX| und |ImX| geschlossen werden. Wegen|X| ≤ |ReX|+ |ImX| und der Monotonie
des Integrals folgt somit die P–Integrierbarkeit von |X|. Die Umkehrung ergibt sich aus
den Abschätzungen |ReX| ≤ |X| und |ImX| ≤ |X|.

e) Zuerst werden X(ω) und
∫
ΩX(ω) dP (ω) in Polarkoordinaten dargestellt:

X(ω) = r(ω) · ei·γ(ω), ω ∈ Ω, mit r(ω) ∈ R+ und 0 ≤ γ(ω) < 2π,∫
Ω

X(ω) dP (ω) = r′ · eiγ′ mit r′ ∈ R+ und 0 ≤ γ′ < 2π

(für X(ω) 6= 0, sonst nicht definiert). Unter Einbezug der Eulerschen Formel

eiz = cos z + i sin z

und der Identität

|eiz| = | cos z + i sin z| =
√

cos2 z + sin2 z = 1

erhält man∣∣∣∣∣∣
∫
Ω

X(ω) dP (ω)

∣∣∣∣∣∣ =
∣∣∣r′ · eiγ′∣∣∣ = ∣∣r′∣∣ · ∣∣∣eiγ′∣∣∣ = ∣∣r′∣∣ = r′

= r′ · eiγ′ · e−iγ′

=
∫
Ω

X(ω) dP (ω) · e−iγ′ =
∫
Ω

X(ω) · e−iγ′ dP (ω)

=
∫
Ω

r(ω) · eiγ(ω) · e−iγ′ dP (ω) =
∫
Ω

r(ω)ei(γ(ω)−γ′) dP (ω)

=
∫
Ω

r(ω) · cos(γ(ω)− γ′) dP (ω) +
∫
Ω

r(ω) · i · sin(γ(ω)− γ′) dP (ω)

︸ ︷︷ ︸
=0, da r′∈R+

≤
∫
Ω

r(ω) dP (ω) =
∫
Ω

|X(ω)| dP (ω) .
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Kapitel 13. Charakteristische Funktionen

f) Es gilt:

E[X · Y ] = E[(ReX + i ImX) · (ReY + i ImY )]
= E[ReX · ReY − ImX · ImY + iReX ImY + i ImX ReY ]
= E[ReX · ReY ]−E[ImX · ImY ] + iE[ReX ImY ] + iE[ImX ReY ]
(∗)
= E[ReX] ·E[ReY ]−E[ImX] ·E[ImY ]

+ iE[ReX] ·E[ImY ] + iE[ImX] ·E[ReY ]
= (E[ReX] + iE[ImX]) · (E[ReY ] + iE[ImY ]) = E[X] ·E[Y ] .

((∗): Die stochastische Unabhängigkeit der betreffenden Real- und Imaginärteile folgt aus
Satz 11.26, indem man X1 = (ReX, ImX) und X2 = (ReY, ImY ) wählt und für g1 und g2
die entsprechenden Projektionsabbildungen einsetzt.) �

Der Satz von der majorisierten Konvergenz gilt auch im Komplexen.

13.4 Satz (Satz von der majorisierten Konvergenz im Komplexen):
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Xn)n∈N eine Folge komplexwertiger P -
integrierbarer Zufallsvariablen über (Ω,F, P ). Für alle n ∈ N gelte | Xn |≤ Y mit einer
P -integrierbaren, F −B-messbaren Abbildung Y : Ω → R+ und es existiere limn→∞Xn fast
überall. Dann ist limn→∞Xn P -integrierbar und es gilt:

lim
n→∞

∫
Ω

XndP =
∫
Ω

lim
n→∞

XndP.

Beweis:
Der Beweis ergibt sich aus dem Satz von der majorisierten Konvergenz unter Berücksichtigung
der Abschätzungen | ReXn |≤| Xn | und | ImXn |≤| Xn |, n ∈ N. �

13.2 Eigenschaften charakteristischer Funktionen

13.5 Definition (Fourier–Transformierte, charakteristische Funktion):
Es sei µ ein endliches Maß auf (R,B). Dann heißt die durch

ϕµ(t) :=
∫
R

eitx dµ, t ∈ R,

definierte Funktion die charakteristische Funktion von µ. Sie ist für alle t ∈ R definiert, da
aufgrund von |eitx| = 1 das Integral stets konvergiert. Wenn X eine reelle Zufallsvariable über
(Ω,F, P ) ist, dann heißt die durch

ϕX(t) := E
[
eitX

]
:=
∫
Ω

eitX dP =
∫
R

eitx dPX , t ∈ R,

definierte Funktion die Fourier–Transformierte oder charakteristische Funktion von X bzw.
PX .
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13.2. Eigenschaften charakteristischer Funktionen

Es ist stets

|ϕX(t)| =

∣∣∣∣∣∣
∫
R

eitx dPX

∣∣∣∣∣∣ ≤
∫
R

∣∣eitx∣∣ dPX =
∫
R

dPX = 1 ∀ t ∈ R

und nach Satz 13.3 a) gilt außerdem:

ϕX(−t) =
∫
R

e−itx dPX =
∫
R

eitx dPX =
∫
R

eitx dPX = ϕX(t), ∀ t ∈ R.

13.6 Beispiel:
Einige Beispiele für charakteristische Funktionen
(siehe auch Mathematica-Notebook zu diesem Beispiel)

1. Es sei PX eine Einpunktverteilung , d.h. es existiert ein c ∈ R mit P (X = c) = 1. Dann
lautet die zugehörige charakteristische Funktion

ϕX(t) = eitc, t ∈ R.

2. Es sei X eine Bernoulli–verteilte Zufallsgröße mit P (X = 1) = p und P (X = 0) = 1−p.
Die zu X gehörende charakteristische Funktion berechnet sich wie folgt:

ϕX(t) = E
[
eitx
]

= eit·1p+ eit·0(1− p) = 1 + p(eit − 1), t ∈ R.

3. Eine mit dem Parameter λ > 0 Poisson–verteilte Zufallsgröße X hat die charakteristi-
sche Funktion

ϕX(t) =
∞∑

k=0

λk

k!
e−λeitk = e−λ

∞∑
k=0

(λeit)k

k!
= e−λeλeit

= eλ(eit−1), t ∈ R.

4. Eine auf dem Intervall [0, 1] gleichverteilte Zufallsgröße X habe die Dichte f(x) =
I[0,1](x), x ∈ R. Dann gilt:

ϕX(t) =
∫
R

eitx dPX =
∫
R

eitxf(x) dx =
∫
R

eitxI[0,1](x)dx =

1∫
0

eitx · 1 dx

=
1
it
eitx
∣∣∣∣1
0

=
1
it

(eit − 1), t ∈ R.

5. Es sei X d= N (0, 1). Dann gilt:

ϕX(t) =
1√
2π

∫
R

eitxe−x2/2 dx =
1√
2π

∫
R

e−(x−it)2/2e−t2/2 dx

= e−t2/2 · 1√
2π

∫
R

e−(x−it)2/2 dx

︸ ︷︷ ︸
=1, Integral von N (it, 1)

= e−t2/2, t ∈ R.
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Kapitel 13. Charakteristische Funktionen

6. Für eine mit dem Parameter θ > 0 exponentiell verteilte Zufallsgröße ergibt sich

ϕX(t) =
∫
R

eitx dPX =

∞∫
0

eitx · θ · e−θx dx = θ

∞∫
0

ex(it−θ) dx

=
θ

it− θ
ex(it−θ)

∣∣∣∣∞
0

= − θ

it− θ
=

θ

θ − it
, t ∈ R.

7. Für eine mit den Parametern n und θ Erlang–verteilte Zufallsgröße X lässt sich mittels
partieller Integration (Übung!) zeigen:

ϕX(t) =
∫
R

eitx dPX =

∞∫
0

eitx
θnxn−1e−θx

(n− 1)!
dx =

[
θ

θ − it

]n

, t ∈ R.

8. Es sei X eine Zufallsvariable mit der Dichte

fX(x) =

{
1
T

(
1− |x|

T

)
, für |x| ≤ T

0 , für |x| > T,

die sogenannte Dreiecksverteilung auf [−T, T ].

Abbildung 13.1: Dreiecksverteilung mit T := 5

Die zugehörige charakteristische Funktion ϕX berechnet sich wie folgt:

ϕX(t) =
∫
R

eitx fX(x) dx

=
1
T

 0∫
−T

(
1 +

x

T

)
· eitx dx+

T∫
0

(
1− x

T

)
· eitx dx

 , t ∈ R.
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13.2. Eigenschaften charakteristischer Funktionen

Es gilt:

0∫
−T

(
1 +

x

T

)
· eitx dx =

[
eitx

it

(
1 +

x

T

)]x=0

x=−T

− 1
it
· 1
T

0∫
−T

eitx dx

=
1
it
− 0− 1

it
· 1
T

[
eitx

it

]x=0

x=−T

=
1
it

+
1
t2T

(
1− e−itT

)
und

T∫
0

(
1− x

T

)
· eitx dx =

[
eitx

it

(
1− x

T

)]x=T

x=0

+
1
it
· 1
T

T∫
0

eitx dx

=0− 1
it

+
1
it
· 1
T

[
eitx

it

]x=T

x=0

= − 1
it
− 1
t2T

(
eitT − 1

)
.

⇒ ϕX(t) =
1
T
· 1
t2T
· (2− eitT − e−itT ) =

2
T 2t2

(
1− eitT + e−itT

2

)
=

2
T 2t2

(
1− 1

2

(
1 + 1 +

itT

1
+
−itT

1
+

(−itT )2

2
+

(−itT )2

2
+ . . .

))
=

2
T 2t2

(
1−

(
1 +

i2t2T 2

2
+
i4t4T 4

4!
+
i6t6T 6

6!
+ . . .

))
=

2(1− cos (Tt))
T 2t2

, t ∈ R,

wobei wir im letzten Schritt

ez = 1 +
z

1!
+
z2

2!
+ . . .

cos z = 1− z2

2!
+
z4

4!
−+ . . .

benutzt haben.

13.7 Satz (Analytische Eigenschaften der charakteristischen Funktion):
Es sei µ ein endliches Maß auf (R,B) mit der charakteristischen Funktion ϕµ. Dann gilt:

(i) ϕµ(t) ist stetig für alle t ∈ R.

(ii) ϕµ ist positiv–semidefinit , d.h.

n∑
j=1

n∑
k=1

γjγkϕµ(tj − tk) ≥ 0

für alle tj ∈ R, alle γj ∈ C, j = 1, . . . , n und alle n ∈ N.

(iii) Es gilt ϕµ(0) = µ(R). Ist µ ein Wahrscheinlichkeitsmaß, so gilt also ϕµ(0) = 1.

13



Kapitel 13. Charakteristische Funktionen

Beweis:
(i) Es gilt ei(t+h)x → eitx für h → 0 und es ist | eitx |= 1 für alle t ∈ R. Folglich lässt sich

mit Hilfe des Satzes von der majorisierten Konvergenz schließen:

lim
h→0

ϕµ(t+ h) = lim
h→0

∫
R

ei(t+h)x dµ(x) =
∫
R

lim
h→0

ei(t+h)x dµ(x)

=
∫
R

eitx dµ(x) = ϕµ(t).

(ii)
n∑

j=1

n∑
k=1

γjγkϕµ(tj − tk) =
n∑

j=1

n∑
k=1

γjγk

∫
R

ei(tj−tk)x dµ(x)

=
∫
R

n∑
j=1

γje
itjx ·

n∑
k=1

γke
itkx dµ(x)

(
da ϕµ(−s) = ϕµ(s)

)

=
∫
R

n∑
j=1

γje
itjx ·

n∑
k=1

γkeitkx dµ(x)

=
∫
R

∣∣∣∣∣∣
n∑

j=1

γje
itjx

∣∣∣∣∣∣
2

dµ(x) ≥ 0.

(iii) ϕµ(0) =
∫
R

ei·0·x dµ =
∫
R

1 dµ = µ(R). �

In Satz 13.7 wurde gezeigt, welche Eigenschaften charakteristische Funktionen aufweisen.
Im Folgenden soll nun umgekehrt beschrieben werden, durch welche Eigenschaften charakte-
ristische Funktionen von Wahrscheinlichkeitsverteilungen gekennzeichnet sind. Es wird sich
zeigen, dass dies genau die Eigenschaften aus Satz 13.7 sind, d.h. Satz 13.7 stellt eine ,,genau
dann, wenn”–Beziehung dar.

13.8 Satz (Satz von Bochner):
Eine Funktion ϕ : R → C ist genau dann charakteristische Funktion eines endlichen Maßes
µ auf (R,B), wenn sie die Bedingungen (i), (ii) und (iii) aus Satz 13.7 erfüllt.

Beweis:
Siehe M. Loéve: ,,Probability theory”, Van Nostrand, New York, 1963; Kapitel 4, §14: ,,Dis-
tribution functions und characteristic functions”.

Die folgenden Sätze geben Auskunft über Existenz und Eindeutigkeit der Umkehrung der
Fourier-Transformation.
13.9 Satz (Umkehrformel von Lévy):
Es sei ϕ die charakteristische Funktion der Zufallsgröße X. Dann gilt für −∞ < a < b <∞:

lim
c→∞

1
2π

c∫
−c

e−ita − e−itb

it
ϕ(t) dt

14



13.2. Eigenschaften charakteristischer Funktionen

= P (a < X < b) +
P (X = a) + P (X = b)

2
.

Beweis:
Es wird

I(c) :=
1
2π

c∫
−c

e−ita − e−itb

it
ϕ(t) dt =

1
2π

c∫
−c

e−ita − e−itb

it
E[eitX ]dt

gesetzt. Da [(e−ita − e−itb)/it]eitX für t auf dem kompakten Intervall [−c, c] beschränkt ist,

folgt mit dem Satz von Fubini:

I(c) =
1
2π

E

 c∫
−c

eit(X−a) − eit(X−b)

it
dt


=

1
2π

E

 c∫
−c

cos(t(X − a))− cos(t(X − b))
it

dt


︸ ︷︷ ︸

=0, da hier
∫ 0
−c··· dt=

∫ c
0 ··· dt

+
1
2π

E

 c∫
−c

sin(t(X − a))− sin(t(X − b))
t

dt


=

1
π
E

 c∫
0

sin(t(X − a))− sin(t(X − b))
t

dt

 =: E[Jc(X)].

Für den Integralsinus gilt (z.B. Fichtenholz, S.654 oder Si(z) auf functions.wolfram.com):

∞∫
0

sinαt
t

dt =

sgn(α)·∞∫
0

sinx
x

dx =


π
2 , für α > 0,
0 , für α = 0,
−π

2 , für α < 0.

Deswegen folgt

lim
c→∞

Jc(u) =


1 , für a < u < b,
1
2 , für u = a oder u = b,
0 , für u < a oder u > b.

Da | Jc(u) |≤ 2 für alle−∞ < u und c <∞ lässt sich mit Hilfe des Satzes von der majorisierten
Konvergenz schließen, dass

lim
c→∞

I(c) = lim
c→∞

E[Jc(X)] = E[ lim
c→∞

Jc(X)]

= E

[
1
2
I[X=a oder X=b] + I[a<X<b]

]
=
P (X = a) + P (X = b)

2
+ P (a < X < b). �

15
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13.10 Bemerkung:
Sind a und b Stetigkeitspunkte der Verteilungsfunktion F von X, so reduziert sich die Formel
aus Satz 13.9 auf

lim
c→∞

1
2π

c∫
−c

e−ita − e−itb

it
ϕX(t)dt = FX(b)− FX(a).

13.11 Satz (Eindeutigkeit):
Es seien µ und ν zwei endliche Maße auf (R,B) mit den charakteristischen Funktionen ϕµ

und ϕν . Dann gilt ϕµ(t) = ϕν(t) für alle t ∈ R genau dann, wenn µ = ν gilt.

Beweis:
Da µ ein endliches Maß ist, kann es höchstens abzählbar viele x ∈ R mit µ({x}) > 0 geben.
Damit lassen sich monoton fallende Folgen (aj)j∈N und (bk)k∈N mit limj→∞ aj = −∞ und
limk→∞ bk =: b ∈ R finden mit µ({aj}) = 0 und µ({bk}) = 0.
Wegen der Stetigkeit von unten ergibt sich weiter

µ((−∞, b)) = lim
j→∞

µ((aj , b)) und µ((−∞, b]) = lim
k→∞

µ((−∞, bk)).

Damit folgt mit Bemerkung 13.10 angewandt auf das Wahrscheinlichkeitsmaß 1
µ(R)µ:

µ((−∞, b]) = lim
k→∞

lim
j→∞

lim
c→∞

1
2π

∫ c

−c

e−itaj − e−itbk

it
ϕµ(t) dt.

Analog lässt sich eine entsprechende Formel für ν((−∞, b]) aufstellen. Da die Borelsche σ-
Algebra durch Intervalle der Form (−∞, b] erzeugt wird, folgt µ = ν. Die Umkehrung erhält
man aus der Eindeutigkeit der charakteristischen Funktion. �

Da Verteilungsfunktionen und Bildmaße sich wechselseitig eindeutig bestimmen, ergibt sich
sofort als Spezialfall des obigen Satzes:

13.12 Satz (Eindeutigkeit):
Es seien X und Y reellwertige Zufallsvariablen über (Ω,F, P ) mit den Verteilungsfunktionen
FX und FY sowie den charakteristischen Funktionen ϕX und ϕY . Dann gilt ϕX(t) = ϕY (t)
für alle t ∈ R genau dann, wenn FX(t) = FY (t) für alle t ∈ R gilt.

13.13 Satz:
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und es bezeichne ϕ die charakteristische Funk-
tion der Zufallsgröße X : Ω→ R mit der Verteilungsfunktion F . Gilt∫

R

|ϕ(t)| dt <∞ ,

dann ist F stetig differenzierbar und es gilt

f(x) = F ′(x) =
1
2π

∫
R

e−itxϕ(t) dt ∀x ∈ R .
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13.2. Eigenschaften charakteristischer Funktionen

Beweis:
Es wird zunächst die Stetigkeit von F gezeigt. Da

∫
R

| ϕ(t) | dt < ∞ vorausgesetzt ist, kann

der Satz von der majorisierten Konvergenz angewendet werden und es ergibt sich

lim
b→a+0

1
2π

∫
R

e−ita − e−itb

it︸ ︷︷ ︸
beschränkt

ϕ(t)dt =
1
2π

∫
R

lim
b→a+0

e−ita − e−itb

it︸ ︷︷ ︸
=0

ϕ(t)dt = 0,

wobei die Beschränktheit von e−ita−e−itb

it wie im Beweis der Umkehrformel 13.9 folgt, wenn
man berücksichtigt, dass diese Funktion im Unendlichen verschwindet. Andererseits gilt nach
der Umkehrformel:

1
2π

∫
R

e−ita − e−itb

it
ϕ(t)dt = lim

c→∞

1
2π

c∫
−c

e−ita − e−itb

it
ϕ(t)dt

= P (a < X < b) +
P (X = a) + P (X = b)

2
.

Zusammen mit

lim
b→a+

(
P (a < X < b) +

P (X = a) + P (X = b)
2

)
≥ 1

2
P (X = a) ≥ 0

ergibt sich P (X = a) = P (X = a+ 0)− P (X = a− 0) = 0, was beweist, dass F stetig ist.
Aus

F (b)− F (a) =
1
2π

∫
R

ϕ(t)
e−ita − e−itb

it
dt für b > 0

folgt

F (x+ h)− F (x)
h

=
1
2π

∫
R

ϕ(t)
e−itx − e−it(x+h)

ith
dt für h > 0

=
1
2π

∫
R

ϕ(t)e−itx 1− e−ith

ith
dt.

Damit wird

f(x) = F ′(x) = lim
h→0

F (x+ h)− F (x)
h

= lim
h→0

1
2π

∫
R

ϕ(t)e−itx 1− e−ith

ith
dt

=
1
2π

∫
R

ϕ(t)e−itx · lim
h→0

1− e−ith

ith
dt

=
1
2π

∫
R

ϕ(t)e−itx · 1 dt.

Damit ist die Existenz der rechtsseitigen Ableitung von F nachgewiesen. Für h < 0 ergibt
sich auf dieselbe Weise die linksseitige Ableitung.
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Es sind sowohl ϕ(t) (vgl. Satz 13.7) als auch eitx stetig in t. Außerdem gilt∫
R

|ϕ(t) · e−itx| dt =
∫
R

|ϕ(t)| · |e−itx|︸ ︷︷ ︸
=1

dt <∞,

da nach Voraussetzung
∫
R
|ϕ(t)| dt < ∞ ist. Damit lässt sich mit Hilfe des Satzes von der

majorisierten Konvergenz schließen:

lim
h→0

f(x+ h) = lim
h→0

1
2π

∫
R

ϕ(t)e−it(x+h) dt =
1
2π

∫
R

ϕ(t) lim
h→0

e−it(x+h) dt

=
1
2π

∫
R

ϕ(t)e−itx dt = f(x).

�

13.14 Beispiel:
Es sei ϕ(t) := e−

t2

2 , t ∈ R. Wegen∫
R

∣∣∣∣e− t2

2

∣∣∣∣ dt =
∫
R

e−
t2

2 dt = 2π

kann mit Hilfe von Satz 13.13 geschlossen werden:

f(x) =
1
2π

∫
R

e−
t2

2 · e−itx dt =
1
2π

∫
R

e−
(t+ix)2

2 · e
(ix)2

2 dt

=
1√
2π
· e−

x2

2 · 1√
2π
·
∫
R

e−
(t+ix)2

2 dt

︸ ︷︷ ︸
=
√

2π

=
1√
2π
· e−

x2

2 , x ∈ R.

Offensichtlich ist f(x) die Dichte der Standard-Normalverteilung (vgl. Beispiel 13.6 (5)).

13.15 Beispiel:
Es sei X eine Zufallsvariable mit der charakterischischen Funktion

ϕX(t) :=

 1− |t|
T , für |t| ≤ T
,

0 , für |t| > T.

Es soll die Dichte fX(x) von X berechnet werden. Dazu wird Satz 13.13 herangezogen:

fX(x) =
1
2π

∫
R

e−itxϕX(t) dt

=
1
2π

0∫
−T

(
1 +

t

T

)
e−itx dt+

1
2π

T∫
0

(
1− t

T

)
e−itx dt.
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13.2. Eigenschaften charakteristischer Funktionen

Es gilt

0∫
−T

(
1 +

t

T

)
e−itx dt =

[
e−itx

−ix

(
1 +

t

T

)]t=0

t=−T

− 1
−ixT

0∫
−T

e−itx dt

= − 1
ix
− 0 +

1
ixT

[
e−itx

−ix

]t=0

t=−T

= − 1
ix
− 1

(ix)2T
(1− eiTx)

und

T∫
0

(
1− t

T

)
e−itx dt =

[
e−itx

−ix

(
1− t

T

)]t=T

t=0

− 1
ixT

T∫
0

e−itx dt

= 0 +
1
ix
− 1
ixT

[
e−itx

−ix

]t=T

t=0

=
1
ix

+
1

(ix)2T
(e−iTx − 1).

Damit wird

fX(x) =
1

2πx2T
(2− eiTx − e−iTx) =

1
πx2T

(
1− eiTx + e−iTx

2

)
=

1
πx2T

(
1− 1

2

(
1 + 1 +

iTx

1
+
−iTx

1
+

(−iTx)2

2
+

(−iTx)2

2
+ . . .

))
=

1
πx2T

(
1−

(
1 +

i2T 2x2

2
+
i4T 4x4

4!
+
i6T 6x6

6!
+ . . .

))
=

1− cos (Tx)
πx2T

, x ∈ R.

13.16 Satz:
Es seien X und Y zwei reelle Zufallsvariablen mit den charakteristischen Funktionen ϕX(t)
und ϕY (t). Dann gilt:

a) ϕaX+b(t) = eitbϕX(at) für alle a, b ∈ R.

b) Sind X und Y stochastisch unabhängig, so gilt:

ϕX+Y (t) = ϕX(t) · ϕY (t).

c) Aus E
[∣∣Xk

∣∣] <∞ folgt, dass ϕX(t) k–mal stetig differenzierbar ist. In diesem Fall gilt:

ϕ
(k)
X (0) = ikE

[
Xk
]
.

d) Aus E
[∣∣Xk

∣∣] <∞ folgt

ϕX(t) =
k∑

j=0

(it)jE
[
Xj
]

j!
+ o(|t|k) für t→ 0.
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e) Falls E
[
|X|k+δ

]
<∞ für ein δ ∈ [0, 1] gilt

ϕX(t) =
k∑

j=0

(it)jE
[
Xj
]

j!
+R(t) mit |R(t)| ≤

21−δ |t|k+δ E
[
|X|k+δ

]
(1 + δ) · . . . · (k + δ)

.

Beweis:
a) Es gilt:

ϕaX+b(t) = E
[
eit(aX+b)

]
= E

[
eitaXeitb

]
= eitbE

[
eitaX

]
= eitbϕX(at).

b) Da mit X und Y auch eitX und eitY stochastisch unabhängig sind, kann mit Hilfe von
Satz 13.3 f) geschlossen werden:

ϕX+Y (t) = E
[
eit(X+Y )

]
= E

[
eitXeitY

]
= E

[
eitX

]
·E
[
eitY

]
= ϕX(t) · ϕY (t).

c) Wir setzen zunächst k := 1. Für alle t, h ∈ R mit h 6= 0 gilt dann

ϕX(t+ h)− ϕX(t)
h

=
∫
R

eitx
eihx − 1

h
dPX .

Weiter gilt ∣∣∣eihx − 1
∣∣∣ =√(coshx− 1)2 + (sinhx)2 =

√
2(1− coshx)

= 2

√
1− coshx

2
= 2

∣∣∣∣sin(hx2
)∣∣∣∣ ≤ 2

∣∣∣∣hx2
∣∣∣∣ = |hx|.

(Im vorletzten Schritt wird die Tatsache | sinx| ≤ |x| verwendet. Für x = 0 gilt sinx =
0 = x und für x ∈

[
0, π

2

]
ist (sinx)′ = cosx ≤ 1 = (x)′. Für x > 1 ist die Behauptung

evident und für x < 0 ist sie aus Symmetriegründen dann ebenfalls erfüllt.)

Aus
∣∣eihx − 1

∣∣ ≤ |hx| wiederum folgt sofort
∣∣∣∣eitx eihx − 1

h

∣∣∣∣ ≤ |x|.
Nach Voraussetzung ist |X| PX–integrabel. Mit Hilfe des Satzes von der majorisierten
Konvergenz, der auch für komplexwertige Zufallsvariable gültig ist (siehe 13.4), kann
deshalb geschlossen werden:

ϕ
(1)
X (t) = lim

h→0

ϕX(t+ h)− ϕX(t)
h

= lim
h→0

∫
R

eitx
eihx − 1

h
dPX

=
∫
R

[
lim
h→0

eitx
eihx − 1

h

]
dPX = i

∫
R

xeitx dPX .

Damit wird
ϕ

(1)
X (0) =

∫
R

ix · e0 dPX = iE[X] .
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Weiter lässt sich induktiv von k auf k + 1 schließen:

ϕ
(k+1)
X (t) = lim

h→0

ϕ
(k)
X (t+ h)− ϕ(k)

X (t)
h

= lim
h→0

ik ·
∫
R

xk ·
(
ei(t+h)x − eitx

)
h

dPX

= ik ·
∫
R

xkeitx lim
h→0

eihx − 1
h

dPX

= ik+1 ·
∫
R

xk+1eitx dPX .

Und damit:

ϕ
(k+1)
X (0) = ik+1 ·

∫
R

xk+1e0 dPX = ik+1E
[
Xk+1

]
.

d) Die Behauptung folgt aus dem Taylor’schen Satz.

e) • Folgende Gleichung lässt sich induktiv nachweisen:

eit −
k∑

j=0

(it)j

j!
= ik+1

t∫
0

tk+1∫
0

. . .

t2∫
0

eit1 dt1 . . . dtkdtk+1.

(Für k = 1 lässt sich die Gleichung leicht nachrechnen und für k → k + 1 schreibt

man die rechte Seite als i
t∫
0

ik+1
tk+2∫
0

. . .
t2∫
0

eit1 dt1 . . . dtk+1dtk+2 und setzt nach In-

duktionsvoraussetzung eitk+1−
∑k

j=0
(itk+2)j

j! für ik+1
tk+2∫
0

. . .
t2∫
0

eit1 dt1 . . . dtk+1dtk+2

ein. Die verbleibende Gleichung eit−
k+1∑
j=0

(it)j

j! = i
t∫
0

eitk+1 −
∑k

j=0
(itk+2)j

j! dtk+1 lässt

sich ebenfalls leicht nachrechnen.)

• Es ist | sin t| ≤ |t|δ für δ ∈ [0, 1], denn für |t| ≥ 1 ist |t|δ ≥ 1 und somit ist
die Ungleichung offensichtlich erfüllt und für |t| < 1 gilt |t| ≤ |t|δ und außerdem
natürlich | sin t| ≤ |t|. Damit lässt sich nun folgende Abschätzung aufstellen:

∣∣eit − 1
∣∣ =√(cos t− 1)2 + (sin t)2 =

√
2(1− cos t)

= 2

√
1− cos t

2
= 2

∣∣∣∣sin( t2
)∣∣∣∣ ≤ 21−δ |t|δ für δ ∈ [0, 1].
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Hieraus ergibt sich:∣∣∣∣∣∣eit −
k∑

j=0

(it)j

j!

∣∣∣∣∣∣ =
∣∣∣∣∣∣

t∫
0

tk+1∫
0

. . .

t3∫
0

t2∫
0

eit1 dt1 . . . dtk+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

0

tk+1∫
0

. . .

t3∫
0

1
i
eit2 − 1

i
dt2 . . . dtk+1

∣∣∣∣∣∣
=
∣∣∣∣1i
∣∣∣∣ ·
∣∣∣∣∣∣

t∫
0

tk+1∫
0

. . .

t3∫
0

eit2 − 1 dt2 . . . dtk+1

∣∣∣∣∣∣
≤

|t|∫
0

tk+1∫
0

. . .

t3∫
0

∣∣eit2 − 1
∣∣ dt2 . . . dtk+1

≤ 21−δ

|t|∫
0

tk+1∫
0

. . .

t3∫
0

(t2)δ dt2 . . . dtk+1

=
21−δ |t|k+δ

(1 + δ) . . . (k + δ)
.

Durch Anwendung dieser Abschätzung auf E

[
eitX −

k∑
j=0

(itX)j

j!

]
folgt dann die Be-

hauptung:

ϕX(t) = E
[
eitX

]
= E

 k∑
j=0

(itX)j

j!
+ eitX −

k∑
j=0

(itX)j

j!


=

k∑
j=0

(it)jE
[
Xj
]

j!
+ E

eitX − k∑
j=0

(itX)j

j!


︸ ︷︷ ︸

=:R(t)

mit

|R(t)| ≤ E

[
21−δ |tX|k+δ

(1 + δ) . . . (k + δ)

]
=

21−δ |t|k+δ E
[
|X|k+δ

]
(1 + δ) . . . (k + δ)

.

�

Satz 13.16 hat zahlreiche inner–mathematische Anwendungen, einige davon sollen hier notiert
werden:

a) Im Beispiel 13.14 5. wurde gezeigt, dass eine standardnormalverteilte Zufallsgröße X
die charakteristische Funktion

ϕX(t) = e−t2/2, t ∈ R,
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besitzt. Wie man sich leicht klar machen kann, ist Y := σX + µ normalverteilt mit den
Parametern µ und σ, wobei µ ∈ R und σ > 0 seien. Für die zugehörige charakteristische
Funktion gilt dann aufgrund von Satz 13.16 a)

ϕY (t) = ϕσX+µ(t) = eitµϕX(σt) = eitµ · e−(σt)2/2, t ∈ R.

b) Summe von Poisson–verteilten Zufallsgrößen:
Es seien X und Y reellwertige und stochastisch unabhängige Zufallsvariablen mit X d=
P (λ) und Y d= P (µ). Dann gilt nach Satz 13.12 X + Y

d= P (λ+ µ), denn es ist

ϕX+Y (t) = ϕX(t)ϕY (t) = eλ(eit−1)eµ(eit−1) = e(λ+µ)(eit−1), t ∈ R.

c) Summe von normalverteilten Zufallsgrößen:
Diesmal seien X und Y reellwertige und stochastisch unabhängige Zufallsvariablen mit
X

d= N (µ, σ) und Y d= N (µ′, σ′). Dann gilt X + Y
d= N

(
µ+ µ′,

√
σ2 + σ′2

)
und

ϕX+Y (t) = ϕX(t) · ϕY (t) = eitµ · e−(σt)2/2 · eitµ′ · e−(σ′t)2/2

= eit(µ+µ′) · e−(σ2+σ′2)t2 , t ∈ R.

d) Summe von exponentiell verteilten Zufallsgrößen:
Es seien X1, . . . , Xn unabhängige und jeweils mit demselben Parameter θ > 0 exponen-
tiell verteilten Zufallsgrößen. Dann gilt

∑n
i=1Xi

d= Erlang(n, θ), denn es ist

ϕ∑n
i=1 Xi

(t) =
n∏

i=1

ϕXi(t) = [ϕX1(t)]
n =

[
θ

θ − it

]n

, t ∈ R.
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Kapitel 14

Schwache Konvergenz und zentraler
Grenzwertsatz

Der in diesem Kapitel behandelte zentrale Grenzwertsatz besagt, dass die geeignet normierte
Summe einer großen Zahl stochastisch unabhängiger und identisch verteilter Zufallsvariablen
annährend standardnormal verteilt ist, was die Sonderstellung der Normalverteilung in der
Stochastik erklärt (sogenannter zentraler Grenzwertsatz). Um den zentralen Grenzwertsatz
zu beweisen, werden zunächst die Begriffe der vagen und schwachen Konvergenz eingeführt
und einige Zusammenhänge mit charakteristischen Funktionen behandelt.

Schlüsselwörter: Vage und schwache Konvergenz, Konvergenz in Verteilung, Aus-
wahlsatz von Helly, Stetigkeitssatz von Lévy, zentraler Grenzwertsatz, Satz von de
Moivre-Laplace, Satz von Berry-Esseen.
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14.1 Vage und schwache Konvergenz

In diesem Abschnitt wird eine weitere Konvergenzart für Zufallsvariablen vorgestellt, die
sogenannte schwache Konvergenz bzw. Konvergenz in Verteilung. Dafür wird zunächst das
folgende einführende Beispiel betrachtet:
Es mögen X1, . . . , Xn reellwertige, identisch verteilte und stochastisch unabhängige Zufalls-
variablen über (Ω,F, P ) bezeichnen. Es wird Mn := max {X1, . . . , Xn} ∀ n ∈ N und F (x) :=
P (X1 ≤ x) gesetzt. Eine einfache Überlegung zeigt

{Mn ≤ x} ⇐⇒ {X1 ≤ x, . . . ,Xn ≤ x},

so dass gilt

P (Mn ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x) =
n∏

i=1

P (Xi ≤ x)

= (F (x))n, x ∈ R, n ∈ N.

Es wird nun speziell X1
d= Exp(λ), mit λ > 0 gewählt. Gefragt wird nach der Verteilungs-

funktion von Yn := Mn + λ−1 ln(n) für n→∞:

lim
n→∞

FYn(x) = lim
n→∞

(
F (x+ λ−1 ln(n))

)n = lim
n→∞

(
1− e−(λx+ln(n))

)n

= lim
n→∞

(
1 +
−e−λx

n

)n

= e−e−λx ∀ x ∈ R.

Da die Grenzfunktion wieder eine stetige Verteilungsfunktion ist, legt dieses Beispiel nahe,
die Konvergenz einer Folge (Pn)n∈N von Wahrscheinlichkeitsverteilungen auf (R,B) gegen
eine Limesverteilung P vermöge

lim
n→∞

Pn(B) = P (B) ∀ B ∈ B

festzulegen, was jedoch unzweckmäßig ist, wie ein anderes Beispiel zeigt. Dazu werden die
Einpunktverteilungen

Pn(B) := IB

(
1
n

)
∀ B ∈ B, n ∈ N

betrachtet. Diese Verteilungen approximieren offensichtlich diejenige Verteilung, die der Men-
ge {0} die Wahrscheinlichkeit 1 zuordnet. Folglich möchte man als Limesverteilung P (B) :=
IB(0) ∀ B ∈ B haben. Doch Pn(B) → P (B) ist bereits für B := (−∞, 0] nicht erfüllt, denn
es gilt

Pn((−∞, 0]) = 0 ∀ n ∈ N und P ((−∞, 0]) = 1.

Betrachtet man anstelle der Verteilungen Pn die zugehörigen Verteilungsfunktionen Fn =
I[ 1

n
,∞), so ergibt sich hier

I[ 1
n

,∞) → I(0,∞) für n→∞.

Jedoch ist I(0,∞) keine Verteilungsfunktion. Die Schwierigkeit resultiert hier offenbar — im
Gegensatz zum vorangegangenen Beispiel — aus der Tatsache, dass ein Randpunkt von
B = (−∞, 0] bzgl. P eine positive Wahrscheinlichkeit besitzt. Deswegen muss der Begriff
der schwachen Konvergenz bzw. Verteilungskonvergenz etwas allgemeiner gefasst werden.
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Im Folgenden werden Maße µ auf (R,B) betrachtet. Im Hinblick auf zukünftige Anwendun-
gen wird vorausgesetzt, dass µ lokal endlich ist, d.h. dass µ(K) < ∞ für alle kompakten
Mengen K ⊂ R ist. Mit Cb werde die Menge aller stetigen Funktionen f : R −→ R mit
‖f‖∞ := supx∈R |f(x)| < ∞ bezeichnet und mit C0 werde die Menge aller stetigen Funktio-
nen f : R −→ R mit kompaktem Träger T := {x | f(x) 6= 0} bezeichnet. Für eine beliebige
Funktion f : R −→ R bezeichne C(f) die Menge ihrer Stetigkeitspunkte.

14.1 Definition (vage Konvergenz, schwache Konvergenz):
Es seien µ sowie die Elemente der Folge (µn)n∈N lokal endliche Maße auf (R,B). Man sagt
(µn)n∈N konvergiert vage gegen µ, kurz µn

v−→ µ, falls∫
R

f dµn −→
∫
R

f dµ ∀ f ∈ C0.

Gilt diese Beziehung sogar für alle f ∈ Cb und ist µ(R) <∞, so konvergiert (µn)n∈N schwach
gegen µ, kurz µn

w−→ µ (vom englischen ,,weak convergence”).

14.2 Definition (straff):
Es seien die Elemente der Folge (µn)n∈N lokal endliche Maße auf (R,B). (µn)n∈N heißt
straff, falls

lim
N→∞

sup
n∈N

µn(R \ [−N,N ]) = 0

gilt.

Den Zusammenhang zwischen vager und schwacher Konvergenz verdeutlicht der folgende Satz.

14.3 Satz:
Es seien µ sowie die Elemente der Folge (µn)n∈N lokal endliche Maße auf (R,B) mit µn

v−→ µ
für n→∞. Dann sind folgende Aussagen äquivalent:

a) µn
w−→ µ für n→∞.

b) lim
n→∞

µn(R) = µ(R) <∞.

c) (µn)n∈N ist straff.

Beweis:
,,a) ⇒ b)”: Da die konstante Funktion IR : R −→ R, x 7→ 1 ∀ x ∈ R zu Cb gehört, impliziert

µn
w−→ µ für n→∞:

µn(R) =
∫
R

dµn =
∫
R

IR dµn −−−→
n→∞

∫
R

IR dµ =
∫
R

dµ = µ(R).
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Abbildung 14.1: gN (x) für N := 2

,,b) ⇒ c)”: Es sei gN ∈ C0 gegeben durch

gN (x) :=


1 , |x| ≤ N

N + 1− |x| , |x| ∈ (N,N + 1)
0 , |x| ≥ N + 1.

Unter Benutzung der Abschätzungen

I[−N,N ] ≤ gN ≤ I[−N−1,N+1] bzw. IR\[−N−1,N+1] ≤ 1− gN ≤ IR\[−N,N ]

und den gegebenen Voraussetzungen folgt dann für alle hinreichend großen N :

lim sup
n→∞

µn(R \ [−N − 1, N + 1]) = lim sup
n→∞

∫
R

IR\[−N−1,N+1] dµn

≤ lim sup
n→∞

∫
R

(1− gN ) dµn

= lim
n→∞

µn(R)− lim
n→∞

∫
R

gN dµn

= µ(R)−
∫
R

gN dµ

=
∫
R

(1− gN ) dµ

≤
∫
R

IR\[−N,N ] dµ

= µ(R \ [−N,N ]).

Da µ(R \ [−N,N ])→ 0 für N →∞, folgt die Behauptung.

,,c) ⇒ a)”: Für beliebiges f ∈ Cb, wobei o.B.d.A. 0 ≤ f ≤ 1 angenommen werden darf,
sei nun fN := min(f, gN ) ∈ C0 und hN := f − fN . Wegen fN ≤ f = fN + hN und
0 ≤ hN ≤ IR\[−N,N ] für alle N folgt zunächst

0 ≤
∫
R

hN dµn ≤
∫
R

IR\[−N,N ] dµn = µn(R \ [−N,N ])→ 0 für N →∞.
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-N-1 -N N N+1

1
gN

f

hN=f-fN
fN=min(f,g )N

Abbildung 14.2: Graphische Darstellung der Funktionen fN und hN

Wir rechnen weiter:

lim sup
n→∞

∫
R

f dµn = lim sup
n→∞

∫
R

f dµn − lim
n→∞

µn(R \ [−N,N ])

≤ lim sup
n→∞

∫
R

(f − hN ) dµn (hN ≤ IR\[−N,N ])

= lim sup
n→∞

∫
R

fN dµn (fN = f − hN )

=
∫
R

fN dµ (fN ∈ C0 und (µn)n∈N konv. vage)

≤
∫
R

f dµ (f = fN + hN und 0 ≤ hN ≤ 1)

=
∫
R

fN dµ+
∫
R

hN dµ

≤ lim inf
n→∞

∫
R

fN dµn +
∫
R

hN dµ

≤ lim inf
n→∞

∫
R

f dµn + µ(R \ [−N,N ]).

Wegen µ(R \ [−N,N ])→ 0 für N →∞ folgt hieraus∫
R

f dµ = lim
n→∞

∫
R

f dµn,

was zu zeigen war.
�

Es ist wichtig zu wissen, dass man sich beim Nachweis von schwacher Konvergenz im Fall
endlicher Maße auf gleichmäßig stetige und beschränkte Funktionen f zurückziehen kann,
wie der folgende Satz zeigt.

14.4 Satz:
Es seien µ und die Elemente der Folge (µn)n∈N endliche Maße auf (R,B). Wenn für jede
gleichmäßig stetige und beschränkte Funktion f : R→ R∫

R

f dµn −−−→
n→∞

∫
R

f dµ

29



Kapitel 14. Schwache Konvergenz und zentraler Grenzwertsatz

gilt, dann gilt auch schon µn
w−→ µ für n→∞.

Beweis:
Es sei f ∈ Cb mit sup

x∈R
|f(x)| = M < ∞ und ε > 0. Es werden eine Zahl a ∈ R mit∫

|x|≥a

dµ(x) ≤ ε

2M
sowie stetige Funktionen f∗, f∗ mit folgenden Eigenschaften gewählt:

f∗(x) := f∗(x) := f(x) für |x| ≤ a
−M ≤ f∗(x) ≤ f(x) für a ≤ |x| ≤ a+ 1
f(x) ≤ f∗(x) ≤M für a ≤ |x| ≤ a+ 1

f∗(x) = −M für |x| ≥ a+ 1
f∗(x) = M für |x| ≥ a+ 1.

-a-1 -a a a+1

M

-M

f

f
*

f*

Abbildung 14.3: Graphische Darstellung der Funktionen f∗ und f∗

Da jede auf der kompakten MengeK := [−a−1, a+1] stetige Funktion aufK auch gleichmäßig
stetig ist und f∗ und f∗ außerhalb von K konstant sind, sind f∗ und f∗ gleichmäßig stetig (vgl.
Aumann/Haupt: ,,Einführung in die reelle Analysis”, Band I, S. 139). Da f∗(x) = f∗(x) =
f(x) für |x| ≤ a ist, gilt: ∫

R

(f∗ − f∗) dµ ≤ 2M
∫

|x|≥a

dµ(x) ≤ ε.

Weiter folgt

lim inf
n→∞

∫
R

f dµn ≥ lim inf
n→∞

∫
R

f∗ dµn =
∫
R

f∗ dµ

=
∫
R

f dµ −
∫
R

(f − f∗) dµ

≥
∫
R

f dµ −
∫
R

(f∗ − f∗) dµ ≥
∫
R

f dµ− ε.
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Und entsprechend

lim sup
n→∞

∫
R

f dµn ≤ lim sup
n→∞

∫
R

f∗ dµn =
∫
R

f∗ dµ

=
∫
R

f dµ +
∫
R

(f∗ − f) dµ

≤
∫
R

f dµ +
∫
R

(f∗ − f∗) dµ ≤
∫
R

f dµ+ ε.

Da ε > 0 beliebig gewählt war, folgt

lim
n→∞

∫
R

f dµn =
∫
R

f dµ.

�

14.5 Satz:
Es seien P und die Elemente der Folge (Pn)n∈N Wahrscheinlichkeitsmaße auf (R,B), F und
die Elemente der Folge (Fn)n∈N bezeichnen die zugehörigen Verteilungsfunktionen. Dann gilt:

Pn
w−−−→

n→∞
P ⇐⇒ Fn(x) −−−→

n→∞
F (x) ∀ x ∈ C(F ).

Beweis:
Es wird zunächst Pn

w−−−→
n→∞

P und x ∈ C(F ) angenommen. Zu ε > 0 sei δ > 0 so gewählt,

dass |F (x)− F (y)| ≤ ε für alle x, y mit |x− y| ≤ δ gilt. Ferner werden f, f ∈ Cb definiert
durch 0 ≤ f, f ≤ 1 und

f(y) :=
{

1 , für y ≤ x− δ
0 , für y ≥ x, f(y) :=

{
1 , für y ≤ x
0 , für y ≥ x+ δ.

x-� x x+�

f

f

Abbildung 14.4: Graphische Darstellung der Funktionen f und f
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Dann folgt

lim sup
n→∞

Fn(x) = lim sup
n→∞

Pn((−∞, x]) = lim sup
n→∞

∫
R

I(−∞,x](y) dPn(y)

≤ lim sup
n→∞

∫
R

f(y) dPn(y) =
∫
R

f(y) dP (y)

≤
∫
R

I(−∞,x+δ](y) dP (y) = P ((−∞, x+ δ]) = F (x+ δ) ≤ F (x) + ε,

lim inf
n→∞

Fn(x) = lim inf
n→∞

Pn((−∞, x]) = lim inf
n→∞

∫
R

I(−∞,x](y) dPn(y)

≥ lim inf
n→∞

∫
R

f(y) dPn(y) =
∫
R

f(y) dP (y)

≥
∫
R

I(−∞,x−δ](y) dP (y) = P ((−∞, x− δ]) = F (x− δ) ≥ F (x)− ε.

Da ε > 0 beliebig gewählt war, folgt limn→∞ Fn(x) = F (x).
Sei nun umgekehrt Fn(x) −−−→

n→∞
F (x) ∀ x ∈ C(F ) vorausgesetzt. Es wird zunächst gezeigt,

dass Pn
v−−−→

n→∞
P gilt. Dazu wird eine beliebige Funktion f ∈ C0 mit kompaktem Träger

K := [a, b], a < b, betrachtet. Da f gleichmäßig stetig ist, lässt sich zu jedem ε > 0 ein δ > 0
angeben, so dass |f(x)− f(y)| ≤ ε ist für alle x, y mit |x− y| ≤ δ. Es werden xi ∈ C(F ), 1 ≤
i ≤ k so gewählt, dass a = x1 < x2 < . . . ≤ xk+1 = b und max

1≤i≤k
(xi+1 − xi) < δ ist. Dann gilt:

Hn :=
∫

[a,b]

f dPn −
∫

[a,b]

f dP

=
k∑

i=1

{ ∫
(xi,xi+1]

f(x) dPn(x)−
∫

(xi,xi+1]

f(xi) dPn(x)


+

 ∫
(xi,xi+1]

f(xi) dPn(x)−
∫

(xi,xi+1]

f(xi) dP (x)


+

 ∫
(xi,xi+1]

f(xi) dP (x)−
∫

(xi,xi+1]

f(x) dP (x)

}

=
k∑

i=1

{ ∫
(xi,xi+1]

[f(x)− f(xi)] dPn(x) +
∫

(xi,xi+1]

[f(xi)− f(x)] dP (x)

+ f(xi)[Fn(xi+1)− Fn(xi)− F (xi+1) + F (xi)]
}
,
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woraus

|Hn| ≤ ε+ ε+
k∑

i=1

|f(xi)| · |Fn(xi+1)− Fn(xi)− F (xi+1) + F (xi)|

bzw.
|Hn| −→ 2ε für n→∞

gefolgert werden kann. Da ε > 0 beliebig gewählt war, folgt Pn
v−−−→

n→∞
P . Um Pn

w−−−→
n→∞

P

nachzuweisen, wird Satz 14.3 b) angewandt. Aus lim
x→+∞

Fn(x) = lim
x→+∞

F (x) = 1 ∀ n ∈ N
folgt Pn(R) = 1 ∀ n ∈ N sowie P (R) = 1 und damit lim

n→∞
Pn(R) = P (R) <∞. �

Angesichts von Satz 14.5 definiert man:

14.6 Definition (schwache Konvergenz, Konvergenz in Verteilung):
Es seien X und die Elemente der Folge (Xn)n∈N reellwertige Zufallsvariablen über (Ω,F, P ).
Die zugehörigen Verteilungsfunktionen seien F und (Fn)n∈N. Man sagt, die Folge (Xn)n∈N

konvergiert schwach oder in Verteilung gegen X, in Zeichen Xn
i.V.−→ X, falls

Fn(x) −−−→
n→∞

F (x) für alle x ∈ C(F )

gilt.

Es stellt sich die Frage, wie sich der Begriff der Konvergenz in Verteilung den bereits behan-
delten Begriffen der stochastischen und der fast sicheren Konvergenz unterordnet. Dazu wird
der folgende Satz betrachtet.
14.7 Satz:
Es seien X und die Elemente der Folge (Xn)n∈N reellwertige Zufallsvariablen über (Ω,F, P ).
Dann gilt

Xn
p−−−→

n→∞
X ⇒ Xn

i.V.−−−→
n→∞

X.

Beweis:
Aufgrund von Satz 14.4 kann man sich beim Nachweis der schwachen Konvergenz auf gleich-
mäßig stetige beschränkte Funktionen f zurückziehen. Es gibt zu jedem ε > 0 ein δ > 0 mit
der Eigenschaft

|f(x)− f(y)| ≤ ε für alle x, y ∈ R mit |x− y| ≤ δ.
Für n ∈ N bezeichne An := {ω | |Xn(ω)−X(ω)| ≤ δ}, und wir setzen wieder M :=
supx∈R |f(x)|. Dann gilt:

|E[f(Xn)]−E[f(X)]| =

∣∣∣∣∣∣
∫
Ω

f ◦Xn dP −
∫
Ω

f ◦X dP

∣∣∣∣∣∣
≤
∫

An

|f ◦Xn − f ◦X| dP +
∫

Ān

|f ◦Xn − f ◦X| dP

≤ ε

∫
An

dP + 2M
∫

Ān

dP

≤ ε + 2M P (An) = ε + 2M · P (|Xn −X| > δ).
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Aufgrund der Voraussetzung Xn
p−−−→

n→∞
X gilt P (|Xn −X| > δ)→ 0 für n→∞ und damit

lim
n→∞

|E[f(Xn)]−E[f(X)]| ≤ ε

für jedes ε > 0. Aus lim
n→∞

|E[f(Xn)]−E[f(X)]| = 0 aber folgt PXn

w−−−→
n→∞

PX und aufgrund

von Satz 14.5 auch FXn(x) −−−→
n→∞

FX(x) für alle x ∈ C(FX). �

14.8 Satz:
Es seien X und die Elemente der Folge (Xn)n∈N reellwertige Zufallsvariablen über (Ω,F, P ).
Außerdem sei X P-f.s. konstant. Dann gilt:

Xn
i.V.−−−→

n→∞
X ⇒ Xn

p−−−→
n→∞

X.

Beweis:
Es wird P (X = a) = 1 mit a ∈ R angenommen. Für ein ε > 0 wird f ∈ Cb mit f ≥ 0, f(a) = 0
sowie f(x) = 1 ∀ x ∈ R mit |x− a| ≥ ε gewählt. Dann gilt für alle n ∈ N:

P (|Xn −X| ≥ ε) =P (|Xn − a| ≥ ε) =
∫
R

IR\(a−ε,a+ε)dPXn

≤
∫
R

f dPXn .

Nach Voraussetzung gilt: ∫
R

f dPXn −−−→n→∞

∫
R

f dPX = f(a) = 0.

Damit folgt
P (|Xn −X| ≥ ε) → 0 für n→∞.

�

14.2 Der Stetigkeitssatz von Lévy

Dieser Abschnitt beschäftigt sich mit dem Stetigkeitssatz von P. Lévy. Der Satz besagt, dass
man Verteilungskonvergenz mit Hilfe charakteristischer Funktionen überprüfen kann. Zur
Vorbereitung benötigt man einen Auswahlsatz von Helly. Der Auswahlsatz von Helly bezieht
sich auf sogenannte beschränkte Folgen (µn)n∈N lokal endlicher Maße auf (R,B). Darunter
versteht man Folgen (µn)n∈N lokal endlicher Maße auf (R,B) mit der Eigenschaft

sup
n∈N

µn(K) <∞

für jede kompakte Menge K ⊂ R. Zum Beweis des Auswahlsatzes von Helly werden zunächst
weitere Kriterien für schwache bzw. vage Konvergenz zur Verfügung gestellt. Das Kriterium
für schwache Konvergenz stellt eine Teilaussage des Portmanteau–Theorems dar.
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14.9 Satz:
Für endliche Maße µ, µ1, µ2, . . . auf R gilt

µn
w−→ µ ⇔ lim

n→∞
µn(C) = µ(C) für alle C ∈ B mit µ(∂C) = 0.

Beweis:
Der Beweis ist technisch aufwendig. Daher soll hier nur auf den Beweis in ”Wahrscheinlich-
keitstheorie“ von P. Gänssler und W. Stute (Sätze 1.12.5 und 8.4.9) verwiesen werden.

14.10 Definition:
Ist µ ein Maß auf R und I ⊆ R ein Intervall, so wird die Einschränkung von µ auf I definiert
duch

µI(A) = µ(A ∩ I) (A ∈ B).

14.11 Satz:
Es seien µ, µ1, µ2, . . . lokal endliche Maße auf R. Dann sind paarweise äquivalent:

(a): µn
v−→ µ.

(b): µI
n

w−→ µI für alle beschränkten Intervalle I mit µ(∂I) = 0.

(c): limn→∞ µn(C) = µ(C) für alle beschränkten C ∈ B mit µ(∂C) = 0.

Beweis:
Folgt aus Satz 14.9 und der Definition der vagen Konvergenz. �

14.12 Satz (Auswahlsatz von Helly):
Jede beschränkte (und straffe) Folge (µn)n∈N lokal endlicher Maße auf (R,B) enthält eine
vag (schwach) konvergente Teilfolge.

Beweis:
Es sei Fn maßdefinierende Funktion von µn mit Fn(0) = 0, d.h.

Fn(x) = µn((0, x]) für x > 0 und Fn(x) = −µn((x, 0]) für x < 0.

Da (0, x] bzw. (−x, 0] in kompakten Mengen enthalten sind, gilt wegen der Beschränktheit
von (µn)∈N

M(x) := sup
n∈N

Fn(x) <∞ (für alle x ∈ R).

Der Beweis gliedert sich in vier Schritte

(i) Konstruktion einer Folge (nk)k∈N natürlicher Zahlen, so dass Fnk
auf einer dichten

Teilmenge von R für k →∞ gegen eine Funktion F konvergiert.

(ii) Rechtsseitig stetige Fortsetzung von F auf R zu einer maßdefinierenden Funktion des
Grenzmaßes µ.

(iii) Nachweis von µn
v−→ µ.
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(iv) Beweis der eingeklammerten Aussage.

Zu (i): Es wird eine abzählbare, aber dichte Teilmenge T = {x1, x2, x3, . . .} ⊆ R (also etwa
T = Q) betrachtet. Die Menge {Fn(x1) : n ∈ N} ist durch M(x1) beschränkt, es
existiert also eine unendliche (geordnete) Teilmenge I1 ⊆ N mit

Fn(x1)
n→∞,n∈I1−→ z1.

Genauso ist die Menge {Fn(x2) : n ∈ I1} durch M(x2) beschränkt und daher existiert
eine unendliche Teilmenge I2 ⊆ I1 \ {n1} für n1 := min I1, so dass

Fn(x2)
n→∞,n∈I2−→ z2.

Dieses Verfahren kann fortgesetzt werden und es ergibt sich eine Folge von Mengen
(In)n∈N mit

N ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . und n1 = min I1 < n2 = min I2 < n3 = min I3 < . . .

und eine Folge (zj)j∈N, so dass für alle j ∈ N

Fn(xj)
n→∞,n∈Ij−→ zj =: F (xj)

gilt. Speziell ist dann auch für alle j ∈ N

lim
k→∞

Fnk
(xj) = F (xj).

Zu (ii): Die Fn(x) sind in xmonoton nicht fallend, somit ist auch F (x) auf T monoton wachsend.
Daher kann F (x) rechtsseitig stetig auf R durch die Definition

F (x) := inf{µ({t}) : t ∈ T ∩ [x,∞)}, x ∈ R \ T

zu einer maßdefinierenden Funktion fortgesetzt werden. Für alle Stetigkeitspunkte x ∈
C(F ) gilt dabei Fnk

(x) k→∞−→ F (x), da die Differenz

|Fnk
(x)− F (x)| ≤ |Fnk

(x)− Fnk
(xj)|+ |Fnk

(xj)− F (xj)|+ |F (xj)− F (x)|

für genügend große k und genügend nahe bei x gelegene xj ∈ T , xj > x beliebig klein
wird. Es sei nun µ := µF das von F definierte Maß.

Zu (iii): Da C(F ) dicht in R ist, gilt für b ∈ C(F )

lim sup
k→∞

µnk
({b}) ≤ inf

a∈C(F ),a<b
lim

k→∞
(Fnk

(b)− Fnk
(a)) = inf

a∈C(F ),a<b
(F (b)− F (a)) = 0,

also µnk
({b}) k→∞−→ 0.

Es sei nun I ein beliebiges beschränktes Intervall mit den Randpunkten a < b und
µ({a, b}) = 0. Dann ist für alle t ∈ I ∩ C(F )

µnk
((a, t] ∩ I) = Fnk

(t)− Fnk
(a),
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und mit k →∞ folgt
µI((a, t]) = F (t)− F (a),

was nach Satz 14.5 µI
nk

w−→ µI impliziert. Da I ein beliebiges beschränktes Intervall
mit µ(∂I) = 0 war, folgt mit Satz 14.11

µnk

v−→ µ.

Zu (iv): Die eingeklammerte Aussage folgt aus dem bereits Bewiesenen und Satz 14.3. �

14.13 Satz (Stetigkeitssatz von Lévy):
Es bezeichne (Xn)∞n=1 eine Folge reellwertiger Zufallsvariablen über (Ω,F, P ) mit den Vertei-
lungsfunktionen (Fn)n∈N und den charakteristischen Funktionen (ϕn)n∈N. Dann gilt:

a) Gilt Xn
i.V.−→ X und ist ϕ die charakteristische Funktion von X, so ist lim

n→∞
ϕn(t) =

ϕ(t) ∀ t ∈ R.

b) Gilt lim
n→∞

ϕn(t) = ϕ(t) ∀ t ∈ R und ist ϕ in einer Umgebung von t = 0 stetig, dann

konvergiert (Xn)n∈N in Verteilung, d.h. es gibt eine Verteilungsfunktion F , so dass
lim

n→∞
Fn(x) = F (x) ∀ x ∈ C(F ) und ϕ die charakteristische Funktion bzgl. F ist.

Beweis:
a) Zunächst wird angenommen, dass Xn

i.V.−→ X für n → ∞ gilt. Da sowohl der Realteil
als auch der Imaginärteil der Funktion x → eitx für jedes t ∈ R beschränkte stetige
Funktionen darstellen, impliziert PXn

w−→ PX :

ϕn(t) =
∫
R

eitx dPXn(x) −→
∫
R

eitx dPX(x) = ϕ(t) (n→∞).

b) Es sei nun lim
n→∞

ϕn(t) = ϕ(t) ∀ t ∈ R und ϕ sei in einer Umgebung von t = 0 ste-
tig. Es wird zunächst gezeigt, dass dann die Folge der Wahrscheinlichkeitsverteilungen
(PXn)n∈N straff ist (vgl. Definition 14.2). Allgemein gilt für eine reellwertige Zufallsva-
riable Y über (Ω,F, P ) mit der charakteristischen Funktion ϕY :

1
u

u∫
0

[1− Re ϕY (v)] dv =
1
u

u∫
0

(1−E[cos(vY )]) dv

=
1
u

∫ u

0

(
1−

∫
R

cos(vy) dPY (y)
)
dv

=
1
u

∫
R

∫ u

0
(1− cos(vy)) dv dPY (y) (Satz von Fubini)

=
1
u

∫
R

[
u− 1

y
sin(uy)

]
dPY (y)

=E
[
1− sin(uY )

uY

]
.
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Indem man Z := uY und β := inf
|x|≥1

(1− (sinx)/x) setzt, erhält man

E
[
1− sin(uY )

uY

]
=E
[
1− sinZ

Z

]
=
∫
R

(
1− sinx

x

)
dPZ(x)

≥
∫

|x|≥1

1− sinx
x

dPZ(x) ≥ β
∫

|x|≥1

dPZ(x) = β · P (|Z| ≥ 1)

=β · P
(
|Y | ≥ 1

u

)
.

Folglich lässt sich mit Hilfe des Satzes von der majorisierten Konvergenz schließen:

lim sup
n→∞

β · P
(
|Xn| ≥

1
u

)
≤ 1
u

lim sup
n→∞

u∫
0

[1− Re ϕn(v)] dv

=
1
u

u∫
0

[1− Re ϕ(v)] dv.

Da lim
u→0

ϕ(u) = 1 ist (aufgrund der Stetigkeit von ϕ in einer Umgebung von t = 0), folgt
mit Hilfe der Regel von l’Hospital:

lim
u→0

lim sup
n→∞

P

(
|Xn| >

1
u

)
= lim

u→0
lim sup

n→∞
PXn

(
R \

[
−1
u
,
1
u

])
= 0,

weshalb die Folge (PXn)n∈N straff ist. Nach dem Auswahlsatz von Helly enthält die
Folge (PXn)n∈N eine schwach konvergente Teilfolge (PXnk

)k∈N mit PXnk
−→ PX für

k →∞. Deshalb gilt

ϕ(u) = lim
k→∞

∫
R

eiux dPXnk
(x) =

∫
R

eiux dPX(x),

so dass ϕ die charakteristische Funktion von PX bzw. X ist. Da PX durch ϕ eindeu-
tig bestimmt ist, besitzt jede schwach konvergente Teilfolge von (PXn)n∈N denselben
Grenzwert PX . �

Bemerkung:
Lässt man die Bedingung, dass ϕ in einer Umgebung von t = 0 stetig ist, fallen, so gilt die
Aussage des Satzes bereits nicht mehr, wie nachfolgendes Beispiel zeigt.

14.14 Beispiel:
Es seien Xn Zufallsvariablen, die auf [−n, n] gleichverteilt sind. Für |x| ≤ n gilt dann

Fn(x) =

x∫
−n

1
2n
dy =

1
2

+
x

2n
.
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Die zugehörige charakteristische Funktion lautet:

ϕn(t) =

n∫
−n

1
2n
eitxdx

=
1

2itn
(eitn − e−itn)

=
1

2itn
(cos(nt) + i sin(nt)− cos(nt) + i sin(nt))

=
1
nt

sin(nt).

Führt man den Grenzübergang n→∞ durch, ergibt sich:

ϕ(t) =
{

1 , t = 0
0 , t 6= 0.

Offensichtlich ist ϕ(t) im Punkt t = 0 unstetig. Beim Grenzübergang n → ∞ ergibt sich für
Fn aber auch keine Verteilungsfunktion:

lim
n→∞

Fn(x) = lim
n→∞

(
1
2

+
x

2n

)
=

1
2
.

14.3 Der zentrale Grenzwertsatz

Der im Folgenden behandelte zentrale Grenzwertsatz trifft Aussagen über die Verteilung der
Summe von unabhängigen und identisch verteilten Zufallsvariablen.

14.15 Satz (Zentraler Grenzwertsatz):
Lévy1/Mises2

Es sei (Xn)n∈N eine i.i.d. Folge von reellwertigen Zufallsvariablen über demselben Wahr-
scheinlichkeitsraum (Ω,F, P ) mit 0 < Var[X1] <∞. Dann gilt

P

(
Sn − n ·E[X1]
σ[X1] ·

√
n
≤ x

)
−−−→
n→∞

Φ(x) ∀ x ∈ R,

wobei Sn :=
n∑

i=1
Xi, σ[X1] :=

√
Var[X1] und Φ(x) die Verteilungsfunktion der Standardnor-

malverteilung sei.

Beweis:
Es wird

Yk :=
Xk −E[Xk]

σ[Xk]

definiert. Offensichtlich ist E[Yk] = 0 und Var[Yk] = E
[
Y 2

k

]
= 1. Mit Hilfe der Taylorentwick-

lung lässt sich die charakteristische Funktion von Yk schreiben als (vgl. Satz 13.16 d))

ϕYk
(t) = 1 +

itE[Yk]
1!

+
(it)2E

[
Y 2

k

]
2!

+ o(t2) = 1− t2

2
+ o(t2).

1Paul Lévy, 15.09.1886 – 15.12.1971, Professor für Mathematik in Paris
2Richard von Mises, 19.04.1883 – 1953, studierte in Wien Mathematik und war später Professor für Ma-

thematik an Universitäten in Berlin und Straßburg. Vor dem ersten Weltkrieg emigrierte er in die USA.
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Es folgt

ϕn(t) = ϕ∑n
k=1 Yk

(t) =
(

1− t2

2
+ o(t2)

)n

und weiterhin

ϕ∑n
k=1 Yk/

√
n(t) = ϕn

(
t√
n

)
=
(

1− t2

2n
+ o

(
t2

n

))n

.

Mit ex = lim
n→∞

(1 + x
n)n folgt

ϕ(t) := lim
n→∞

ϕn

(
t√
n

)
= e−

1
2
t2 ,

d.h. ϕ(t) ist die charakteristische Funktion einer standardnormalverteilten Zufallsvariable.
Nach Satz 14.13 folgt damit die Behauptung. �

Ein Spezialfall des zentralen Grenzwertsatzes ist der Satz von de Moivre–Laplace:

14.16 Satz (Satz von de Moivre–Laplace):
Es sei (Sn)n∈N eine Folge von stochastisch unabhängigen Zufallsgrößen mit der Eigenschaft

Sn
d= B(n, p) ∀ n ∈ N, 0 < p < 1. Dann gilt:

P

(
Sn − np√
n · p · (1− p)

≤ x

)
−−−→
n→∞

Φ(x) ∀ x ∈ R,

wobei Φ(x) die Verteilungsfunktion der Standardnormalverteilung bedeutet.

Beweis:
In Satz 14.15 wählen wir (Xn)n∈N mit P (Xn = 1) = p und P (Xn = 0) = 1 − p ∀ n ∈ N.

Dann gilt: E[Xn] = p, σ[Xn] =
√
p(1− p) und Sn

d= B(n, p) ∀ n ∈ N. �

(Siehe auch Mathematica-Notebook zum zentralen Grenzwertsatz.)

Die Frage, wie schnell sich die Verteilung der Zufallsvariable Sn−nE[X1]
σ[X1]·

√
n

der Standard–Nor-
malverteilung Φ nähert, beantwortet der Satz von Berry und Esseen.

14.17 Satz (Berry–Esseen):
Es sei (Xk)k∈N eine i.i.d. Folge von reellwertigen Zufallsvariablen über (Ω,F, P ). Ferner seien

µ := E[X1] , σ2 := Var[X1] , γ := E

[∣∣∣∣X1 − µ
σ

∣∣∣∣3
]
<∞ und Sn :=

n∑
i=1

Xi .

Dann gilt

sup
x∈R

∣∣∣∣P (Sn − nµ
σ
√
n
≤ x

)
− Φ(x)

∣∣∣∣ ≤ Cγ√
n

mit einer von n unabhängigen Konstanten C (C ≈ 2.8741).

Für den Beweis des Satzes von Berry-Esseen benötigt man einige Hilfsmittel, die zunächst in
Form der Sätze 14.19 bis 14.21 zur Verfügung gestellt werden.
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Abbildung 14.5: Binomialverteilung mit den Parametern p = 0.5 und n = 5, 10, 50 und 500
und jeweils überlagert von der Dichte einer Normalverteilung mit den Parametern µ = n · p
und σ2 = n · p · (1− p)

14.18 Satz:
Es sei F eine Verteilungsfunktion und G eine rellwertige differenzierbare Funktion mit
limx→−∞G(x) = 0, limx→+∞G(x) = 1 und supx∈R |G′(x)| ≤ M > 0. Dann existiert eine
reelle Zahl a, so dass für alle T > 0:

∣∣∣∣∫
R

∆(x+ a)
1− cos(Tx)

Tx2
dx

∣∣∣∣ ≥ 2M · δ
[
π

2
− 6
Tδ

]
,

wobei ∆(x) := F (x)−G(x) und δ :=
(

1
2M

)
supx∈R |F (x)−G(x)| sind.

Beweis:
Wir definieren α := supx∈R |F (x) − G(x)|. Da ∆ := F − G beschränkt ist und für x → ±∞
verschwindet, existiert ein b ∈ R mit entweder |∆(b− 0)| = α oder |∆(b)| = α. Da F monoton
nicht fallend ist, kommen nur die Fälle F (b−0)−G(b) = −α und F (b)−G(b) = α in Betracht.
Es wird F (b− 0)−G(b) = −α angenommen und a := b− δ gesetzt. Der Mittelwertsatz liefert
für G und das Intervall [a+ x, b]:

G(b)−G(a+ x) = G′(ξ)[b− (a+ x)] = G′(ξ)[b− (b− δ + x)] = G′(ξ)(δ − x) ≤M(δ − x)
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für ein ξ ∈ (a+ x, b). Folglich gilt für alle x mit |x| < δ:

F (x+ a)−G(x+ a) = F (x+ a) +G(b)−G(a+ x)−G(b)
≤ F (x+ a)−G(b) +M(δ − x)
≤ F (b− 0)−G(b) +M(δ − x) = −α+M(δ − x)
= −2Mδ +M(δ − x) = −M(x+ δ).

a a+x b

�

G
F

F(b-0)-G(b)=-�

Abbildung 14.6: Darstellung von α = supx∈R |F (x)−G(x)|, Fall 1

a a+x b

�

G
FF(b)-G(b)=�

Abbildung 14.7: Darstellung von α = supx∈R |F (x)−G(x)|, Fall 2

Damit folgt

δ∫
−δ

∆(x+ a)
1− cos (Tx)

Tx2
dx ≤ −M

δ∫
−δ

(x+ δ)
1− cos (Tx)

Tx2
dx

= −M
δ∫

−δ

x
1− cos (Tx)

Tx2
dx

︸ ︷︷ ︸
=0 aus Symmetriegründen

−Mδ

δ∫
−δ

1− cos (Tx)
Tx2

dx

= −2Mδ

δ∫
0

1− cos (Tx)
Tx2

dx = −α
δ∫

0

1− cos (Tx)
Tx2

dx. (∗)

Aufgrund der Voraussetzungen gilt außerdem∫
|x|>δ

∆(x+ a)
1− cos(Tx)

Tx2
dx ≤ α

∫
|x|>δ

1− cos(Tx)
Tx2

dx. (∗∗)
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Weiter ist

∞∫
−∞

∆(x+ a) · 1− cos (Tx)
Tx2

dx =

δ∫
−δ

∆(x+ a) · 1− cos (Tx)
Tx2

dx

+
∫

|x|>δ

∆(x+ a) · 1− cos (Tx)
Tx2

dx

≤ α

∫
|x|>δ

1− cos (Tx)
Tx2

dx

︸ ︷︷ ︸
wegen (∗∗)

−α
δ∫

0

1− cos (Tx)
Tx2

dx

︸ ︷︷ ︸
wegen (∗)

= α

2

∞∫
δ

1− cos (Tx)
Tx2

dx−
δ∫

0

1− cos (Tx)
Tx2

dx


= α

3

∞∫
δ

1− cos (Tx)
Tx2

dx−
∞∫
0

1− cos (Tx)
Tx2

dx


= α

1
T

3

∞∫
δT

1− cos z
z2

dz −
∞∫
0

1− cos z
z2

dz


≤ α

(
6
δT
− π

2

)
,

wobei im letzten Schritt die Beziehungen

∞∫
0

1− cos (z)
z2

dz =
π

2
(partielle Integration und Integral-Sinus)

und
∞∫

δT

1− cos (z)
z2

dz ≤ 2 ·
∞∫

δT

1
z2

dz =
2
δT

benutzt wurden. Da der Ausdruck α
(

6
δT −

π
2

)
für hinreichend großes T negativ ist, folgt∣∣∣∣∫

R

∆(x+ a)
1− cos(Tx)

Tx2
dx

∣∣∣∣ ≥ −α( 6
δT
− π

2

)
= 2M · δ

[
6
δT
− π

2

]
.

Der Fall F (b)−G(b) = α wird analog behandelt. �

14.19 Satz (Esseen):
Es seien X und Y reellwertige Zufallsvariablen über einem gemeinsamen Wahrscheinlichkeits-
raum (Ω,F, P ) mit den Verteilungsfunktionen FX und FY , den charakteristischen Funktionen
ϕX und ϕY und den Erwartungswerten E[X] < ∞ und E[Y ] < ∞. Ferner sei FY stetig
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differenzierbar auf R mit sup
x∈R

∣∣∣F ′
Y (x)

∣∣∣ ≤M > 0. Dann gilt für alle T > 0:

sup
x∈R
|FX(x)− FY (x)| ≤ 2

π

T∫
0

|ϕX(u)− ϕY (u)|
u

du+
24M
πT

.

Beweis:
Es gilt für eine reellwertige Zufallsvariable Z mit Verteilungsfunktion FZ und Erwartungswert
E[Z] <∞

E[Z] =
∫
R+

(1− FZ(x)) dx−
∫
R−

FZ(x) dx.

Wegen der Abschätzungen

|FX(x)− FY (x)| ≤ |FX(x)|+ |FY (x)| für x < 0

und

|FX(x)− FY (x)| = |1− FY (x)− (1− FX(x))| ≤ |1− FY (x)|+ |1− FX(x)| für x ≥ 0

ist deshalb ∫
R

|FX(x)− FY (x)| dx <∞.

Deswegen kann der Ausdruck ϕX(t)− ϕY (t) partiell integriert werden:

ϕX(t)− ϕY (t) =E
[
eitX

]
−E

[
eitY

]
=
∫
Ω

eitXdP −
∫
Ω

eitY dP

=
∫
R

eitxdPX(x)−
∫
R

eitxdPY (x) =
∫
R

eitxd(PX(x)− PY (x))

=− it
∫
R

[FX(x)− FY (x)] eitxdx. (Übung)

Hieraus folgt mit ∆(x) := FX(x)− FY (x) und a ∈ R:

ϕX(t)− ϕY (t)
−it

e−ita =
∫
R

∆(x)eit(x−a)dx

=
∫
R

∆(y + a)eitydy.
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Unter Zuhilfenahme des Satzes von Fubini lässt sich weiter schließen:

1
2π

T∫
−T

ϕX(t)− ϕY (t)
−it

e−ita

(
1− |t|

T

)
dt =

1
2π

T∫
−T

∫
R

∆(y + a)eity
(

1− |t|
T

)
dy dt

=
∫
R

T∫
−T

1
2π
eity

(
1− |t|

T

)
∆(y + a) dt dy

=
∫
R

1− cos (Ty)
πTy2

∆(y + a) dy,

wobei im letzten Schritt das Ergebnis aus Beispiel 13.6 Nr.8 benutzt wurde. Die linke Seite
dieser Formel stellt offensichtlich die Ableitung von (FX ∗G)(a)− (FY ∗G)(a) dar, wobei G
die Verteilung mit der charakteristischen Funktion

ϕ(t) =
(

1− |t|
T

)
· I[−T,T ](t), t ∈ R,

und der Dichte

f(x) =
1− cos(Tx)

πx2T
, x ∈ R,

ist (siehe Beispiel 13.15). Durch die Faltung von FX −FY mit der auf [−T, T ] konzentrierten
Verteilung G wird gewissermaßen eine Glättung von FX und FY herbeigeführt, weshalb Satz
14.19 oft auch als ,,Glättungslemma” bezeichnet wird. Die spezielle Form von G ist dabei
unerheblich, wesentlich für das Weitere ist, dass ϕ für |t| > T verschwindet.
Aufgrund von Satz 14.18 gilt nun:

α

(
π

2
− 6
δT

)
≤

∣∣∣∣∣∣
∫
R

∆(y + a) · 1− cos (Ty)
Ty2

dy

∣∣∣∣∣∣
=

1
2

∣∣∣∣∣∣
T∫

−T

ϕX(u)− ϕY (u)
−iu

e−iua
(
1− |u|

T

)
du

∣∣∣∣∣∣
≤ 1

2

T∫
−T

∣∣∣∣ϕX(u)− ϕY (u)
u

∣∣∣∣ du =

T∫
0

|ϕX(u)− ϕY (u)|
u

du,

woraus mit δ := α
2M die Ungleichung

2
π

T∫
0

|ϕX(u)− ϕY (u)|
u

du+
24M
πT

≥ α

folgt. �
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14.20 Satz:
Für komplexe Zahlen x, y gilt:

|xn − yn| ≤ n |x− y| an−1,

mit a := max (|x| , |y|).

Beweis:
Aus der Identität

xn − yn = (x− y)xn−1 + y(x− y)xn−2 + . . .+ yn−1(x− y)

folgt sofort

|xn − yn| ≤
∣∣(x− y)xn−1

∣∣+ ∣∣y(x− y)xn−2
∣∣+ . . .+

∣∣yn−1(x− y)
∣∣

≤n · |x− y| · an−1.

�

14.21 Satz:
Sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine reellwertige Zufallsvariable

mit E[X] = 0, E
[
X2
]

= 1 und E
[
|X|3

]
< ∞. Dann gilt für die charakteristische Funktion

ϕX von X:

∣∣∣∣ϕn
X

(
t√
n

)
− e−

1
2
t2
∣∣∣∣ ≤ E

[
|X|3

]
· |t|3

24
√
n

(
3√
n
|t|+ 4

)
exp

(
− 5

18
n− 1
n

t2
)

für alle |t| ≤ 4
3E[|X|3]

√
n. Ist n ≥ 10 (und |t| ≤ 4

3E[|X|3]
√
n) so gilt

∣∣∣∣ϕn
X

(
t√
n

)
− e−

1
2
t2
∣∣∣∣ ≤ E

[
|X|3

]
· |t|3

24
√
n

· (|t|+ 4) · exp
(
−1

4
t2
)
.

Beweis:
Satz 13.16 impliziert mit E[X] = 0, E

[
X2
]

= 1 und k := 2, δ := 1:∣∣∣∣ϕX(t)− 1 +
1
2
t2
∣∣∣∣ ≤ 1

6
·E
[
|X|3

]
· |t|3 .

Wegen E
[
X2
]

= 1 ist E
[
|X|3

]
≥ 1. Folglich ist 4

3E[|X|3] <
√

2. Mit Hilfe der Ungleichungen

1− x ≤ e−x ≤ 1− x+
1
2
x2 ∀ x > 0

schließt man, dass für |t| ≤ 4
3E[|X|3]

gilt

|ϕX(t)| ≤ 1− 1
2
t2 +

1
6
·E
[
|X|3

]
|t|3 = 1− 1

2
t2 +

1
6
·E
[
|X|3

]
· |t| · |t|2 ≤ 1− 5

18
t2 ≤ e−

5
18

t2

(14.1)
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und ∣∣∣ϕX(t)− e−
1
2
t2
∣∣∣ ≤ ∣∣∣∣ϕX(t)− 1 +

1
2
t2
∣∣∣∣+ ∣∣∣∣e− 1

2
t2 − 1 +

1
2
t2
∣∣∣∣ (14.2)

≤1
6
·E
[
|X|3

]
· |t|3 +

1
8
t4. (14.3)

Wenn man Satz 14.20 auf x := ϕX

(
t√
n

)
und y = exp

(
−1

2
t2

n

)
anwendet, erhält man

∣∣∣∣ϕn
X

(
t√
n

)
− e−

1
2
t2
∣∣∣∣ ≤ n ∣∣∣∣ϕX

(
t√
n

)
− e−

1
2

t2

n

∣∣∣∣ · (max
(∣∣∣∣ϕX

(
t√
n

)∣∣∣∣ , ∣∣∣∣e− 1
2

t2

n

∣∣∣∣))n−1

Aufgrund von (14.1) gilt:

max
(∣∣∣∣ϕX

(
t√
n

)∣∣∣∣ , ∣∣∣∣e− 1
2

t2

n

∣∣∣∣) ≤ e− 5
18

t2

n

Wir fassen zusammen und erhalten aufgrund von (14.1) und (14.2):

∣∣∣∣ϕn
X

(
t√
n

)
− e−

1
2
t2
∣∣∣∣ ≤ n ·

E
[
|X|3

]
6

∣∣∣∣ t√n
∣∣∣∣3 +

1
8

(
t√
n

)4
 · e− 5

18
n−1

n
t2 (14.4)

= |t|3 ·
E
[
|X|3

]
24
√
n

(
4 +

3√
n
|t|
)
· e−

5
18

n−1
n

t2 . (14.5)

Wegen 3√
10
< 1 ist für n ≥ 10 (und |t| ≤ 4

√
n

3E[|X|3] ) offensichtlich

|t|3 ·
E
[
|X|3

]
24
√
n

(|t|+ 4) · e−
1
4
t2

eine obere Schranke für den Ausdruck (14.4), womit alles gezeigt ist. �

Mit Hilfe dieser Sätze lässt sich nun der Satz 14.17 von Berry und Esseen beweisen.

Beweis (des Satzes von Berry-Esseen):
Ohne Beschränkung der Allgemeinheit kann für die Zufallsvariablen in Satz 14.17 E[X1] = 0
und Var[X1] = E

[
X2

1

]
= 1 angenommen werden. Andernfalls ersetzt man die Zufallsvariablen

Xk durch die Variablen X
′
k := Xk−E[Xk]√

Var[Xk]
, k = 1, 2, . . . . Um zu der Abschätzung aus Satz 14.17

zu gelangen, wird Satz 14.19 mit X := Sn :=
∑n

i=1 Xi√
n

und Y
d= N (0, 1) angewandt. Die

dazugehörigen charakteristischen Funktionen lauten

ϕX(t) = ϕn∑n
i=1

Xi√
n

(t) = ϕn
X1

(
t√
n

)
, t ∈ R

und
ϕY (t) = e−

1
2
t2 , t ∈ R.
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Da
F
′
Y (t) =

1√
2π
e−

1
2
t2 , t ∈ R,

ist, kann M := 1√
2π

gewählt werden. Da E
[
|X|3

]
≥ 1 gilt und die Abschätzung von Berry-

Esseen für
√
n ≤ 3 trivialerweise richtig ist, kann n ≥ 10 angenommen werden und die zweite

Abschätzung aus Satz 14.21 verwendet werden.

sup
x∈R
|FX(x)− FY (x)| ≤ 2

π

T∫
0

|ϕX(u)− ϕY (u)|
u

du+
24M
πT

=
2
π

T∫
0

∣∣∣ϕX1

(
u√
n

)
− e−

1
2
u2
∣∣∣

u
du+

24M
πT

≤ 2
π

T∫
0

E
[
|X|3

]
|u|3

24
√
n

· (|u|+ 4)e−
1
4
u2

u
du+

24M
πT

.

Mit T := 4
3E[|X|3]

√
n und M := 1√

2π
erhält man schließlich

sup
x∈R
|FX(x)− FY (x)| ≤ 2

π

T∫
0

E
[
|X|3

]
|u|3

24
√
n

· (|u|+ 4)e−
1
4
u2

u
du+

24 · 3 ·E
[
|X|3

]
π
√

2π · 4 ·
√
n

=
E
[
|X|3

]
π
√
n

 1
12

T∫
0

(u3 + 4u2)e−
1
4
u2
du+ 9

√
2
π


≤

E
[
|X|3

]
π
√
n

 1
12

∞∫
0

(u3 + 4u2)e−
1
4
u2
du+ 9

√
2
π


=

E
[
|X|3

]
π
√
n

[
1
12
· 8 · (1 +

√
π) + 9

√
2
π

]

=
E
[
|X|3

]
√
n

· C,

wobei C := 2
3 ·

1+
√

π
π + 9

π

√
2
π ≈ 2.874103874 ist. �

14.22 Bemerkung:
Auch wenn die Berry-Esseen-Konstante C durch entsprechende Rechnungen verbessert wer-
den kann (vgl. z.B. Gänssler/Stute, ,,Wahrscheinlichkeitstheorie”), ist eine Verbesserung der
Konvergenzordnung 1√

n
ohne zusätzliche Voraussetzungen nicht möglich. Man betrachte da-

zu eine i.i.d. Folge (Xn)n∈N reellwertiger Zufallsvariablen über (Ω,F, P ) mit P (Xn = 1) =
P (Xn = −1) = 1

2 . Für diesen Fall gilt:

P (S2n = 0) = P

(
2n∑
i=1

Xi = 0

)
=
(

2n
n

)(
1
2

)2n

, n ∈ N.
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Die Stirling’sche Formel besagt(
2n
n

)(
1
2

)2n

∼ 1√
nπ

für n→∞,

so dass aufgrund der Symmetrie von S2n

P (S2n ≤ 0) =
1
2
(1 + P (S2n = 0)) =

1
2

+
1

2
√
nπ

+ o
(
n−

1
2

)
für n→∞

folgt. Damit wird

sup
x∈R

∣∣∣P (S2n ≤ (2n)
1
2x)− Φ(x)

∣∣∣ ≥ ∣∣∣∣P (S2n ≤ 0)− 1
2

∣∣∣∣ ∼ 1
2
√
nπ

für n→∞.
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Kapitel 15

Statistische Auswertung von
Zufallsexperimenten

Die Statistik beschäftigt sich mit dem Schätzen und Testen von Parametern stochastischer
Modelle. Oft existiert eine Messreihe und man interessiert sich z.B. für den Erwartungswert
der Grundgesamtheit. Da sich aus der Messreihe zunächst nur der empirische Mittelwert
berechnen lässt, stellt sich z.B. die Frage, wie groß die Diskrepanz zwischen dem theoreti-
schen Wert und dem Schätzwert ist. Diese und ähnliche Fragestellungen sind Gegenstand der
mathematischen Statistik.

Schlüsselwörter: Statistisches Modell, Stichprobe, (Punkt-)Schätzer, erwartungs-
treu, Konsistenz, starke Konsistenz, verzerrt, unverzerrt, Bias, gleichmäßig bester
Schätzer, Cramér-Rao-Schranke, α-Quantil, Konfidenzintervall, Hypothesentest.

51



Kapitel 15. Statistische Auswertung von Zufallsexperimenten

15.1 Einleitung

Allgemein hat man es bei der statistischen Auswertung eines Zufallsexperiments mit folgender
Situation zu tun: In einem System, das durch einen Maßraum (Ω,F, P ) beschrieben wird, wird
ein Experiment durchgeführt. Die erhobenen Daten betrachtet man als eine Realisierung einer
zum Experiment gehörenden ZufallsvariableX : Ω→ X, wobei (X,A) ein geeigneter Messraum
ist. Es wird angenommen, dass die unbekannte Verteilung PX von X einer gewissen Familie
P := (Pθ)θ∈Θ von Verteilungen auf (X,A) angehört, d.h. es gibt ein θ0 ∈ Θ, für das Pθ0

das Bildmaß PX von P unter X ist. Die explizite Gestalt von (Ω,F, P ) tritt dabei gänzlich
in den Hintergrund und man bezeichnet (X,A, (Pθ)θ∈Θ) als ein statistisches Modell für die
Zufallsvariable X.

15.1 Beispiel:
In Kapitel 4 hatten wir uns im Rahmen der statistischen Qualitätssicherung mit der soge-
nannten Gut–Schlecht–Prüfung beschäftigt. Es wird ein Los vom Umfang N angeliefert und
eine Stichprobe vom Umfang n entnommen. Wir vereinbaren

Xi :=
{

1 falls i-tes Stück fehlerhaft
0 falls i-tes Stück fehlerfrei

(i = 1, . . . , n)

und setzen X := (X1, . . . , Xn). Unter der Annahme, dass die Xi stochastisch unabhängig
und identisch B(1, θ)–verteilt sind mit unbekanntem Parameter θ ∈ [0, 1], genügt X einer
⊗100

i=1B(1, θ)–Verteilung. Damit erhalten wir als statistisches Modell für X:

(X,A, (Pθ)θ∈Θ) =
(
{0, 1}n,B({0, 1}n),

(
⊗100

i=1B(1, θ)
)
θ∈[0,1]

)
.

Man könnte aber auch ebensogut die Fehleranzahl

Y :=
n∑

i=1

Xi

beobachten. Da Y d=B(n, θ), lautet das statistische Modell für Y :

(X,A, (Pθ)θ∈Θ) = ({0, 1, . . . , n},B({0, 1, . . . , n}), (B(n, θ))θ∈[0,1]).

In der Regel hat man es mit einem Einzelexperiment zu tun, das n-mal unter gleichwertigen
Bedingungen durchgeführt wird, wobei die Daten x1, . . . , xn erhoben werden. Diese Daten
werden als Realisierung stochastisch unabhängiger und identisch verteilter Zufallsvariablen
X1, . . . , Xn : Ω → X aufgefasst. In diesem Fall gilt PX1 = . . . = PXn und das statistische
Modell für X := (X1, . . . , Xn) hat die Form (Xn,A⊗n, (P⊗n

θ )θ∈Θ), wobei A⊗n und P⊗n
θ die

n-fache Produkt-σ-Algebra bzw. das n-fache Produktmaß von Pθ = PX1 bezeichnen. Die
Zufallsvariable X := (X1, . . . , Xn) heißt dann Stichprobe vom Umfang n.

15.2 Punktschätzer

Mit Hilfe der beobachteten Daten X(ω) = x = (x1, . . . , xn) sollen jetzt Aussagen über die
zugehörige Verteilung, d.h. über den Parameter θ0 ∈ Θ oder eine von θ0 abhängige Kenngröße
%(θ0) getroffen werden.
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15.2 Beispiel:
Sei X d=Exp(λ). In diesem Fall ist Θ = (0,∞) und θ = λ. Als %(θ) kommen z.B. %(θ) :=
E[X] = θ−1 oder %(θ) := Var[X] = θ−2 in Betracht.

Sei X d=N (µ, σ2). In diesem Fall ist Θ = R × (0,∞) und θ = (µ, σ). %(θ) könnte z.B. der
Variationskoeffizient sein, d.h. %(θ) := σ

µ .

In diesem Zusammenhang von Bedeutung ist der Begriff des Schätzers:

15.3 Definition (Schätzer, Schätzwert):
Es sei (X,A, (Pθ)θ∈Θ) ein statistisches Modell und % : Θ→ R`, ` ∈ N, eine Abbildung. Dann
heißt jede A −B`-messbare Abbildung T : X → R` ein (Punkt–)Schätzer für die Kenngröße
%(θ) ∈ R`. Die Werte T (x) von T heißen Schätzwerte für %(θ).

Um unsinnige Schätzer %(θ) zu vermeiden, werden an T gewisse Anforderungen gestellt.

1. Forderung:
Für einen hinreichend großen Stichprobenumfang n sollte Tn = T (X1, . . . , Xn) den gesuchten
Wert %(θ) möglichst gut approximieren. Deswegen definiert man:

15.4 Definition (schwach konsistent, stark konsistent):
Eine Folge (Tn)n∈N von Punktschätzern für %(θ) heißt schwach konsistent, wenn

Tn
Pθ−−−→

n→∞
%(θ) ∀ θ ∈ Θ.

Eine Folge (Tn)n∈N von Punktschätzern heißt stark konsistent, wenn

Tn
Pθ-f.s.−→ %(θ) ∀ θ ∈ Θ.

15.5 Definition (Stichprobenmittelwert, Stichprobenmomente):
Falls X := (X1, . . . , Xn) eine Stichprobe vom Umfang n ist, nennt man

X := Xn :=
1
n

(X1 + . . .+Xn)

den Stichprobenmittelwert,

S2 := S2
n :=

1
n

n∑
i=1

(Xi −Xn)2 =
1
n

n∑
i=1

(Xi − 2XiXn +X
2
n)

=
1
n

n∑
i=1

X2
i − 2Xn

1
n

n∑
i=1

Xi︸ ︷︷ ︸
=Xn

+
1
n
· n ·X2

n =
1
n

(
n∑

i=1

X2
i

)
−X2

n

die Stichprobenvarianz und

m(k)
n :=

1
n

n∑
i=1

Xk
i

das k–te Stichprobenmoment, k ∈ N. Offensichtlich ist m(1)
n = Xn.
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15.6 Bemerkung:
Mit Hilfe des starken Gesetzes der großen Zahlen kann man sofort schließen, dass die Folgen

(Xn)n∈N, (S2
n)n∈N und (m(k)

n )n∈N stark konsistente Folgen von Punktschätzern für E[X1],
Var[X1] und E

[
Xk

1

]
darstellen (sofern die entsprechenden Momente existieren, d.h. sofern

E[|X1|] <∞, Var[X1] <∞ bzw. E
[
|Xk

1 |
]
<∞ gilt).

2. Forderung:
Bei hinreichend oftmaliger unabhängiger Anwendung des Schätzers T soll der Durchschnitt
der Schätzungen den gesamten Wert %(θ) beliebig gut approximieren.

15.7 Definition (erwartungstreu, unverzerrt, verzerrt, Bias, Verzerrung):
Ein Punktschätzer T : X → R` für die Kenngröße %(θ) ∈ R` heißt erwartungstreu oder
unverzerrt, wenn gilt

Eθ [T (X)] =
∫
Rn

T (x1, . . . , xn)dPθ(x1, . . . , xn) = %(θ) ∀ θ ∈ Θ

Andernfalls heißt T verzerrt (englisch: ,,biased”).

b(θ, T ) := Eθ [T (X)]− %(θ)

heißt der Bias (oder die Verzerrung) von T .

15.8 Bemerkung:
Ist b(θ, T ) > 0, so wird %(θ) durch T im Mittel überschätzt, andernfalls unterschätzt.

15.9 Beispiel:
1. Es sei X := (X1, . . . , Xn) eine Stichprobe vom Umfang n und E[|X1|] < ∞. Dann ist
Xn ein erwartungstreuer Schätzer für µ := E[X1], denn es gilt:

E
[
Xn

]
= E

[
1
n

n∑
i=1

Xi

]
=

1
n
E

 n∑
j=1

Xj

 =
1
n

(n · µ) = µ.

2. Es sei X := (X1, . . . , Xn) eine Stichprobe vom Umfang n mit E[X1] = µ und Var[X1] =
σ2 <∞. Dann ist S2

n ein verzerrter Schätzer für σ2.

E
[
S2

n

]
= E

[
1
n

n∑
i=1

X2
i −X

2

]
=

1
n

n∑
j=1

(
E
[
X2

j − µ2
]
−E

[
X

2
n − µ2

])
=

1
n

n∑
j=1

(
E
[
X2

j

]
−2E[Xj ]µ+ µ2︸ ︷︷ ︸

=−µ2

−(E
[
X

2
]
−2E[Xj ]µ+ µ2︸ ︷︷ ︸

=−µ2

)
)

=
1
n

n∑
j=1

(
E
[
(Xj − µ)2

]
−E

[
(X − µ)2

])
=

1
n
· n
(
σ2 −Var

[
X
])

= σ2 −Var

 1
n

n∑
j=1

Xj

 = σ2 − 1
n2
· nσ2

= σ2 − 1
n
σ2 =

n− 1
n

σ2 6= σ2.
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15.2. Punktschätzer

Die Verzerrung ist in diesem Fall b(θ, T ) = E
[
S2

n

]
− σ2 = − 1

nσ
2 und legt folgende

Modifikation nahe:

S̃2
n :=

n

n− 1
S2

n =
1

n− 1

n∑
i=1

(Xi −Xn)2.

Man erkennt sofort, dass S̃2
n ein erwartungstreuer Punktschätzer für σ2 ist.

3. Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum sowie X := (X1, . . . , Xn) : Ω → Rn und
Y := (Y1, . . . , Yn) : Ω→ Rn bezeichnen zwei Stichproben vom Umfang n (jeweils i.i.d.)
mit Var[X1] < ∞ und Var[Y1] < ∞. Außerdem nehmen wir an, dass die Zufallsvaria-
blen Xi und Yj für i 6= j stochastisch unabhängig sind. Dann heißt

Cn :=
1

n− 1

n∑
i=1

(Xi −Xn)(Yi − Y n)

die Stichprobenkovarianz von X und Y .

15.10 Satz:
Die in Beispiel 15.9 beschriebene Stichprobenkovarianz ist ein erwartungstreuer Schätzer für
COVθ[X1, Y1].

Beweis:
Als statistisches Modell für (X,Y ) verwenden wir ((R2)n, (B2)n, (P⊗n

θ )θ∈Θ), d.h. Pθ ist die
gemeinsame Verteilung von X1 und Y1. Da COVθ[X1, Y1] = COVθ[X1 −E[X1] , Y1 −E[Y1]]
ist, kann o.B.d.A. angenommen werden, dass Eθ [X1] = Eθ [Y1] = 0 sei. Damit ergibt sich
COVθ[X1, Y1] = E[X1 · Y1]. Es gilt

Eθ [(n− 1) · Cn] = Eθ

[
n∑

i=1

(Xi −Xn)(Yi − Y n)

]
=

n∑
i=1

Eθ

[
(Xi −Xn)(Yi − Y n)

]
= n ·Eθ

[
((1− 1

n)X1− 1
n

X2−...− 1
n

Xn)((1− 1
n)Y1− 1

n
Y2−...− 1

n
Yn)
]

= n

((
1− 1

n

)2

Eθ [X1 · Y1] +
1
n2

n∑
i=2

Eθ [Xi · Yi]

)

= n

((
1− 1

n

)2

COVθ[X1, Y1] +
n− 1
n2

COVθ[X1, Y1]

)
= (n− 1)COVθ[X1, Y1].

�

Um die Güte eines Schätzers T (X) für %(θ) messen zu können, betrachtet man die mittlere
quadratische Abweichung

R(θ, T ) := Eθ

[
(T (X)− %(θ))2

]
, θ ∈ Θ.

Es gilt

R(θ, T ) = Eθ

[
(T (X))2 − 2%(θ)T (X) + (%(θ))2

]
= Eθ

[
(T (X))2

]
− 2%(θ)Eθ [T (X)] + (%(θ))2

= Eθ

[
(T (X))2

]
− (Eθ [T (X)])2 + (Eθ [T (X)])2 − 2%(θ)Eθ [T (X)] + (%(θ))2

= Varθ [T (X)] + (Eθ [T (X)]− %(θ))2

= Varθ [T (X)] + (b(θ, T ))2,
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d.h. für erwartungstreue Schätzer T (X) ist

R(θ, T ) = Varθ [T (X)] ∀ θ ∈ Θ.

Man definiert deshalb:

15.11 Definition (erwartungstreuer Schätzer mit minimaler Varianz, Wirkungsgrad):
T (X) heißt erwartungstreuer Schätzer für %(θ) mit (gleichmäßig) minimaler Varianz (eng-
lisch: ,,uniformly minimum variance unbiased estimater”; kurz UMVU) oder auch gleichmäßig
bester erwartungstreuer Schätzer, falls er erwartungstreu ist und

Varθ [T (X)] ≤ Varθ [S(X)] ∀ θ ∈ Θ

für jeden erwartungstreuen Schätzer S(X) für %(θ) gilt.

Das Verhältnis
Varθ[T (1)]
Varθ[T (2)] heißt Wirkungsgrad von T (1) in Bezug auf T (2).

15.12 Beispiel:
Es sei X := (X1, . . . , Xn), Xi

d= R(0, θ), i = 1, . . . , n. Für %(θ) = θ seien die beiden folgenden
Schätzer gegeben:

T (1)
n (X) :=

2
n

n∑
i=1

Xi

T (2)
n (X) :=

n+ 1
n
·max{X1, . . . , XN}.

• Beide Schätzer sind erwartungstreu:

Eθ

[
T (1)

n

]
= Eθ

[
2
n

n∑
i=1

Xi

]
=

2
n
· n ·Eθ [X1] = 2 · θ

2
= θ.

Setzt man Mn := max{X1, . . . , Xn}, so gilt:

Pθ(Mn ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x) =


0 , x < 0(

x
θ

)n
, x ∈ [0, θ]

1 , x > θ.

Dabei besitzt Mn die Dichte

fn(x) :=

{
nθ−n · xn−1 , x ∈ [0, θ]
0 , sonst.

Damit folgt Eθ

[
T

(2)
n

]
= Eθ

[
n+1

n ·Mn

]
= n+1

n Eθ [Mn] und

Eθ [Mn] =
∫ θ

0
nθ−n · xn dx = nθ−n ·

∫ θ

0
xn dx

= nθ−n ·
[

1
n+ 1

xn+1

]θ

0

=
n

n+ 1
· θ.

Damit gilt also Eθ

[
T

(2)
n

]
= n+1

n Eθ [Mn] = θ.
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• Für die Varianz der beiden Schätzer ergibt sich:

Varθ

[
T (1)

n

]
=

4
n
·Var[X1] =

4
n
· θ

2

12
=
θ2

3n
.

Varθ

[
T (2)

n

]
=

(
n+ 1
n

)2

·Varθ [Mn]

=
(
n+ 1
n

)2

·
[
Eθ

[
(Mn)2

]
− (Eθ [Mn])2

]
=

(
n+ 1
n

)2

·

[∫ θ

0
x2 · nθ−n · xn−1 dx−

(
n

n+ 1

)2

· θ2

]

=
(
n+ 1
n

)2

·

[
nθ−n ·

∫ θ

0
xn+1 dx−

(
n

n+ 1

)2

· θ2

]

=
(
n+ 1
n

)2

·

[
nθ−n ·

[
1

n+ 2
xn+2

]θ

0

−
(

n

n+ 1

)2

· θ2

]

=
(
n+ 1
n

)2

·

[
n

n+ 2
· θ2 −

(
n

n+ 1

)2

· θ2

]

=
[
(n+ 1)2 − n · (n+ 2)

n · (n+ 2)

]
· θ2

=
θ2

n(n+ 2)
.

Damit ist also Varθ

[
T

(2)
n

]
< Varθ

[
T

(1)
n

]
für n ≥ 2.

Es stellt sich nun die Frage, wie man erkennt, ob ein gegebener erwartungstreuer Schätzer für
%(θ) erwartungstreuer Schätzer mit minimaler Varianz ist. Eine hinreichende Antwort darauf
liefert der folgende Satz.

15.13 Satz (Cramér-Rao):
Es seien X := (X1, . . . , Xn) eine Stichprobe aus reellwertigen Zufallsvariablen und
(Rn,Bn, (P⊗n

θ )θ∈Θ) das zugehörige statistische Modell. Es sei Θ ⊆ R ein offenes Intervall
und die Verteilungsfunktion der Zufallsvariablen X1 habe außerdem eine Dichte f(x, θ), die
die folgenden Eigenschaften besitzt:

1. Die Ableitung ∂f(x,θ)
∂θ existiert für alle θ ∈ Θ und für fast alle x ∈ R,

2. Eθ

[
∂ ln f(X1,θ)

∂θ

]
= 0 ∀ θ ∈ Θ und

3. I(θ) := Eθ

[(
∂ ln f(X1,θ)

∂θ

)2
]
<∞ ∀ θ ∈ Θ.

Ist T (X1, . . . , Xn) : Rn → R ein erwartungstreuer Schätzer für %(θ) mit

n∑
i=1

Eθ

[
T (X1, . . . , Xn)

∂ ln f(Xi, θ)
∂θ

]
= 1 ∀ θ ∈ Θ,
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so gilt

Varθ [T (X1, . . . , Xn)] ≥ 1
n · I(θ)

∀ θ ∈ Θ.

Die Größe I(θ) wird Fisher–Information von Pθ genannt und der Quotient 1
n·I(θ) heißt die

Cramér-Rao-Schranke.

Beweis:
Unter Berücksichtigung der angegebenen Regularitätsbedingungen erhält man

0 ≤ Eθ

[(
T (X1, . . . , Xn)− θ − 1

n I(θ)

n∑
i=1

∂ ln f(Xi, θ)
∂θ

)2
]

= Eθ

[
(T (X1, . . . , Xn)− θ)2 − 2

(
(T (X1, . . . , Xn)− θ) · 1

n I(θ)

n∑
i=1

∂ ln f(Xi, θ)
∂θ

)
+

1
n2(I(θ))2

n∑
k,l=1

∂ ln f(Xk, θ)
∂θ

∂ ln f(Xl, θ)
∂θ

]

= Eθ

[
(T (X1, . . . , Xn)− θ)2

]
− 2Eθ

[
T (X1, . . . , Xn) · 1

n I(θ)

n∑
i=1

∂ ln f(Xi, θ)
∂θ

]

+
2θ

n I(θ)

n∑
i=1

Eθ

[
∂ ln f(Xi, θ)

∂θ

]
+

1
n2(I(θ))2

n∑
k,l=1

Eθ

[
∂ ln f(Xk, θ)

∂θ

∂ ln f(Xl, θ)
∂θ

]
= Varθ [T (X1, . . . , Xn)]− 2

1
n I(θ)

+
1

n2(I(θ))2
· n · I(θ),

woraus
Varθ [T (X1, . . . , Xn)] ≥ 1

n I(θ)
folgt. �

15.14 Bemerkung:
Für erwartungstreue Schätzer T (X) für θ ist Bedingung

n∑
i=1

Eθ

[
T (X1, . . . , Xn)

∂ ln f(Xi, θ)
∂θ

]
= 1 ∀ θ ∈ Θ

im Satz von Cramér-Rao stets erfüllt.

Beweis:
Es seien x := (x1, . . . , xn) und f(x, θ) :=

∏n
i=1 f(xi, θ). Nach dem Satz von der majorisierten

Konvergenz gilt für erwartungstreue Schätzer mit Dichte f(x, θ) die folgende Vertauschbarkeit
von Integration und Differentation:

∂

∂θ
Eθ[T (X)] =

∂

∂θ

∫
Rn

T (x1, . . . , xn)dPθ(x1, . . . , xn)

=
∂

∂θ

∫
Rn

T (x1, . . . , xn)f(x1, . . . , xn, θ)d(x1, . . . , xn)

=
∫
Rn

T (x1, . . . , xn)
∂

∂θ
f(x1, . . . , xn, θ)d(x1, . . . , xn)
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15.2. Punktschätzer

Damit lässt sich nun die eigentliche Behauptung beweisen:

n∑
i=1

Eθ

[
T (X)

∂ ln f(Xi, θ)
∂θ

]

= Eθ

[
T (X)

∂

∂θ

n∑
i=1

ln f(Xi, θ)︸ ︷︷ ︸
=ln

∏n
i=1 f(Xi,θ)=ln f(X,θ)

]

=
∫
Rn

T (x)
∂

∂θ
ln f(x, θ)︸ ︷︷ ︸

= 1
f(x,θ)

· ∂
∂θ

f(x,θ)

dPθ(x1, . . . , xn)

=
∫
Rn

T (x)
(
∂

∂θ
f(x, θ)

)
1

f(x, θ)
f(x1, . . . , xn)︸ ︷︷ ︸

=1

d(x1, . . . , xn)

(∗)
=

∂

∂θ

∫
Rn

T (x)f(x, θ)d(x1, . . . , xn)︸ ︷︷ ︸
=Eθ[T (X)]=θ,

da T erwartungstreu ist

=
∂

∂θ
θ = 1.

((∗): Verwendung oben genannter Vertauschbarkeit von Integration und Differentation.) �

15.15 Beispiel (Stichprobenmittelwert bei normalverteilten Zufallsvariablen):
Es seien X1

d= N (θ0, σ) und Pθ die Normalverteilung mit Erwartungswert θ und Varianz σ2.
Die zugehörige Verteilungsfunktion hat die Dichte

f(x, θ) :=
1√

2π · σ
· e−

(x−θ)2

2σ2 ∀ (x, θ) ∈ R×R.

Hieraus folgt:
∂ ln f(x, θ)

∂θ
=

∂

∂θ

(
−(x− θ)2

2σ2
+ ln

1√
2π · σ

)
=
x− θ
σ2

.

Damit ergibt sich:

Eθ

[
∂ ln f(X1, θ)

∂θ

]
= Eθ

[
X1 − θ
σ2

]
= 0 ∀ θ ∈ R.

Die Fisher-Information von Pθ ist dann:

I(θ) = Eθ

[(
∂ ln f(X1, θ)

∂θ

)2
]

= Eθ

[(
X1 − θ
σ2

)2
]

=
1
σ4

Var[X1] =
σ2

σ4
=

1
σ2
.

Der Stichprobenmittelwert Xn liefert nach Beispiel 15.9 einen erwartungstreuen Schätzer für
E[X1] = θ. Da einerseits Varθ

[
Xn

]
= 1

nVarθ [X1] = σ2

n ist und andererseits 1
n·I(θ) = σ2

n gilt,
ist Xn gleichmäßig bester erwartungstreuer Schätzer für %(θ) = θ.

Das Konzept des erwartungstreuen Punktschätzers lässt sich in folgender Weise abschwächen:
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15.16 Definition (asymptotisch erwartungstreu):
Eine Folge (Tn)n∈N von Punktschätzern für %(θ) heißt asymptotisch erwartungstreu, wenn

lim
n→∞

Eθ [Tn] = %(θ) ∀ θ ∈ Θ

gilt. Entsprechend lassen sich die Begriffe der Wirksamkeit und des Wirkungsgrads ausdehnen.

15.17 Beispiel:
Die Stichprobenvarianz S2

n = 1
n

n∑
i=1

(Xi−Xn)2 ist ein asymptotisch erwartungstreuer Schätzer

für %(θ) = Varθ [X1].

Einen Zusammenhang zwischen den Begriffen ,,asymptotisch erwartungstreu” und ,,schwach
konsistent” stellt der folgende Satz her.

15.18 Satz:
Es sei (Tn)n∈N eine Folge von Punktschätzern mit

lim
n→∞

Eθ

[
(Tn − %(θ))2

]
= 0 ∀ θ ∈ Θ,

dann ist (Tn)n∈N schwach konsistent für %(θ).

Beweis:
Durch Anwendung der Rechenregeln für den Erwartungswert ergibt sich:

Eθ

[
(Tn − %(θ))2

]
=
∫
R

Pθ((Tn − %(θ))2 > x)dx

≥
ε2∫

0

Pθ((Tn − %(θ))2 ≥ x)dx

≥ ε2P ((Tn − %(θ))2 ≥ ε2)
= ε2P (|Tn − %(θ)| ≥ ε).

Mit der Voraussetzung limn→∞Eθ

[
(Tn − %(θ))2

]
= 0 ∀ θ ∈ Θ folgt dann die Konsistenz. �

15.3 Maximum-Likelihood-Schätzer

Das Maximum-Likelihood-Prinzip ist ein allgemeines statistisches Konzept zur Konstruktion
von Schätzfunktionen. Wir erläutern es an einem einführenden Beispiel:

15.19 Beispiel:
In einer Urne mögen sich 9 Kugeln (rote und schwarze) befinden. Wieviele rote und schwarze
es sind, ist nicht bekannt. Aus dieser Urne werden nun drei Kugeln ohne Zurücklegen gezogen.
Damit ist festgelegt, dass die hypergeometrische Verteilung dem Experiment zugrunde liegt.
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Es mögen zwei rote und eine schwarze Kugel gezogen worden sein. Damit ergeben sich folgende
Parameter:

N := 9
R := unbekannte Anzahl der roten Kugeln
n := 3
k := 2

Da zwei rote Kugeln gezogen wurden, muss R ≥ 2 gelten. Da außerdem eine schwarze Kugel
gezogen wurde, kann R maximal 8 betragen. Prinzipiell sind also alle Werte zwischen 2 und
8 für R möglich, aber offensichtlich nicht gleichwahrscheinlich.
Um die Anzahl der roten Kugeln zu schätzen, werden die zum Ereignis {k = 2} und den
Bedingungen R = 2, . . . , 8 gehörenden Wahrscheinlichkeiten berechnet und miteinander ver-
glichen:

R 0 1 2 3 4 5 6 7 8 9
Hg9,R,3(2) 0 0 0.083 0.214 0.357 0.476 0.536 0.5 0.333 0

Das Ereignis {k = 2} tritt also am wahrscheinlichsten auf, wenn R = 6 gilt. Deswegen wird
6 als Schätzwert für die Anzahl der roten Kugeln verwendet.

15.20 Bemerkung:
Etwas formaler lässt sich das obige Schätzverfahren wie folgt zusammenfassen:

Es seien Fθ(x) eine vorgegebene Wahrscheinlichkeitsverteilung, die von dem unbekannten
Parameter θ ∈ Θ abhängt. Wenn Fθ stetig verteilt ist, dann sei fθ(x) eine zugehörige Dichte,
ansonsten sei fθ(x) := F (x)−F (x−0). Bei der einmaligen Ausführung des Zufallsexperimentes
sei das Ereignis x0 eingetreten. Dann ist

T (θ) := θ ∈ Θ mit fθ(x0) ≥ fθ′(x0) ∀ θ′ ∈ Θ

ein Schätzer für den unbekannten Parameter θ.

Dieses Schätzverfahren hat jedoch den Nachteil, dass es sich nur auf die Auswertung eines
einzigen Zufallsexperimentes stützt. Genauere Schätzungen ergeben sich, wenn man das Ex-
periment mehrfach wiederholt:

15.21 Beispiel:
In dem Versuch aus Beispiel 15.19 seien die drei Kugeln wieder zurückgelegt worden und
danach seien die Kugeln in der Urne neu durchgemischt worden.
Beim erneuten Ziehen von drei Kugel, wurden nun k2 := 0 rote Kugeln gezogen. Nur auf
diesem Ergebnis basierend, würde man R = 0 vermuten, da Hg9,0,3(0) = 1, und für R > 0
gilt Hg9,R,3(0) < 1.
Um zu einem besseren Schätzwert für R zu gelanden, multipliziert man die Werte Hg9,R,3(2)
und Hg9,R,3(0) punktweise:

R 0 1 2 3 4 5 6 7 8 9
Hg9,R,3(2) ·Hg9,R,3(0) 0 0 0.035 0.051 0.043 0.023 0.006 0 0 0

Damit ergibt sich T (R) = 3 als Schätzer für R.
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Die Verallgemeinerung dieses Schätzverfahrens für den Parameter θ auf die n-malige Durch-
führung des Zufallsexperimentes nennt man die Maximum-Likelihood-Methode.

15.22 Definition (Maximum-Likelihood-Methode):
Es sei Fθ(x) eine vorgegebene Wahrscheinlichkeitsverteilung, die von dem unbekannten Pa-
rameter θ ∈ Θ abhängt. Bei der n-maligen Ausführung des Zufallsexperimentes seien die
Ereignisse x := (x1, . . . , xn) eingetreten. Wenn Fθ stetig verteilt ist, dann sei fθ(x) die zu-
gehörige Dichte, ansonsten sei fθ(x) := F (x)− F (x− 0).
Dann heißt

L(θ, x) :=
n∏

i=1

fθ(xi)

die Likelihood-Funktion und der Schätzer

Tn(θ) := θ ∈ Θ mit L(θ, x) ≥ L(θ′, x) ∀ θ′ ∈ Θ

für den Parameter θ heißt der zugehörige Maximum-Likelihood-Schätzer.

15.23 Beispiel (Maximum-Likelihood-Schätzer für die Normalverteilung):
Die Zufallsvariable X sei normalverteilt mit den unbekannten Parametern µ und σ2. Zu
schätzen ist θ := (µ, σ) ∈ Θ := R×R+.
Mit der Dichte

fθ(xi) =
1

σ
√

2π
e−

1
2σ2 (xi−µ)2

der Normalverteilung ergibt sich folgende Likelihood-Funktion:

L(θ, x) :=
n∏

i=1

fθ(xi) =
(

1
σ
√

2π

)n

exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2
)
.

Aufgrund der Monotonie des Logarithmus liegt das Maximum von L(θ, x) an der Stelle, an
der auch lnL(θ, x) sein Maximum hat. Es ist

lnL(θ, x) = −n · ln
√

2π − n · lnσ − 1
2σ2

n∑
i=1

(xi − µ)2.

Zur Bestimmung der Extrema werden die partiellen Ableitungen betrachtet:

∂ lnL
∂µ

(θ, x) =
1
σ2

n∑
i=1

(xi − µ) != 0 ⇐⇒ µ =
1
n

n∑
i=1

xi,

∂ lnL
∂σ

(θ, x) = −n
σ

+
1
σ3

n∑
i=1

(xi − µ)2 != 0 ⇐⇒ σ2 =
1
n

n∑
i=1

(xi − µ)2 = S2
n.

Damit ergibt sich als Maximum-Likelihood-Schätzer: Tn(µ, σ2) := (Xn, S
2
n).
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15.24 Beispiel (Maximum-Likelihood-Schätzer für die Poisson-Verteilung):
Die Zufallsvariable X sei Poisson-verteilt mit dem Parameter θ := λ ∈ R+.
Mit fθ(xi) = θxi

xi!
e−θ ergibt sich folgende Likelihood-Funktion:

L(θ, x) =
θx1+...+xn

x1! · · ·xn!
e−nθ.

Mit derselben Argumentation wie in Beispiel 15.23 ergibt sich zunächst:

lnL(θ, x) =

(
n∑

i=1

xi

)
· ln θ − ln(x1! · · ·xn!)− nθ.

Wir differenzieren:

∂ lnL
∂θ

(θ, x) =
n∑

i=1

xi

θ
− n != 0 ⇐⇒ θ =

1
n

n∑
i=1

xi.

Damit ergibt sich als Maximum-Likelihood-Schätzer: Tn(λ) := Xn.

15.4 Konfidenzintervalle

Konsistenz und Erwartungstreue sind mathematische Konzepte, die geeignet sind, um Punkt-
schätzer qualitativ miteinander zu vergleichen. Will man die Güte einer Schätzung auch quan-
titativ erfassen, braucht man weitere Hilfsmittel, die wir zunächst anhand von Beispielen
erläutern wollen.

Dazu betrachten wir noch einmal das unter 15.1 genannte Beispiel der statistischen Qualitäts-
sicherung. Es sei X := (X1, . . . , Xn) das Ergebnis der Gut-Schlechtprüfung, d.h.

P (Xi = 1) = θ und P (Xi = 0) = 1− θ (i = 1, . . . , n).

Dann ist die Fehlerzahl

Yn =
n∑

i=1

Xi

binomialverteilt mit den Parametern n und θ.

Der Satz von de Moivre-Laplace besagt, dass die Zufallsvariable

Yn − nθ√
nθ(1− θ)

für n→∞ näherungsweise standard-normalverteilt ist, so dass für jedes ε > 0 näherungsweise
gilt:

Pθ

(
−ε ≤ Yn − nθ√

nθ(1− θ)
≤ ε

)
≈ Φ(ε)− Φ(−ε) = 2Φ(ε)− 1.
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�/2�/2

1-�

Abbildung 15.1: Darstellung der Dichte der Standardnormalverteilung

Weiter ist

ε ≤ Yn − nθ√
nθ(1− θ)

≤ ε

⇐⇒ |Yn − nθ| ≤ ε ·
√
nθ(1− θ)

⇐⇒ (Yn − nθ)2 ≤ ε2 · nθ(1− θ)
⇐⇒ (Yn)2 − 2nθYn + n2θ2 ≤ ε2 · nθ − ε2 · nθ2

⇐⇒ g(θ) := (ε2 + n) · θ2 − (2Yn + ε2)θ +
1
n

(Yn)2 ≤ 0.

Die Nullstellen von g(θ) lauten

θ1,2 =
1

n+ ε2

[
Yn +

ε2

2
∓ ε
√
Yn(n− Yn)

n
+
ε2

4

]

und wir erkennen, dass die Bedingung g(θ) ≤ 0 für alle θ ∈ [θ1, θ2] erfüllt ist. Indem man nun
ε so wählt, dass

2Φ(ε)− 1 = 1− α d.h. Φ(ε) = 1− α

2

wird, erhält man
Pθ({y ∈ R+|γ1(y) ≤ θ ≤ γ2(y)}) ≥ 1− α,

wobei

γ1,2(y) :=
1

n+ ε2
·

[
y +

ε2

2
∓ ε
√
y · (n− y)

n
+
ε2

4

]
.

Die durch die Gleichung Φ(ε) = 1 − α, α ∈ (0, 1), eindeutig bestimmte Größe ε = z1−α
2

wird das (1− α)-Quantil der Standard-Normalverteilung genannt, welches den einschlägigen
statistischen Zahlentafeln entnommen werden kann. Gängige Zahlenwerte für α bzw. z1−α

2

sind:
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Abbildung 15.2: Konfidenzintervall

α z1−α
2

0.1 1.645
0.05 1.960
0.01 2.576

Wir wollen nun unsere Ergebnisse mathematisch präzisieren:

15.25 Definition (α-Quantil):
Es seien X eine reellwertige Zufallsvariable mit Verteilungsfunktion F und α ∈ (0, 1). Dann
heißt die Zahl

zα = inf{x ∈ R : F (x) ≥ α}

das α-Quantil von X bzw. von F .

15.26 Definition (Konfidenzintervall, Konfidenzkoeffizient, Konfidenzniveau):
Es sei X := (X1, . . . , Xn) eine Stichprobe und (Pθ)θ∈Θ das statistische Modell. T1(X), T2(X)
seien zwei reelle Zufallsvariable mit T1(X) ≤ T2(X).
[T1(X), T2(X)] ist ein Konfidenzintervall für %(θ) mit Konfidenzkoeffizienten γ ∈ (0, 1) (oder
auch zum Konfidenzniveau γ), falls

P (T1(X) ≤ %(θ) ≤ T2(X)) ≥ γ ∀ θ ∈ Θ

gilt.

15.27 Bemerkung:
Prinzipiell lässt sich jedes Konfidenzniveau γ erreichen, wenn man T1(X) → −∞ sowie
T2(X)→∞ gehen lässt. Interessant ist also die Frage, wie klein das Intervall [T1(X), T2(X)] zu
einem vorgegebenen Konfidenzniveau gewählt werden kann oder alternativ wie klein γ′ ∈ (0, 1)
mit

P (T1(X) ≤ %(θ′) ≤ T2(X)) ≤ γ′ ∀ θ ∈ Θ

für θ 6= θ′ gewählt werden kann.
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15.28 Definition (Kennfunktion):
Es sei

[
T

(θ)
1 , T

(θ)
2

]
ein Konfidenzbereich für %(θ) zum Konfidenzniveau γ. Dann heißt

K : Θ×Θ −→ [0, 1], K(θ, θ′) := P
(
T

(θ)
1 (X) ≤ %(θ′) ≤ T (θ)

2 (X)
)

die Kennfunktion von
[
T

(θ)
1 , T

(θ)
2

]
.

15.29 Definition (unverfälscht, gleichmäßig besser):
Ein Konfidenzbereich [T1(X), T2(X)] für %(θ) zum Konfidenzniveau γ heißt unverfälscht, wenn
seine Kennfunktion folgende Eigenschaften besitzt:

• K(θ, θ) ≥ γ ∀ θ ∈ Θ.

• K(θ, θ) ≥ K(θ, θ′) ∀ (θ, θ′) ∈ Θ×Θ mit θ 6= θ′.

Sind die beiden Intervalle [T1(X), T2(X)] und [T ′1(X), T ′2(X)] zwei Konfidenzbereiche für %(θ)
zum gleichen Konfidenzniveau γ jeweils mit den zugehörigen Kennfunktionen K und K ′, so
heißt [T1(X), T2(X)] gleichmäßig besser als [T ′1(X), T ′2(X)], falls K(θ, θ′) ≤ K ′(θ, θ′) für alle
(θ, θ′) ∈ Θ×Θ mit θ 6= θ′ gilt.

15.30 Bemerkung (Konfidenzintervall für den Erwartungswert):
Es sei X eine reelle Zufallsvariable mit σ2 := Var[X] <∞, µ := E[X] und X := (X1, . . . , Xn)
eine Stichprobe bzgl. PX . Es gilt:

Tn(X) :=
1
n

(X1 + . . .+Xn) f.s.−→
n→∞

µ

und
nTn(X)− nµ√

n · σ
d−→

n→∞
N (0, 1) .

Also gilt:

P (|Tn(X)− µ| ≤ ε) = P (µ− ε ≤ Tn(X) ≤ µ+ ε)
= FTn(X)(µ+ ε)− FTn(X)(µ− ε)

und

P

(
nTn(X)− nµ√

nσ
≤ x

)
≈ Φ(x).

Mit x1 := − nε
σ
√

n
und x2 := nε

σ
√

n
ist P (|Tn(X)− µ| ≤ ε) = P

(
x1 ≤ nTn(X)−nµ√

nσ
≤ x2

)
. Damit

ergibt sich:

P (|Tn(X)− µ| ≤ ε) = Φ
(

nε

σ
√
n

)
− Φ

(
− nε

σ
√
n

)
︸ ︷︷ ︸

1−Φ
(

nε
σ
√

n

)
= 2Φ

(
nε

σ
√
n

)
− 1,

d.h. gesucht ist ein ε > 0, so dass zu gegebenem γ > 0 folgende Bedingung erfüllt ist:

2Φ
(

nε

σ
√
n

)
− 1 ≥ γ bzw. Φ

(√
nε

σ

)
≥ 1 + γ

2
.
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15.31 Beispiel:
An einer Klausur haben 200 Studierende teilgenommen. Nach der Korrektur von 16 Klausuren
hat sich als Mittelwert für den Prozentsatz der erreichten Punkte T16(X) = 63.7% ergeben.
Die Varianz σ2 werde durch die verzerrungsfreie Stichprobenvarianz, die sich zu S̃2

16 = 0.04
ergeben hat, geschätzt.

Gesucht ist das Intervall [T16(X)− ε, T16(X) + ε], in dem sich der Durchschnittswert nach
Korrektur aller Klausuren mit einer Wahrscheinlichkeit von 95% befinden wird.

Es sind also n := 16, σ2 := 0.04 und γ := 0.95. Nach Bemerkung 15.30 ist ein möglichst
kleines ε > 0 gesucht, welches

Φ
(√

nε

σ

)
≥ 1 + γ

2
bzw. Φ(20ε) ≥ 39

40

erfüllt. Es ist Φ(1.96) ≈ 0.97500. Damit ist ε ≈ 1.96
20 = 0.098 und es liegt der Durchschnittswert

nach Korrektur aller Klausuren mit einer Wahrscheinlichkeit von 95% im Intervall [63.7% −
9.8%, 63.7% + 9.8%] = [53, 9%, 73.5%].

15.32 Beispiel (Konfidenzintervall für den Erwartungswert):
Ein Zufallsexperiment werde n mal durchgeführt. Die Varianz σ2 > 0 sei bekannt. Für den
unbekannten Erwartungswert µ = E[X] verwenden wir als Schätzer das Stichprobenmittel
Tn(X) := 1

n

∑n
i=1Xi. Asymptotisch gelten dann folgende Aussagen:

• Falls ein Konfidenzintervall für µ der Länge 2ε benötigt wird, so ist

γ = 2Φ
(√

nε

σ

)
− 1

die Wahrscheinlichkeit dafür, dass µ in dem Intervall [Tn(X)− ε, Tn(X) + ε] liegt.

• Falls ein Konfidenzintervall, in dem µmit der Wahrscheinlichkeit γ ∈ (0, 1) liegt, gesucht
ist, so ergibt sich die Intervalllänge 2ε aus

ε =
z 1+γ

2
· σ

√
n

mit Φ
(
z 1+γ

2

)
= 1+γ

2 .

• Zu vorgegebenen ε > 0 und γ ∈ (0, 1) ist eine Stichprobe vom Umfang

n =
(z 1+γ

2
· σ

ε

)2

erforderlich, wenn µ mit der Wahrscheinlichkeit γ in dem Intervall [Tn(X)−ε, Tn(x)+ε]
liegen soll.

15.33 Beispiel:
• Ein Versuch werde n := 100 mal durchgeführt. Die Varianz σ2 := 5 sei bekannt. Gesucht

ist ein Konfidenzintervall, in dem der Erwartungswert mit einer Wahrscheinlichkeit von
γ := 99% liegt.
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Es ist 1+γ
2 = 0.995 und Φ(2.57583) ≈ 0.9950. Damit ist z 1+γ

2
≈ 2.57583. Mit Satz 15.32

ergibt sich dann das Konfidenzintervall für γ := 0.99 zu [Tn(X)− ε, Tn(X) + ε] mit

ε =
z 1+γ

2
· σ

√
n
≈ 2.57583 ·

√
5

10
≈ 0.57597.

D.h. die Abweichung von Tn(X) vom tatsächlichen Mittelwert beträgt mit einer Wahr-
scheinlichkeit von γ = 99% höchstens ε ≈ 0.57597.

• Bei einem Versuch mit der bekannten Varianz σ2 := 2 ist gefragt, wie oft er durchgeführt
werden muss, damit die Wahrscheinlichkeit, dass Tn(X) um mehr als ε := 5% vom
Mittelwert abweicht kleiner als 1− γ := 1% ist.

Mit 1+γ
2 = 0.995 ergibt sich zunächst Φ(2.57583) ≈ 1+γ

2 bzw. z 1+γ
2
≈ 2.57583. Nach

Satz 15.32 gilt dann

n =
(z 1+γ

2
· σ

ε

)2

≈
(
2.57583 ·

√
2 · 20

)2
≈ 5307.92

bzw. n ≥ 5308.
(Siehe auch Mathematica-Notebook zu diesem Beispiel.)

Mit ähnlichen Überlegungen wie in Bemerkung 15.30 können auch Konfidenzintervalle für die
Varianz aufgestellt werden, wie der folgende Satz zeigt.

15.34 Beispiel (Konfidenzintervall für die Varianz):
Bei bekanntem Erwartungswert µ und mit Qn(X) :=

∑n
i=1(Xi − µ)2 liegt die Varianz eines

Zufallsexperiments mit einer Wahrscheinlichkeit von γ ∈ (0, 1) in[
Qn(X)
zn, 1+γ

2

,
Qn(X)
zn, 1−γ

2

]
.

Dabei sei χ2
n

(
zn, 1±γ

2

)
= 1±γ

2 und es sei χ2
n(z) die χ2-Verteilung mit n Freiheitsgraden.

Es sei σ2 > 0 die Varianz des Zufallsexperiments. Die Zufallsvariable

Qn(X)
σ2

=
n∑

i=1

(
Xi − µ0

σ

)2

ist eine Summe von n Quadraten von N (0, 1)-verteilten Zufallsvariablen. Damit ist Qn(X)
σ2

χ2
n-verteilt und es gilt:

P

(
Qn(X)
zn, 1+γ

2

≤ σ2 ≤ Qn(X)
zn, 1−γ

2

)
= P

(
zn, 1−γ

2
≤ Qn(X)

σ2
≤ zn, 1+γ

2

)
=

1 + γ

2
− 1− γ

2
= γ.
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15.35 Beispiel:
Eine Maschine bohrt Löcher der Größe µ = 20mm in Bleche. Der Produktion wurden n := 10
Bleche entnommen und die Größen der gebohrten Löcher wurden nachgemessen:

20.1mm, 19.8mm, 19.9mm, 20.5mm, 20.0mm, 21.0mm, 20.2mm, 19.4mm, 20.0mm, 19.7mm

Um Aussagen über die Qualität der Bohrungen zu treffen, interessiert man sich für die Varianz,
mit der die Maschine arbeitet.

Als Stichprobenvarianz ergibt sich

1
n− 1

n∑
i=1

(xi − µ)2 =
1.8
9

= 0.2

und als Standardabweichung
√

0.2mm = 0.45mm. Das Konfidenzintervall zum Niveau 95%
berechnet sich wie folgt:

Es ist Qn(X) = 1.8, 1+γ
2 = 0.975 und 1−γ

2 = 0.025 und damit

χ2
n(20.4832) ≈ 0.975 und χ2

n(3.24697) ≈ 0.025.

Damit ergibt sich folgendes Konfidenzintervall:[
Qn(X)
zn, 1+γ

2

,
Qn(X)
zn, 1−γ

2

]
≈
[

1.8
20.4832

,
1.8

3.24697

]
≈ [0.08788, 0.55436] .

15.5 Hypothesentests

In der Praxis interessiert man sich oftmals nicht nur für den Wert eines Schätzers, sondern
auch dafür, mit welcher Wahrscheinlichkeit der Schätzer den korrekten Wert geliefert hat. Eine
Möglichkeit, solche Fragen zu beantworten, stellen die bereits behandelten Konfidenzintervalle
dar. Eine andere Möglichkeit bieten die Hypothesentests.

Bei einem Hypothesentest wird gefragt, ob basierend auf den beobachteten Ausgängen eines
Zufallsexperimentes, eine bestimmte Annahme abzulehnen ist oder nicht.

15.36 Definition ((Null-)Hypothese, Alternative):
Gegeben sei eine Stichprobe x = (x1, ..., xn), die eine Realisierung unabhängiger, Pϑ - ver-
teilter Zufallsvariablen X = (X1, ..., Xn) sind. Pϑ stellt dabei die parametrische Familie von
Wahrscheinlichkeitsverteilungen auf dem Merkmalraum R mit ϑ ∈ Θ dar.
H0 ⊂ Θ heißt (Null-)Hypothese, H1 := Θ−H0 heißt Alternative und H0 : H1 beschreibe das
Testproblem H0 gegen H1. Sei % : Θ→ R ein Parameter und k0 ∈ R fest, dann heißt

H0 := {ϑ|%(ϑ) ≤ k0} gegen H1 := {ϑ|%(ϑ) > k0}

bzw.
H0 := {ϑ|%(ϑ) ≥ k0} gegen H1 := {ϑ|%(ϑ) < k0}

einseitiges Testproblem und

H0 := {ϑ|%(ϑ) = k0} gegen H1 := {ϑ|%(ϑ) 6= k0}

zweiseitiges Testproblem.
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Hat man ein Testproblem H0 : H1 gegeben, so sind folgende Entscheidungen möglich:

• aH0 := ”Annahme von H0”

• aH1 := ”Ablehnung von H0”

Ein Hypothesentest d liefert nun zu einer Stichprobe x = (x1, ..., xn) die Antwort aus der
Menge {aH0 , aH1}, d.h. ist eine Abbildung d : Rn → {aH0 , aH1}. Die Menge {x|d(x) = aH0}
heißt Annahmebereich und somit stellt die Menge {x|d(x) = aH1} den Ablehnungsbereich
bzw. kritischen Bereich dar.

Aufgrund der jeweils betrachteten Stichprobe x können Fehlentscheidungen auftreten:
Liegt eine Grundgesamtheit vor, bei der ϑ ∈ H0 gilt und betrachtet man eine Stichprobe,
die bei dem verwendeten Test d zur Ablehnung führt, so begeht man einen Fehler 1. Art (H0

wird zu Unrecht abgelehnt). Liegt eine Grundgesamtheit mit ϑ ∈ H1 vor, und man entscheidet
sich für die Annahme der Hypothese, so macht man einen Fehler 2. Art (H0 wird zu Unrecht
angenommen).
Die Wahrscheinlichkeit für die Fehler 1. und 2. Art sollen möglichst klein sein. Dabei hilft die
im Folgenden definierte Funktion.

15.37 Definition (Gütefunktion):
Gegeben sei ein Testproblem H0 : H1 und ein Hypothesentest d. Dann heißt die Funktion
β : Θ→ (0, 1) mit

β(ϑ) = Pϑ (d(x) = aH1) , ∀ϑ ∈ Θ

die Gütefunktion von d.

Damit beschreibt β(ϑ) für ϑ ∈ H0 die Wahrscheinlichkeit für einen Fehler 1. Art und die
Funktion 1 − β(ϑ), auch Operationscharakteristik genannt, die Wahrscheinlichkeit für einen
Fehler 2. Art. Gesucht sind demnach Hypothesentests, für die β möglichst klein auf H0 und
möglichst groß auf H1 ist. Diese scheinbar widersprüchlichen Forderungen lassen sich wie folgt
umsetzen:

Abbildung 15.3: Der typische Verlauf einer Gütefunktion für ein einseitiges Testproblem.
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15.38 Definition:
Es seien d : Rn → {aH0 , aH1} ein Hypothesentest für H0 : H1 und α ∈ (0, 1). Dann heißt d
Test zum (Signifikanz-) Niveau α, falls gilt

Pϑ (d(x) = aH1) ≤ α , ∀ϑ ∈ H0.

Betrachtet man eine Teilmenge D der Menge aller Tests zum Niveau α für H0 : H1. Ein Test
d′ aus dieser Teilmenge D heißt trennscharf, falls gilt

Pϑ

(
d′(x) = aH1

)
= maxd∈DPϑ (d(x) = aH1) , ∀ϑ ∈ H1.

Liefert ein Test zum Niveau α also d(x) = aH1 , so wird H0 abgelehnt und die Wahrschein-
lichkeit, dass dies zu Unrecht geschieht ist ≤ α. Man sagt dann, die Ablehnung von H0 zum
Niveau α sei statistisch gesichert.
Die Aufgabe der mathematischen Statistik ist es nun, für verschiedene Testfragestellungen
trennscharfe Tests zum Niveau α herzuleiten. Wie eine solche Fragestellung und der zugehöri-
ge Test aussehen, soll an folgendem Beispiel verdeutlicht werden.

15.39 Beispiel:
Es seien x1, . . . , xn Realisierungen unabhängiger, normalverteilter Zufallsvariablen mit dem
unbekannten Erwartungswert µ und der bekannten Varianz σ2

0. Es wird angenommen, der
Erwartungswert sei µ0, d.h. es wird die Hypothese µ = µ0 aufgestellt.

Wenn alle Xi mit µ0 und σ2
0 normalverteilt sind, so ist das arithmetische Mittel Xn :=

1
n

∑n
i=1Xi normalverteilt mit dem Erwartungswert µ0 und der Varianz σ2

0
n . Folglich ist

Yn :=
√
n

σ0
(Xn − µ0)

standardnormalverteilt.

Die Hypothese µ = µ0 ist dann abzulehnen, wenn der Betrag von Yn ,,zu groß” wird, d.h.:

Pµ0(|Yn| > t∗) != α

Da Yn standardnormalverteilt ist, ergibt sich t∗ = u1−α
2
, also das 1 − α

2 - Quantil der Stan-
dardnormalverteilung. Die Hypothese µ = µ0 wird also abgelehnt, falls∣∣∣∣√nσ0

(Xn − µ0)
∣∣∣∣ > u1−α

2

ist.

Weitere Hypothesentests, die sich auf Fragestellungen bzgl. Stichproben x, die Realisierungen
unabhängiger normalverteilter Zufallsvariablen sind, beziehen, gibt nachstehende Tabelle an.

71



Kapitel 15. Statistische Auswertung von Zufallsexperimenten

Zusammenfassung der Einstichproben - Tests bei Normalverteilungsannahme
Testgröße T Nullhypothese H0 Alternative H1 Ablehnungsbereich
Gauß - Test µ = µ0 µ 6= µ0 |T | > u1−α

2

(σ0 bekannt) µ ≤ µ0 µ > µ0 T > u1−α

T (x) =
√

n
σ0

(xn − µ0) µ ≥ µ0 µ < µ0 T < uα

t - Test µ = µ0 µ 6= µ0 |T | > tn−1;1−α
2

(σ0 unbekannt) µ ≤ µ0 µ > µ0 T > tn−1;1−α

T (x) =
√

n
s2
x

(xn − µ0) µ ≥ µ0 µ < µ0 T < tn−1;α

χ2 - Test σ2 = σ2
0 σ2 6= σ2

0 T < χ2
n−1;α

2

oder T > χ2
n−1;1−α

2

σ2 ≤ σ2
0 σ2 > σ2

0 T > χ2
n−1;1−α

T (x) = (n− 1) s2
x

σ2
0

σ2 ≥ σ2
0 σ2 < σ2

0 T < χ2
n−1;α

Zusammenfassung der Zweistichproben - Tests bei Normalverteilungsannahme
Testgröße Nullhypothese Alternative Ablehnungsbereich

T H0 H1

Gauß - Test µ1 = µ2 µ1 6= µ2 |T | > u1−α
2

(σ1, σ2 bekannt) µ1 ≤ µ2 µ1 > µ2 T < uα

T (x, y) = y−x√
1
m

σ2
1+ 1

n
σ2
2

µ1 ≥ µ2 µ1 < µ2 T > u1−α

t - Test µ1 = µ2 µ1 6= µ2 |T | > tm+n−2;1−α
2

(σ1, σ2 unbekannt, aber gleich!) µ1 ≤ µ2 µ1 > µ2 T < tm+n−2;α

T (x, y) =

√
mn(m+n−2)

m+n
y−x√

(m−1)s2x+(n−1)s2y
µ1 ≥ µ2 µ1 < µ2 T > tm+n−2;1−α

F - Test σ2
1 = σ2

2 σ2
1 6= σ2

2 T < Fm−1,n−1;α
2

oder T > Fm−1,n−1;1−α
2

σ2
1 ≤ σ2

2 σ2
1 > σ2

2 T > Fm−1,n−1;1−α

T (x, y) = s2
x

s2
y

σ2
1 ≥ σ2

2 σ2
1 < σ2

2 T < Fm−1,n−1;α

15.40 Beispiel:
Bei der Herstellung von Büroklammern sollen etwa 100g pro Beutel abgepackt werden. Die
Standardabweichung sei bekannt und betrage σ0 := 0.4. Das Abwiegen von n := 10 Beuteln
ergab:

101g, 98g, 97g, 102g, 99g, 99g, 101g, 98g, 100g, 102g

Getestet wird die Hypothese µ = µ0 := 100g zum Signifikanz-Niveau α = 5%.

Es ist Xn = 997
10 . Damit folgt zunächst

Y(n) :=
√
n

σ0
(Xn − µ0) =

10
4
·
√

10 ·
(
− 3

10

)
≈ −2.372.

Für u
1−α′

2

= 2 gilt Φ(−u
1−α′

2

)+1−Φ(u
1−α′

2

) = 0.046 < α und es ist |Yn| ≈ 2.372 > u
1−α′

2

= 2.

D.h. die Hypothese ist abzulehnen. (Siehe auch Mathematica-Notebook zu diesem Beispiel.)
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15.5. Hypothesentests

15.41 Beispiel (Gut-Schlecht-Prüfung):
Bei der statistischen Qualitätskontrolle wird überprüft, ob die Ausschußwahrscheinlichkeit
einer Produktion vereinbahrungsgemäß nicht größer als p0 sei, d.h. es wird die Hypothese

H0 : p ≤ p0

aufgestellt, wobei p die tatsächliche (unbekannte) Ausschußwahrscheinlichkeit der Produktion
ist. Die Hypothese H0 wird mittels einer der Produktion entnommenen Stichprobe vom Um-
fang n und der darin enthaltenen Anzahl X defekter Stücke überprüft. Diese Anzahl X hängt
von der Wahl der Stichprobe ab, als ihre Verteilung wurde in Stochastik I die Binomial-, die
Hypergeometrische und die Poissonverteilung betrachtet.
Die Hypothese H0 wird abgelehnt, wenn die Anzahl X der defekten Stücke in der Stichprobe
”zu groß” ist, d.h. größer als die sog. Annahmezahl c. Ist X ”hinreichend klein”, d.h. X < c
so wird H0 nicht verworfen. Beide Schlüsse können natürlich falsch sein, was auf die Begriffe
der Fehler 1. und 2. Art führt.
Zur Minimierung dieser Fehler wird in der Qualitätssicherung in der Regel die Operations-
charakteristik an Stelle der Gütefunktion betrachtet, sie lautet

L(p) := 1− β(p) = P (X ≤ c).

Um die Fehler 1. und 2. Art zu minimieren, muß die Operationscharakteristik für p ≤ p0

möglichst groß sein, für p > p0 hingegen möglichst klein.
Bei der Konstruktion von (n− c) - Stichprobenplänen wird dies erreicht, indem die Operati-
onscharakteristik durch zwei vorgegebene Punkte, die die Zielsetzungen von Lieferanten und
Abnehmer abbilden, gelegt wird (siehe Abbildung 15.4).

p1-� p�

1

0

�

1-�

p

Abbildung 15.4: Beispiel einer Operationscharakteristik
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Kapitel 16

Bedingte Erwartung und bedingte
Verteilung

Dieses Kapitel stellt in gewisser Weise eine Fortsetzung des Kapitels über die bedingten
Wahrscheinlichkeiten aus der Stochastik I dar. Im Folgenden wird der Begriff der bedingten
Erwartung eingeführt und die bedingte Verteilung für den Fall kontinuierlicher Wahrschein-
lichkeitsverteilungen definiert.

Schlüsselwörter: Bedingte Erwartung, Waldsche Gleichung, bedingte Verteilung,
bedingte Dichte, Randverteilungsdichte, Randverteilung.
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Kapitel 16. Bedingte Erwartung und bedingte Verteilung

16.1 Bedingte Erwartung

In Stochastik I in Kapitel 3 wurde der Begriff der elementaren bedingten Wahrscheinlichkeit
behandelt. Für einen Wahrscheinlichkeitsraum (Ω,F, P ) und für A,B ∈ F mit P (B) > 0
wurde

P (A|B) :=
P (A ∩B)
P (B)

(16.1)

elementare bedingte Wahrscheinlichkeit von A unter der Bedingung bzw. unter der Hypothese
B genannt und P (·|B) : F→ [0, 1] stellte sich als ein Wahrscheinlichkeitsmaß auf (Ω,F) heraus.

Der Begriff der elementaren bedingten Wahrscheinlichkeit lässt sich sofort auf reellwertige
Zufallsvariablen X, Y auf (Ω,F, P ) ausdehnen, wenn man Y zunächst als diskret voraussetzt
und analog zu Gleichung (16.1)

P (X ∈ B|Y = y) := P ({X ∈ B}|{Y = y}) :=
P (X ∈ B, Y = y)

P (Y = y)
(16.2)

für alle B ∈ B und y ∈ R mit P (Y = y) > 0 festgelegt. Für jedes dieser y definiert
P (X ∈ · |Y = y) ein Wahrscheinlichkeitsmaß auf (R,B), das später bedingte Verteilung
von X gegeben Y = y genannt wird und mit PX|Y =y bezeichnet wird. Der zugehörige Erwar-
tungswert

E[X|Y = y] =
∫
R

x dPX|Y =y(x) =
1

P (Y = y)

∫
{ω|Y (ω)=y}

X(ω) dP (ω) (16.3)

heißt, sofern er existiert, bedingter Erwartungswert von X gegeben Y = y.
Zu beachten ist hier, dass unter der Annahme eines diskreten Y die bedingte Verteilung und
der bedingte Erwartungswert gegeben Y = y nur für P - fast alle y definiert ist.

Offensichtlich versagt dieses Konzept und verliert auch seine Anschaulichkeit, wenn Y keine
diskrete Zufallsvariable ist. Denn in diesem Fall kann P (Y = y) = 0 ∀ y ∈ R gelten, so dass
die Festlegungen (16.2) und (16.3) keinen Sinn mehr machen würden.

Wir betrachten zunächst weiter den Fall der diskreten Zufallsvariable Y , setzen D := {y |
P (Y = y) > 0} und nehmen an, dass X beschränkt ist, d.h. |X| ≤ k. Damit gilt auch
|E[X|Y = y]| ≤ k und die Funktion

f(y) :=
{

E[X|Y = y] , y ∈ D
0 , sonst

bildet eine durch k beschränkte, messbare Funktion. Folglich ist E[X|Y ] := f(Y ) eine be-
schränkte, F-σ(Y )–messbare Zufallsgröße, wobei σ(Y ) die von Y erzeugte σ–Algebra bezeich-
net. E[X|Y ] nennt man (als Funktion von y) bedingte Erwartung.

Wir gehen weiter davon aus, dass X eine Zufallsvariable ist, deren Realisierung nicht beobach-
tet werden kann, der Wert von Y sei jedoch bekannt. Gesucht ist nun eine Approximation in
Abhängigkeit von Y , d.h. eine F-σ(Y )–messbare Zufallsgröße, die X möglichst gut abbildet.
Es wird sich zeigen, dass dies genau die bedingte Erwartung ist.

76



16.1. Bedingte Erwartung

Dazu wird zunächst festgestellt, dass für jedes A := {ω | Y (ω) ∈ B}∫
{Y ∈B}

E[X|Y ] dP =
∫

B∩D

E[X|Y = y] dPY (y)

=
∑

y∈B∩D
E[X|Y = y]P (Y = y)

=
∑

y∈B∩D

 1
P (Y = y)

∫
{Y =y}

X dP

 P (Y = y)

=
∫

{Y ∈B}

X dP.

Damit hat man folgende Eigenschaften, durch die die bedingte Erwartung P - fast sicher
eindeutig bestimmt wird:

1) Die Zufallsgröße E[X|Y ] ist F-σ(Y )–messbar.

2)
∫
A

E[X|Y ] dP =
∫
A

X dP für alle A ∈ σ(Y ).

Die Eindeutigkeit lässt sich wie folgt zeigen:
Sei Z eine weitere F-σ(Y )–messbare Zufallsvariable mit∫

A

Z dP =
∫
A

X dP ∀A ∈ σ(Y ),

dann folgt für alle A ∈ σ(Y ): ∫
A

(E[X|Y ]− Z) dP = 0.

Daraus ergibt sich mit Stochastik I Satz 9.40 und der F-σ(Y )–Messbarkeit von E[X|Y ]− Z:

E[X|Y ]− Z = 0 P − f.s.

Betrachtet man obige Eigenschaften, so fällt auf, dass sie von Y nur über σ(Y ) abhängen, sie
können demnach auch wie folgt für eine beliebige σ–Algebra G ⊂ F formuliert werden:

1’) Die Zufallsgröße E[X|G] ist G–messbar.

2’)
∫
A

E[X|G] dP =
∫
A

X dP für alle A ∈ G.

Es bleibt die Frage, bezüglich welchem Abstandsbegriff E[X|G] tatsächlich die beste Appro-
ximation von X bildet. Eine Antwort darauf liefert die folgende Bemerkung und der anschlie-
ßende Satz.
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Kapitel 16. Bedingte Erwartung und bedingte Verteilung

16.1 Bemerkung:
a) Aus der Eigenschaft 2’) und der Beschränktheit von X und E[X|G] erhält man für alle

G–messbare Zufallsvariablen Y mit E[|Y |] <∞:

E[XY ] = E[E[X|G]Y ] , d.h. E[Y · (X −E[X|G])] = 0.

Damit ergibt sich für jede G–messbare Zufallsvariablen Y mit E
[∣∣Y 2

∣∣] <∞:

E
[
(X − Y )2

]
= E

[
(X −E[X|G])2

]
+ E

[
(E[X|G]− Y )2

]
+2E[(E[X|G]− Y ) (X −E[X|G])]

= E
[
(X −E[X|G])2

]
+ E

[
(E[X|G]− Y )2

]
≥ E

[
(X −E[X|G])2

]
.

Die gesuchte Metrik, in der E[X|G] tatsächlich die beste Approximation von X bildet,
ist demnach die Abstandsfunktion auf dem Raum L2 (Ω,F, P ):

d2(X,Y ) :=
(
E
[
|X − Y |2

]) 1
2
.

b) Mit Lp (Ω,F, P ) wird der Vektorraum der reellen, p - fach P - integrierbaren Funktionen
auf (Ω,F) bezeichnet. Dieser Raum ist unter der Lp - (Halb -)Norm

‖X‖p := (E[|X|p])
1
p

vollständig, d.h. ein (Pseudo-)Banachraum. Es wird hier der Begriff Halbnorm benutzt,
da die Eigenschaft einer Norm, aus ‖X‖p = 0 X = 0 zu folgern, nur P - f.s. gilt.
Die aus dieser Halbnorm induzierte Abstandsfunktion

dp(X,Y ) := ‖X − Y ‖p = (E[|X − Y |p])
1
p

heißt Lp - (Pseudo-)Metrik.
Für den Fall p = 2 wird durch

〈X,Y 〉 := E[XY ]

ein Skalarprodukt definiert, welches obige Halbnorm wie folgt induziert:

‖X‖22 = 〈X,X〉 .

Damit ist L2 (Ω,F, P ) ein (Pseudo-)Hilbertraum, auf welchem orthogonale Projektionen
existieren.
Eine orthogonale Projektion PG,X vonX ∈ L2 (Ω,F, P ) auf den L2 (Ω,G, P ) mit G ⊆ F,
kann als eindeutige Lösung des Minimierungsproblems

‖X −PG,X‖2 = minY ∈L2(Ω,G,P ) ‖X − Y ‖2

angesehen werden.

Mit diesen Vorüberlegungen lässt sich nun die bedingte Erwartung konstruieren:
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16.1. Bedingte Erwartung

16.2 Satz (Konstruktion der bedingten Erwartung):
Seien (Ω,F, P ) ein Wahrscheinlichkeitsraum, G eine beliebige σ - Algebra mit G ⊆ F und
X ∈ L2 (Ω,F, P ). Dann erfüllt die P - f.s. eindeutige orthogonale Projektion PG,X von X auf
den L2 (Ω,G, P ) die Eigenschaften 1’) und 2’).

Beweis:
Die Existenz, die Eindeutigkeit und die G - Messbarkeit der orthogonalen Projektion PG,X

ergeben sich aus Bemerkung 16.1 b). Damit bleibt nur die Eigenschaft 2’) zu zeigen.
Für orthogonale Projektionen gilt selbstverständlich:

〈X −PG,X , Y 〉 = E[(X −PG,X) · Y ] = 0 ∀ Y ∈ L2 (Ω,G, P ) .

Daraus ergibt sich für alle A ∈ G:∫
A

(X −E[X|G]) dP = 〈X −E[X|G] , 1A〉 = 0 , da 1A ∈ L2 (Ω,G, P ) .

16.3 Definition (bedingte Erwartung):
Es seien X eine Zufallsvariable auf (Ω,F, P ) mit E[|X|] <∞ und G eine beliebige σ–Algebra
mit G ⊆ F. Die in Satz 16.2 beschriebene P - fast sicher eindeutige orthogonale Projektion
PG,X von X auf den L2 (Ω,G, P ), die die Eigenschaften

(i) E[X|G] ist G–messbar,

(ii)
∫
A

E[X|G] dP =
∫
A

X dP für alle A ∈ G.

erfüllt, heißt bedingte Erwartung von X gegeben G und wird mit E[X|G] bezeichnet.

Die bedingte Erwartung E[X|G] ist demnach die beste Approximation von X im L2 (Ω,G, P ).
Da er P - f.s. eindeutig bestimmt ist, bezeichnet man jede zulässige Wahl auch als Version
der bedingten Erwartung von X gegeben G.

Die bedingte Erwartung kann alternativ auch über den Satz von Radon - Nikodym konstruiert
werden, dabei geht jedoch die Anschaulichkeit, dass E[X|G] die beste Approximation von X
ist, verloren:

16.4 Definition (µ–absolut–stetig):
Wenn aus µ(A) = 0 stets folgt, dass ν(A) = 0 gilt, so heißt ν µ–absolut–stetig, in Zeichen
ν � µ.

16.5 Satz (Radon–Nikodym):
Es seien µ und ν Maße auf (Ω,F).

a) Ist µ σ–endlich, so sind folgende Aussagen äquivalent:

(i) ν besitzt eine Dichte f bezüglich µ.

(ii) ν ist µ–stetig und σ–endlich.
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b) f ist dann µ–fast–überall eindeutig bestimmt.

Beweis:
Siehe H. Bauer: ,,Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie”, 5. Auflage,
Walter de Gruyter, Berlin, 2002; Kapitel 17 ,,Maße und Dichten”.

16.6 Satz:
Es sei X Zufallsvariable auf (Ω,F, P ) mit E[|X|] <∞. G sei Unter–σ–Algebra von F. Dann
existiert E[X|G] und ist P–fast–überall eindeutig bestimmt.

Beweis:
Es wird zunächst angenommen, dass X ≥ 0 P–fast–sicher gilt und es wird für alle G ∈ G

definiert:
Q(G) :=

∫
G

X dP.

Damit ist Q nach Definition 16.3 ein Maß auf G mit Q(Ω) = E[X] < ∞. Sei nun PG die
Einschränkung von P auf G. Es gilt Q� PG. Jede Nullmenge bezüglich P ist auch Nullmenge
bezüglich Q. Damit folgt aus dem Satz von Radon–Nikodym, dass Q eine PG–fast–überall
eindeutige G–messbare Dichte f bezüglich PG hat, d.h. es ist

Q(G) =
∫
G

X dP =
∫
G

f dPG.

Es ist dann E[X|G] (ω) := f(ω) die fast überall eindeutig bestimmte bedingte Erwartung von
X gegeben G. Da Q endlich ist, ist auch f endlich.
Sei nun X beliebig mit E[|X|] <∞. Dann ist E[X|G] := E[X+|G]−E[X−|G] die fast überall
eindeutig bestimmte bedingte Erwartung von X gegeben G. Die Differenz ist G–messbar, da
beide Funktionen dies sind. Die Integrale sind, wegen der σ–Additivität, gleich. Dies liefert
(siehe z.B. H. Bauer: ,,Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie”, Kapitel
54) die Eindeutigkeit. �

16.7 Beispiel:
Es seien Ω := {2,©,4,×,♥}, F := P(Ω), P :=

(
1
3 ,

1
6 ,

1
4 ,

1
8 ,

1
8

)
, G := σ({2,©}, {4,×}{♥})

und X := (1, 2, 1
2 ,−4, 15). Dann folgt:

E[X] = 1 · 1
3 + 2 · 1

6 + 1
2 ·

1
4 + (−4) · 1

8 + 15 · 1
8 = 13

8 sowie

E[X|G] (2) =
1 · 1

3 + 2 · 1
6

1
3 + 1

6

=
4
3

= E[X|G] (©),

E[X|G] (×) =
1
2 ·

1
4 − 4 · 1

8
1
4 + 1

8

= − 1 = E[X|G] (4),

E[X|G] (♥) =
15 · 1

8
1
8

. = 15

Damit folgt insgesamt: E[X|G] =
(

4
3 ,

4
3 ,−1,−1, 15

)
und

E[E[X|G]] = 4
3 ·
(

1
3 + 1

6

)
− 1 ·

(
1
4 + 1

8

)
+ 15 · 1

8 = 13
8 = E[X].
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16.8 Satz (Eigenschaften der bedingten Erwartung):
Es seien X,Y Zufallsvariablen auf dem Wahrscheinlichkeitsraum (Ω,F, P ) mit E[|X|] < ∞
und E[|Y |] <∞. Weiter sei G ⊆ F eine σ-Unteralgebra von F.

(i) Aus X = c mit c ∈ R folgt E[X|G] = c P − f.s.

(ii) Aus X ≤ Y P -f.s. folgt E[X|G] ≤ E[Y |G] P − f.s.

(iii) Für a, b ∈ R gilt E[aX + bY |G] = aE[X|G] + bE[Y |G] P f.s.

(iv) Ist σ(X) unabhängig von G, so folgt E[X|G] = E[X].

(v) Es gilt E[E[X|G]] = E[X].

Beweis:
(i) Die Behauptung folgt aus der Tatsache, dass die konstante Funktion X = c G-messbar

ist.

(ii) X ≤ Y P -f.s. impliziert ∫
A

XdP ≤
∫
A

Y dP ∀ A ∈ G.

Hieraus ergibt sich aufgrund der Definition der bedingten Erwartung∫
A

E[X|G] dP ≤
∫
A

E[Y |G] dP ∀ A ∈ G.

Mit Hilfe von Stochastik I Satz 9.41 schließt man E[X|G] ≤ E[Y |G] P − f.s.

(iii) Für alle A ∈ G gilt:∫
A

[aX + bY ]dP =
∫
A

aXdP +
∫
A

bY dP = a

∫
A

XdP + b

∫
A

Y dP

= a

∫
A

E[X|G] dP + b

∫
A

E[Y |G] dP

=
∫
A

aE[X|G] dP +
∫
A

bE[Y |G] dP

=
∫
A

[aE[X|G] + bE[Y |G]]dP.

(iv) Die Abbildung Y : Ω→ R sei definiert durch Y (ω) := E[X] für alle ω ∈ Ω. Nach (i) ist
Y G-messbar und es gilt ∫

B

Y dP = E[X] · P (B) ∀ B ∈ G.
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Also: ∫
B

E[X|G] dP =
∫
B

XdP =
∫
Ω

XIBdP = E[XIB]

= E[X] ·E[IB] = E[X] · P (B).

Folglich gilt ∫
B

E[X|G] dP =
∫
B

Y dP

und deshalb E[X|G] = Y P − f.s.

(v) Es gilt

E[E[X|G]] =
∫
Ω

E[X|G] dP.

Wegen Ω ∈ G ist aber ∫
Ω

E[X|G] dP =
∫
Ω

XdP = E[X] .

Damit wird
E[E[X|G]] = E[X] .

�

16.9 Satz:
(Xn)n∈N sei eine Folge von Zufallsvariablen über (Ω,F, P ) und G ⊆ F sei eine Unter-σ-
Algebra von F.

(i) Ist (Xn)n∈N eine monoton wachsende Folge und gilt Xn ≥ 0 für alle n ∈ N, so gilt:

sup
n∈N

E[Xn|G] = E
[
sup
n∈N

Xn|G
]
.

(ii) Ist Xn ≥ 0 für alle n ∈ N, so gilt:

E

[∑
n∈N

Xn|G

]
=
∑
n∈N

E[Xn|G] .

(iii) Es sei Y eine auf Ω definierte reellwertige und P -integrierbare Zufallsvariable. Außer-

dem gelte |Xn| ≤ Y für alle n ∈ N und Xn
P−f.s.→
n→∞

X. Dann gilt:

lim
n→∞

E[Xn|G] = E[X|G] .

Beweis zu Satz 16.9:
Siehe G. Alsmeyer: ,,Wahrscheinlichkeitstheorie”, 3. Auflage, Skripten zur Mathematischen
Statistik Nr. 30 der Westfälischen Wilhelms Universität Münster, Münster, 2003; Kapitel VIII
,,Bedingte Erwartungswerte und Verteilungen”.
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16.10 Satz:
Es seien X,Y Zufallsvariablen auf dem Wahrscheinlichkeitsraum (Ω,F, P ) mit E[|X|] < ∞
und E[|Y |] < ∞. Außerdem sei G ⊆ F eine Unter-σ-Algebra von F und X sei G-messbar.
Dann gilt:

E[XY |G] = X ·E[Y |G] P − f.s.

Beweis:
1. Wir stellen zunächst fest, dass E[Y |G] G-messbar ist. Der Beweis erfolgt so dann mit

algebraischer Induktion. Für X = IB, B ∈ G, gilt:∫
A

XE[Y |G] dP =
∫
A

IBE[Y |G] dP =
∫

A∩B

E[Y |G] dP

=
∫

A∩B

Y dP (Definition der bedingten Erwartung)

=
∫
A

IBY dP =
∫
A

XY dP

2. Wir setzen nun X =
n∑

i=1
ciIBi mit n ∈ N, ci ∈ R und Bi ∈ G, i = 1, . . . , n.

∫
A

XE[Y |G] dP =
∫
A

(
n∑

i=1

ciIBi

)
E[Y |G] dP =

n∑
i=1

ci

∫
A

IBiE[Y |G] dP

=
n∑

i=1

ci

∫
A

IBiY dP (Teil 1)

=
∫
A

n∑
i=1

ciIBiY dP =
∫
A

XY dP.

Für nichtnegative und allgemeine messbare Abbildungen X folgert man die Behauptung aus
Satz 16.9 (i) und (iii). �

16.11 Satz (Waldsche Gleichung):
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und N und (Xn)n∈N seien Zufallsvariablen über
(Ω,F, P ). N habe Werte in N und (Xn)n∈N sei eine Folge von unabhängigen und identisch
verteilten Zufallsvariablen mit Werten in R. Außerdem seien N und Xj, j ∈ N, unabhängig.
Es sei

S(ω) =
N(ω)∑
i=1

Xi(ω) ∀ ω ∈ Ω.

Dann gilt:

(i) E[S] = E[N ] ·E[X1], sofern E[N ] <∞ und E[X1] <∞.

(ii) Var[S] = E[N ] ·Var[X1] + Var[N ] (E[X1])
2, sofern Var[N ] <∞ und Var[X1] <∞.

83



Kapitel 16. Bedingte Erwartung und bedingte Verteilung

Beweis:
(i) Wir wenden Satz 16.8 an, wonach

E[S] = E[E[S|N ]] = E
[
E
[
S|N−1(B)

]]
gilt. N−1(B) wird durch die abzählbar vielen Mengen Ai := {ω|N(ω) = i}, i ∈ N, mit
∪i∈NAi = Ω erzeugt.

E[S] = E[E[S|N ]] = E
[
E
[
S|N−1(B)

]]
= E

 ∑
i∈N

P (Ai)>0

E[S|Ai] IAi


= E

∑
i∈N

i∑
j=1

E[Xj |Ai] IAi

 = E

[∑
i∈N

iE[X1] IAi

]
= E[X1 ·N ]

= E[X1] ·E[N ] .

(ii) Der Beweis verläuft ähnlich wie Teil (i).
�

16.2 (Regulär) bedingte Verteilung

Ausgehend von Definition 16.3 der bedingten Erwartung lässt sich nun auch der Begriff der
bedingten Wahrscheinlichkeit verallgemeinern.

16.12 Definition (bedingte Wahrscheinlichkeit):
Es sei G ⊂ F eine Unter–σ–Algebra. Die bedingte Wahrscheinlichkeit von A ∈ F gegeben G

ist definiert als
P (A|G) := E[IA|G] .

Sie existiert in verschiedenen Versionen und ist eine G–messbare Zufallsgröße.

Es drängt sich die Frage auf, ob P (·|G)(ω) für alle ω ein Wahrscheinlichkeitsmaß darstellt.
Ein Antwort darauf liefert der folgende Satz:

16.13 Satz:
Die bedingten Wahrscheinlichkeiten haben die folgenden Eigenschaften P–fast–sicher:

(i) P (A|G) ≥ 0,

(ii) P (Ω|G) = 1,

(iii) (Ai)n
i=1 paarweise disjunkt =⇒ P

( ∞⋃
i=1

Ai

∣∣∣∣∣G
)

=
∞∑
i=1

P (Ai|G).

Beweis:
Aussage (i) ergibt sich unmittelbar aus Satz 16.8, während Aussage (ii) bereits der Definition
16.3 zu entnehmen ist. Es bleibt also die σ–Additivität zu zeigen:
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Es seien A1, A2, . . . disjunkte Elemente aus F. Es wird

Yn :=
n∑

i=1

IAi und Y :=
∞∑
i=1

IAi

definiert. Somit gilt Yn ↑ Y und es folgt fast–sicher

P

( ∞⋃
i=1

Ai

∣∣∣∣∣G
)

= E

[ ∞∑
i=1

IAi

∣∣∣∣∣G
]

=
∞∑
i=1

E[IAi |G] =
∞∑
i=1

P (Ai|G).

�

Es ergibt sich jetzt das Problem, ob (iii) für beliebige, d.h. im Allgemeinen für überabzähl-
bar viele Folgen, erfüllt ist. Es könnte aber sein, dass die Vereinigung über alle Ausnahme–
Nullmengen in (iii) keine Nullmenge mehr ist. Es gibt Fälle, in denen man P (·|G) nicht so
definieren kann, dass P (·|G)(ω) für fast alle ω ∈ Ω ein Wahrscheinlichkeitsmaß ist. So kommt
man zu dem Begriff der regulär bedingten Verteilungen.

16.14 Definition (regulär bedingte Wahrscheinlichkeit, regulär bedingte Verteilung):
a) Eine Version von P (·|G)(ω) heißt regulär bedingte Wahrscheinlichkeit, wenn sie für fast

alle ω ∈ Ω ein Wahrscheinlichkeitsmaß auf (Ω,G, PG) ist.

b) Es seien Y : (Ω,F, P )→ (Ω′,F′) messbar und G ⊂ F Unter–σ–Algebra. Dann heißt

P̂ (·|G)(·) : F′ × Ω→ R

regulär bedingte Verteilung von Y unter G, wenn

(i) für jedes F ′ ∈ F′ P̂ (F ′|G) eine Version von P (Y ∈ F ′|G) ist.

(ii) für jedes ω ∈ Ω P̂ (·|G)(ω) ein Wahrscheinlichkeitsmaß auf (Ω′,F′) ist.

Die Existenz regulär bedingter Verteilungen ergibt sich aus dem folgenden Satz:

16.15 Satz:
a) Es sei (Ω′,F′) ein Borelraum, d.h. ein vollständiger, separabler, metrischer Raum, dann

existieren reguläre bedingte Verteilungen.

b) (Rn,Bn) und (R∞,B∞) sind Borelräume.

Beweis des Satzes 16.15:
Siehe H. Bauer: ,,Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie”, 5. Auflage,
Walter de Gruyter, Berlin, 2002; Kapitel 17 ,,Maße und Dichten”.

Im Folgenden werden stets die ZufallsvariablenX,Y : Ω→ Rmit E[|X|] <∞ und E[|Y |] <∞
betrachtet. Für diesen Fall lassen sich die Begriffe des bedingten Erwartungswertes und der
bedingten Verteilung vereinfacht darstellen.

16.16 Beispiel:
1. Für die Produktion von speziellen Baugruppen werden verschiedene mit j = 1, . . . , k

durchnumerierte Typen von Bauteilen benötigt. Es werden zwei Zufallsvariablen ein-
geführt:
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• Für die Wahrscheinlichkeit, dass ein Bauteil vom Typ j benötigt wird, wird P (Y =
j), j ∈ E := {1, . . . , k} geschrieben.

• Die technische Eigenschaft der Bauteile werde duch die reellwertige Zufallsvariable
X beschrieben.

Insbesondere hat man für jeden Typ j von Bauteil Kenntnis von

P (X ∈ A | Y = j) ∀ A ∈ B, j ∈ E.

Von jedem Typ j von Bauteil wird die Einhaltung eines Toleranzbereiches Cj gefordert.
Es soll die Wahrscheinlichkeit P ((X,Y ) ∈ C) berechnen werden, dass ein beliebiges für
die Produktion angefordertes Bauteil die geforderte Spezifikation erfüllt. Dazu wird das
Ereignis {(X,Y ) ∈ C} in der Form

{(X,Y ) ∈ C} =
⋃
j∈E

{X ∈ Cj , Y = j}

zerlegt. Da die Mengen {X ∈ Cj , Y = j}, j ∈ E, paarweise disjunkt sind, gilt

P ((X,Y ) ∈ C) = P

⋃
j∈E

{X ∈ Cj , Y = j}

 =
∑
j∈E

P (X ∈ Cj , Y = j),

wofür man auch

P ((X,Y ) ∈ C) =
∑
j∈E

P (X ∈ Cj | Y = j) · P (Y = j)

schreiben kann. Bezeichnet PY das Bildmaß von P unter Y , so kann man den letzten
Ausdruck auch durch die Gleichung

P ((X,Y ) ∈ C) =
∫
E

P (X ∈ Cy|Y = y) dPY (y) (16.4)

ersetzen. Diese Gleichung lässt sich in zwei Richtungen interpretieren:

Die zweidimensionale Verteilung P ((X,Y ) ∈ ·) lässt sich mit Hilfe von P (X ∈ Cy |
Y = y) und PY erzeugen. Umgekehrt existiert zu P ((X,Y ) ∈ C) und PY eine Funktion
P (X ∈ Cy | Y = y), so dass (16.4) gilt.

2. Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum. Besitzt der Zufallsvektor (X,Y ) : Ω→ R2

eine Dichte f und gilt für die Randverteilungsdichte fY von f bzgl. Y fY (y) > 0 ∀ y ∈
R, so kann die Funktion P (X ∈ Cy | Y = y) mit

P ((X,Y ) ∈ C) :=
∫
R

P (X ∈ Cy | Y = y)dPY (y) (16.5)

für jede Menge C ∈ B2 und ihren korrespondierenden y–Schnitt Cy := {x ∈ R | (x, y) ∈
C} ebenso leicht konstruiert werden. Als Beispiel wird

C := {(x, y) ∈ R2 | x ≤ a, y ≤ b}
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16.2. (Regulär) bedingte Verteilung

gewählt. Der zugehörige y–Schnitt Cy ist dann

Cy := {x | (x, y) ∈ C} =
{
{x | x ≤ a} , y ≤ b

∅ , y > b.

Deshalb gilt:

P (X ∈ Cy | Y = y) =
{
P (X ≤ a | Y = b) , y ≤ b

0 , y > b.

Damit wird

∫
R

P (X ∈ Cy | Y = y) dPY (y) =

b∫
−∞

P (X ∈ Cy | Y = y) dPY (y)

+

∞∫
b

P (X ∈ Cy | Y = y) dPY (y)

=

b∫
−∞

P (X ≤ a | Y = y) dPY (y)

Es wird versuchsweise

P (X ≤ x | Y = y) :=
1

fY (y)

x∫
−∞

f(s, y) ds

gesetzt. Damit ergibt sich

∫
R

P (X ∈ Cy | Y = y)dPY (y) =

b∫
−∞

 1
fY (y)

a∫
−∞

f(s, y) ds

 dPY (y)

=

b∫
−∞

 1
fY (y)

a∫
−∞

f(s, y) ds

 fY (y) dy

=

b∫
−∞

 a∫
−∞

f(s, y) ds

 dy

=

a∫
−∞

b∫
−∞

f(s, y) dy ds

= P (X ≤ a, Y ≤ b).

Der Ausdruck

fX|Y (x|y) :=
f(x, y)
fY (y)
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macht zunächst nur für fY (y) > 0 einen Sinn. Dies ist jedoch keine wesentliche Ein-
schränkung, da die Ausnahmemenge N := {(x, y) ∈ R | fY (y) = 0} eine P–Nullmenge
ist. Denn es gilt:

P (N) =
∫∫
N

f(x, y) dx dy =
∫

{y|fY (y)=0}

∫
R

f(x, y) dx dy

=
∫

{y|fY (y)=0}

fY (y) dy = 0.

Auf dieser Ausnahmemenge N kann der Wert von fX|Y (x|y) also beliebig abgeändert
werden, ohne dass sich dadurch der Ausdruck (16.5) verändern würde. Es wird weiter
gezeigt, dass fX|Y (x|y) eine Dichte auf R definiert. Da offensichtlich fX|Y (x|y) ≥ 0 gilt,
bleibt nur noch ∫

R

fX|Y (x|y) dx = 1

zu zeigen. Es gilt:∫
R

fX|Y (x|y) dx =
∫
R\N

fX|Y (x|y) dx+
∫
N

fX|Y (x|y) dx

=
∫
R\N

f(x, y)
fY (y)

dx =
1

fY (y)

∫
R\N

f(x, y) dx

=
1

fY (y)
· fY (y) = 1.

Deswegen definiert man:

16.17 Definition (bedingte Dichte, bedingte Verteilung):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (X,Y ) : Ω → R2 ein Zufallsvektor.
(X,Y ) besitze die Dichte f(x, y) und die Randverteilungsdichte von f bzgl. Y sei fY .

a) Die Funktion

fX|Y (x|y) :=

{
f(x,y)
fY (y) , für (x, y) ∈ R2 mit fY (y) > 0

0 , für (x, y) ∈ R2 mit fY (y) = 0

heißt eine bedingte Dichte von X gegeben Y = y.

b) Für y ∈ R und A ∈ B heißt die Abbildung

P (X ∈ A | Y = y) :=

{ ∫
A

fX|Y (x|y) dx , fY (y) > 0

0 , fY (y) = 0

die bedingte Verteilung von X gegeben Y = y. Anstelle von P (X ∈ A | Y = y) schreibt
man auch PX|Y =y(A).
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16.18 Beispiel (bedingte Dichte):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (X,Y ) : Ω→ R2 ein stetiger Zufallsvektor
mit einer Dichte

f(x, y) :=
1
2π

exp
(
−1

2
(x2 − 2xy + 2y2)

)
, (x, y) ∈ R2.

1. Es wird zunächst gezeigt, dass f eine Dichte definiert. Es gilt f(x, y) ≥ 0 für alle
(x, y) ∈ R2 und es ist∫

R

∫
R

f(x, y) dx dy =
1
2π

∫
R

∫
R

exp
(
−1

2
(x2 − 2xy + 2y2)

)
dx dy

=
1
2π

∫
R

∫
R

exp
(
−1

2
(x2 − 2xy + y2)

)
dx exp

(
−1

2
y2

)
dy

=
1
2π

∫
R

∫
R

exp
(
−1

2
(x− y)2

)
dx exp

(
−1

2
y2

)
dy

(∗)
=

1
2π

∫
R

√
2π exp

(
−1

2
y2

)
dy

(∗)
=

1√
2π
·
∫
R

exp
(
−1

2
y2

)
dy

=
1√
2π
·
√

2π = 1.

(∗): Es ist
∫
R

exp
(
−1

2(x− y)2
)
dx =

√
2π bzw.

∫
R

exp
(
−1

2y
2
)
dy =

√
2π, denn es gilt:

(∫
R

exp
(
− t

2

2

)
dt

)2

=
∫
R

∫
R

exp
(
−x

2
1 + x2

2

2

)
dx1 dx2

=
∫ 2π

0

∫ ∞

0
exp

(
−r

2

2

)
· r dr dϕ

= 2π
[
− exp

(
−r

2

2

)]∞
0

= 2π.

2. Die Randverteilungsdichte fX von f bzgl. X lautet:

fX(x) =
∫
R

1
2π

exp
(
−1

2
(x2 − 2xy + 2y2)

)
dy

=
1
2π

exp
(
−1

2
x2

2

)
·
∫
R

exp
(
−1

2

(
x2

2
− 2xy + 2y2

))
dy

=
1
2π

exp
(
−1

2
x2

2

)
·
∫
R

exp

(
−1

2

(√
2y − x√

2

)2
)
dy.
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Mit z :=
√

2y − x√
2

ergibt sich:

fX(x) =
1
2π

exp
(
−1

2
x2

2

)
· 1√

2

∫
R

exp
(
−1

2
z2

)
dz

︸ ︷︷ ︸
=
√

2π, s.o.

=
1
2π

exp
(
−1

2
x2

2

)
·
√

2π√
2

=
1√
2

1√
2π

exp
(
−1

2
x2

2

)
, x ∈ R.

3. Die Randverteilungsdichte fY von f bzgl. Y ist:

fY (y) =
1
2π

∫
R

exp
(
−1

2
(x2 − 2xy + 2y2)

)
dx

=
1
2π

∫
R

exp
(
−1

2
(x2 − 2xy + y2)

)
exp

(
−1

2
y2

)
dx

=
1
2π

exp
(
−1

2
y2

)
·
∫
R

exp
(
−1

2
(x− y)2

)
dx

︸ ︷︷ ︸
=
√

2π, s.o.

=
√

2π
2π
· exp

(
−1

2
y2

)
=

1√
2π
· exp

(
−1

2
y2

)
, y ∈ R.

4. X und Y sind nicht unabhängig, da f(x, y) 6= fX(x) · fY (y) ist.

5. Die bedingte Dichte fX|Y (x|y) ergibt sich zu

fX|Y (x|y) =
f(x, y)
fY (y)

=
(2π)−1 exp

(
−1

2(x2 − 2xy + 2y2)
)

(
√

2π)−1 exp
(
−1

2y
2
)

=
1√
2π

exp
(
−1

2
(x− y)2

)
, x ∈ R.

16.19 Satz:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (X,Y ) : Ω → R2 ein Zufallsvektor mit
der Dichte f . Die Randverteilungsdichte von f bzgl. Y sei fY . Dann gilt für alle A,B ∈ F

und C ∈ B2:

(i) P (X ∈ A, Y ∈ B) =
∫
B

P (X ∈ A | Y = y) fY (y) dy.

(ii) P (X ∈ A) =
∫
R

P (X ∈ A | Y = y) fY (y) dy.
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(iii) P ((X,Y ) ∈ C) =
∫
R

P (X ∈ Cy | Y = y) fY (y) dy,

wobei Cy := {x ∈ R | (x, y) ∈ C} der y–Schnitt von C bedeutet.

Beweis:
(i) Es sei wieder N := {(x, y) ∈ R2 | fY (y) = 0}. Unter Beachtung der Beziehung

P (Y ∈ B \N) = P (Y ∈ B)− P (Y ∈ N) = P (Y ∈ B) erhält man

∫
B

P (X ∈ A | Y = y) fY (y) dy =
∫

B\N

∫
A

fX|Y (x|y) dx

 fY (y) dy

=
∫

B\N

∫
A

f(x, y)
fY (y)

dx

 fY (y) dy

=
∫

A×B\N

f(x, y) dx dy

= P(X,Y )(A×B \N)

= P (X ∈ A, Y ∈ B \N).

(ii) Man ersetze in (i) B durch R.

(iii) Die Menge C lässt sich als disjunkte Vereinigung von Mengen Cj := Aj ×Bj darstellen,
da B2 von den Rechtecken erzeugt wird. Für y ∈ R gilt dann

Cy =

x ∈ R∣∣(x, y) ∈ ⋃
j∈N

Cj


=

⋃
j∈N
{x ∈ R|(x, y) ∈ Cj}

=
⋃
j∈N

(Cj)y

=
⋃
j∈N
y∈Bj

Aj

=
⋃
j∈N
y∈Bj

(Aj ×Bj)

und das zeigt

P ((X,Y ) ∈ C) =
∑
j∈N

P ((X,Y ) ∈ Cj) =
∑
j∈N

P (X ∈ Aj , Y ∈ Bj)
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sowie ∫
R

P (X ∈ Cy|Y = y)fy(y) dy =
∫
R

∫
Cy

fX|Y (x|y) dx fy(y) dy

=
∫
R

∑
j∈N
y∈Bj

∫
(Cj)y

fX|Y (x|y) dx fy(y) dy

=
∑
j∈N

∫
Bj

∫
Aj

fX|Y (x|y) dx fy(y) dy

=
∑
j∈N

∫
Bj

P (X ∈ Aj |Y = y)fy(y) dy

=
∑
j∈N

P (X ∈ Aj , Y ∈ Bj).

�

16.20 Bemerkung:
Ebenso wie im diskreten Fall lassen sich auch im stetigen Fall die vorangegangenen Betrach-
tungen auf Ausdrücke wie z.B. P (X ∈ A | Y = y, Z = z) oder P (Xn+1 ∈ A1, . . . , Xn+k ∈
Ak | X0 = x0, . . . , Xn = xn) ausdehnen. Die entsprechenden Aussagen ergeben sich analog
zum zweidimensionalen Fall.

16.21 Satz:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (X,Y ) : Ω → R2 ein Zufallsvektor mit
der Dichte f . h : R2 → R sei (B2,B)–messbar.

a) Für alle A ∈ B gilt:

P (h(X,Y ) ∈ A | Y = y) = P (h(X, y) ∈ A | Y = y)

für PY –fast alle y ∈ R, wobei PY die Randverteilung von (X,Y ) bzgl. Y bedeutet.

b) Sind h(X,Y ) und Y stochastisch unabhängig, dann gilt

P (h(X,Y ) ∈ A | Y = y) = P (h(X, y) ∈ A) PY –f.s.

Beweis:
a) Es wird zunächst gezeigt, dass Z := (X,Y ) und Y eine gemeinsame Dichte g : R3 → R+

mit

g(x, y′, y) :=
{
f(x, y) , y = y′

0 , sonst
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besitzen. Für C := C1 × C2 ∈ B2 und B ∈ B gilt:

∫
B

∫
C

g(x, y′, y) d(x, y′)

 dy =
∫
B

∫
Cy

f(x, y) dx

 dy

=
∫

B∩C2

∫
C1

f(x, y) dx

 dy

= P ((X,Y ) ∈ C1 × (B ∩ C2))
= P ((X,Y ) ∈ C1 × C2, Y ∈ B)
= P (Z ∈ C, Y ∈ B).

Die bedingte Dichte von Z bzgl. Y lautet:

gZ|Y ((x, y′)|y) =
g(x, y′, y)
fY (y)

=

{
f(x,y)
fY (y) , y = y′

0 , sonst

=
{
fX|Y (x|y) , y = y′

0 , sonst.

Damit erhält man für C ∈ B2:

P ((X,Y ) ∈ C | Y = y) =
∫
C

gZ|Y ((x, y′)|y) d(x, y′)

=
∫
Cy

fX|Y (x|y) dx

= P (X ∈ Cy | Y = y).

Da aber
X ∈ Cy = {x ∈ R | (x, y) ∈ C} ⇔ (x, y) ∈ C

ist, folgt
P (X ∈ Cy | Y = y) = P ((X, y) ∈ C | Y = y).

Indem man C := h−1(A) wählt, erhält man die Behauptung.

b) Mit a) bleibt zu zeigen, dass P (h(X, y) ∈ A|Y = y) = P (h(X, y) ∈ A) PY -f.s. gilt wenn
h(X, y) und Y stochastisch unabhängig sind.

Es sei zunächst fY (y) > 0. Dann gilt:

P (h(X, y) ∈ A|Y = y) =
∫

A
fX,Y (h(x, y)|y) dx =

∫
A

f(h(x, y), y)
fy(y)

dx

=
∫

A

fX(h(x, y)) · fY (y)
fY (y)

dx =
∫

A
fX(h(x, y) dx

=
∫

A

∫
R

f(h(x, y), ỹ) dỹ dx = P (h(X, y) ∈ A, Y ∈ R)

= P (h(X, y) ∈ A).
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Der Fall fY (y) = 0 tritt aber PY -f.s. nicht auf, da {y|fY (y) = 0} eine PY -Nullmenge
ist, denn:

PY ({y|fY (y) = 0}) =
∫
{y|fY (y)=0}

fY (y) dy = 0.

�

16.22 Beispiel:
In einen Produktionsprozess seien zwei gleichartige Maschinen integriert, deren Ausfallzeiten
(Zeitspanne zwischen zwei aufeinanderfolgenden Ausfällen) X1, X2 stochastisch unabhängige
und exponentiell verteilte Zufallsgrößen mit den Parametern α1 = α2 = α > 0 sind. Nach-
dem eine dieser Maschinen ausgefallen ist und repariert wird, übernimmt die jeweils andere
Maschine die anstehende Arbeit. Aufgrund einer statistischen Erhebung ist bekannt, dass die
Reparaturzeit Y exponentiell verteilt ist mit dem Parameter β > 0, wobei unterstellt wird,
dass die Zufallsgrößen X1, X2 und Y stochastisch unabhängig sind.
O.B.d.A. wird angenommen, dass die erste Maschine zu einem Zeitpunkt t = 0 nicht mehr in
Betrieb genommen werden kann und es wird nach der Wahrscheinlichkeit, dass während der
Reparatur dieser Maschine nicht auch noch die andere ausfällt, gefragt. Da die Restlaufzeit
der zweiten Maschine ebenfalls exponentiell verteilt ist mit dem Parameter α > 0, ist die
gesuchte Wahrscheinlichkeit

P (X2 > Y ) =
∫
R

P (X2 > Y | Y = y)fY (y) dy.

Unter Berücksichtigung des Satzes 16.21 erhält man mit h : R2 → R, h(x, y) := x− y

P (X2 > Y ) = P (X2 − Y > 0)

=
∫
R+

P (X2 − Y > 0 | Y = y) · β · e−βy dy

=
∫
R+

P (X2 − y > 0) · β · e−βy dy

=
∫
R+

P (X2 > y) · β · e−βy dy =
∫
R+

e−αy · β · e−βy dy

= β ·
∫
R+

e−(α+β)y dy = β ·
(
− 1
α+ β

)
e−(α+β)y

∣∣∣∞
0

=
β

α+ β
.

16.23 Beispiel (Warum steht man so oft in der falschen Warteschlange ?):
Stehen für die Abfertigung wie im Supermarkt oder bei der Bahn mehrere Kassen zur Aus-
wahl, so neigt man dazu, diejenige mit der kürzesten Warteschlange auszuwählen. Doch of-
fensichtlich garantiert diese Strategie nicht, dass man auch schneller abgefertigt wird. So
entsteht der Eindruck, in der ,,falschen Warteschlange” zu stehen. Da die Arbeitsaufträge
der einzelnen Kunden zufällig schwanken, könnte es sein, dass in der langen Warteschlange
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zufällig viele kleine Aufträge akkumuliert sind, während in der kurzen Warteschlangen große
Aufträge vorherrschen.
Als Beispiel werden zwei gleichartige Bediensysteme betrachtet. In dem einen warten zum
Zeitpunkt der Ankunft m, in dem anderen n Kunden, wobei angenommen werden soll, dass
m kleiner oder gleich n ist. Stehen m Kunden in der Schlange und sind die aufeinander
folgenden Bedienzeiten der Kunden stochastisch unabhängige und mit dem Parameter µ > 0
exponentiell verteilte Zufallsvariablen, dann ist die mittlere Wartezeit W(m) Erlang–verteilt
mit den Parametern µ und m:

P (W(m) > t) = e−µt ·
m−1∑
k=0

(µt)k

k!
(t ≥ 0)

(siehe Stochastik I, Satz 11.35).
Damit läuft die Fragestellung auf den Vergleich zweier Erlang–verteilter Zufallsgrößen hin-
aus, wobei die eine Erlang–verteilt ist mit den Parametern µ und m und die andere Erlang-
verteilt ist mit den Parametern µ und n. Gefragt ist also nach der Wahrscheinlichkeit, dass
W(m) größer ist als W(n), in Zeichen: P

(
W(m) > W(n)

)
. Diese Wahrscheinlichkeit kann mit

dem Instrumentarium der bedingten Verteilung ausgerechnet werden. Indem man die Ge-
setzmäßigkeiten der Erlang–Verteilung ausnutzt, und berücksichtigt, dass für eine mit dem
Parameter µ exponentiell verteilte Zufallsgröße Z gerade E

[
Z`
]

= `!/µ` gilt, erhält man

P
(
W(m) > W(n)

)
=
∫
R+

P (W(m) > W(n) |W(n) = t) · fW(n)
(t) dt

=
∫
R+

e−µt
m−1∑
k=0

(µt)k

k!
· µ

n · tn−1

(n− 1)!
e−µt dt

=
1
2

µn−1

(n− 1)!

∫
R+

m−1∑
k=0

(µt)k

k!
· tn−1 · 2µ · e−2µt dt

=
1
2

µn−1

(n− 1)!

m−1∑
k=0

µk

k!

∫
R+

tn+k−1 · 2µ · e−2µt dt


=

1
2

µn−1

(n− 1)!

m−1∑
k=0

µk

k!
·E
[
Zn+k−1

]
,

wobei Z eine mit den Parametern 2µ exponentiell verteilte Zufallsgröße darstellt.

P
(
W(m) > W(n)

)
=

1
2

µn−1

(n− 1)!

m−1∑
k=0

µk

k!
·E
[
Zn+k−1

]
=

1
2

µn−1

(n− 1)!

m−1∑
k=0

µk

k!
· (n+ k − 1)!

(2µ)n+k−1

=
1
2

m−1∑
k=0

(n+ k − 1)!
(n− 1)!k!

(
1
2

)n+k−1
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=
1
2

m−1∑
k=0

(
n+ k − 1
n− 1

)(
1
2

)n+k−1

=
(

1
2

)n m−1∑
k=0

(
n+ k − 1

k

)(
1
2

)k

.

Wertet man diese Formel für verschiedene m und n aus, so ergibt sich Abbildung 16.1.

Abbildung 16.1: Darstellung von P
(
W(m) > W(n)

)
in Abhängigkeit von m und n

In der Abbildung ist deutlich zu sehen, dass die Wahrscheinlichkeit P
(
W(m) > W(n)

)
für

m > n relativ groß ist. Es ist aber auch zu sehen, dass sie für m < n sich immer noch deutlich
von 0 unterscheidet.

Der bedingte Erwartungswert lässt sich nun vereinfacht darstellen als:

16.24 Definition (bedingter Erwartungswert):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (X,Y ) : Ω → R2 ein Zufallsvektor mit
Dichte f : R2 → R und Randverteilungsdichte fY : R → R bzgl. Y . Der zugehörige Erwar-
tungswert

E[X|Y = y] :=
1

fY (y)

∫
R

x f(x, y) dx

heißt, sofern er existiert, bedingter Erwartungswert von X gegeben Y = y.

16.25 Beispiel:
In Beispiel 16.18 wurde der Zufallsvektor (X,Y ) : Ω→ R2 mit der Dichte f : R2 → R,

f(x, y) :=
1
2π

exp
(
−1

2
(x2 − 2xy + 2y2)

)
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zugrunde gelegt. Dies führte für fY zu dem Ergebnis

fY (y) =
1√
2π

exp
(
−1

2
y2

)
, y ∈ R.

Damit wird

E[X|Y = y] =
∫
R

x
1√
2π

exp
(
−1

2
(x− y)2

)
dx = y, y ∈ R.
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Folgende Bücher werden als begleitende Literatur zu diesem Kapitel des Skriptes empfohlen:

• G. Alsmeyer:
Wahrscheinlichkeitstheorie,
Skripten zur Mathematischen Statistik, Nr. 30, Institut für Mathematische Statistik der
Westfälischen Wilhelms-Universität Münster, 3. Auflage 2003.

• H. Bauer:
Wahrscheinlichkeitstheorie,
5. Auflage, Walter de Gruyter, Berlin, 2002.
ISBN: 3110172364

• K.–W. Gaede:
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Kapitel 17

Erneuerungstheorie

Mit Hilfe der Erneuerungstheorie lassen sich eine Vielzahl von realen Problemen, wie zum
Beispiel das Ausfallverhalten von Maschinen, beschreiben und analysieren. Erneuerungspro-
zesse treten aber auch eingebettet in anderen Prozessen auf und bieten deshalb auch eine
Handhabe zur Untersuchung allgemeinerer Prozesse.

Schlüsselwörter: Erneuerungsprozess, Erneuerungsfolge, Laplace-Transformierte,
Faltung, Zählprozess, Poissonprozess, Erneuerungsfunktion, Erneuerungsgleichung,
Vorwärtsrekurrenzzeit, Rückwärtsrekurrenzzeit, direkte Riemann-Integrierbarkeit,
stationärer Zustand, arithmetisch verteilt, Blackwell’sches Erneuerungstheorem,
Fundamentalsatz der Erneuerungstheorie, modifizierter Erneuerungsprozess, stati-
onärer Erneuerungsprozess, Überlagerungsprozess, abbrechender Erneuerungspro-
zess, rekurrent, transient, periodisch.
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17.1 Erneuerungsfunktion und Erneuerungsgleichung

Wir betrachten eine Beleuchtungseinrichtung mit einer Glühlampe, die nach Ausfall un-
verzüglich durch eine neue und gleichartige ersetzt wird. Die Zufallsvariablen Sn, n ∈ N,
beschreiben die aufeinanderfolgenden Zeitpunkte, an denen die Glühlampen ausgetauscht
werden. Xn bezeichne die Lebensdauer der n-ten Glühlampe, n = 1, 2, . . .. Offensichtlich gilt:
Sn = Sn−1 + Xn, n = 1, 2, . . . mit S0 := 0. Man kann nun z.B. nach der Anzahl der Er-
neuerungen innerhalb eines Intervalls [0, t] oder nach der zum Zeitpunkt t noch verbleibenden
Zeit bis zur nächsten Erneuerung fragen. Diese und ähnliche Fragen können mit Hilfe der
Erneuerungstheorie beantwortet werden.

17.1 Definition (Erneuerungsprozess, Erneuerungsfolge, Lebensdauer):
Es bezeichne (Xn)n∈N eine Folge von stochastisch unabhängigen, identisch verteilten, nicht-
negativen Zufallsvariablen über einem gemeinsamen Wahrscheinlichkeitsraum (Ω,F, P ) mit
P (Xn = 0) < 1 für alle n ∈ N. Der zur Folge (Xn)n∈N gehörende Partialsummenprozess
(Sn)n∈N0 mit

S0 := 0 und Sn :=
n∑

k=1

Xk

heißt gewöhnlicher oder auch einfacher Erneuerungsprozess (zuweilen auch Erneuerungsfolge
genannt). Xn wird Lebensdauer und Sn Zeitpunkt der n–ten Erneuerung genannt. F sei die
Verteilungsfunktion von Xn.

Die Verteilungsfunktion Fn(t) := FSn(t) der Zufallsgröße Sn kann man rekursiv berechnen:

Fn(t) = FSn(t) = P (Sn ≤ t) = P (Sn−1 +Xn ≤ t) =

t∫
0

Fn−1(t− s) dF (s) (n = 1, 2, . . .),

wobei

F0(t) :=
{

1 , t ≥ 0
0 , t < 0.

Zur rechentechnischen Vereinfachung der Faltungsoperation bietet es sich an, charakteristische
Funktionen zu benutzen. Da im vorliegenden Fall allerdings ausschließlich mit nichtnegati-
ven Zufallsvariablen operiert wird, kann man ebensogut die etwas einfacher zuhandhabende
Laplace-Transformation verwenden.

17.2 Definition (Laplace–Transformierte):
Es sei X eine nichtnegative Zufallsvariable mit der Verteilung PX bzw. der Verteilungsfunktion
F . Dann heißt

ΨX(s) := E
[
e−sX

]
=
∫
R+

e−sX dPX =
∫
R+

e−sx dF (x), s > 0,

die Laplace–Transformierte der Zufallsvariable X bzw. der Verteilung PX bzw. der Vertei-
lungsfunktion F .
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Wie im Fall der charakteristischen Funktion (siehe Definition 13.5) ist die Verteilungsfunktion
F durch ihre zugehörige Laplace-Transformierte eindeutig bestimmt und umgekehrt. Da

ΨS0(s) =
∫
R+

e−sx dF0(x) = e−s · 0 ≡ 1

gilt, folgt aus

ΨSn(s) = E
[
e−sSn

]
= E

[
e−s(Sn−1+Xn)

]
= E

[
e−sSn−1

]
·E
[
e−sXn

]
= ΨSn−1(s)·ΨXn(s) (n = 1, 2, . . .)

sofort

ΨSn(s) =
n∏

i=1

ΨXi(s) = (ΨX1(s))
n (n = 1, 2, . . .).

Wir können deshalb auch allgemein

Fn(t) = P (Sn ≤ t) = Fn∗(t), t ∈ R,

schreiben.

17.3 Definition (Zählprozess, Erneuerungsprozess):
Die Folge (Nt)t∈R+ mit Nt := max{k ≥ 1|Sk ≤ t}, wobei max ∅ := 0 sei, heißt der zum
Erneuerungsprozess (Sn)n∈N0 gehörende Zählprozess (zuweilen auch Erneuerungsprozess).
Nt zählt die Anzahl der Erneuerungen bis zum Zeitpunkt t, wobei der Zeitpunkt t = 0 nicht
als Erneuerungszeitpunkt gezählt wird.

17.4 Satz:
Es gilt für alle t ∈ R+:
P (Nt = n) = Fn(t)− Fn+1(t).

Beweis:
Zur Berechnung der Wahrscheinlichkeitsverteilung von Nt wird der folgende Zusammenhang
benutzt:

{Nt ≥ n} ⇐⇒ {Sn ≤ t}.

Folglich gilt:

P (Nt ≥ n) = P ({Nt = n} ∪ {Nt ≥ n+ 1}) = P (Nt = n) + P (Nt ≥ n+ 1)
=⇒ P (Sn ≤ t) = P (Nt = n) + P (Sn+1 ≤ t)
=⇒ P (Nt = n) = P (Sn ≤ t)− P (Sn+1 ≤ t) = Fn(t)− Fn+1(t), t ∈ R+.

17.5 Beispiel (Poissonprozess):
Es sei X1

d= Exp(λ). Dann gilt (Stochastik I, Satz 11.35):

Sn
d= Erlang(n, λ) bzw. P (Sn ≤ t) = 1− e−λt

n−1∑
i=0

(λt)i

i!
, t ∈ R+.
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Folglich ist

P (Nt = n) = Fn(t)− Fn+1(t)

= 1− e−λt
n−1∑
i=0

(λt)i

i!
−

(
1− e−λt

n∑
i=0

(λt)i

i!

)

=
(λt)n

n!
e−λt, (n = 0, 1, 2, . . .), t ∈ R+.

Nt ist also Poisson–verteilt mit dem Parameter λt.

17.6 Bemerkung:
Alternativ zu Definition 17.3 kann man den Zählprozess (Nt)t∈R+ auch über die Beziehung

Nt =
∞∑

n=1

I[0,t](Sn)

entwickeln.

17.7 Definition (Erneuerungsfunktion):
Die Funktion R : R+ 3 t 7→ R(t) := E[Nt] ∈ R+ heißt Erneuerungsfunktion (renewal functi-
on) und gibt die mittlere Anzahl von Erneuerungen im Zeitraum [0, t] an.

17.8 Satz:
Es gilt für alle t ∈ R+:

a) R(t) := E[Nt] =
∞∑

n=1

Fn(t),

b) R(t) <∞.

c) R(t) ist monoton nichtfallend und rechtsseitig stetig.

Beweis:
a) Es gilt:

E[Nt] =
∞∑

n=1

n · P (Nt = n) =
∞∑

n=1

n(Fn(t)− Fn+1(t)) =
∞∑

n=1

Fn(t), t ∈ R+.

b) Da F (0) = P (Xi = 0) < 1 ist und F rechtsseitig stetig ist, existiert ein b > 0, so dass
F (b) < 1 ist.

1.) Es wird k ∈ N so gewählt, dass t ≤ kb ist. Dann gilt

P (Sk ≤ t) ≤ P (Sk ≤ kb) ≤ 1− P (X1 > b, . . . ,Xk > b) = 1− (1− F (b))k =: 1− a

mit a > 0, da F (b) < 1 ist.
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2.) Es gilt für m, k ∈ N0:

P (Smk ≤ t) ≤ P (Sk − S0 ≤ t, . . . , Smk − Smk−k ≤ t) = (P (Sk − S0︸︷︷︸
=0

≤ t))m

= (P (Sk ≤ t))m
1.)

≤ (1− a)m.

3.) Da P (Smk+j ≤ t) ≤ P (Smk ≤ t) für j ∈ N0 gilt, folgt:

mk+k−1∑
n=mk

P (Sn ≤ t) ≤ k · P (Smk ≤ t).

Damit ergibt sich insgesamt:

R(t) :=
∞∑

n=0

P (Sn ≤ t) =
∞∑

m=0

mk+k−1∑
n=mk

P (Sn ≤ t)

3.)

≤
∞∑

m=0

k(Pmk ≤ t)
2.)

≤
∞∑

m=0

k(1− a)m

=
k

a
<∞ da a > 0.

c) Wir zeigen nur die rechtsseitige Stetigkeit. Es seien t ≥ 0 fest, Nt = k und (tn)n∈N0

Zeitpunkte mit Sk ≤ tn < Sk+1 und limn→∞ tn = t. Dann gilt:

R(t0)−R(t) = E[Nt0 ]−E[Nt]
= E[Nt0 −Nt]

= E
[
Nt0 − lim

n→∞
Ntn

]
= E

[
lim

n→∞
(Nt0 −Ntn)

]
= lim

n→∞
E[Nt0 −Ntn ] (Satz 9.42 von der monotonen Konvergenz)

= lim
n→∞

(E[Nt0 ]− ENtn)

= E[Nt0 ]− lim
n→∞

E[Ntn ]

= R(t0)− lim
n→∞

R(tn) (da R(t) <∞ ∀ t ∈ R+),

woraus
R(t) = lim

n→∞
R(tn)

folgt.
�

17.9 Bemerkung:
Setzt man R(t) = 0 für t ∈ R−, dann definiert R(t) eine maßdefinierende Funktion auf R.
Für das von R induzierte (endliche) Maß auf (R,B) gilt:

µR((a, b]) = R(b)−R(a) ∀ a, b ∈ R mit a ≤ b.
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17.10 Beispiel:
Es sei X1

d= Exp(β). Dann ist Sn Erlang(n, β)-verteilt. Die Erlangverteilung ist ein Spezialfall
der Gammaverteilung:

FΓ(b,p)(x) :=

{∫ x
−∞

bp

Γ(p)x
p−1e−bx dx, b, p ∈ R+, t ≥ 0

0 , t < 0.

Mit b := β und p := n erhält man

Fn(t) =


t∫

0

β(βs)n−1 · e−βs

(n− 1)!
ds , t ≥ 0

0 , t < 0.

Mit Hilfe von Fn(t) lässt sich die Erneuerungsfunktion wie folgt berechnen:

R(t) =
∞∑

n=1

Fn(t) =
∞∑

n=1

t∫
0

β(βs)n−1 e−βs

(n− 1)!
ds

=

t∫
0

β
∞∑

n=1

(βs)n−1

(n− 1)!
e−βs ds (Satz 9.42 von der monotonen Konvergenz)

=

t∫
0

β ds = βt, t ∈ R+.

17.11 Satz:
Es sei f : R+ → R messbar, dann gilt:

Rf =
∫
R+

f(t)dR(t) = E

[ ∞∑
n=1

f(Sn)

]
.

Beweis:
Der Satz wird mit algebraischer Induktion bewiesen:

a) Es sei zunächst f = I(s,t]. Dann gilt:

Rf =
∫
R+

I(s,t](x)dR(x) = µR((s, t])

= R(t)−R(s) = E[Nt]−E[Ns] = E[Nt −Ns]

= E

[ ∞∑
n=1

I[0,t](Sn)−
∞∑

n=1

I[0,s](Sn)

]

= E

[ ∞∑
n=1

I(s,t](Sn)

]

= E

[ ∞∑
n=1

f(Sn)

]
.
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b) Gilt die Behauptung für fi ≥ 0, i = 1, . . . , k, so folgt∫
R+

k∑
i=1

αifi(x)dR(x) =
k∑

i=1

αi

∫
R+

fi(x)dR(x) =

k∑
i=1

αiE

[ ∞∑
n=1

fi(Sn)

]
= E

[ ∞∑
n=1

k∑
i=1

αifi(x)

]
=

∞∑
n=1

E

[
k∑

i=1

αifi(x)

]
.

Für nichtnegative messbare Abbildungen wendet man den Satz von der monotonen Konver-
genz an. Allgemeine messbare Abbilundungen behandelt man, in dem man ihren Positiv- und
Negativteil separat behandelt. �

Faltungen

Im Weiteren erweist es sich als zweckmäßig, den Begriff der Laplace-Transformierten und der
Faltung auf andere Funktionenklassen auszudehnen.

Im Folgenden bezeichneM die Menge der maßdefinierenden Funktionen auf R, die in (−∞, 0)
verschwinden. B stehe für die Menge der auf R definierten messbaren reellen Funktionen, die
auf jedem Intervall der Form [0, t] beschränkt sind (sogenannte lokalbeschränkte messbare
reelle Funktionen).

Folgerung: M ⊂ B.

17.12 Definition (Faltung):
Ist F ∈M und g ∈ B, so heißt die durch

(F ∗ g)(t) :=


∫

[0,t]

g(t− s) dF (s) , t ≥ 0

0 , t < 0

erklärte Funktion die Faltung von F und g.

17.13 Satz:
Es gilt: (F ∗ g) ∈ B.

Beweis:

|(F ∗ g)(t)| ≤
t∫

0

|g(t− s)| dF (s) ≤ sup
0≤s≤t

|g(s)|
t∫

0

dF (s) = sup
0≤s≤t

|g(s)|F (t) <∞, ∀ t ∈ R.

�

17.14 Satz (Eigenschaften der Faltung):
Es seien F, F1, F2, F3 ∈M, g, g1, g2 ∈ B und c ∈ R. Dann gilt:
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a) (F1 ∗ F2) ∗ F3 = F1 ∗ (F2 ∗ F3),

b) (F1 + F2) ∗ g = F1 ∗ g + F2 ∗ g,

c) F ∗ (g1 + g2) = F ∗ g1 + F ∗ g2,

d) F ∗ g1 ≤ F ∗ g2, falls g1 ≤ g2,

e) F ∗ (cg) = c(F ∗ g),

f) F1 ∗ F2 = F2 ∗ F1,

g) F ∗ g = F · g.

Beweis:
a) Es gilt

(Fi ∗ Fj)(0−) =
∫ 0−

0
Fj(0− s)dFi(s) = 0 für i, j = 1, 2, 3, i 6= j.

Damit folgt:

((F1 ∗ F2) ∗ F3)(t) =
∫ t

0
F3(t− s) d(F1 ∗ F2)(s)

=
∫ t

0

∫ t−s

0
dF3(y) d(F1 ∗ F2)(s)

(∗)
=

∫ t

0

∫ t−y

0
d(F1 ∗ F2)(s) dF3(y)

=
∫ t

0
(F1 ∗ F2)(t− y) dF3(y)

=
∫ t

0

∫ t−y

0
F2(t− y − u) dF1(u) dF3(y)

(∗∗)
=

∫ t

0

∫ t−u

0
F2(t− y − u) dF3(y) dF1(u)

=
∫ t

0

∫ t−u

0

∫ t−y−u

0
dF2(x) dF3(y) dF1(u)

(∗∗∗)
=

∫ t

0

∫ t−u

0

∫ t−u−x

0
dF3(y) dF2(x) dF1(u)

=
∫ t

0

∫ t−u

0
F3(t− u− x) dF2(x) dF1(u)

=
∫ t

0
(F2 ∗ F3)(t− u) dF1(u)

= (F1 ∗ (F2 ∗ F3))(t), t ∈ R.

(∗), (∗∗) und (∗∗∗): Die Integration verläuft jeweils über folgende Bereiche:
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b) Wegen der Linearität des Integrals gilt:

((F1 + F2) ∗ g)(t) =
∫ t

0
g(t− s) d(F1(s) + F2(s))

=
∫ t

0
g(t− s) dF1(s) +

∫ t

0
g(t− s) dF2(s)

= (F1 ∗ g)(t) + (F2 ∗ g)(t), t ∈ R.

c) Gilt wegen der Linearität des Integrals.

d) Folgt mit der Monotonie des Integrals.

e) Gilt wegen der Linearität des Integrals.

f) Es gilt ∫ x

0−
dFi(y) =

∫ x

0
dFi(y) = Fi(x) für i = 1, 2.

Damit folgt:

(F1 ∗ F2)(t) =
∫ t

0
F2(t− x) dF1(x) =

∫ t

0

∫ t−x

0
dF2(y) dF1(x)

(∗)
=

∫ t

0

∫ t−y

0
dF1(x) dF2(y) =

∫ t

0
F1(t− y) dF2(y)

= (F2 ∗ F1)(t), t ∈ R.

(∗): Die Integration verläuft über folgenden Bereich:

g) Es seien F1 die Verteilung der Zufallsvariable X1 und F2 die Verteilung der Zufallsva-
riable X2. Dann ist F1 ∗ F2 die Verteilung von X1 + X2, siehe Definition 17.1. Damit
gilt:

F1 ∗ F2(s) = E
[
e−s(X1+X2)

]
= E

[
e−sX1

]
·E
[
e−sX2

]
= F1(s) · F2(s), s ∈ R.

�
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Im Folgenden mögen diese Schreibweisen gelten:

• F 2∗ := F ∗ F ,

• F 3∗ := F ∗ F 2∗ = F ∗ F ∗ F ,

• Fm∗ ∗ Fn∗ = F (n+m)∗.

17.15 Satz:
Die Erneuerungsfunktion R(t) genügt der Integralgleichung

R(t) = F (t) + (F ∗R)(t) (t ∈ R+).

Beweis:
X1 ist der Zeitpunkt der ersten Erneuerung. Wir behaupten:

E[Nt|X1 = x] =
{

1 +R(t− x) , x ≤ t,
0 , x > t.

Der zweite Fall ist klar: Da die erste Erneuerung erst zum Zeitpunkt x > t stattfindet,
kann vorher keine Erneuerung eingetreten sein. Ist t jetzt jedoch größer x, so ist bekannt,
dass mindestens eine Erneuerung stattgefunden hat. Da die Zuwächse Xi jedoch stochastisch
unabhängig sind, regeneriert sich der Erneuerungsprozess zum Zeitpunkt X1 = x. Deswegen
entspricht die mittlere Anzahl an Erneuerungen im Intervall [x, t] gerade der mittleren Anzahl
an Erneuerungen im Intervall [0, t− x]. Diese Argumentation wird als Erneuerungsargument
bezeichnet.
Somit folgt:

R(t) = E[E[Nt|X1 = x]]

=
∫
R

E[Nt|X1 = x] dF (x)

=
∫

x≤t

(1 +R(t− x))dF (x) +
∫

x>t

0 · dF (x)

=
∫

x≤t

dF (x) +
∫

x≤t

R(t− x)dF (x)

= F (t) + (F ∗R)(t), t ∈ R+.

�

Bemerkung:
Die Gleichung h = g + F ∗ h mit F ∈M und h, g ∈ B heißt Erneuerungsgleichung.

17.16 Satz:
Die Erneuerungsgleichung h = g + F ∗ h mit F ∈M und h, g ∈ B hat genau eine Lösung in
B, nämlich

h := g +R ∗ g.
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Beweis:
1. Schritt: Es wird zunächst gezeigt, dass h eine Lösung der Erneuerungsgleichung ist.

h = g +R ∗ g
= g + (F + F ∗R) ∗ g (Satz 17.15)
= g + F ∗ g + F ∗ (R ∗ g)
= g + F ∗ (g +R ∗ g)
= g + F ∗ h.

2. Schritt: Für den Beweis der Eindeutgkeit werden zwei Lösungen h := g + F ∗ h und
h′ := g + F ∗ h′ betrachtet. Es folgt

d := h− h′ = F ∗ h− F ∗ h′ = F ∗ (h− h′).

Die Differenz d genügt also der Gleichung d = F ∗d. Iteriert man diese Gleichung, erhält
man

d = F ∗ d = F 2∗ ∗ d = · · · = Fn∗ ∗ d = . . .

Aus R(t) =
∑∞

n=1 F
n∗(t) <∞ folgt aber limn→∞ Fn∗(t) = 0 ∀ t ∈ R, so dass gilt

|d(t)| = lim
n→∞

∣∣∣∣∣∣
t∫

0

d(t− x)dFn∗(x)

∣∣∣∣∣∣
≤ sup

0≤x≤t
|d(t− x)| lim

n→∞
Fn∗(t) = 0.

3. Schritt: Zu zeigen bleibt noch, dass h lokal beschränkt ist, d.h. dass h ∈ B gilt.

sup
0≤s≤t

|h(s)| ≤ sup
0≤s≤t

|g(s)|+
t∫

0

{
sup

0≤x≤t
|g(x)|

}
dR(x)

≤ sup
0≤s≤t

|g(s)| · {1 +R(t)} < ∞.

�

17.17 Bemerkung:
• Viele Größen in der Erneuerungstheorie können auf die Lösung einer Erneuerungsglei-

chung zurückgeführt werden.

• Mit den Definitionen

h(s) :=
∫
R+

e−sxdh(x), g(s) :=
∫
R+

e−sxdg(x), F (s) :=
∫
R+

e−sxdF (x)

folgt aus h = g + F ∗ h (siehe Satz 17.14 g)):

h(s) = g(s) + F (s)h(s) ⇐⇒ h(s) =
g(s)

1− F (s)
.
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17.18 Beispiel:
Für die Exponentialverteilung F (x) := 1− e−λx, x ≥ 0, gilt:

F (s) =
∫
R+

e−sxdF (x) =
∫
R+

e−sxλe−λxdx

= λ ·
∫
R+

e−x(λ+s)dx = − λ

λ+ s
e−x(λ+s)

∣∣∣∣∞
0

=
λ

λ+ s
.

Aus der Integralgleichung R(t) = F (t)+(F ∗R)(t) aus Satz 17.15 folgt R(s) = F (s)+F (s)·R(s)
bzw. R(s) = F (s)

1−F (s)
. Damit lässt sich die Erneuerungsfunktion R(t) berechnen:

R(s) =
F (s)

1− F (s)
=

λ
λ+s

s
λ+s

=
λ

s
=⇒ R(t) = λ · t,

denn es gilt:

R(s) =
∫
R+

e−stλ dt = −λ
s
e−st

∣∣∣∣∞
0

=
λ

s
.

17.2 Vorwärts– und Rückwärtsrekurrenzzeit

Wir betrachten einen Erneuerungsprozess im zeitlichen Verlauf und fixieren einen Zeitpunkt
t ∈ R+ (siehe Abbildung 17.1).

S4S3
S5S2S1

Ut Vt

t

Zeit

Abbildung 17.1: Darstellung der Erneuerungszeitpunkte auf einem Zeitstrahl

Die Zeitspanne von t bis zur nächsten Erneuerung wird die Restlebenszeit oder auch die
Vorwärtsrekurrenzzeit genannt und mit Vt bezeichnet, und die Zeitspanne von der letzten
Erneuerung bis t wird Alter oder auch Rückwärtsrekurrenzzeit genannt und mit Ut bezeichnet.
Diese Zeiten können durch folgende Gleichungen mathematisch beschrieben werden:

Vt = SNt+1 − t und Ut = t− SNt .

17.19 Satz:
Für den Erwartungswert der Vorwärtsrekurrenzzeit gilt:

E[Vt] = E[X1] · (1 +R(t))− t (t ∈ R+).
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Beweis:
Aus der Definition von Vt folgt der Ansatz

E[Vt] = E[SNt+1 − t] = E[SNt+1]− t.

Es wird nun E[SNt+1] =: A(t) gesetzt. Um den Erwartungswert von A(t) zu berechnen, wird
das Erneuerungsargument benutzt.

E[SNt+1|X1 = x] =
{
x+A(t− x) , x ≤ t

x , x > t.

Damit wird

A(t) = E[E[SNt+1|X1 = x]]

=
∫
R+

E[SNt+1|X1 = x] dF (x)

=
∫

[0,t]

(x+A(t− x))dF (x) +
∫

(t,∞)

x dF (x)

=
∫
R+

x dF (x) +
∫

[0,t]

A(t− x)dF (x)

= E[X1] +
∫

[0,t]

A(t− x)dF (x)

= E[X1] + (A+ F )(t)

= E[X1] +
∫

[0,t]

E[X1] dR(x) (Erneuerungsgleichung, Satz 17.16)

= E[X1]

1 +
∫

[0,t]

dR(x)


= E[X1] (1 +R(t)).

�

17.20 Beispiel:
Es sei X1

d= Exp(λ). Dann folgt E[X1] = 1
λ und nach Beispiel 17.10 gilt R(t) = λ · t. Es folgt

mit Satz 17.19:
E[Vt] = E[X1] (1 +R(t))− t =

1
λ

(1 + λ · t)− t =
1
λ
.

Das Ergebnis verwundert angesichts der Gedächtnislosigkeit der Exponentialverteilung nicht.

17.21 Satz:
Für die Verteilung der Vorwärtsrekurrenz gilt:

P (Vt ≤ v) =


t+v∫
t

(1− F (t+ v − y))dR(y) , v ≥ 0

0 , v < 0.
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Beweis:
Es wird zunächst das Ereignis {Vt ≤ v} betrachtet. Es gilt:

{Vt ≤ v} ⇐⇒ {SNt+1 ≤ t+ v} ⇐⇒ {SNt ≤ t; t ≤ SNt+1 ≤ t+ v}.

Es lässt sich also schreiben

P (Vt ≤ v) = P

( ∞⋃
n=0

{Sn ≤ t; t < Sn+1 ≤ t+ v}

)

=
∞∑

n=0

P (Sn ≤ t, t < Sn+1 ≤ t+ v)

= F (t+ v)− F (t) +
∞∑

n=1

P (Sn ≤ t, t < Sn+1 ≤ t+ v)

= F (t+ v)− F (t) +
∞∑

n=1

t∫
0

P (t < Sn+1 ≤ t+ v|Sn = y) dFn(y)

= F (t+ v)− F (t) +
∞∑

n=1

t∫
0

P (t− y < Xn+1 ≤ t+ v − y) dFn(y)

Mit Hilfe von Satz 17.11 und der Beziehung E[
∑∞

n=1Xn] =
∑∞

n=1 E[Xn] für Xn ≥ 0 schließen
wir weiter:

P (Vt ≤ v) = F (t+ v)− F (t) +

t∫
0

P (t− y < Xn+1 ≤ t+ v − y) dR(y)

= F (t+ v)− F (t) +

t∫
0

(F (t+ v − y)− F (t− y)) dR(y)

= F (t+ v) +

t+v∫
0

F (t+ v − y) dR(y)− F (t)−
t∫

0

F (t− y) dR(y)

−
t+v∫
t

F (t+ v − y) dR(y).

Mit R = F + F ∗R bzw. F = R− F ∗R folgt nun:

P (Vt ≤ v) = R(t+ v)− (F ∗R)(t+ v) +

t+v∫
0

F (t+ v − y) dR(y)−R(t) + (F ∗R)(t)

−
t∫

0

F (t− y) dR(y)−
t+v∫
t

F (t+ v − y) dR(y)

= R(t+ v)−R(t)−
t+v∫
t

F (t+ v − y) dR(y)
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=

t+v∫
t

dR(y)−
t+v∫
t

F (t+ v − y) dR(y)

=

t+v∫
t

(1− F (t+ v − y)) dR(y).

�

17.22 Beispiel:
Es sei X1

d= Exp(λ). Beispiel 17.10 zufolge ist dann R(t) = λ · t, t ∈ R+
0 . Damit gilt nach Satz

17.21:

P (Vt ≤ v) =

t+v∫
t

e−λ(t+v−y)λ dy = e−λ(t+v−y)
∣∣∣t+v

t
= 1− e−λv,

womit die Gedächtnislosigkeit der Exponentialverteilung ein weiteres Mal gezeigt wäre.

17.23 Satz:
Für die Verteilung der Rückwärtsrekurrenzzeit gilt:

P (Ut ≤ u) =


t∫

t−u

(1− F (t− τ))dR(τ) , u ≥ 0

0 , u < 0.

Beweis:
Analog zum Beweis von Satz 17.21 gilt:

P (Ut ≤ u) = P (t− SNt ≤ u)
= P (SNt ≥ t− u)

= P

( ∞⋃
n=0

{t− u ≤ Sn ≤ t;Sn+1 > t}

)

=
∞∑

n=0

P (t− u ≤ Sn ≤ t;Sn+1 > t)

=
∞∑

n=0

t∫
t−u

P (Sn+1 > t|Sn = τ) dFn(τ)

=
∞∑

n=0

t∫
t−u

P (Xn+1 > t− τ) dFn(τ)

=
∞∑

n=0

t∫
t−u

(1− F (t− τ)) dFn(τ).

Die Behauptung folgt nun mit Satz 17.11. �

113



Kapitel 17. Erneuerungstheorie

Bemerkung:
Eine alternative Herleitung für Satz 17.23 wäre:

{Ut > x} ⇐⇒ {keine Erneuerung in [t− x, t]} ⇐⇒ {Vt−x > x}.

17.24 Beispiel:
Es sei X1

d= Exp(λ). Nach Beispiel 17.10 folgt dann R(t) = λ · t. Damit gilt nach Satz 17.23:

F (x) := P (Ut ≤ u) =

t∫
t−u

e−λ(t−x) dR(x) = λ ·
t∫

t−u

e−λ(t−x) dx = e−λ(t−x)
∣∣∣t
t−u

= 1− e−λu.

Dies gilt für alle 0 ≤ u ≤ t. Es folgt:

E[Ut] =
∫
R+

(1− F (x)) dx =

t∫
0

e−λx dx =
1
λ

(1− e−λt).

17.3 Anwendungsbeispiel 1

Problem:

Eine Einbahnstraße bestehe aus r Spuren, deren Breiten variabel und die in Höhe des Fuß-
gängerüberweges durch (r − 1) Straßeninseln voneinander getrennt sind. In den r Spuren
sei der Verkehr unabhängig mit einer Poisson–Verteilung verteilt; die Parameter ni für die
i–te Spur (i = 1, . . . , r) seien im Folgenden fest. Ein Fußgänger überquert die Straße in r
Etappen, wobei sich jede seiner r Einzel–Wartezeiten nur nach dem Verkehr in der jeweils
vor ihm liegenden Spur richtet; es sei Zr die Gesamtwartezeit bei r Spuren. Es geht darum,
durch geschickte Wahl der Spurbreiten diese Gesamt–Wartezeit zu minimieren.

Lösung:

Gegeben sind r Spuren mit den Nummern 1, . . . , r, deren jeweilige Breite durch die Zahl bi
(i = 1, . . . , r) beschrieben sei. Die Breite der Straße ist somit b1 + · · ·+ br =: b.

b2

r-1(n     )

(n  )r

(n  )3

(n  )2

(n  )1

Überweg

br

br-1

b
3

b1

Poisson

Poisson

Poisson

Poisson

Poisson

Annahmen:
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(1) Die Ankunftszeiten der Fahrzeuge am Überweg bilden Poissonprozesse mit Parametern
ni :=,,mittlere Anzahl von ankommenden Fahrzeugen in Spur i pro Minute”. Einzelne
Spuren sind unabhängig.

(2) Der Fußgänger überquere die Straße in r Etappen. Der Fußgänger überquert die Spur
sofort, wenn ein Auto vorbeigefahren ist und der Abstand zum nächsten größer ist, als
die Überquerungszeit.

Weitere Parameter:

• T bezeichne die Überquerungszeit für die ganze Straße.

• Ti := T · bi
b bezeichne die Überquerungszeit für die Spur i. Dabei wird angenommen,

dass der Fußgänger die Fahrbahn mit konstanter Geschwindigkeit überquert und zwar
jeder Fußgänger mit der gleichen Geschwindigkeit.

• Wi sei die Wartezeit vor der Überquerung der i–ten Spur.

• Zr := W1 + · · ·+Wr sei die Gesamtwartezeit.

Lösung für eine Fahrspur

Wegen der Unabhängigkeitsannahme in (1) ist die Verteilung von Zr gleich der Faltung der
Verteilungen der Wi (i = 1, . . . , r). Es wird daher zunächst folgende Situation betrachtet:

Gegeben sei eine Spur der Breite b mit der Überquerungszeit T . Der Verkehr ist ein Poisson-
prozess mit Parameter n. Die Wartezeit wird durch W beschrieben.
Es sei Ik die Zeit zwischen der Ankunft des (k − 1)–ten und k–ten Autos. Da es sich beim
Verkehr um einen Poissonprozess handelt, bilden die Ik eine i.i.d. Folge von exponential–
verteilten Zufallsgrößen, d.h. zu einem beliebigem Zeitpunkt t ist die Zeit bis zur Ankunft des
nächsten Autos verteilt nach Exp(n).
Es sei Sk := I1 + · · · + Ik die Ankunftszeit des k–ten Autos. Sk ist Erlang–verteilt mit den
Parametern n und k.
Wegen Annahme (2) ist W fast sicher gleich Sk für ein k ∈ N0. Folglich gilt für alle Borel-
mengen A ⊂ R:

P (W ∈ A) =
∞∑

k=0

P (W ∈ A,W = Sk) =
∞∑

k=0

P (W ∈ A|W = Sk) · P (W = Sk)

=
∞∑

k=0

P (Sk ∈ A) · P (W = Sk).

Definiert man Qk := P (Sk ∈ A) und pk := P (W = Sk) für k ∈ N0 so gilt:

P (W ∈ A) =
∞∑

k=0

Qk · pk mit
∞∑

k=0

pk = 1.
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Folglich hat W eine gewichtete Erlangverteilung mit Gewicht pk bei Erlang(n, k).

pk := P (W = Sk) = P (I1 ≤ T, . . . , Ik ≤ T, Ik+1 > T ) iid= (P (I1 ≤ T ))k(1− P (I1 ≤ T )).

Mit der Definition p := pT := P (I1 ≤ T ) = 1− e−nT gilt also:

pk = pk · (1− p) (k ∈ N0).

Da P (W ∈ A) =
∑∞

k=0 P (Sk ∈ A) · pk gilt, folgt für die charakteristische Funktion der
Verteilung von W :

ψ =
∞∑

k=0

pkϕk,

wobei ϕk die charakteristische Funktion der Verteilung von Sk ist, d.h. die charakteristische
Funktion der Erlang–Verteilung mit den Parametern n und k.
Laut Beispiel 13.6.7 besitzt die Erlang(α, k)–Verteilung die charakteristische Funktion

ϕk(ζ) =
1

(1− i ζ
α)k

.

Damit folgt:

ψ(ζ) = (1− p) ·
∞∑

k=0

(
p

1− i ζ
n

)k

= (1− p)

(
1− p

1− i ζ
n

)−1

= (1− p)
1− i ζ

n

(1− p)− i ζ
n

= (1− p)
(1− p)− i ζ

n + p

(1− p)− i ζ
n

= (1− p) +
p(1− p)

(1− p)− i ζ
n

für

∣∣∣∣∣ p

1− i ζ
n

∣∣∣∣∣ < 1.

Nach Satz 13.16 c) gilt ψ′(0) = iE[W ]. Es ist

ψ′(ζ) =
−p(1− p)

(
− i

n

)(
(1− p)− i ζ

n

)2 =
p(1− p)i

n
(
(1− p)p − 2(1−p)iζ

n − ζ2

n2

)
=

p(1− p)i
n(1− p)2 − 2(1− p)iζ − ζ2

n

.

Also gilt ψ′(0) = p(1−p)i
(n(1−p)2

= ip
n(1−p) , was

E[W ] =
p

n(1− p)

nach sich zieht.
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17.3. Anwendungsbeispiel 1

Lösung für alle Fahrspuren

Mit n = ni und p = 1− e−niTi gilt

E[Wi] =
1− e−niTi

nie−niTi
=
eniTi − 1

ni
.

Damit ergibt sich als Gesamtergebnis:

E[Zr] =
r∑

i=1

eniTi − 1
ni

=
r∑

i=1

enibiT/b

ni
−

r∑
i=1

1
ni
.

Bei gegebenen n1, . . . , nr, b und T ist das Minimum von E[Zr] (b1, . . . , br) unter der Neben-
bedingung b1 + · · ·+ br = b gesucht. Dazu äquivalent ist

E[Zr] =
r−1∑
i=1

enibiT/b

ni
+
enr(b−b1−···−br−1)T/b

nr
−

r∑
i=1

1
ni
,

was bezüglich b1, . . . , br−1 ohne Nebenbedingungen zu minimieren ist. Es ist

∂E[Zr]
∂bj

=
1
nj
· nj ·

T

b
· enjbjT/b +

1
nr
· nr · (−1) · T

b
· enr(b−b1−···−br−1)T/b

=
T

b
·
(
enjbjT/b − enr(b−b1−···−br−1)T/b

)
.

Mit der notwendigen Bedingung für ein Minimum folgt für j = 1, . . . , r − 1:

∂E[Zr]
∂bj

= 0

⇐⇒ enjbjT/b = enr(b−b1−···−br−1)T/b

⇐⇒ njbj = nr(b− b1 − · · · − br−1).

Die b1, b2, . . . , br ergeben sich aus dem Gleichungssystem

b = b1 + · · ·+ br

nrbr = njbj j = 1, . . . , r − 1.

Es ergibt sich bj = nr
nj
br. Eingesetzt in die 1. Gleichung liefert dies

b =
(
nr

n1
+ · · ·+ nr

nr

)
br = nrbr

r∑
j=1

1
nj
.

Folglich gilt:

br = b ·
1
nr

r∑
j=1

1
nj

und bi = b ·
1
ni

r∑
j=1

1
nj

.

Da n1, . . . , nr gegeben sind, sind die bi die optimalen Spurbreiten. Es gilt

njbj
T

b
=

T
r∑

k=1

1
nk
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und somit ist unsere Gesamtwartezeit gegeben durch

E[Zr] =

exp


T

r∑
j=1

1
nj

− 1

 ·
r∑

j=1

1
nj
.

17.4 Stationärer Zustand

Bisher wurden die Kenngrößen von Erneuerungsprozessen jeweils zu einem festen Zeitpunkt
t ∈ R+ betrachtet. Es stellt sich deshalb die Frage, wie sich diese Kenngrößen für t → ∞
verhalten.

17.25 Definition (arithmetisch verteilt, Gitterkonstante):
Eine diskrete Zufallsvariable X, die nur Werte der Form xm := m · d mit d > 0 und m ∈
Z annehmen kann, heißt arithmetisch verteilt. Das größte d mit dieser Eigenschaft heißt
Gitterkonstante.

17.26 Satz (Blackwell’sches Erneuerungstheorem (1949)):
Es sei (Xn)n∈N0 ein (einfacher) Erneuerungsprozess mit der Verteilungsfunktion F , Erwar-
tungswert µ := E[X1] und Erneuerungsfunktion R(t). Ist F nicht arithmetisch, dann gilt für
ein festes h > 0:

lim
t→∞

(R(t)−R(t− h)) =
{ h

µ , µ <∞
0 , µ =∞.

Zum Beweis des Blackwell’schen Erneuerungstheorems werden zunächst einige Hilfsergeb-
nisse zur Verfügung gestellt, die im Wesentlichen die charakteristische Funktionen bzw. die
Fourier–Transformierte betreffen. Dabei soll der Begriff der Fourier–Transformierten hier auf
Lebesgue–integrierbare (kurz: λ-integrierbare) Funktionen f : R→ R durch die Definition

f̂(t) :=
∫
R

eitxf(x)dx

ausgedehnt werden. Darüberhinaus sei im Folgenden für A ⊆ R

1A(x) :=
{

1 , x ∈ A
0 , sonst

17.27 Lemma:
Sei hα(x) = (2α− |x|)1(−2α,2α)(x) für α > 0. Dann ist hα ∈ C0 und ĥα ∈ Cb mit

ĥα(t) =
sin2(αt)
α2t2

(t 6= 0) und ĥα(0) = 1.

Außerdem ist (hα + hβ )̂ = ĥα + ĥβ > 0 für alle α, β ∈ R mit α
β /∈ Q.
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Beweis:
Die Darstellung der Fourier–Transformierten kann direkt unter Verwendung der üblichen
Additionstheoreme für trigonometrische Funktionen nachgerechnet werden. Offensichtlich ist
dann ĥα + ĥβ ≥ 0. Gleichheit gilt genau für sinαt = sinβt = 0. Dies ist genau dann der Fall,
wenn t ∈ π

αZ ∩
π
βZ ist. Für α

β /∈ Q ist diese Menge aber leer. �

Das nachfolgende Lemma wird in einer etwas allgemeineren Version in der Literatur als
Parseval-Gleichung bezeichnet. Hier soll allerdings nur ein Spezialfall aufgeführt werden.

17.28 Lemma (Parseval-Gleichung):
Es seien µ ein endliches Maß mit charakteristischer Funktion ϕ und h eine nichtnegative
λ-integrierbare Funktion mit Fourier–Transformierter ĥ. Dann gilt∫

R

ĥ(x)dµ(x) =
∫
R

ϕ(x)h(x)dx.

Beweis:
Nach Definition sind

ϕ(t) =
∫
R

eitxdµ(x) und ĥ(t) =
∫
R

eitxf(x)dx

Die Behauptung kommt nun unmittelbar aus dem Satz von Fubini. �

17.29 Lemma (Riemann-Lebesgue-Lemma):
Ist f λ–integrierbar mit Fourier-Transformierter f̂ , so ist

lim
|t|→∞

f̂(t) = 0.

Beweis:
Für f = 1(a,b) für beliebige a, b ∈ R folgt die Behauptung unmittelbar aus

f̂(t) =
eibt − eiat

it
.

Sei nun f eine beliebige λ-integrierbare Funktion und ε > 0. Dann existieren paarweise
disjunkte Intervalle I1, . . . , In und c1, . . . , cn ∈ C, so dass∫

R

|f(x)− g(x)| dx < ε für g =
n∑

j=1

cj1Ij

gilt. Damit folgt für alle t ∈ R∣∣∣f̂(t)− ĝ(t)
∣∣∣ = ∣∣∣∣∫

R

eitx(f(x)− g(x))dx
∣∣∣∣ ≤ ∫

R

|f(x)− g(x)| dx < ε.

Da g nach Definition eine Linearkombination der Funktionen 1Ij ist, gilt

lim
|t|→∞

ĝ(t) = 0

und es folgt die Behauptung. �
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Dass folgende Lemma verallgemeinert den Stetigkeitssatz von Lévy, indem statt für die schwa-
che Konvergenz endlicher Maße ein Kriterium für die vage Konvergenz lokal endlicher Maße
angegeben wird.

17.30 Lemma:
Es sei (µn)n∈N eine Folge lokal endlicher Maße auf R. Gilt für eine in 0 stetige Funktion g
und eine strikt positive Funktion h ∈ Cb

lim
n→∞

∫
R

eitxh(x)dµn(x) = g(t)

für alle t ∈ R, so existiert ein lokal endliches Maß µ, so dass µn
v−→ µ und

g(t) =
∫
R

eitxh(x)dµ(x) (17.1)

für alle t ∈ R gilt.

Beweis:
Definiere die Folge von Maßen (µ̂n)n∈N durch dµ̂n = h dµn, d.h.

µ̂n(A) =
∫

A
h dµn ( A ∈ B).

Dann sind alle µ̂n endlich, da µ̂n(R) = g(0) <∞ ist. Ihre charakteristischen Funktionen sind∫
R

eitxh(x)dµn(x),

die nach Voraussetzung gegen die in 0 stetige Funktion g konvergieren. Nach dem Stetig-
keitssatz von Lévy 14.13 existiert ein endliches Maß µ̂ mit charakteristischer Funktion g und
µ̂n

w−→ µ̂. Wird nun dµ = 1
hdµ̂, d.h.

µ(A) =
∫

A

1
h
dµ̂ (A ∈ B)

definiert, so folgt wegen der Positivität von h für jedes beschränkte Intervall I

µ(I) ≤ sup
x∈I

{
1

h(x)

}
µ̂(I) <∞,

d.h. µ ist lokal endlich.
Für eine beliebige Funktion f ∈ C0 ist auch f

h ∈ C0 und es folgt

lim
n→∞

∫
R

f dµn = lim
n→∞

∫
R

f

h
dµ̂n =

∫
R

f

h
dµ̂ =

∫
R

f dµ,

also µn
v−→ µ.

Die Darstellung (17.1) folgt unmittelbar aus der Definition von µ und daraus, dass g die
charakteristische Funktion von µ̂ ist. �
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Beweis des Blackwell’schen Erneuerungstheorems:
Die Erneuerungsfunktion R ist monoton nichtfallend und rechtsseitig stetig, definiert also ein
Maß µ̃ auf R (auch Erneuerungsmaß genannt), für A ∈ B gilt damit

µ̃(A) =
∞∑

n=0

P (Sn ∈ A).

Es wird nun eine Familie von Maßen µ̃a auf R durch µ̃a(A) := µ̃(a + A) definiert (a + A :=
{a+ x : x ∈ A}) und gezeigt, dass

µ̃a v−→ 1
µ
λ (a→∞)

gilt. Speziell folgt dann

R(t)−R(t− h) = µ̃((t− h, t]) = µ̃t((−h, 0]) t→∞−→ 1
µ
λ((−h, 0]) =

h

µ
.

(Für µ =∞ erhält man jeweils die Konvergenz gegen 0.)

Zum Nachweis der vagen Konvergenz der (µ̃a) wird im Wesentlichen Lemma 17.30 angewendet
- allerdings auf die leicht modifizierten Maße ν̃, ν̃a, die durch

ν̃(A) := µ̃(A)µ̃(−A) und ν̃a(A) = µ̃a(A) + µ̃a(−A) (A ∈ B)

definiert sind. Da µ̃(A) = 0 für A ⊆ R− gilt, ist das Grenzverhalten von µ̃a und ν̃a gleich.

Eine geeignete Funktion h zur Anwendung von Lemma 17.30 ist, wie noch zu zeigen ist, eine
Funktion ĥ = ĥα + ĥβ mit irrationalem Quotienten α

β aus Lemma 17.27, denn es gilt dann

lim
a→∞

∫
R

eitxĥ(x)dν̃a(x) =
1
µ

∫
R

eitxĥ(x)dλ(x). (17.2)

Es verbleibt also noch, diese Identität nachzuweisen.

Zu diesem Zweck werden einige Hilfsmaße definiert. In Verallgemeinerung von µ̃ =: µ̃1 bzw.
ν̃ =: ν̃1 werden Maße µ̃s und ν̃s für s ∈ (0, 1) durch

µ̃s(A) :=
∞∑

n=0

sn · P (Sn ∈ A) und ν̃s(A) = µ̃s(A) + µ̃s(−A), A ∈ B

definiert. Für s → 1− konvergieren die µ̃s vage gegen ν̃ (und damit auch ν̃s
v−→ ν̃), da

µ̃s(B) s→1−−→ µ̃(B) für alle beschränkten B ∈ B (vergleiche Satz 14.11).
Anders als µ̃ sind alle µ̃s (und damit auch alle ν̃s), s ∈ (0, 1), endliche Maße mit µ̃s(R) = 1

1−s .
Ist ϕ die charakteristische Funktion von X1, so erhält man ϕn als charakteristische Funktion
von Sn und für s ∈ (0, 1)

ψs :=
∞∑

n=0

sn · ϕn =
1

1− s · ϕ

als charakteristische Funktion von µ̃s und

ψs(−t) + ψs(t) = ψs(t) + ψs(t) = 2 Re(ψs)(t)
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als charakteristische Funktion von ν̃s.
Der Grenzwert

ψ(t) := lim
s→1−

ψs(t) =
1

1− ϕ(t)

exisitiert zwar für t 6= 0, ist aber nicht die charakteristische Funktion von µ̃, da zu µ̃ als
unendlichem Maß keine charakteristische Funktion existiert.
Mit diesen Bezeichnungen gilt

17.31 Lemma:
Sei b > 0 beliebig und µ = E[X1] <∞. Dann ist Re(ψ) λ–integrierbar auf [−b, b] und für alle
f ∈ C0 gilt

lim
s→1−

∫ b

−b
f(t)Re(ψs)(t)dt =

πf(0)
µ

+
∫ b

−b
f(t)Re(ψ)(t)dt.

Der Beweis dieses Lemmas wird zurückgestellt und es wird zunächst der Nachweis der Iden-
tität (17.2) fortgesetzt. Analog zu ν̃a werden die Maße ν̃a

s durch

ν̃a
s (A) := ν̃s(a+A) =

∞∑
n=0

sn(P (Sn − a ∈ A) + P (−Sn − a ∈ A)) (A ∈ B)

definiert. Die charakteristische Funktion von ν̃a
s ist nach Satz 13.16

2e−iat Re(ψs)(t).

Mit der Bezeichnung ht(x) := h(x − t) ist ĥt(x) = eitxĥ(x). Unter Verwendung von Lemma
17.28 folgt damit∫

R

eitxĥ(x)dν̃a
s (x) =

∫
R

ĥt(x)dν̃a
s (x) =

∫ ∞

−∞
2e−iax Re(ψs)(x)ht(x)dx. (17.3)

Nun folgt (17.2) durch drei Schritte aus (17.3):

(i): Grenzübergang s→ 1− auf der linken Seite von (17.3).

(ii): Grenzübergang s→ 1− auf der rechten Seite von (17.3).

(iii): Grenzübergang a→∞ auf der rechten Seite.

Zu (i): Es gilt

lim
s→1−

∫
R

eitxĥ(x)dν̃a
s (x) =

∫
R

eitxĥ(x)dν̃a(x). (17.4)

Zum Nachweis sei ε > 0 beliebig. Wähle nun N ∈ N so groß, dass∑
n≥N

1
n2

< ε
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ist und s < 1 so groß, dass∫ N

−N
eitxĥ(x)dν̃a

s (x)−
∫ N

−N
eitxĥ(x)dν̃a(x) < ε

(Existenz von N und s folgt aus der Konvergenz der Reihe
∑ 1

n2 sowie aus ν̃a
s

v−→ ν̃a).
Außerdem sind die Differenzen R(t + a) − R(t) für festes a > 0 durch eine Konstante
Ca ∈ R beschränkt, wie man unter Verwendung des Erneuerungsarguments schließen
kann. Dazu sei t+ y der erste Erneuerungszeitpunkt in (t, t+ a). Es folgt

R(t+ a)−R(t) = 1 +R(t+ a)−R(t+ y) = 1 +R(a− y) ≤ 1 +R(a) =: Ca,

speziell ist R(t+ 1)−R(t) ≤ C1 für alle t ∈ R+. Damit folgt∫ n+1

n
dν̃a

s (x) ≤
∫ n+1

n
dν̃a(x) ≤ C

mit einer von n ∈ Z unabhängigen Konstanten C. Da ĥ(x) ≤ C′

x2 mit einer weiteren
Konstanten C ′ gilt, folgt∣∣∣∣∫

R

eitxĥ(x)dν̃a
s (x)−

∫
R

eitxĥ(x)dν̃a(x)
∣∣∣∣

≤
∣∣∣∣∫ N

−N
eitxĥ(x)dν̃a

s (x)−
∫ N

−N
eitxĥ(x)dν̃a(x)

∣∣∣∣
+

∣∣∣∣∣
∫
R\[−N,N ]

eitxĥ(x)dν̃a
s (x)

∣∣∣∣∣+
∣∣∣∣∣
∫
R\[−N,N ]

eitxĥ(x)dν̃a(x)

∣∣∣∣∣
< ε+

∞∑
n=N

(∣∣∣∣∫ n+1

n
eitxĥ(x)dν̃a

s (x)
∣∣∣∣+ ∣∣∣∣∫ n+1

n
eitxĥ(x)dν̃a(x)

∣∣∣∣)

+
N∑

n=−∞

(∣∣∣∣∫ n

n−1
eitxĥ(x)dν̃a

s (x)
∣∣∣∣+ ∣∣∣∣∫ n

n−1
eitxĥ(x)dν̃a(x)

∣∣∣∣)

≤ ε+ C ′
∞∑

n=N

1
n2

(∣∣∣∣∫ n+1

n
dν̃a

s (x)
∣∣∣∣+ ∣∣∣∣∫ n+1

n
dν̃a(x)

∣∣∣∣)

+ C ′
−N∑

n=−∞

1
n2

(∣∣∣∣∫ n

n−1
dν̃a

s (x)
∣∣∣∣+ ∣∣∣∣∫ n

n−1
dν̃a(x)

∣∣∣∣)

< ε+ 4C ′C

∞∑
n=N

1
n2

< (1 + 4C ′C)ε.

Zu (ii): Es wird b > 0 so gewählt, dass [−b, b] den Träger von ht umfasst (ht ∈ C0, da h ∈ C0).
Wird nun in Lemma 17.31 f(x) = 2e−iaxh(x− t) gesetzt, so folgt

lim
s→1−

∫ ∞

−∞
2e−iax Re(ψs)(x)ht(x)dx = lim

s→1−

∫ b

−b
2e−iax Re(ψs)(x)h(x− t)dx

=
2π
µ
h(−t) +

∫ b

−b
2e−iax Re(ψ)(x)h(x− t)dx.

123



Kapitel 17. Erneuerungstheorie

Einsetzen dieser Identität sowie von (17.4) in (17.3) liefert∫
R

eitxĥ(x)dν̃a(x) =
2π
µ
h(−t) +

∫ b

−b
2e−iax Re(ψ)(x)h(x− t)dx.

Formuliert man Satz 13.13 für allgemeine Fourier–Transformierte, so erhält man

h(−t) =
1
2π

∫ ∞

−∞
eitxĥ(x)dx

und damit∫
R

eitxĥ(x)dν̃a(x) =
1
µ

∫ ∞

−∞
eitxĥ(x)dx+

∫ b

−b
2e−iax Re(ψ)(x)h(x− t)dx. (17.5)

Zu (iii): Es wird nun der Grenzübergang a → ∞ betrachtet. Das letzte Integral entspricht der
Fourier–Transformation einer nach Lemma 17.31 λ-integrierbaren Funktion und nach
Lemma 17.29 verschwindet es beim Grenzübergang.

Damit ist (17.2) gezeigt und zum vollständigen Beweis des Blackwell’schen Erneuerungstheo-
rems bleibt nun noch der Beweis von Lemma 17.31 nachzutragen.

Beweis (von Lemma 17.31):
Im ersten Schritt wird die λ–Integrierbarkeit von Re(ψ) auf [−b, b] gezeigt. Wegen ψ = 1

1−ϕ
und ϕ(t) 6= 0 für t ∈ [−b, b] \ {0} ist Re(ψ) auf [−b, b] \ {0} stetig und es genügt die
Integrierbarkeit auf einem Intervall [−ε, ε] für ein beliebig kleines ε > 0 zu zeigen. Hier
wird ε so klein gewählt, dass |ϕ(t)− 1| ≥ µ|t|

2 für alle t ∈ [−ε, ε] ist. Dies ist möglich, da
limt→0

ϕ(t)−1
t = ϕ′(0) = iµ (vergleiche Satz 13.16(c)) gilt. Dann ist∫ ε

−ε
Re(ψ)(t)dt =

∫ ε

−ε
Re(

1
1− ϕ(t)

)dt =
∫ ε

−ε

Re(1− ϕ)(t)
|1− ϕ(t)|2

dt ≥ 0

und ∫ ε

−ε
Re(ψ)(t)dt ≤ 2

µ

∫ ε

−ε

Re(1− ϕ)(t)
t2

dt =
4
µ

∫ ε

0

E[1− cos(tX1)]
t2

dt.

Nach dem Satz von Fubini ist∫ ε

0

E[1− cos(tX1)]
t2

dt = E

[∫ ε

0

1− cos(tX1)
t2

dt

]
= E

[
|X1|

∫ εX1

0

1− cos t
t2

dt

]
≤ E[|X1|]

∫ ∞

0

1− cos t
t2

dt <∞.

Im zweiten Teil des Beweises muss noch die Integralformel nachgewiesen werden. Dazu wird

für beliebiges f ∈ C0

I(s, b) :=
∫ b

−b
f(t) Re(ψs − ψ)(t)dt =

∫ b

−b
f(t) Re

(
1

1− sϕ
− 1

1− ϕ

)
dt

=
∫ b

−b
f(t)

s− 1
|1− sϕ(t)|2

Re
(
ϕ(1− sϕ)

1− ϕ

)
(t)dt
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definiert. Zu zeigen ist
lim

s→1−
I(s, b) = 0.

Der Integrant von I(s, b) konvergiert auf [−b, b] \ [−ε, ε] für s→ 1− gegen 0, also gilt

I(s, b)− I(s, ε) s→1−−→ 0.

Daher bleibt nur I(s, ε) für ein beliebig kleines ε > 0 zu untersuchen. Wegen

Re
(
ϕ(1− sϕ)

1− ϕ

)
(t) = Re

(
ϕ(1− ϕ)

1− ϕ

)
(t)− (s− 1) Re

(
ϕϕ

1− ϕ

)
(t)

ist I(s, ε) = I1(s, ε) + I2(s, ε) mit

I1(s, ε) =
∫ ε

−ε
f(t)

s− 1
|1− sϕ(t)|2

Re
(
ϕ(1− ϕ)

1− ϕ

)
(t)dt

und

I2(s, ε) = −
∫ ε

−ε
f(t)

(s− 1)2

|1− sϕ(t)|2
|ϕ(t)|2 Re(ψ)(t)dt.

Wegen |1− sϕ(t)| ≥ 1 − s ist der Integrand von I2(s, ε) unabhängig von s beschränkt und
mit dem Satz von der majorisierten Konvergenz folgt lims→1 I2(s, ε) = 0 für alle ε ∈ (0, b], so
dass nur noch der Term I1(s, ε) zu untersuchen ist.
Wähle dazu η ∈ (0, 1) beliebig und definiere die Funktion g

g(s, t) :=
|1− sϕ(t)|2

(1− s)2 + µ2t2

und die auf [−ε, ε] stetige Funktion h durch

h(t) := −f(t) Re
(
ϕ(1− ϕ)

1− ϕ

)
(t), t 6= 0 und h(0) = f(0).

Die Stetigkeit von h kommt dabei aus

lim
t→0

1− ϕ(t)
1− ϕ(t)

=
ϕ′(0)
ϕ′(0)

= −1.

Damit gilt dann

I1(s, ε) =
∫ ε

−ε

h(t)
g(s, t)

1− s
(1− s)2 + µ2t2

dt =
∫ ε

1−s

−ε
1−s

h(t(1− s))
g(s, t(1− s))

1
1 + µ2t2

dt.

Erneute Benutzung von ϕ′(0) = iµ liefert

lim
t→0

lim
s→1−

g(s, t) = lim
t→0

|1− ϕ(t)|2

µ2t2
=
|ϕ′(0)|2

µ2
= 1,

was die Existenz eines ε ∈ (0, b) zeigt, so dass für alle s ∈ [1 − ε, 1) und t ∈ [−ε, ε] die
Ungleichungen

1− η ≤ g(s, t) ≤ 1 + η und
1− η
1 + η

h(0) ≤ h(t)
g(s, t)

≤ 1 + η

1− η
h(0)
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gelten. Für s ∈ [1− ε, 1) folgen

I1(s, ε) ≤
1 + η

1− η
h(0)

∫ ∞

−∞

dt

1 + µ2t2
=

1 + η

1− η
πh(0)
µ

und I1(s, ε) ≥
1− η
1 + η

πh(0)
µ

.

Da η > 0 beliebig vorgegeben war und h(0) = f(0) ist, folgt

lims→1−I(s, b) =
πf(0)
µ

und damit die Behauptung. �

17.32 Bemerkung:
Das Blackwell’sche Erneuerungstheorem kann auch für den arithmetischen Fall formuliert
werden. Mit µ := E[X1] und Gitterkonstante d gilt hier

lim
n→∞

(R(nd)−R(nd− 0)) =
d

µ
.

In Vorbereitung auf den Fundamentalsatz der Erneuerungstheorie erläutern wir zunächst den
Begriff der direkten Riemann–Integrierbarkeit.

17.33 Definition (direkte Riemann–Integrierbarkeit):
Es sei g eine reellwertige Funktion auf R+. Für ein δ > 0 und n ∈ N0 werden

Iδ
n := (δ · n, δ · (n+ 1)],

mδ
n := inf{g(t)|t ∈ Iδ

n} und M δ
n := sup{g(t)|t ∈ Iδ

n},
σ(δ) := δ ·

∑
n∈N0

mδ
n und σ(δ) := δ ·

∑
n∈N0

M δ
n

gesetzt. g heißt direkt Riemann–integrierbar, falls σ(δ) und σ(δ) beide für alle δ > 0 absolut
konvergieren und

lim
δ→0

(σ(δ)− σ(δ)) = 0

ist. Im Folgenden bezeichne R die Menge der direkt Riemann–integrierbaren Funktionen auf
R+.

Bemerkung:
Ersetzt man den Definitionsbereich von g durch ein Kompaktum, erhält man den Begriff der
gewöhnlichen Riemann–Integrierbarkeit.

17.34 Beispiel:
• Es sei g(x) := e−x, x ∈ R+. Dann ist

mδ
n = inf{g(t)|t ∈ Iδ

n} = g(δ · (n+ 1)) = e−δ(n+1),

M δ
n = sup{g(t)|t ∈ Iδ

n} = g(δ · n) = e−δn.
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Die beiden unendlichen Reihen σ(δ) und σ(δ) sind absolut konvergent:

σ(δ) = δ
∑

n∈N0

e−δ(n+1) = δe−δ
∑

n∈N0

(
e−δ
)n

= δe−δ · 1
1− e−δ

,

σ(δ) = δ
∑

n∈N0

e−δn = δ
∑

n∈N0

(
e−δ
)n

= δ
1

1− e−δ
.

Es gilt weiter:

lim
δ→0

(
δ

1− e−δ
− δe−δ

1− e−δ

)
= lim

δ→0

(
δ
1− e−δ

1− e−δ

)
= 0,

d.h. g(x) ist direkt Riemann–integrierbar (vgl. auch Satz 17.36).

• Es sei

f(x) :=
∞∑

n=1

I[−wn
2

, wn
2 ](x− n) ·

{
hn + 2hn

wn
(x− n) , für − wn

2 ≤ x− n < 0
hn − 2hn

wn
(x− n) , für 0 < x− n ≤ wn

2 .

Der Graph der Funktion fn besteht aus lauter Dreiecken. Das n-te Dreieck beginnt
dabei bei n− wn

2 , erreicht bei n seinen höchsten Punkt (nämlich (n, hn)) und endet bei
n+ wn

2 . Es sei wn < 1, d.h. die Dreiecke überlappen sich nicht. Es sei wn −−−→
n→∞

0 und

hn −−−→
n→∞

∞ mit der Bedingung
∑∞

n=1 hnwn <∞. Dann gilt:

∫ ∞

0
f(x) dx =

∞∑
k=1

1
2
hnwn <∞,

d.h. f ist Riemann–integrierbar. f ist aber nicht direkt Riemann–integrierbar, da:

σ(1) = 1 ·
∑

n∈N0

M1
n =

∑
n∈N0

sup{f(t)|t ∈ (n, n+ 1]} =
∑

n∈N0

hn =∞.
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17.35 Satz:
Es sei g eine reellwertige Funktion auf R+. Ist g direkt-Riemann-integrierbar, dann ist g auch
uneigentlich Riemann-integrierbar auf R+ und es gilt:

lim
δ→0

σ(δ) = lim
δ→0

σ(δ) =
∫
R+

g(t) dt,

wobei
∫
R+ g(t) dt das uneigentliche Riemann-Integral von g bezeichnet.

Beweis:
Aufgrund der Voraussetzung gilt σ(δ) <∞, σ(δ) <∞ sowie

0 = lim
δ→0

[σ(δ)− σ(δ)]

= lim
δ→0

∞∑
n=0

M δ
n · δ −

∞∑
n=0

mδ
n · δ

= lim
δ→0

∞∑
n=0

δ ·
[
M δ

n −mδ
n

]
≥ lim

δ→0

∞∑
n|nδ≤a

δ ·
[
M δ

n −mδ
n

]
.

Womit gezeigt ist, dass g zumindest über [0, a] Riemann-integrierbar ist.
Da σ(δ) <∞ ∀ δ > 0 ist, kann geschlossen werden, dass zu jedem ε > 0 ein a := a(ε) existiert
mit

∑
n>aM

1
n < ε. Für alle δ > 0 gilt deshalb:

σ(δ)−
∑

n|n·δ≤a

M δ
n · δ =

∑
n|n·δ>a

M δ
n · δ ≤

∑
n>a

M1
n · 1 < ε.

(i) Da g direkt-Riemann-integrierbar ist, gilt:

lim
δ→0

σ(δ) = σ0 <∞

bzw.
|σ0 − σ(δ)| < ε ∀ δ ≤ δ0.

(ii) Da g Riemann-integrierbar ist auf [0, a] gilt:∣∣∣∣∣∣
∑

n|nδ≤a

M δ
n · δ −

a∫
0

g(t) dt

∣∣∣∣∣∣ < ε ∀ σ < σ1.

(iii) Zusammenfassung:∣∣∣∣∣∣σ0 −
a∫

0

g(t) dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣σ0 − σ(δ) + σ(δ)−

∑
n|nδ≤a

M δ
n · δ +

∑
n|nδ≤a

M δ
n · δ −

a∫
0

g(t) dt

∣∣∣∣∣∣
≤ |σ0 − σ(δ)|+

∣∣∣∣∣∣σ(δ)−
∑

n|nδ≤a

M δ
n · δ

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

n|nδ≤a

M δ
n · δ −

a∫
0

g(t) dt

∣∣∣∣∣∣
≤ 3 ε ∀ δ ≤ min(δ0, δ1, 1).

128



17.4. Stationärer Zustand

�

17.36 Satz:
Ist g ≥ 0 nichtwachsend, dann gilt g ∈ R genau dann, wenn g Riemann–integrierbar ist.

Beweis:
Es wird angenommen, dass g nicht wachsend und Riemann–integrierbar ist.

∞ >

∞∫
0

g(t) dt =
∞∑

n=0

(n+1)δ∫
nδ

g(t) dt ≥
∞∑

n=0

g((n+ 1)δ) · δ

= δ ·
∞∑

n=0

g((n+ 1)δ) = δ ·
∞∑

n=0

mδ
n = σ(δ).

Außerdem gilt:

N∑
n=0

M δ
n · δ −

N∑
n=0

mδ
n · δ = δ ·

N∑
n=0

[g(n · δ)− g((n+ 1) · δ)]

= δ · [g(0)− g(N + 1)] −−−−→
N→∞

δ · [g(0)− g(∞)] <∞.

Daraus folgt:

σ(δ) <∞ ⇐⇒ σ(δ) <∞,
σ(δ)− σ(δ) ≤ δ · [g(0)− g(∞)].

Schlussfolgerungen:

(i) σ(δ) <∞,

(ii) σ(δ) <∞,

(iii) σ(δ)− σ(δ)→ 0 für δ → 0.

Die Umkehrung folgt aus Satz 17.35. �

17.37 Satz:
Ist g Riemann-integrierbar auf [0,∞) und g ≤ z, z ∈ R, dann ist auch g ∈ R.

Beweis:
Siehe S. I. Resnick: ,,Adventures in Stochastic Processes”, Birkhäuser, Bosten, 1992 in Kapitel
3.10.

17.38 Satz (Fundamentalsatz der Erneuerungstheorie (Smith, 1955)):
Es sei (Xn)n∈N0 ein (einfacher) Erneuerungsprozess mit der Verteilungsfunktion F , Erwar-
tungswert µ := E[X1] und Erneuerungsfunktion R(t). Außerdem sei g ∈ R.

a) Ist F nicht arithmetisch, dann gilt

lim
t→∞

(R ∗ g)(t) =


1
µ

∞∫
0

g(x) dx , µ <∞

0 , µ =∞.
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b) Ist F arithmetisch mit der Gitterkonstanten d, dann gilt für alle c > 0

lim
n→∞

(R ∗ g)(c+ nd) =


d

µ

∑
n∈N0

g(c+ nd) , µ <∞

0 , µ =∞.

Beweis:
Der Beweis soll hier nur für den nichtarithmetischen Fall geführt werden. Dazu seien g eine
direkt Riemann-integrierbare Funktion und (für δ > 0) Iδ

n, mδ
n und M δ

n wie in Definition
17.33. Darüberhinaus seien

gδ(x) :=
∞∑

n=0

mδ
n1Iδ

n
(x) und gδ(x) :=

∞∑
n=0

M δ
n1Iδ

n
(x).

Mit dieser Notation ist

σ(δ) =
∫ ∞

0
gδ(x)dx, σ(δ) =

∫ ∞

0
gδ(x)dx

und gδ(x) ≤ g(x) ≤ gδ(x) für alle x ∈ R+. Wähle nun δ ∈ (0, 1) und N ∈ N so groß, dass∑
n>N

∣∣∣M δ
n

∣∣∣ < δ

ist.
Die Differenzen R(t + a) − R(t) sind für festes a > 0 unabhängig von t ∈ R+ durch eine
Konstante Ca beschränkt, wie schon im Beweis des Blackwell’schen Erneuerungstheorems
gezeigt wurde. Damit folgt

gδ ∗R(t) =
∞∑

n=0

M δ
n(R(t− nδ)−R(t− (n+ 1)δ))

≤
∑
n≤N

M δ
n(R(t− nδ)−R(t− (n+ 1)δ)) + Caδ.

Unter Verwendung des Blackwell’schen Erneuerungstheorems ergibt sich damit

lim sup
t→∞

gδ ∗R(t) ≤
∑
n≤N

M δ
n lim

t→∞
(R(t− nδ)−R(t− (n+ 1)δ)) + Caδ

=
δ

µ

∑
n≤N

M δ
n + Caδ ≤

1
µ

∫ ∞

0
gδ(x)dx+

δ2

µ
+ Caδ =

σ(δ)
µ

+
δ2

µ
+ Caδ.

Daraus folgt

lim sup
t→∞

g ∗ U(t) ≤ lim
δ→0+

lim sup
t→∞

gδ ∗ U(t) ≤ lim
δ→0+

(
σ(δ)
µ

+
δ2

µ
+ Caδ

)
=

1
µ

∫ ∞

0
g(x)dx.

Entsprechend erhält man auch

lim inf
t→∞

g ∗ U(t) ≥ 1
µ

∫ ∞

0
g(x)dx,

was zusammen den Fundamentalsatz im nichtarithmetischen Fall liefert. �
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17.39 Lemma (Cesaro´s Lemma):
Es sei (βn)n∈N eine reellwertige Zahlenfolge mit

lim
n→∞

βn = 0.

Dann gilt:

lim
n→∞

1
n
·

n∑
k=1

βk = 0.

Beweis:
Aufgrund der Voraussetzung existiert eine Konstante K mit |βn| ≤ K ∀ n ∈ N. Außerdem
existiert zu jedem ε > 0 ein n0 ∈ N mit |βn| < ε ∀ n ≥ n0. Damit wird∣∣∣∣β1 + . . .+ βn

n

∣∣∣∣ ≤ ∣∣∣∣β1 + . . .+ βn0

n

∣∣∣∣+ ∣∣∣∣βn0+1 + . . .+ βn

n

∣∣∣∣
≤ n0 ·K

n
+
n− n0

n
· ε ≤ 2ε

für fast alle n. �

17.40 Satz:
Es bezeichne (Xn)n∈N eine (einfache) Erneuerungsfolge mit Lebensdauerverteilung F . Ist F
nicht arithmetisch und E[X1] <∞, dann gilt:

lim
t→∞

R(t)
t

=
1

E[X1]
.

Beweis:
Es sei βn := R(n)−R(n− 1), n ∈ N0. Dem Blackwell´schen Erneuerungstheorem entnimmt
man

βn −→
1

E[X1]
.

Mit Hilfssatz 17.39 folgt dann

1
E[X1]

= lim
n→∞

1
n
·

n∑
k=1

βk = lim
n→∞

1
n
·

n∑
k=1

R(k)−R(k − 1) = lim
n→∞

R(n)
n

.

Es bezeichne bxc die größte ganze Zahl ≤ x. Da R monoton nicht fallen ist, gilt wegen
btc ≤ t ≤ btc+ 1

R(btc) ≤ R(t) ≤ R(btc+ 1)

bzw.
btc ·R(btc)
t · btc

≤ R(t)
t
≤ R(btc+ 1)
btc+ 1

· btc+ 1
t

.

Indem man den Grenzübergang t→∞ durchführt, erhält man:

1
E[X1]

≤ lim
t→∞

R(t)
t
≤ 1

E[X1]
.

�
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17.41 Satz:
Ist Nt die Anzahl der in [0, t] gelegenen Erneuerungen eines Erneuerungsprozesses Sn und ist
µ = E[Xj ] = E[Sj − Sj−1] <∞, so gilt

lim
t→∞

Nt

t
=

1
µ

P -f.s.

Beweis:
Die Aussage bezieht sich direkt auf Nt, nicht auf E[Nt] !
Es ist nach Definition SNt ≤ t < SNt+1 und damit

SNt

Nt
≤ t

Nt
<
SNt+1

Nt
=

SNt+1

Nt + 1
· Nt + 1

Nt
. (17.6)

Ferner gilt für alle n ∈ N

lim
t→∞

P (Nt ≥ n) = lim
t→∞

P (Sn ≤ t) = 1

also Nt →∞ für t→∞ fast sicher. Daher gilt

Nt + 1
Nt

−−−→
t→∞

1 P -f.s.

in Gleichung (17.6). Mit SNt = X1 + . . .+XNt folgt

SNt

Nt
=
X1 + . . .+XNt

Nt
. (17.7)

Alle Lebensdauern Xi haben nach Voraussetzung dieselbe Verteilung mit µ = E[X1] < ∞ .
Wende daher auf die rechte Seite in Gleichung (17.7) das starke Gesetz der großen Zahlen an:

lim
t→∞

SNt

Nt
= lim

t→∞

X1 + . . .+XNt

Nt
= lim

n→∞

X1 + . . .+Xn

n
= µ P -f.s.

Für t→∞ liefert nun (17.6) fast sicher

µ ≤ lim
t→∞

t

Nt
≤ µ · 1

d.h.
lim
t→∞

t

Nt
= µ P -f.s.

In einem Erneuerungsprozeß gilt nach Voraussetzung P (X1 = 0) = F (0) < 1, d.h. es ist µ > 0
und mit Kehrwertbildung folgert die Behauptung. �

17.42 Satz (Grenzverteilung der Vorwärtsrekurrenzzeit):
Ist X1 nicht arithmetisch verteilt und µ := E[X1] <∞, dann gilt für die Grenzverteilung der
Vorwärtsrekurrenzzeit

lim
t→∞

P (Vt ≤ v) =


1
µ

v∫
0

(1− F (y))dy , v ≥ 0

0 , v < 0.
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Beweis:
Die folgende Gleichung stammt aus dem Beweis zu Satz 17.21:

P (Vt ≤ v) = F (t+ v)− F (t) +

t∫
0

(F (t+ v − y)− F (t− y)) dR(y)

= F (t+v)− F (t) +

t∫
0

(1−F (t−y)) dR(y)−
t∫

0

(1−F (t−v−y)) dR(y).

Da F (t+ v)− F (t)→ 0 für t→∞ folgt aus dem Fundamentalsatz der Erneuerungstheorie:

lim
t→∞

P (Vt ≤ v) =
1
µ

∞∫
0

(1− F (y)) dy − 1
µ

∞∫
0

(1− F (v + y)) dy

=
1
µ

v∫
0

(1− F (y)) dy.

�

17.43 Satz (Erwartungswert Grenzverteilung der Vorwärtsrekurrenzzeit):
Ist X1 nicht arithmetisch verteilt mit µ := E[X1] < ∞ und σ2 := Var[X1] < ∞, dann gilt
für den Erwartungswert E[V∞] der Grenzverteilung der Vorwärtsrekurrenzzeit

E[V∞] = lim
t→∞

E[Vt] =
σ2 + µ2

2µ
.

Beweis:
Satz 17.42 gibt die Verteilungsfunktion von V∞ an. Deren zugehörige Dichte existiert und ist
gegeben durch

d

dv
P (V∞ ≤ v) =

1
µ

(1− F (y)).

Hieraus folgt für den zugehörigen Erwartungswert:

E[V∞] =

∞∫
0

x
1
µ

(1− F (x)) dx.

Für eine nichtnegative Zufallsgröße Y gilt bekanntlich

E[Y r] = r

∞∫
0

xr−1(1− F (x)) dx.

Folglich ist

E[V∞] =
1
µ

∞∫
0

x(1− F (x)) dx =
1
2µ

E
[
X2

1

]
=
σ2 + µ2

2µ
.

�

133



Kapitel 17. Erneuerungstheorie

17.44 Satz (Grenzverteilung der Rückwärtsrekurrenzzeit):
Es sei X1 nicht arithmetisch–verteilt und sei E[X1] < ∞, dann gilt für die Grenzverteilung
der Rückwärtsrekurrenzzeit

lim
t→∞

P (Ut ≤ u) =


1
µ

u∫
0

(1− F (x))dx , u ≥ 0

0 , u < 0.

Beweis:
Für die Verteilungsfunktion der Rückwärtsrekurrenzzeit gilt

P (Ut ≤ u) =

t∫
t−u

(1− F (t− x)) dR(x) 0 ≤ u < t.

Es wird

g(z) :=
{

1− F (z) , 0 ≤ z < u
0 , z ≥ u

gesetzt und der Fundamentalsatz der Erneuerungstheorie angewandt:

lim
t→∞

P (Ut≤u) = lim
t→∞

t∫
0

g(t−x) dR(x) = lim
t→∞

1
µ

∞∫
0

g(x)dx =
1
µ

u∫
0

(1−F (x))dx.

�

17.45 Satz:
Es seien (Xn)n∈N ein (einfacher) Erneuerungsprozess mit µ := E[X1] < ∞ und σ2 :=
Var[X1] <∞. Dann gilt für den zugehörigen Zählprozess (Nt)t∈R+:

lim
t→∞

P

(
Nt − t · µ−1√
t · σ2 · µ−3

≤ x

)
= Φ(x), x ∈ R,

wobei Φ(x) die Verteilungsfunktion der Standardnormalverteilung bezeichnet, d.h. Nt ist asym-
ptotisch normalverteilt mit dem Erwartungswert E[Nt] = t/µ und der Varianz Var[Nt] =
t · σ2/µ3.

Beweis:
Es bezeichne (Sn)n∈N0 den mit (Xn)n∈N korrespondierenden Erneuerungsprozess. Da die auf-
einanderfolgenden Lebensdauern Xi eine i.i.d. Folge bilden, genügt Sn dem zentralen Grenz-
wertsatz:

lim
n→∞

P

(
Sn − n · µ√

n · σ
≤ x

)
= Φ(x), x ∈ R.

Mit der Festlegung
k(t) := x ·

√
t · σ2 · µ3 + tµ−1

gilt

P

(
Nt − tµ−1√
t · σ2 · µ−3

≤ x

)
= P (Nt ≤ k(t)).
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Aus der Gleichwertigkeit der Ereignisse {Nt ≤ n} und {Sn+1 > t} kann gefolgert werden

P (Nt ≤ k(t)) = P (Sbk(t)+1c > t) = P

(
Sbk(t)+1c − µ · (k(t) + 1)

σ ·
√
k(t) + 1

> ξ(t)

)
,

wobei
ξ(t) :=

t− µ · (k(t) + 1)
σ ·
√
k(t) + 1

ist. Da aber

lim
t→∞

ξ(t) = lim
t→∞

t− µ · [x ·
√
t · σ2 · µ−3 + t · µ−1 + 1]
σ ·
√
k(t) + 1

= lim
t→∞

−x ·
√
σ2 · tµ−1 − µ

σ ·
√
k(t) + 1

= lim
t→∞

−x(σ2 · t · µ−1)−1/2 · σ · µ−1

(k(t) + 1)−1/2 · k′(t)

= −x · σ
µ
·
(
σ2
)−1/2 · µ = −x

gilt, folgt schließlich

lim
t→∞

P

(
Nt − t · µ−1√
t · σ2 · µ−3

≤ x

)
= lim

t→∞
P

(
Sbk(t)+1c − µ · (k(t) + 1)

σ ·
√
k(t) + 1

> ξ(t)

)
= 1− Φ(−x) = Φ(x), x ∈ R+.

�

17.5 Anwendungsbeispiel 2

Problem:

Für eine Fabrikation benötigt man 200 gleichartige Vorrichtungen. Aus vorangegangenen Pro-
duktionen weiß man, dass die Vorrichtungen eine mittlere Lebensdauer von 1000 Stunden
haben. Eine statistische Analyse ergab außerdem, dass die Lebensdauern einer 2–Erlang–
Verteilung genügen. Die Vorrichtungen sind in jedem Monat 500 Stunden lang in Betrieb.
Man möchte nun gerne wissen, wie viele Vorrichtungen man im ersten, zweiten, dritten usw.
Betriebsmonat ersetzen muss.

Lösung:

Modellannahmen: Die Lebensdauern der einzelner Vorrichtungen sind unabhängig vonein-
ander verteilt nach Erlang(α, 2) mit Erwartungswert 1000 Stunden. Die Zeit wird in Ein-
heiten von 1 Monat gemessen, was einer Betriebsdauer der Vorrichtungen von 500 Stunden
entspricht. Dann ist 2 die erwartete Lebensdauer, 2

α = 2, also α = 1. Fortan sei Nt die Anzahl
der Erneuerungen einer festen Maschine im Zeitintervall (0, t] mit einem t ≥ 0. Tk mit k ∈ N
bezeichnet den Zeitpunkt der k–ten Erneuerung dieser Maschine. Dann ist

Tk
d=Erlang(α, 2)k∗ = Erlang(α, 2k) und E[Nt] =

∞∑
k=1

Fk(t), t ∈ R+,
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wobei Fk die Verteilungsfunktion von Tk ist. Bezeichnet man die Dichte von Fk mit fk, so gilt

E[Nt] =
∞∑

k=1

t∫
0

fk(s) ds =

t∫
0

∞∑
k=1

fk(s) ds, t ∈ R+.

Hierbei ist
∞∑

k=1

fk(s) =
∞∑

k=1

α2k

(2k − 1)!
s2k−1e−αs = αe−αs

∞∑
k=1

(αs)2k−1

(2k − 1)!
, s ∈ R+.

Beachtet man, dass ex − e−x =
∑∞

k=0
xk

k! (1− (−1)k) = 2 ·
∑ xk

k! für k ungerade ist, so folgt

∞∑
k=1

x2k−1

(2k − 1)!
=

1
2
(
ex − e−x

)
= sinhx,

also

E[Nt] =

t∫
0

αe−αs · 1
2
(
eαs − e−αs

)
ds =

α

2

t∫
0

(
1− e−2αs

)
ds =

α

2

(
s+

1
2α
e−2αs

)∣∣∣∣t
0

=
α

2

(
t+

1
2α
(
e−2αt − 1

))
, t ∈ R+.

Hier war α = 1, also gilt mit t > 0:

E[Nt] =
1
2

(
t+

1
2
(
e−2t − 1

))
, t ∈ R+.

Für t→∞ erhält man mit dem Satz von Blackwell:

lim
t→∞

(E[Nt]−E[Nt−1]) =
1
2
.

Die erwartete Gesamtzahl von Erneuerungen in (0, t] ist dann (wegen der vorausgesetzten
Unabhängigkeit)

200 ·E[Nt] = 100 ·
(
t+

1
2
(e−2t − 1)

)
, t ∈ R+.

Die asymptotische mittlere Anzahl von Erneuerungen in (t− 1, t] ist

200 ·E[Nt −Nt−1] = 100.

t # Erneuerungen # Erneuerungen
(Monate) in (0, t] in (t− 1, t]

1 56.77 56.77
2 150.92 94.15
3 250.12 99.20
4 350.02 99.90
5 450.00 99.98
6 550.00 100.00
∞ 100.00
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17.6 Modifizierte Erneuerungsprozesse

Aus verschiedenen Gründen erscheint es zweckmäßig, für die erste Erneuerungszeit eine andere
Verteilung als für die übrigen Erneuerungszeiten zuzulassen. Denn nicht immer kann man
die Beobachtungszeitpunkte so wählen, dass der Ursprung der Zeitrechnung mit der ersten
Erneuerung zusammenfällt.

17.46 Definition (modifizierter Erneuerungsprozess):
Sind X1, X2, . . . unabhängige nichtnegative Zufallsgrößen jeweils mit den Verteilungsfunktio-
nen F1(t) := P (X1 ≤ t) und F (t) = P (Xi ≤ t) für i = 2, 3, . . . und F (0) < 1, so heißt die
gemäß

S′0 := 0 und S′n :=
n∑

k=1

Xk

gebildete Folge (S′n)n∈N0 ein modifizierter Erneuerungsprozess.

Für die modifizierten Erneuerungsprozesse lässt sich nun eine analoge Theorie aufbauen, wobei
sich zeigt, dass die Verteilung der ersten Erneuerung gar keine so große Rolle spielt. Daher
sollen im Folgenden nur Ergebnisse angegeben werden:

Für die Erneuerungsfunktion eines modifizierten Erneuerungsprozesses gilt

R′(t) = E
[
N ′

t

]
=

∞∑
k=1

F1 ∗ F (k−1)∗(t), t ∈ R+, wobei F 0∗(t) :=
{

1 , t ≥ 0
0 , t < 0.

R′(t) genügt der Erneuerungsgleichung

R′(t) = F1(t) + (F ∗R′)(t), t ∈ R+.

Die Verteilung der Vorwärtsrekurrenzzeit eines modifizierten Erneuerungsprozesses lautet

P (V ′
t ≤ v) =


t+v∫
t

(1− F (t+ v − y))dR′(y) , v ≥ 0

0 , v < 0.

Somit gilt für den stationären Zustand

lim
t→∞

P (V ′
t ≤ v) =


1

E[X2]

v∫
0

(1− F (x))dx , v ≥ 0 ∧ E[X2] <∞

0 , v < 0 ∨ E[X2] =∞.

Ein analoges Resultat gilt für die Rückwärtsrekurrenzzeit:

P (U ′
t ≤ u) =


0 , u ≤ 0

t∫
t−u

(1− F (t− y))dR′(y) , 0 < u < t

1 , u ≥ t.
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Der stationäre Zustand der Rückwärtsrekurrenzzeit ist

lim
t→∞

P (U ′
t ≤ u) =


1

E[X2]

u∫
0

(1− F (x))dx , u ≥ 0 ∧ E[X2] <∞

0 , u < 0 ∨ E[X2] =∞.

Entsprechend gilt:

lim
t→∞

R′(t)−R′(t− h) =
h

E[X2]
und lim

t→∞

R′(t)
t

=
1

E[X2]
.

Stationäre Erneuerungsprozesse

Ein spezieller modifizierter Erneuerungsprozess ist der stationäre Erneuerungsprozess. Wählt
man F1(x) := P (V∞ ≤ x), so entspricht das der Betrachtungsweise, dass zur Zeit t = 0
der Erneuerungsprozess schon ,,unendlich” lange gelaufen ist. Man vermutet, dass in dem so
modifizierten Erneuerungsprozess die asymptotischen Aussagen von Anfang an gelten, dass
also der Prozess in diesem Sinne ,,stationär” ist.

17.47 Definition (stationär):
Ein modifizierter Erneuerungsprozess heißt stationär, wenn X1 und V∞ dieselbe Verteilung
besitzen.

17.48 Satz:
Es seien F (0) = 0, F keine Einpunktverteilung und E[X2] < ∞. Dann gilt: (S′n)n∈N0 ist
genau dann stationär, wenn

R′(t) =
t

E[X2]

für alle t ≥ 0 gilt.

Beweis:
Es gilt für die Laplace–Transformierte von R′:

R
′(θ) =

F1(θ)
1− F (θ)

.

Ebenso gilt nach Voraussetzung

F1(t) =
1

E[X2]

t∫
0

(1− F (y)) dy.

Es folgt

F1(θ) =

∞∫
0

eitθ dF1(t) =
1

E[X2]

∞∫
0

eitθ(1− F (t)) dt
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und mit partieller Integration

F1(θ) =
1

E[X2]

− ∞∫
0

1
iθ
eitθ d(1− F (t))− 1

iθ


=

1
E[X2]

 ∞∫
0

1
iθ
eitθ dF (t)− 1

iθ


=

1− F (θ)
iθE[X2]

.

Somit folgt insgesamt

R
′(θ) = − 1

iθE[X2]
=⇒ R′(t) =

t

E[X2]
.

�

17.49 Satz:
Für einen stationären Erneuerungsprozess gilt

P (V ′
t ≤ v) =


1

E[X2]

v∫
0

(1− F (x))dx , v ≥ 0

0 , v < 0.

Beweis:

P (V ′
t ≤ v) =

t+v∫
t

(1− F (t+ v − y)) dR′(y)

=
1

E[X2]

t+v∫
t

(1− F (t+ v − y)) dy

=
1

E[X2]

v∫
0

(1− F (x)) dx.

�

17.7 Die Überlagerung von Erneuerungsprozessen

Eine Überlagerung oder Superposition von Erneuerungsprozessen liegt vor, wenn n ≥ 2
unabhängige Erneuerungsprozesse (N (i)

t )t∈T , i = 1, . . . , n gleichzeitig laufen. Der Prozess
(NΣ

t )t∈T mit

NΣ
t :=

n∑
i=1

N
(i)
t (17.8)
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heißt der zugehörige Überlagerungsprozess. Verteilungen und Parameter des Überlagerungs-
prozesses werden fortan mit einem großen Sigma (Σ) gekennzeichnet. Die Überlagerung von
Erneuerungsprozessen ist deshalb von Interesse, weil man den Prozess der Anrufwiederholung
als Überlagerungsprozess von einfachen Erneuerungsprozessen auffassen kann. Eine besondere
Rolle spielt dabei der Poissonprozess.

17.50 Definition (Poissonprozess):
Ein Poissonprozess (Yt)t∈T ist ein Prozess mit unabhängigen Zuwächsen für den Y0 = 0 fast
sicher gilt und dessen Zuwächse (Yt − Ys) (0 ≤ s < t) eine Poissonsche Verteilung mit dem
Parameter Λt − Λs besitzen,

P ((Yt − Ys) = k) = (Λt − Λs) ·
ke − (Λt − Λs)

k!
(k ∈ N0; 0 ≤ s < t), (17.9)

wobei Λt eine nichtnegative, nichtabnehmende Funktion von t ist. (Yt)t∈T heißt homogen,
wenn Λt = λt (λ > 0) gilt, andernfalls inhomogen.

17.51 Satz:
Es sei (Xn)n∈N eine einfache Erneuerungsfolge mit Verteilungsfunktion F (x) := 1 − eλx für
x ≥ 0 und F (x) = 0 für x < 0. Der mit (Xn)n∈N assoziierte Erneuerungsprozess ist ein
homogener Poissonprozess mit Parameter λ.

Einen Beweis für diesen Satz findet man in der Monographie von J.W. Cohen (1969).

Die Bedeutung des Poissonprozesses für die Erneuerungs– und Warteschlangentheorie wird
durch den nachfolgenden Satz herausgestellt. Er besagt, dass bei der Überlagerung von un-
abhängigen, identischen einfachen Erneuerungsprozessen im Allgemeinen die Eigenschaft der
Einzelprozesse (z.B. die Unabhängigkeit und die Verteilungsgleichheit der Xn) verlorengehen.
Die mathematische Analyse, aber auch die Simulation der aus der Superposition beliebiger
Erneuerungsprozesse hervorgehenden Punktprozesse erfordern einen großen Aufwand. Außer-
dem ist dieses Thema in der Literatur noch nicht erschöpfend behandelt worden, so dass der
Gestaltung der Wiederholungsprozesse gewisse Grenzen gesetzt sind.

17.52 Satz:
Gegeben seien n ≥ 2 unabhängige, identische einfache Erneuerungsprozesse mit der Vertei-
lungsfunktion F (x). Es wird vorausgesetzt, dass F (x) keine Gitterverteilung ist. Dann gilt:
Der zugehörige Überlagerungsprozess ist genau dann ein Erneuerungsprozess, wenn die Ein-
zelprozesse (und damit auch der Überlagerungsprozess) homogene Poissonprozesse sind.

Beweis:

”⇒“: Die Aussage ist in einem Satz enthalten, der bei J.L. Doob (1967) aufgeschrieben ist.
Danach ist ein Erneuerungsprozess (allgemeiner noch ein Punktprozess) genau dann ein
homogener Poissonprozess, wenn für jede endliche Menge von punktfremden Intervallen
(ui, ti], i = 1, . . . , k gilt:

P

(
k⋂

i=1

(Nti −Nui = mi)

)
=

k∏
i=1

(λ(ti − ui))mi

mi!
· e−λ(ti−ui) (mi ∈ N0; λ > 0).

(17.10)

Die zu (17.10) analoge Formel für den Summenprozess (NΣ
t )t∈T kann wegen der Un-

abhängigkeit der Einzelprozesse leicht berechnet werden. Man stellt fest, dass man in
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(17.10) lediglich den Parameter λ durch nλ ersetzen muss. Also ist (NΣ
t )t∈T ein Pois-

sonprozess mit dem Parameter λΣ = nλ.

”⇐“: Da die Einzelprozesse identisch sind, werden ihre Parameter und Verteilungen im wei-
teren Text nicht indiziert. Es ist

V Σ
t = min

1≤k≤n
V

(k)
t ,

woraus
P
(
V Σ

t > v
)

= (P (Vt > v))n , v ≥ 0,

folgt. Es ist dann aber auch

1
E
[
XΣ

1

] · ∞∫
v

(
1− FΣ(y)

)
dy =

1
(E[X1])n

·

 ∞∫
v

(1− F (y)) dy

n

. (17.11)

In Gleichung (17.11) darf 1− FΣ(y) durch (1− F (y))n ersetzt werden, denn es gilt:

P
(
XΣ

1 > y
)

= P
(
N (1)

y = 0, . . . , N (n)
y = 0

)
= (P (X1 > y))n = (1− F (y))n

Differenziert man (17.11) nach v und potenziert beide Seiten mit 1/(n − 1), so erhält
man:

1− F (v) = ω ·
∞∫

v

(1− F (y)) dy, ω := n−1

√
n ·E

[
XΣ

1

]
/(E[X1])n. (17.12)

Aus (17.12) gewinnt man das Anfangswertproblem

d

dv
G(v) = −ω ·G(v), G(0) = 1, (17.13)

wobei G(v) := 1 − F (v) gesetzt wurde. Die Lösung von (17.13) aber ist G(v) = e−ωv.
Die Behauptung folgt jetzt aus Satz 17.51.

�

17.8 Abbrechende Erneuerungsprozesse

In den zurückliegenden Abschnitten wurde stets vorausgesetzt, dass die Lebensdauervertei-
lung F eine eigentliche Verteilungsfunktion darstellt (d.h. limt→∞ F (t) = 1). Für weitere
Zwecke erweist es sich als zweckmäßig, den Begriff des Erneuerungsprozesses etwas allgemei-
ner zu fassen und limt→∞ F (t) < 1 zuzulassen. In diesem Fall kann es vorkommen, dass der
Erneuerungsprozess nach einer zufälligen Zeit abbricht, d.h. das

sup
t∈R+

Nt <∞

gilt.
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17.53 Definition (rekurrent, transient, periodisch):
Es sei (Xn)n∈N eine (einfache) Erneuerungsfolge mit Lebensdauerverteilung F . (Xn)n∈N heißt

rekurrent, wenn lim
t→∞

F (t) = 1 ist,

transient, wenn lim
t→∞

F (t) < 1 ist,

periodisch, wenn F arithmetisch ist.

aperiodisch, wenn F arithmetisch ist mit d = 1.

Es wird
N := sup

t∈R
Nt

gesetzt, dann gilt

P (N = k) = [1− F (∞)] · F (∞)k (k = 0, 1, 2, . . .).

Die Größe
L := sup{Sn | Sn <∞}

wird als Lebensdauer eines transienten Erneuerungsprozesses bezeichnet.

17.54 Satz:
Es bezeichne (Sn)n∈N0 eine (einfache) Erneuerungsfolge mit Lebensdauerverteilung F und
Erneuerungsfunktion R. Dann gilt:

P (L ≤ t) = 1− F (∞) +R(t) · [1− F (∞)], t ∈ R+.

Beweis:

P (L > t) = P (L > t | t < X1 <∞) + P (L > t | X1 ≤ t)

=

∞∫
t

P (L > t | X1 = x) dF (x) +

t∫
0

P (L > t | X1 = x) dF (x)

=

∞∫
t

1 dF (x) +

t∫
0

P (L > t− x) dF (x)

= F (∞)− F (t) +

t∫
0

P (L > t− x) dF (x), t ∈ R+.

Die Lösung dieser Erneuerungsgleichung ist

P (L > T ) = F (∞)− F (t) +

t∫
0

[F (∞)− F (t− x)] dR(x)

= F (∞)− F (t) + F (∞) ·R(t)−
t∫

0

F (t− x) dR(x), t ∈ R+.
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Da die Erneuerungsfunktion der Gleichung

R(t) = F (t) + (F ∗R)(t), t ∈ R+,

bzw.
(F ∗R)(t) = R(t)− F (t), t ∈ R+,

genügt, erhält man

P (L > t) = F (∞)− F (t) + F (∞) ·R(t)−R(t) + F (t)
= F (∞) + [F (∞)− 1] ·R(t), t ∈ R+,

bzw.
P (L ≤ t) = 1− P (L > t) = 1− F (∞) + [1− F (∞)] ·R(t), t ∈ R+.

�
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Birkhäuser, Boston, 1992.
ISBN:0817635912

144



Kapitel 18

Regenerative stochastische Prozesse

Beobachtet man ein Warteschlangensystem (z.B. die Warteschlangen vor den Check–In–
Schaltern auf einem Flughafen oder vor den Fahrkartenschaltern in den Service–Zentren der
Bahn), so stellt man fest, dass die Systeme von Zeit zu Zeit immer wieder leerlaufen und
die Warteschlangen sich danach nach demselben Prinzip wie in den vorangegangenen Zyklen
entwickeln. Dieses Prinzip der steten Erneuerung wird in der Stochastik durch das Prinzip
der regenerativen Prozesse nachgebildet und ist der Schlüssel zu vielen praktischen Problem-
stellungen.

Schlüsselwörter: Filtration, Stoppzeit, regenerativer stochastischer Prozess, Re-
generationspunkte, Regenerationszyklen.
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18.1 Einleitung

In diesem Kapitel beschäftigen wir uns mit einer speziellen Klasse stochastischer Prozesse. Un-
ter einem stochastischen Prozess versteht man eine Familie Z = (Zt)t∈T von Zufallsvariablen
über einem gemeinsamen Wahrscheinlichkeitsraum (Ω,F, P ) mit Werten in einem Messraum
(E, E), wobei T eine nichtleere Indexmenge bezeichnet. In der Regel setzen wir T = N0 bzw.
T = R+ und bezeichnen Z entsprechend entweder als zeitdiskreten oder zeitstetigen Prozess.
Für jedes t ∈ T ist Zt als Funktion von ω (F, E)–messbar. Für festes ω ∈ Ω heißt die Funktion
t→ Zt(ω), t ∈ T , eine Realisierung oder Trajektorie von Z.

18.1 Definition (Filtration):
Es sei (Ω,F) ein Messraum. Eine Folge (Ft)t∈T von σ-Algebren mit Fs ⊂ Ft ⊂ F für alle
s, t ∈ T mit s < t heißt Filtration auf (Ω,F).

18.2 Definition (Stoppzeit):
Es sei (Ω,F, P, (Zt)t∈T ) ein stochastischer Prozess und (Ft)t∈T mit Ft := σ(Zs, s ∈ T ∩ [0, t]),
t ∈ T , seine kanonische Filtration. Eine Zufallsgröße τ : Ω → T ∪ {∞} heißt Stoppzeit bzgl.
(Ft)t∈T bzw. (Zt)t∈T , falls {τ ≤ t} ∈ Ft ∀ t ∈ T .

18.3 Definition (regenerativer Prozess):
Ein stochastischer Prozess Z = (Ω,F, P, (Zt)t∈T ) mit Werten in einem Messraum (E, E) heißt
regenerativer Prozess, falls es einen Erneuerungsprozess (Sn)n∈N0 mit den Lebensdauern (Zu-
wächsen) X1, X2, . . . gibt, so dass folgende Bedingungen erfüllt sind:

a) ((Zt+Sn)t∈T , (Xk)k>n) und ((Zt)t∈T∩[0,Sn), S0, S1, . . . , Sn) sind stochastisch unabhängig
für alle n ∈ N0.

b) Die Prozesse ((Zt+Sn)t∈T , (Xk)k>n), n ∈ N0 haben alle dieselbe Verteilung.

18.4 Bemerkung:
Die Definition 18.3 besagt, dass ein regenerativer stochastischer Prozess in aufeinanderfol-
gende Zyklen (Zt)t∈T∩[Sn−1,Sn), n ∈ N, zerfällt, die nicht nur identisch verteilt sondern auch
stochastisch unabhängig sind.

Insbesondere kann zu jedem Zeitpunkt t ∈ T und für jedes n ∈ N allein anhand der Kennt-
nis über Ft entschieden werden, ob das Ereignis {Sn ≤ t} eingetreten ist oder nicht. Die
Zeitpunkte (Sn)n∈N0 stellen also Stoppzeiten bzgl. Z dar und werden Regenerationspunkte
genannt. Das Intervall [Sn−1, Sn) bezeichnet man als n-ten Regenerationszyklus. Aufgrund
der besonderen Struktur eines regenerativen stochastischen Prozesses ist auch sofort klar,
dass mit (Zt)t∈T auch (f(Zt))t∈T ein regenerativer Prozess ist, sofern f : (E, E) → (E′, E ′)
messbar ist.

18.5 Satz:
Es sei Z = (Ω,F, P, (Zt)t∈R+) ein regenerativer Prozess mit Zustandsraum (R,B) und ein-
gebettetem Erneuerungsprozess (Sn)n∈N0. F bezeichne die Verteilungsfunktion von S1 und
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R = (R(t))t∈R+ die zu (Sn)n∈N0 gehörende Erneuerungsfunktion. Ferner sei ψA(t) := P (Zt ∈
A,S1 > t) ∀ A ∈ B und ∀ t ∈ R+. Dann gilt:

P (Zt ∈ A) = ΨA(t) +
∫

[0,t]

ψA(t− s) dR(s) ∀ A ∈ B und ∀ t ∈ R+.

Beweis:

P (Zt ∈ A) = P (Zt ∈ A,S1 > t) + P (Zt ∈ A,S1 ≤ t)
= P (Zt ∈ A,S1 > t) + P (Zt−S1 ∈ A)

= ψA(t) +

t∫
0

P (Zt−s ∈ A) dF (s) ∀ A ∈ B, t ∈ R+.

Die eindeutige Lösung dieser Erneuerungsgleichung liefert

P (Zt ∈ A) = ψA(t) +
∫

[0,t]

ψA(t− s) dR(s), A ∈ B, t ∈ R+.

�

18.2 Zeitstetige regenerative stochastische Prozesse

18.6 Satz:
Es sei Z ein zeitstetiger regenerativer Prozess mit Zustandsraum (R,B) und eingebettetem
Erneuerungsprozess (Sn)n∈N. Ist S1 nicht arithmetisch verteilt mit Erwartungswert E[S1] <
∞ und ist ΨA uneigentlich Riemann–integrierbar, dann gilt:

Zt
i.V.→ Z∗.

Beweis:
Satz 18.5 und der Fundamentalsatz der Erneuerungstheorie (Satz 17.38) besagen, dass

P (Z∗ ∈ A) = lim
t→∞

P (Zt ∈ A) =
1

E[S1]

∞∫
0

ΨA(s) ds ∀ A ∈ B

gilt, sofern ΨA direkt–Riemann–integrierbar ist. Zunächst gilt

ΨA(t) = P (Zt ∈ A,S1 > t) ≤ P (S1 > t) = 1− F (t), A ∈ B, t ∈ R+,

wobei F wieder die Verteilungsfunktion von S1 ist. Da 1−F (t) nichtnegativ, nicht wachsend
und wegen

E[S1] =

∞∫
0

(1− F (t)) dt <∞
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auch uneigentlich Riemann–integrierbar ist, ist 1−F (t) nach Satz 17.36 direkt–Riemann–in-
tegrierbar. Die direkte Riemann–Integrierbarkeit von ΨA folgt nun aus Satz 17.37. Es bleibt
zu zeigen, dass P (Z∗ ∈ A) eine Wahrscheinlichkeitsverteilung bildet. Dazu wird gezeigt, dass
P (Z∗ ∈ R) = 1 gilt:

P (Z∗ ∈ R) =
1

E[S1]

∞∫
0

ψR(s) ds =
1

E[S1]

∞∫
0

P (Zs ∈ R, S1 > s) ds

=
1

E[S1]

∞∫
0

(1− P (S1 ≤ s)) ds =
1

E[S1]
·E[S1] = 1.

�

Im Folgenden geht es um Aussagen über das Integral

t∫
0

Zs(ω)ds, ω ∈ Ω,

längs eines Pfades t→ Zt(ω) von (Zt)t∈R+ und den zugehörigen Erwartungswert

E

 t∫
0

Zs ds

 =
∫
Ω

 t∫
0

Zs(ω)ds

 dP (ω).

Wir fordern deshalb die Messbarkeit der Abbildung

Zt : R+ × Ω→ R+, (t, ω)→ Zt(ω)

bzgl. B+ ⊗ F und B+. Erfüllt (Zt)t∈R+ diese Bedingung, nennt man (Zt)t∈R+ messbar.

18.7 Lemma:
Es sei (Xn)n∈N eine Folge von stochastisch unabhängigen und identisch verteilten Zufalls-
größen über (Ω,F, P ) mit E[|Xn|] <∞ für alle n ∈ N. Dann gilt:

lim
n→∞

Xn

n
= 0 P -f.s.

Beweis:
Es sei F̃ (x) die Verteilungsfunktion von |Xn|. Dann gilt für alle ε > 0:

E[|Xn|] <∞ =⇒
∞∫
0

(1− F̃ (x)) dx <∞ =⇒
∞∑

n=1

(1− F̃ (nε)) <∞

⇐⇒
∞∑

n=1

P (|Xn| > nε) <∞ =⇒ P (|Xn| > nε) −−−→
n→∞

0

⇐⇒ P (|Xn| ≤ nε) −−−→
n→∞

1 ⇐⇒ |Xn|
n
−−−→
n→∞

0 P -f.s.

�
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Mit Hilfe von Lemma 18.7 kann man nun zeigen:

18.8 Satz:
Es sei Z = (Ω,F, P, (Zt)t∈R+) ein messbarer regenerativer Prozess mit dem zugehörigen Zu-
standsraum (R+,B+). Der eingebettete Erneuerungsprozess sei (Sn)n∈N0. S1 sei nicht arith-

metisch verteilt mit E[S1] <∞ und E

[
S1∫
0

Zs ds

]
<∞. Dann gilt:

lim
t→∞

1
t

t∫
0

Zs ds =

E

[
S1∫
0

Zs ds

]
E[S1]

P -f.s.

Beweis:
Wir definieren

Yk(ω) :=
∫

[Sk−1(ω),Sk(ω))

Zs(ω) ds ∀ ω ∈ Ω und ∀ k ∈ N.

Der zu (Sn)n∈N0 gehörende Zählprozess sei (Nt)t∈R+ . Dann gilt:

1
t

t∫
0

Zs ds =
1
t

SNt+1∫
0

Zs ds−
1
t

SNt+1∫
t

Zs ds

=
1
t

Nt+1∑
k=1

Yk −
1
t

SNt+1∫
t

Zs ds

=
Nt + 1
t
· 1
Nt + 1

Nt+1∑
k=1

Yk −
1
t

SNt+1∫
t

Zs ds, t ∈ R+.

Satz 17.41 besagt
Nt

t
→ 1

E[S1]
P − f.s.

und aufgrund des starken Gesetzes der großen Zahlen gilt

1
Nt + 1

Nt+1∑
k=1

Yk → E[Y1] P − f.s.

Es bleibt folglich zu zeigen, dass der Ausdruck t−1
SNt+1∫

t

Zs ds P -f.s. gegen 0 konvergiert. Es

ist aber
SNt+1∫

t

Zs ds ≤

SNt+1∫
SNt

Zs ds = YNt+1
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Nach Voraussetzung ist E[YNt+1] = E[Y1] <∞. Lemma 18.7 besagt, dass YNt+1

Nt+1 −→ 0 P.-f.s.
gilt. Aufgrund der Beziehung

Nt + 1
t
· YNt+1

Nt + 1
=
YNt+1

t

und der Voraussetzung E[S1] <∞ muss deshalb dasselbe auch für YNt+1

t gelten. �

18.9 Satz:
Es sei (Zt)t∈R+ ein messbarer regenerativer Prozess mit Zustandsraum (R,B) und einge-
bettetem Erneuerungsprozess (Sn)n∈N0. S1 sei nicht arithmetisch verteilt mit E[S1] < ∞.

Außerdem sei E

[
S1∫
0

f(Zs) ds

]
<∞ und f : R→ R sei (B,B)–messbar. Dann gilt

lim
t→∞

E[f(Zt)] = E

 S1∫
0

f(Zs) ds

 /E[S1] .

Beweis:
Es sei zunächst f ≥ 0 angenommen. Für ein beliebiges c > 0 sei f c := min{f, c}. Mit Hilfe
des Erneuerungsargumentes folgt

E[f c(Zt)] = E[f c(Zt), S1 > t] + E[f c(Zt), S1 ≤ t]

= E[f c(Zt), S1 > t] +

t∫
0

E[f c(Zt−s)] dF (s), t ∈ R+,

wobei F die Verteilungsfunktion von S1 bezeichnet. Da f c lokal beschränkt und S1 mit Wahr-
scheinlichkeit Eins endlich ist, existiert nicht nur E[f c(Zt), S1 > t] für alle t ∈ R+, sondern
außerdem ist E[f c(Zt), S1 > t] als Funktion von t auch direkt Riemann-integrierbar. Es folgt
deshalb aus dem Fundamentalsatz der Erneuerungstheorie, dass

lim
t→∞

E[f c(Zt)] =
1

E[S1]

∞∫
0

E[f c(Zs), S1 > s] ds <∞ (18.1)

gilt. Aufgrund des Satzes von Fubini kann man das Integral in (18.1) auch in der Form

∞∫
0

E[f c(Zt), S1 > t] dt =

∞∫
0

E
[
f c(Zt) · I{S1>t}

]
dt = E

 S1∫
0

f c(Zs) ds

 (18.2)

schreiben. Die Gleichungen (18.1) und (18.2) ergeben zusammen

lim
t→∞

E[f c(Zt)] = E

 S1∫
0

f c(Zs) ds

 /E[S1] .

Durch den Grenzübergang c → ∞ und dem Satz von der monotonen Konvergenz erhält
man die Aussage des Satzes 18.9 für beliebige nichtnegative messbare Abbildungen f . Mit
f = f+ − f− folgert man die Behauptung für beliebige messbare Abbildungen. �
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18.10 Bemerkung (Zeitmittel — Raummittel):
Die Kombination von Satz 18.8 und Satz 18.9 ergibt

lim
t→∞

1
t

t∫
0

Zs ds = E[Z∗] .

Dieses wichtige Ergebnis wird in der Literatur häufig unter dem Stichwort ”Zeitmittel gleich
Raummittel“ zitiert.

18.3 Zeitdiskrete regenerative stochastische Prozesse

Grundsätzlich lassen sich alle Ergebnisse über zeitdiskrete regenerative stochastische Prozesse
aus den Sätzen über zeitstetige regenerative stochastische Prozesse herleiten, indem man für
alle t ∈ R+ und k ∈ N0

Zt = Wk für t ∈ [k, k + 1)

vereinbart. Allerdings ist bei zeitdiskreten regenerativen stochastischen Prozessen zu beach-
ten, dass die Lebensdauerverteilung F (x) := P (X1 ≤ x) arithmetisch ist. Im Hinblick auf
Grenzwertbetrachtungen muss man insbesondere zwischen den Fällen d = 1 (aperiodischer
Fall) und d 6= 1 (periodischer Fall) unterscheiden.

18.11 Satz:
Es sei W := (Ω,F, P, (Wk)k∈N0) ein zeitdiskreter regenerativer stochastischer Prozess mit
Zustandsraum (R,B), und eingebettetem Erneuerungsprozess (Sk)k∈N0. Die zugehörige Er-
neuerungsfunktion sei (R(k))k∈N0. Ferner sei ψA(k) := P (Wk ∈ A,S1 > k) für k ∈ N0 und
A ∈ B. Dann gilt

P (Wk ∈ A) = ΨA(k) +
k∑

n=1

ΨA(k − n) · [R(n)−R(n− 1)], k ∈ N0, A ∈ B.

Beweis:
Es gilt

P (Wk ∈ A) = P (Wk ∈ A,S1 > k) + P (Wk ∈ A,S1 ≤ k)
= P (Wk ∈ A,S1 > k) + P (Wk−S1 ∈ A)

= ΨA(k) +
k∑

n=1

P (Wk−n ∈ A) · P (S1 = n), A ∈ B, k ∈ N0.

Die Lösung dieser diskreten Erneuerungsgleichung ist

P (Wk ∈ A) = ΨA(k) +
k∑

n=1

ΨA(k − n) · [R(n)−R(n− 1)] ∀ A ∈ B.

�
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18.12 Satz:
Es sei W := (Ω,F, P, (Wk)k∈N0) ein zeitdiskreter regenerativer stochastischer Prozess mit
Zustandsraum (R,B) und eingebettetem Erneuerungsprozess (Sk)k∈N0. Ist S1 arithmetisch
mit d = 1 und E[S1] <∞, dann gilt:

Wk
i.V.−→W ∗.

Beweis:
Aufgrund der Voraussetzung gilt

∞∑
n=0

ΨA(n) =
∞∑

n=0

P (Wn ∈ A,S1 > n) ≤
∞∑

n=0

P (S1 > n)

= E[S1] ∀ A ∈ B.

Damit lässt sich der Fundamentalsatz der Erneuerungstheorie für den arithmetischen Fall mit
d := 1 und c := 0 anwenden und man erhält

P (W ∗ ∈ A) = lim
k→∞

P (Wk ∈ A) =
1

E[S1]
·
∞∑

n=0

ΨA(n), A ∈ B.

Außerdem gilt

P (W ∗ ∈ R) =
1

E[S1]
·
∞∑

n=0

ΨR(n) =
1

E[S1]
·
∞∑

n=0

P (Wn ∈ R, S1 > n)

=
1

E[S1]
·
∞∑

n=0

P (S1 > n) =
1

E[S1]
·E[S1] = 1. �

18.13 Satz:
Es sei W := (Ω,F, P, (Wk)k∈N0) ein zeitdiskreter regenerativer stochastischer Prozess mit
Zustandsraum (R+,B+) und eingebettetem Erneuerungsprozess (Sk)k∈N0. Ist S! arithmetisch
mit d = 1, E[S1] <∞ und ist E

[∑S1−1
k=0 Wk

]
<∞, dann gilt:

lim
n→∞

1
n
·

n−1∑
k=0

Wk =
E
[∑S1−1

k=0 Wk

]
E[S1]

P -f.s.

Beweis:
(Nn)n∈N0 sei der mit (Sn)n∈N0 assoziierte Zählprozess. Mit derselben Argumentation wie im
Beweis von Satz 18.8 ergibt sich dann:

1
n
·

n−1∑
k=0

Wk =
1
n
·

SNn−1+1−1∑
k=0

Wk −
SNn−1+1−1∑

k=n

Wk

 .
Das elementare Erneuerungstheorem und das starke Gesetz der großen Zahlen besagen:

1
n
·

SNn−1+1−1∑
k=0

Wk =
Nn−1 + 1

n
· 1
Nn−1 + 1

·
Nn−1+1∑

k=1

Wk −→
E
[

S1−1∑
k=0

Wk

]
E[S1]

P -f.s.
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und 1
n

∑n−1
k=SNn−1

Wk strebt aufgrund der Abschätzung

SNn−1∑
k=n

Wk ≤
SNn−1+1−1∑
k=SNn−1

Wk

und Lemma 18.7 P -f.s. gegen 0. �

18.14 Satz:
Es sei W := (Ω,F, P, (Wk)k∈N0) regenerativer stochastischer Prozess mit dem Zustands-
raum (R,B) und eingebettetem Erneuerungsprozess (Sk)k∈N0. Ist S1 arithmetisch mit d = 1,
E[S1] <∞ und E

[∑S1−1
n=0 f(Wn)

]
<∞. Dann gilt

lim
k→∞

E[f(Wk)] =
E
[∑S1−1

n=0 f(Wn)
]

E[S1]
P -f.s.

Beweis:
Mit Hilfe des Erneuerungsarguments und des Fundamentalsatzes der Erneuerungstheorie de-
duziert man wie im zeitstetien Fall:

lim
k→∞

E[f c(Wk)] =
1

E[S1]
·
∞∑

n=0

E[f c(Wn, S1 > n)].

=
1

E[S1]
·
∞∑

n=0

E
[
f c(Wn) · I{S1>n}

]
=

1
E[S1]

·E

[
S1−1∑
n=0

f c(Wn)

]
.

Die weiteren Beweisschritte sind mit dem kontinuierlichen Fall identisch. �
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Kapitel 19

Instandhaltungsstrategien

Die Instandhaltung ist ein Teilgebiet der in Stochastik I eingeführten Zuverlässigkeitstheorie.
Sie beschäftigt sich mit der Untersuchung und Optimierung von Maßnahmen zur Erhaltung
bzw. Wiederherstellung der Funktionstüchtigkeit von Systemen. Es werden unterschiedliche
Strategien zur optimalen zeitlichen Planung von Instandhaltungsmaßnahmen betrachtet, de-
ren Effektivität anhand von Kriterien wie Kostenrate oder Verfügbarkeit verglichen werden.

Schlüsselwörter: vollständige Erneuerung, minimale Reparatur, Kostenrate,
Verfügbarkeit, altersunabhängige Erneuerung, altersabhängige Erneuerung, Blocker-
neuerung, prophylaktische Erneuerung, Havarieerneuerung.
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19.1 Einleitung

Zu den Aufgabenstellungen der Zuverlässigkeitstheorie gehören u.a. die Modellierung des Aus-
fallverhaltens und der Abnutzung von Systemen, sowie die Untersuchung und Optimierung
von Maßnahmen zur Erhaltung bzw. Wiederherstellung der Funktionstüchtigkeit von Syste-
men. Der erste Punkt wurde bereits in Stochastik I behandelt. Der Zweite führt auf die sog.
Instandhaltungstheorie, welche folgende Maßnahmen umfasst:

• Pflege und Wartung

• Inspektion, z.B. Überprüfung und Diagnose

• Instandsetzung

Der Schwerpunkt liegt in diesem Kapitel auf den Maßnahmen zur Instandsetzung einfacher
binärer Systeme, d.h. von Systemen mit den Zuständen intakt und ausgefallen. Man un-
terscheidet dabei zwischen prophylaktischer Instandsetzung (vorbeugende Maßnahmen) und
Havarieinstandsetzung (wiederherstellende Maßnahmen). Gesucht ist die optimale zeitliche
Planung solcher Vorgehensweisen, die durch unterschiedliche Strategien beschrieben und hin-
sichtlich der Größen Kostenrate und Verfügbarkeit auf ihre Effektivität untersucht werden.

Zunächst werden dafür einige Grundbegriffe aus der Zuverlässigkeitstheorie wiederholt:

19.2 Wiederholung der Zuverlässigkeit

19.1 Definition (Lebensdauer, Lebensdauerfunktion, Zuverlässigkeitsfunktion):
Als Lebensdauer einer Maschine oder Komponente wird die Zeit zwischen Inbetriebnahme und
Ausfall bezeichnet. Sie wird durch eine nichtnegative Zufallsgröße T beschrieben.
Die Lebensdauerfunktion sei die Verteilungsfunktion der Lebensdauer T , d.h.

F (t) := P (T ≤ t), t ∈ R+.

Mit Hilfe der Lebensdauerfunktion lässt sich die Überlebens- bzw. Zuverlässigkeitsfunktion
F (t) der Komponente als

F (t) := 1− F (t) = P (T > t), t ∈ R+

definieren.

19.2 Definition (Ausfallrate):
Es sei F eine stetige Verteilungsfunktion. Dann heißt

a(t) := lim
h→0+

1
h
P (t < T ≤ t+ h | T > t)

die Ausfallrate eines Bauteils mit der Lebensdauer T .
∆h · a(t) ist die Wahrscheinlichkeit dafür, dass eine Komponente nach Erreichen des Le-
bensalters t innerhalb der Zeitspanne ∆h ausfällt.
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19.3 Satz:
Es sei a(t) die Ausfallrate eines Bauteils mit stetiger Lebensdauerverteilung. Dann gilt für die
Zuverlässigkeitsfunktion:

F (t) = exp
(
−
∫ t

0
a(u) du

)
.

Neben der Ausfallrate ist die bedingte Restlebensdauer, d.h. die Lebensdauerverteilung unter
der Bedingung, dass das Bauteil bereits bis zum Zeitpunkt t0 überlebt hat, von Interesse.

19.4 Definition (Bedingte Restlebensdauer, bedingte Überlebenswahrscheinlichkeit):
Es sei

F t0(t) := P (T > t+ t0|T > t0) =
F (t+ t0)
F (t0)

=
1− F (t+ t0)

1− F (t0)

die bedingte Überlebenswahrscheinlichkeit ab dem Zeitpunkt t0 ∈ R+, d.h. die Verteilung der
Restlebensdauer unter der Annahme, dass das Bauteil bereits bis zum Zeitpunkt t0 ∈ R+

überlebt hat. Demgegenüber stellt

Ft0(t) := 1− F t0(t) = P (T < t+ t0|T > t0) =
F (t+ t0)− F (t0)

F (t0)

die bedingte Restlebensdauer dar.

Die betrachteten Lebensdauerfunktionen F (t) lassen sich in die parametrische und die nichtpa-
rametrische Klasse unterteilen. In der ersten Klasse werden die Lebensdauern durch bekannte
Verteilungen modellieren, wie z.B. Exponentialverteilung, Weibullverteilung oder logarithmi-
sche Normalverteilung. Die Lebensdauerverteilung ist dann durch die entsprechenden Para-
meter der gewählten Verteilungsfunktion charakterisiert. In der nichtparametrischen Klasse
wird die Verteilungsfunktion der Lebensdauern durch die Eigenschaften der Ausfallrate bzw.
der Überlebenswahrscheinlichkeit beschrieben.

19.5 Definition (IFR, DFR):
Eine Verteilungsfunktion F (t) heißt Increasing Failure Rate (IFR) Verteilung bzw.
Decreasing Failure Rate (DFR) Verteilung, wenn die bedingte Überlebenswahrscheinlichkeit
F t0(t) bei beliebigem, aber festem t > 0 monoton in t0 fällt bzw. in t0 wächst.

19.3 Einführung

Bei den weiteren Untersuchungen zu den verschiedenen Instandsetzungsmaßnahmen und Stra-
tegien wird davon ausgegangen, dass die folgenden allgemeinen Voraussetzungen erfüllt sind:

1. Der Übergang vom Arbeitszustand in den Ausfallzustand des Systems erfolgt sprung-
haft.

2. Es wird immer ein hinreichend langer Zeitraum untersucht, so dass Aussagen über
Grenzwerte getroffen werden können.

3. Falls nicht anders angebeben, wird davon ausgegangen, dass die Instandsetzungsmaß-
nahme für das System in vernachlässigbarer Zeit erfolgt.
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4. Nach einer Instandsetzungsmaßnahme geht das System sofort wieder in den Betriebs-
zustand über.

5. Bei den Lebensdauern wird eine IFR(Increasing Failure Rate)–Verteilung vorausgesetzt.

Die Maßnahmen zur Instandsetzung lassen sich wie folgt unterteilen:

19.6 Definition (totale Erneuerung, Havarieerneuerung, prophylaktische Erneuerung):
• Eine vollständige oder auch totale Erneuerung versetzt das System bezüglich seines

Ausfallverhaltens in den Neuzustand zurück. Wird bei Ausfall des Systems eine tota-
le Erneuerung durchgeführt, spricht man auch von Havarieerneuerung. Eine totale Er-
neuerung nach einer bestimmten Betriebsdauer τ , um einem Ausfall vorzubeugen, heißt
prophylaktisch.

• Eine minimale Reparatur bei einem Ausfall zum Zeitpunkt t versetzt das System bezüg-
lich seines Ausfallverhaltens in den Zustand unmittelbar vor dem Ausfall. Die Lebens-
dauerverteilung nach einer minimalen Reparatur lautet

Ft(x) =
F (t+ x)− F (t)

F (t)
.

Ft ist die Verteilungsfunktion der restlichen Lebensdauer eines Systems, dass bereits t
Zeiteinheiten gearbeitet hat.

Die in diesem Kapitel betrachteten Instandhaltungsstrategien basieren darauf, dass die be-
treffenden Systeme nach zufälligen oder vorher festgelegten Zeiträumen vollständig erneu-
ert werden. Die Betriebszeit kann demnach in Zyklen unterteilt werden. Im Folgenden be-
zeichne (Ti)i∈N0 diejenigen Zeitpunkte, zu denen das System vollständig erneuert wird. Die
Länge des i–ten Zyklus sei Yi := Ti − Ti−1, i ∈ N. Diese Zufallsgrößen sind unabhängig und
identisch verteilt.
Weiter sei (Zt)t∈R+ der Zustandsprozess des Systems. In diesem Kapitel werden nur binäre
Systeme betrachten, daher kann Zt lediglich zwei Werte annehmen. Es gilt Zt = 1, wenn das
System zum Zeitpunkt t in Betrieb, kurz up, ist und Zt = 0, wenn das System zum Zeitpunkt
t außer Betrieb, kurz down, ist.
Es lässt sich folgendes feststellen:

• (Zt)t∈R+ ist ein regenerativer Prozess mit den Regenerationspunkten (Ti)i∈N0 .

• Die Punkte (Ti)i∈N0 definieren einen gewöhnlichen Erneuerungsprozess.

Damit werden nun Funktionen für die Kostenrate, d.h. die Instandsetzungskosten pro Zeit-
einheit, und die Verfügbarkeit, also die Wahrscheinlichkeit für ausfallfreies Arbeiten zu einem
festen Zeitpunkt, bestimmt.
Es sei fk die Kostenfunktion des Systems in Abhängigkeit des Betriebszustandes, d.h. up oder
down. Somit sind die kumulativen Kosten Ci des i–ten Zyklus gegeben durch

Ci =
∫ Ti

Ti−1

fk(Zt)dt.
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Die zeitabhängige Kostenrate des Gesamtsystems lautet daher:

K(t)(ω) =
1
t

∫ t

0
fk(Zt(ω))dt.

Zur Erinnerung:

19.7 Satz (vgl. Satz 18.6):
Es sei Z ein regenerativer Prozess mit eingebettetem Erneuerungsprozess (Ti)i∈N0, dessen
Verteilungsfunktion nicht arithmetisch ist. Gilt E[T1] < ∞ und P (Zt ∈ A, T1 > t) ist
Riemann–integrierbar, so folgt Zt

i.V.−→ Z∗.

Die Voraussetzungen des Satzes sind hier erfüllt: Es liegt eine Riemann–integrierbare IFR–
Lebensdauerverteilung vor, somit ist E[T1] < ∞. Man kann hier also von einer Konvergenz
in Verteilung gegen eine stationären Prozess Z∗ ausgehen. Damit gilt für die stationäre Ko-
stenrate K:

1
t

∫ t

0
fk(Zt(ω̂))dt i.V.−→

∫
Ω
fk(Z∗(ω))dP (ω) =: K

für fast alle ω̂ ∈ Ω. Für t = Tn folgt

1
t

∫ t

0
fk(Zt)dt =

∑n
i=1Ci∑n
i=1 Yi

,

und es gilt fast sicher

lim
n→∞

1
n

∑n
i=1Ci

1
n

∑n
i=1 Yi

= K.

Falls also E[C1] <∞ und E[Y1] <∞ gilt, so gilt fast sicher

E[C1] = lim
n→∞

1
n

n∑
i=1

Ci, E[Y1] = lim
n→∞

1
n

n∑
i=1

Yi.

Damit kann die stationäre Kostenrate K wie folgt berechnet werden:

K =
E[C1]
E[Y1]

. (19.1)

Analog zur Kostenrate lässt sich eine Formel für die stationäre Verfügbarkeit herleiten:
Die Betriebszeit, d.h. up–time, im i–ten Regenerationszyklus Bi ist gegeben durch

Bi =
∫ Ti

Ti−1

Ztdt.

Die zeitabhängige Verfügbarkeit sei

V (t)(ω) =
1
t

∫ t

0
Zt(ω)dt.

Folgt man nun dem oben aufgezeichneten Rechenweg, so gelangt man zum Ergebnis für die
stationäre Verfügbarkeit:

V =
E[B1]
E[Y1]

. (19.2)

Mit den bisher erzielten Ergebnissen sollen nun spezielle Strategien zur Instandhaltung un-
tersucht werden. Man unterteilt die hier vorgestellten Strategien in drei Bereiche:
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1. Altersunabhängige Erneuerung, d.h. Instandsetzungsmaßnahmen werden nur bei Ausfall
ergriffen.

2. Altersabhängige Erneuerung, auch streng periodische Erneuerung genannt. Bei diesen
Strategien werden Instandsetzungsmaßnahmen sowohl bei Ausfall, als auch vorbeugend
nach einer gewissen Betriebsdauer τ durchgeführt.

3. Blockerneuerung, d.h. bei Ausfall und zu festen Zeiten werden Maßnahmen zur Instand-
setzung verlangt.

Die nachfolgende Darstellung ist stark an die Lehrbücher von F. Beichelt ,,Zuverlässigkeits–
und Instandhaltungstheorie”, Teubner, Stuttgart, 1993 und F. Beichelt/P. Franken ,,Zu-
verlässigkeit und Instandhaltung: Mathematische Methoden”, Hanser-Verlag, München, 1984
angelehnt.

19.4 Altersunabhängige Erneuerungen

Strategie 0 — Bei Ausfall Totalerneuerung

Abbildung 19.1:

Die erste Strategie, die hier untersucht werden soll, ist die totale Erneuerung beim Ausfall
des Systems, sie wird auch als Ausfallstrategie bezeichnet. In der Praxis kann dies wie folgt
aussehen: Steht ein Reservesystem zur Verfügung, so kann beim Ausfall des Systems ohne
nennenswerte Zeiteinbußen auf dieses umgeschaltet werden.
Das hier genutzte mathematische Modell ist der Erneuerungsprozess. kv stehe für die mittleren
Kosten für eine totale Erneuerung. E[X] bezeichne die mittlere Lebensdauer des Systems.
Nach Gleichung (19.1) gilt somit für die stationäre Kostenrate:

K =
kv

E[X]

Für die stationäre Verfügbarkeit gilt bei Vorhandensein eines Reservesystems V = 1, da das
Umschalten auf das Reservesystem in vernachlässigbarer Zeit erfolgt und somit das System
ständig in Betrieb ist.

Wird davon ausgegangen, dass kein Reservesystem zur Verfügung steht, und die totale Er-
neuerung somit eine mittlere Zeit dv beansprucht, so ist dies nur eine leichte Abwandlung. Es
gilt dann:

K =
kv

E[X] + dv
, V =

E[X]
E[X] + dv

.
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Strategie 0’ — Bei Ausfall minimale Reparatur

Abbildung 19.2:

Bei dieser Strategie führt man bei jedem Ausfall eine minimale Reparatur durch. Totale
Erneuerungen treten hier überhaupt nicht auf.
Es gibt hier im Allgemeinen keine Erneuerungspunkte und keine Zyklen. Für die Kostenrate
gilt allgemein

K = lim
t→∞

1
t
(,,mittlere Kosten im Intervall [0, t]”).

Zur Zeit t gibt für kleines ∆t folgender Wert die Wahrscheinlichkeit für einen Ausfall an:

a(t) ·∆t+ o(∆t).

Es entstehen Kosten km im Intervall [t, t+∆t] mit Wahrscheinlichkeit a(t)∆t+ o(∆t). Damit
ist a(t) die Dichtefunktion der Kosten und die mittleren Kosten im Intervall [0, t] ergeben sich
aus ∫ t

0
kma(s)ds = km

∫ t

0
a(s)ds := kmA(t).

Dabei heißt A(t) kumulative Ausfallrate. Es folgt:

K = lim
t→∞

1
t
kmA(t) = km lim

t→∞

A(t)
t
.

Für eine unbeschränkte Ausfallrate a(t) ist also auch K unbeschränkt. Bei im Alter quasi
“alterungsfreien” Systemen, d.h. für beschränkte a := limt→∞ a(t), gilt K = kma.

19.5 Altersabhängige Erneuerung

Strategie 1 — Bei Ausfall und nach Betriebsdauer t̃ erfolgt Totalerneuerung

Bei dieser Stratgie werden nicht nur sogenannte Havarieerneuerungen durchführt, d.h. totale
Erneuerungen bei Ausfall des Systems, sonderen auch prophylaktische Erneuerungen nach
einer bestimmten Betriebsdauer t̃, um so einem Ausfall vorzubeugen. Der Vorteil in der Praxis
liegt dabei darin, dass sich eine prophylaktische Erneuerung wesentlich besser planen lässt,
wenn man zum Beispiel Service–Teams anderer Firmen zur Instandsetzung benötigt. Bei der
prophylaktischen Erneuerung sind im Allgemeinen sowohl mittlere Kosten als auch mittlere
Erneuerungszeit niedriger als bei der Havarieerneuerung.
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Abbildung 19.3:

Es sei Xh die zufällige Zeit zwischen zwei benachbarten Havarieerneuerungen und Xp die
zufällige Zeit zwischen zwei prophylaktischen Erneuerungen. Y bleibt die zufällige Zeit zwi-
schen zwei Erneuerungen beliebigen Typs.
Xh, Xp und Y definieren jeweils einfache Erneuerungsprozesse.

Für einen Zeitpunkt t existiert ein n ∈ N0 mit nt̃ < t ≤ (n + 1)t̃. Damit ergibt sich die
Wahrscheinlichkeit, dass der Abstand zwischen zwei Havarieerneuerungen größer als t ist aus
der Wahrscheinlichkeit, dass das System n mal prophylaktisch erneuert wurde und dann die
Zeit t− nt̃ überlebt hat:

P (Xh > t) = P ({X1 > t̃} ∩ · · · ∩ {Xn > t̃} ∩ {Xn+1 > t− nt̃}) = (F (t̃))nF (t− nt̃).

Somit folgt

P (Xh ≤ t) = 1− (F (t̃))nF (t− nt̃).

Für die zufällige Zeit bis zur nächsten Totalerneuerung Y = min(X, t̃) gilt:

P (Y ≤ t) =
{
F (t) , 0 ≤ t < t̃

1 , t ≥ t̃ .

Damit ergeben sich:

E[Xh] =
∫ ∞

0
P (Xh > t)dt

=
∞∑

n=0

(F (t̃))n

∫ (n+1)t̃

nt̃
F (t− nt̃)dt

=
∞∑

n=0

(F (t̃))n

∫ t̃

0
F (t)dt

=
1

F (t̃)

∫ t̃

0
F (t)dt (19.3)

und

E[Y ] =
∫ t̃

0
F (t)dt (19.4)
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Es bezeichne N(t̃) = 1/E[Y ] die mittlere Anzahl von Erneuerungen je Zeiteinheit, d.h. die
Erneuerungsrate. Analog sei Nh(t̃) = 1/E[Xh] die Rate der Havarieerneuerungen und Np(t̃) =
1/E[Xp] die Rate der prophylaktischen Erneuerungen. Es gilt:

N(t̃) = Nh(t̃) +Np(t̃). (19.5)

Setzt man (19.3) und (19.4) in (19.5) ein, so folgt

E[Xp] =
1

F (t̃)

∫ t̃

0
F (t)dt. (19.6)

Für das Monotonieverhalten der Raten Nh(t̃) und Np(t̃) folgt aufgrund der angenommenen
IFR–Verteilung für die Lebensdauer:

19.8 Satz:
Für stetige Lebensdauerverteilungen F (t) vom Typ IFR gilt mit wachsendem t̃ > 0:

1. Nh(t̃) ist monoton steigend,

2. Np(t̃) ist monoton fallend.

Beweis:
Vgl. Beichelt/Franken, S. 103f. �

Optimierung der Kostenrate

Es seien kh die mittleren Kosten für eine Havarieerneuerung und kp die mittleren Kosten für
eine prophylaktische Erneuerung. Dann gilt für die Kostenrate:

K(t̃) = kh ·Nh(t̃) + kp ·Np(t̃)

=
kh · F (t̃) + kp · F (t̃)∫ t̃

0 F (t)dt
. (19.7)

19.9 Bemerkung:
Zur Gleichung (19.7) gelangt man auch, wenn man von K = E[K1] /E[Y1] ausgeht. Dabei ist
E[K1] = khF (t̃) + kpF (t̃).

Aus Gleichung (19.7) und obigem Satz sieht man, dass bei zunehmendem t̃ die durch Ausfälle
bzw. durch Havarieerneuerungen verursachten Kosten zunehmen, die Kosten für prophylak-
tische Erneuerungen jedoch zurückgehen. Gesucht ist nun ein optimales Erneuerungsintervall
t̃∗ um diese gegenläufigen Tendenzen auszugleichen.
Für das gesuchte optimale t̃∗ gilt K(t̃∗) ≤ K(t̃) für alle t̃ ∈ R+. Das Minimum von K wird
nun durch Differentation von (19.7) bestimmt:

dK

dt̃
=
khf(t̃)− kpf(t̃)∫ t̃

0 F (t)dt
− khF (t̃) + kpF (t̃)( ∫ t̃

0 F (t)dt
)
2
F (t̃).

Setzt man K ′ = 0 und beachtet, dass der Nenner immer größer ist als Null, so folgt:
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(kh − kp)f(t̃)
∫ t̃
0 F (t)dt = F (t̃)(F (t̃)(kh − kp) + kp)

⇐⇒ a(t̃)
∫ t̃
0 F (t)dt = F (t̃) + kp

kh−kp
.

Man setzt k := kp/kh < 1, da die Kosten für eine prophylaktische Erneuerung niedriger sind
als für eine Havarieerneuerung. Es ergibt sich die folgende zu lösende Gleichung:

a(t̃)
∫ t̃

0
F (t)dt− F (t̃) =

k

1− k
. (19.8)

Diese Gleichung ist nicht einfach aufzulösen. Mit Hilfe des folgenden Satzes können jedoch in
Satz 19.11 Aussagen über die Existenz einer Lösung getroffen werden.

19.10 Satz:
a(t̃)

∫ t̃
0 F (t)dt− F (t̃) ist monoton wachsend.

Beweis:
Es sei 0 ≤ x ≤ t1 < t2. Weil a(x)F (x) = f(x), und a(x) monoton wachsend ist, folgt

0 ≤ a(t1)F (x)− f(x) ≤ a(t2)F (x)− f(x).

Durch Integrieren ergibt sich

a(t1)
∫ t1

0
F (x)− f(x)dx ≤ a(t2)

∫ t1

0
F (x)− f(x)dx.

Durch Ausdehnen des Integrationsbereiches erhält man aufgrund der Nichtnegativität des
Integranden

a(t1)
∫ t1

0
F (x)− f(x)dx ≤ a(t2)

∫ t2

0
F (x)− f(x)dx.

�

19.11 Satz:
Es sei

lim
t̃→∞

a(t̃) >
1

E[X] (1− k)
, (19.9)

dann gibt es genau ein t̃∗ mit K(t̃∗) ≤ K(t̃) für alle t̃ > 0.

Beweis:
Betrachtez man die Gleichung (19.8) für t̃→∞ so ergibt sich:

lim
t̃→∞

a(t̃)
∫ t̃

0
F (t)dt− F (t̃) = lim

t̃→∞
a(t̃)E[X]− 1,

wenn also
lim
t̃→∞

a(t̃) ·E[X]− 1 >
k

1− k
gilt, so folgt die Behauptung. �
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19.12 Bemerkung:
Die Voraussetzung aus Satz 19.11 ist natürlich erfüllt, falls a(t) t→∞−→ ∞ gilt, die Ausfallrate
des Systems also immer größer wird, d.h. das System altert.

Die Kostenrate für das optimale t̃∗ lautet:

K(t̃∗)
(19.7)
=

(kh − kp)F (t̃∗) + kp∫ t̃∗

0 F (t)dt

(19.8)
=

(kh − kp)
[
a(t̃∗)

∫ t̃∗

0 F (t)dt− k
1−k

]
+ kp∫ t̃∗

0 F (t)dt

= (kh − kp)a(t̃∗) +

=0︷ ︸︸ ︷
−(kh − kp)

k

1− k
+ kp∫ t̃∗

0 F (t)dt

= (kh − kp)a(t̃∗) (19.10)

Optimierung der Verfügbarkeit

Bei einer Optimierung bezüglich der Verfügbarkeit des Systems wird wie folgt vorgegangen:
Es sei dh die mittlere Zeit, die für eine Havarieerneuerung benötigt wird und dp die mittlere
Zeit für eine prophylaktische Erneuerung. Wie zu Beginn dieses Teilkapitels angedeutet, kann
0 < dp < dh <∞ vorausgesetzt werden.
Die Betriebszeit des Systems in einem Zyklus ist Y := min(X, t̃). Die Zykluslänge L beträgt

L =
{
X + dh , min(X, t̃) = X (mit Wahrscheinlichkeit F (t̃))
t̃+ dp , min(X, t̃) = t̃ (mit Wahrscheinlichkeit F (t̃)).

Somit berechnet sich der Erwartungswert

E[L] = E
[
L | X ≤ t̃

]
· F (t̃) + E

[
L | X > t̃

]
· F (t̃)

=
(∫ t̃

0 xdF (x)
F (t̃)

+ dh

)
· F (t̃) + (t̃+ dp) · F (t̃)

=
∫ t̃

0
F (x)dx+ dhF (t̃) + dpF (t̃). (19.11)

Damit ergibt sich die stationäre Verfügbarkeit aus (19.2), (19.4) und (19.11):

V (t̃) =

∫ t̃
0 F (x)dx∫ t̃

0 F (x)dx+ dhF (t̃) + dpF (t̃)
. (19.12)

Das Problem besteht in der Maximierung von V (t̃). Hierzu nutzt man (19.7) und (19.8), da
1/V (t̃) − 1 und K(t̃) sich nur durch die Konstanten kh, kp und dh, dp unterscheiden. Das
Problem der Maximierung von V (t̃) ist demnach äquivalent zum Problem der Minimierung
von K(t̃).
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Das optimale t̃∗ für die Maximierung von V (t̃) lässt sich also durch das Lösen von (19.8) mit
k := dp/dh berechnen. Die Beziehung (19.9) sichert die Existenz der Lösung. Die zugehörige
maximale Verfügbarkeit beträgt somit:

V (t̃∗) =
1

1 + (dh − dp)a(t̃∗)
. (19.13)

19.6 Blockerneuerungen

Wendet man Strategie 1 an, sind die Zeitpunkte, zu denen prophylaktische Massnahmen statt-
finden, zu Beginn des Arbeitsprozesses nicht genau bekannt. Die geplanten Erneuerungen nach
jeweils t̃ Einheiten werden lediglich mit der Wahrscheinlichkeit F (t̃) durchgeführt. Erfordern
prophylaktische Erneuerungen eine sorgfältige Vorbereitung, ist diese Strategie daher nicht ge-
eignet. Statt dessen greift man auf die nachfolgend beschiebenen Blockerneuerungen zurück,
bei denen die Zeitpunkte für prophylaktische Erneuerungen zu Arbeitsbeginn des Systems
bereits fest vorgegeben sind.
Im Folgenden werden dieselben Bezeichnungen wie bei Strategie 1 benutzt.

Strategie 2 — Bei Ausfall und zu festen Zeiten erfolgt Totalerneuerung

Abbildung 19.4:

Bei dieser Strategie erfolgt bei Ausfall und zu fixierten Zeiten nt̃, n ∈ N, eine vollständige
Erneuerung des Systems. Der Betriebsprozess zerfällt in statistisch äquivalente Zyklen [nt̃, (n+
1)t̃]. In einem Zyklus läuft ein gewöhnlicher Erneuerungsprozess mit Erneuerungszeit X d= F .
Es sei R(t) die Erneuerungsfunktion, also der Erwartungswert für eine Havarieerneuerung.
Dann betragen die mittleren Kosten pro Zyklus

E[C] = kp + khR(t̃).

Die Kostenrate ist dementsprechend

K(t̃) =
kp + khR(t̃)

t̃
. (19.14)

Eine optimale Zykluslänge t̃∗ ergibt sich aus der Gleichung
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dK
dt̃

= khR′(t̃)
t̃
− kp+khR(t̃)

t̃2
= 0

⇐⇒ t̃R′(t̃)−R(t̃) = kp

kh
, (19.15)

dabei ist R′(t̃) die Erneuerungsdichte. Existiert ein optimales Erneuerungsintervall t̃∗ dann
beträgt die minimale Kostenrate nach (19.14) und (19.15)

K(t̃∗) = khR
′(t̃∗).

Der Nachteil dieser Strategie ist offensichtlich: Es werden unter Umständen recht neue Systeme
erneuert.

Strategie 2’ — Nur zu festen Zeiten erfolgt eine Totalerneuerung

Abbildung 19.5:

Diese Strategie ist der vorherigen ähnlich, es wird jedoch auf die totale Erneuerung bei einem
Ausfall verzichtet. Das System wird demnach nur zu den festen Zeiten nt̃, n ∈ N, erneuert.
Fällt das System in der Zeit zwischen diesen Erneuerungszeitpunkten aus, steht es bis zur
nächsten Wiederherstellung still. Bei einem solchen Stillstand entsteht jedoch ein finanzieller
Verlust, der durch eine monoton wachsende Funktion v(t) beschrieben wird. Zusätzlich wird
angenommen, dass v differenzierbar ist und v(0) = 0 gilt. Dann ergibt sich die Kostenrate
aus (19.1):

K(t̃) =
kp +

∫ t̃
0 v(t̃− t)dF (t)

t̃
.

Eine optimale Zykluslänge t̃∗ erhält man durch Lösen folgender Gleichung:∫ t̃

0
t̃v′(t̃− t)− v(t̃− t)dF (t) = kp.

Es existiert eine Lösung, falls limt→∞ v(t)/t =∞. Die optimale Kostenrate ist dann

K(t̃∗) =
∫ t̃∗

0
v′(t̃∗ − t)dF (t).

Es sind noch viele weitere Modifikationen möglich, die grundsätzlich auf den Strategien 2 und
2’ beruhen. Zum Beispiel:

167



Kapitel 19. Instandhaltungsstrategien

• Ausgefallene Systeme werden durch gebrauchte ersetzt, zum Beispiel Systemen aus
früheren prophylaktischen Erneuerungen.

• Ist das System zum Zeitpunkt nt̃ noch jünger als ein vorher festgelegter Wert T , 0 <
T < t̃, so wird die prophylaktische Erneuerung auf den Zeitpunkt (n+ 1)t̃ verschoben.

• Das System wird zu festgelegten Zeitpunkten nt̃ vollständig erneuert. Bei einem Ausfall
wird im Allgemeinen eine Totalerneuerung durchgeführt. Sollte das System jedoch im
Intervall [nt̃− T, nt̃], 0 < T < t̃, ausfallen, so wird auf die Totalerneuerung verzichtet.

Die meisten der vorgestellten Strategien beschränken sich auf die Planung vollständiger Er-
neuerungen. Die folgenden Strategien enthalten nun auch die Option der minimalen Repara-
tur:

Strategie 3 — Bei Ausfall minimale Reparatur und zu festen Zeiten Tota-
lerneuerung

Abbildung 19.6:

In dieser Strategie wird bei einem Ausfall eine minimale Reparatur durchgeführt. Das gesamte
System wird zusätzlich zu festen Zeiten nt̃, n ∈ N0, total erneuert.
Die vollständigen Erneuerungen erzeugen Zyklen konstanter Länge t̃. Die mittleren Kosten
je Zyklus setzen sich zusammen, unter zu Hilfenahme der Ergebnisse von Strategie 0’, aus
den mittleren prophylaktischen Kosten je Zyklus und den Kosten einer minimalen Reparatur
multipliziert mit der kumulierten Ausfallrate:

E[C] = kp + km ·A(t̃).

Es folgt die Kostenrate

K(t̃) =
kp + kmA(t̃)

t̃
,

und ein optimales t̃∗ ergibt sich wieder durch Nullsetzen von dK/dt̃:

t̃a(t̃)−A(t̃) =
kp

km
. (19.16)

Die optimale Kostenrate lautet somit
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K(t̃∗) = km · a(t̃∗).

Bezüglich der Verfügbarkeit ergibt sich folgendes: Sind die Zeiten für eine vollständige Er-
neuerung dp und eine minimale Reparatur dm nicht vernachlässigbar klein, so gilt für die
Verfügbarkeit des Systems:

V (t̃) =
t̃

t̃+ dmA(t̃) + dp
.

Das optimale t̃∗ ist, wie bereits in Strategie 1 beschrieben, die Lösung der Gleichung (19.16)
mit dp/dm statt kp/km. Es ergibt sich die maximale Verfügbarkeit

V (t̃∗) =
1

1 + dma(t̃∗)
.

Strategie 4 — Bei Ausfall minimale Reparatur und bei erstem Ausfall nach
fester Zeit Totalerneuerung

Abbildung 19.7:

Bei dieser Strategie wird bei einem Ausfall im Allgemeinen eine minimale Reparatur durch-
geführt. Beim ersten Ausfall nach einer festen Zeit nt̃, n ∈ N0, jedoch gibt es eine Totaler-
neuerung.
Die Kosten für einen Zyklus sind analog zu Strategie 3:

E[C] = kp + km ·A(t̃).

Die Zykluslänge ist in diesem Fall aber

E[Y ] = t̃+ E[Xt̃]

mit Xt̃ als der Restlebensdauer des Systems nach t̃ Zeiteinheiten. Für den Erwartungswert
der Restlebensdauer gilt:

E[Xt̃] =
1

F (t̃)

∫ ∞

0
F (t̃+ x)dx =: r(t̃).
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Es ergibt sich damit die Kostenrate

K(t̃) =
kp + km ·A(t̃)

t̃+ r(t̃)
.

Das optimale t̃∗ ist die Lösung der folgenden Gleichung, die man wieder durch Differenzieren
und Nullsetzen der Kostengleichung erhält:(

A(t̃) +
kp

km
− 1
)
r(t̃) = t̃.

Im Falle der Existenz eines t̃∗ beträgt die optimale Kostenrate demzufolge:

K(t̃∗) =
km

r(t̃∗)
.

Neben den hier Vorgestellten sind noch weitere Strategien anwendbar. Zum Beispiel:

• Ausgefallene Systeme werden nach Strategie 4 vollständig wiederhergestellt, mit dem
Zusatz, dass eine Erneuerung spätestens t̃′ Zeiteinheiten nach der letzten Erneuerung
stattfindet.

• Nach den ersten n−1 Ausfällen wird das System jeweils durch eine minimale Reparatur
instand gesetzt und erst nach dem n - ten Ausfall erfolgt eine vollständige Erneuerung.

• Ein System kann durch verschiedene Typen ausfallen. Dementsprechend unterschiedli-
che Erneuerungsstrategien werden zur Instandsetzung angewendet.

Literatur zu Kapitel 19

Folgende Bücher werden als begleitende Literatur zu diesem Kapitel des Skriptes empfohlen:

• A.O. Allen:
Probability, Statistics and Queueing Theory,
Academic Press, London, 2nd. Edition, 1990.
ISBN: 0120510510

• F. Beichelt:
Zuverlässigkeits– und Instandhaltungstheorie,
Teubner, Stuttgart, 1993.
ISBN: 3519029855

• F. Beichelt/P. Franken:
Zuverlässigkeit und Instandhaltung: Mathematische Methoden,
Hanser-Verlag, München, 1984.
ISBN: 3446139060
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Kapitel 20

Monte–Carlo–Simulation

Stochastische Systeme, die aufgrund ihrer Komplexität keiner analytischen Untersuchung
zugänglich sind, können experimentell mit Hilfe von Monte–Carlo–Simulationen untersucht
werden. Dabei kann es sich z.B. um die Ausbreitung einer ansteckenden Krankheit, den Mate-
rialfluss durch ein Produktionssystem oder die zeitliche Entwicklung von Börsenkursen han-
deln. Will man solche Systeme in der Praxis erforschen, um Abhängigkeiten herauszufinden
oder Vorhersagen zu treffen, muss man umfangreiche Experimente durchführen, die kostspie-
lig und langwierig sind. Oft scheitern solche Experimente aber auch daran, dass das das reale
System überhaupt nicht manipuliert werden kann, oder die Zeit nicht ausreicht, um alle Un-
tersuchungen durchzuführen. Ziel der Simulation ist es daher, die realen Abläufe durch ein
stochastisches Experiment auf dem Computer zu ersetzen. Wozu die Natur Tage und Jahre
braucht, kann auf diese Weise in wenigen Sekunden oder Minuten nachgestellt werden. Als
Ergebnis erhält man Daten, die mit Hilfe statistischer Verfahren ausgewertet werden können.

Schlüsselwörter: Buffonsches Nadelexperiment, Zufallszahlen, linearer Kon-
gruenzgenerator, Periodenlänge, Diskrepanz, Gitterverteilung, nicht–gleichverteilte
Zufallszahlen, Inversionsmethode, Verwerfungsmethode, Monte–Carlo–Integration,
,,Hit or Miss”-Methode, Sample Mean-Methode, stochastische Simulation von War-
teschlangen.
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20.1 Einleitung

Das Buffon’sche Nadelexperiment ist möglicherweise das älteste Monte-Carlo-Experiment, das
in der wissenschaftlichen Literatur dokumentiert ist. Es dient der näherungsweisen Berech-
nung der Zahl π.
Auf eine ebene Fläche werden Parallelen im Abstand L gezeichnet. Es wird eine Nadel der
Länge l < L auf die Fläche geworfen und nach der Wahrscheinlichkeit gefragt, dass die Nadel
eine der Parallelen schneidet.

L
y

�

�

� sin�·

Es ist 0 ≤ y ≤ L, 0 ≤ ϕ ≤ π (aus Symmetriegründen).

Ω = {(y, ϕ) ∈ R2|0 ≤ y ≤ L; 0 ≤ ϕ ≤ π}
I(Ω) = π · L

Die Nadel schneidet genau dann eine Parallele, wenn sie sich in den Positionen (y, ϕ) mit
y ≤ l · sinϕ befindet.

⇒ A = {(y, ϕ) ∈ R2|o ≤ y ≤ L, 0 ≤ ϕ ≤ π, y ≤ l · sinϕ}

�

�

L

y

�

y( )=� � sin�·

I(A) =

π∫
0

l · sinϕ dϕ = [−l · cosϕ]π0

= −l · cosπ − (−l) · cos 0 = l + l = 2l
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⇒ P (A) =
I(A)
I(Ω))

=
2l
πl

entsprechend

rh(A) =
I(A)
I(Ω))

≈ 2l
πl

⇒ π ≈ 2l
rh(E) · L

.

Man erzeuge sich auf Ω gleichverteilte Tupel (y, ϕ) und frage ab, ob y ≤ l · sinϕ ist.

Da man in der Praxis nicht immer Nadeln fallen lassen oder Würfel werfen kann, stellt sich
die Frage, wie man auf einem Computer auf algorithmischem Weg Zahlenfolgen generieren
kann, die vorgegebenen Wahrscheinlichkeitsverteilungen genügen (im Fall des Buffon’schen
Nadelproblems z.B. auf einem Rechteck gleichverteilte Tupel und ein auf [0, 2π] gleichverteilter
Winkel).

Algorithmen zur Erzeugung von Zufallszahlen werden Zufallszahlengeneratoren genannt. Man
unterscheidet zwei Arten von Zufallszahlengeneratoren:

• Generatoren echter Zufallszahlen:
Echte Zufallszahlen lassen sich mit Hilfe von Computern nur schwer erzeugen, da Com-
puterprogramme immer deterministisch ablaufen. Zur Erzeugung echter Zufallszahlen
werden oft physikalische Experimente verwendet (thermisches Rauschen bzw. Span-
nungsschwankungen in bestimmten Bauteilen, radioaktiver Zerfall, in Form von stati-
schem Rauschen aufgenommene elektromagnetische Wellen, usw.).

Echte Zufallszahlen werden besonders in der Kryptographie benötigt, da für sie gilt,
dass aus den ersten n Zahlen nie die n+ 1-te Zahl vorhergesagt werden kann.

• Pseudo-Zufallszahlen Generatoren:
Diese Generatoren erzeugen streng genommen keine wirklichen Zufallszahlen, sondern
nur Zahlenfolgen, die gewisse Eigenschaften von Zufallszahlen aufweisen. Meist wird
eine bestimmte Verteilung nachgebildet. So erfüllen beispielsweise schon die Zahlen

a+ 0 · b− a
n

, a+ 1 · b− a
n

, . . . , a+ (n− 1) · b− a
n

, a+ n · b− a
n

die Eigenschaft auf [a, b] gleichmäßig verteilt zu sein, dennoch sind diese Zahlen alles
andere als zufällig.

Für die meisten Simulationsanwendung genügt es, wenn die Zahlen pseudo-zufällig sind.
Daher werden in diesem Kapitel nur Pseudo-Zufallszahlen Generatoren behandelt.

Die Erzeugung von Pseudo-Zufallszahlen erfolgt in zwei Schritten:

1. Zunächst werden auf [0, 1) gleichverteilte Pseudo-Zufallszahlen erzeugt. Dafür wird übli-
cherweise die in diesem Abschnitt behandelte lineare Kongruenzmethode verwendet.

2. Danach werden die Zahlen so transformiert, dass sie als Realisierungen einer vorgegebe-
nen Zufallsvariable und Wahrscheinlichkeitsverteilung angesehen werden können. (Diese
Transformationen werden im nächsten Abschnitt behandelt.)
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20.2 Erzeugung gleichverteilter Zufallszahlen

Die gebräuchlichsten Algorithmen zur Erzeugung gleichverteilter Zufallszahlen basieren auf
der von D.H. Lehmer und A. Rotenberg vorgeschlagenen linearen Kongruenzmethode. Aus-
gehend von einem Startwert x0 ∈ N0 werden ganze Zahlen xn nach der Vorschrift

xn+1 ≡ a · xn + b (mod m) (20.1)

berechnet. Die Brüche
un :=

xn

m
(n = 0, 1, 2, . . . )

werden dann als Stichprobe einer auf [0, 1) gleichverteilten Zufallsvariable verwendet. Der
Modul m, der Multiplikator a, das Inkrement b sowie der Startwert x0 sind hierbei vorzu-
gebende nichtnegative ganze Zahlen mit 0 ≤ a, b, x0 < m. Der Kongruenzgenerator heißt
gemischt, wenn b 6= 0 ist, andernfalls heißt er multiplikativ. Die Spezifikation eines linearen
Kongruenzgenerators erfolgt kurz durch das Quadrupel (m,a, b, x0).

20.1 Bemerkung:
Um die Zahlen u0, u1, . . . als Realisierung von stochastisch unabhängigen auf [0, 1) gleichver-
teilten Zufallsvariablen U0, U1, . . . mit der gemeinsamen Verteilungsfunktion

F (x) :=


0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

,

Abbildung 20.1: Verteilungsfunktion F (x) der Gleichverteilung auf [0, 1]

dem Erwartungswert

E[U ] =

∞∫
−∞

x dF (x) =

1∫
0

x · 1 dx =
x2

2

∣∣∣∣1
0

=
1
2

und der Varianz

Var[U ] =

∞∫
−∞

(x−E[U ])2 dF (x) =
1
12

auffassen zu können, müssen eine Reihe von Bedingungen erfüllt sein, die man durch geeignete
Manipulationen der Parameter a, b und x0 herbeizuführen versucht.
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Zunächst lässt sich feststellen, dass Zufallszahlen, die auf einer Menge {0, 1
m , . . . ,

m−1
m } ⊂ [0, 1)

gleichverteilt sind, für m → ∞ gegen eine Gleichverteilung auf [0, 1) konvergieren. Deshalb
reicht es für viele Anwendungen aus, einen Zufallszahlengenerator zu verwenden, der für ein
hinreichend großes m auf {0, 1

m , . . . ,
m−1

m } ⊂ [0, 1) gleichverteilte Zufallszahlen liefert.

20.2 Satz:
Es sei Xm eine auf der Menge M := {0, 1

m , . . . ,
m−1

m } ⊂ [0, 1) gleichverteilte Zufallsvariable
und Fm die zugehörige Verteilungsfunktion. Dann gilt

lim
m→∞

Fm(x) = F (x) ∀ x ∈ R

mit

F (x) :=


0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1.

Beweis:
Die zu Xm gehörende Verteilungsfunktion lautet

Fm(x) =


0, x < 0
m−1∑
k=0

I[0,x]

(
k
m

)
· 1

m , x ≥ 0.

Mit k
m ≤ x ⇐⇒ k ≤ x ·m und den Eigenschaften der Gaußklammer (ganzzahliger Anteil)

gilt für x ∈ [0, 1]:

Fm(x) =
m−1∑
k=0

I[0,x]

( k
m

)
· 1
m

= bx ·mc · 1
m

=
x ·m− {x ·m}

m
−→

m→∞
x.

(Dabei ist {x} := x− bxc.) �

Gesucht ist damit also ein Zufallszahlengenerator, der auf einer Menge obiger Form gleich-
verteilte Zufallszahlen liefert.

Als Nächstes wird man verlangen, dass die aufeinander folgenden Zahlen u0, u1, . . . als Reali-
sierungen stochastisch unabhängiger Zufallsvariablen angesehen werden können.

20.3 Bemerkung (Stochastische Unabhängigkeit und n–dimensionale Diskrepanz):
Da für stochastisch unabhängige auf [0, 1) gleichverteilte Zufallsvariablen U0, U1, . . . unter
anderem

P (a1 < Ui ≤ b1, . . . , an < Ui+n−1 ≤ bn)
= [F (b1)− F (a1)] · [F (b2)− F (a2)] · . . . · [F (bn)− F (an)]

=
n∏

k=1

(bk − ak)
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für 0 ≤ ai ≤ bi ≤ 1 gilt, wird man verlangen, dass die n–dimensionale Diskrepanz

sup
k=1,...,n

0<ak≤bk<1

|{(ui, . . . , ui+n−1) | ak ≤ ui+k−1 < bk}| −m ·
n∏

k=1

(bk − ak)

für alle n ≥ 1 möglichst klein ist.
Diese Bedingung ist gleichbedeutend damit, dass die aufeinanderfolgenden n-Tupel
(ui, . . . , ui+n−1) den Einheitswürfel gleichmäßig ausfüllen. Eine (unendliche) Zahlenfolge, die
diese Forderung für alle n exakt erfüllt, wird vollständig gleichverteilt genannt. Deswegen
wird man nun verlangen, dass ein Zufallszahlengenerator nicht nur auf [0, 1) gleichverteil-
te Zufallszahlen produziert, sondern auch über eine ausgewogene Gitterstruktur im [0, 1)n

verfügt.

Da die Größen xn nur Werte zwischen 0 und m− 1 annehmen können, liefert jede Rekursion
der Form (20.1) zwangsläufig eine periodische Zahlenfolge, wobei auch noch eine gewisse
Vorperiode auftreten kann.

20.4 Definition (Periodenlänge):
Es sei (m,a, b, x0) ein linearer Kongruenzgenerator. Die kleinste natürliche Zahl
L := L(m, a, b, x0), für die es ein i0 gibt derart, dass

xi+L = xi für alle i ≥ i0
gilt, heißt die Periodenlänge des Generators. Es gilt immer L ≤ m.

Um eine möglichst feine Unterteilung des Einheitswürfels [0, 1)n zu erzielen, ist es folglich
notwendig, dass der Generator eine möglichst große Periodenlänge aufweist. Die nachfolgenden
Beispiele zeigen, dass die Periodenlänge ganz wesentlich von der Wahl der Parameter a und
x0 abhängt.

20.5 Beispiel:
Im Falle des Generators

xi+1 ≡ xi + 3 (mod 11) (20.2)

erhält man unabhängig von der Wahl des Anfangswerts x0 jedesmal die maximale Peri-
odenlänge L = 11:

x0 = 1: 1, 4, 7, 10, 2, 5, 8, 0, 3, 6, 9, 1, . . .
x0 = 2: 2, 5, 8, 0, 3, 6, 9, 1, 4, 7, 10, 2, . . .
x0 = 3: 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 0, 3, . . .

...
Wählt man dagegen in der Rekursion (20.2) anstelle von a := 1 den Multiplikator a := 10,
erhält man

x0 = 0: 0, 3, 0, . . .
x0 = 1: 1, 2, 1, . . .
x0 = 2: 2, 1, 2 . . .
x0 = 3: 3, 0, 3, . . .
x0 = 4: 4, 10, 4, . . .

...
(Siehe auch Mathematica-Notebook zu diesem Beispiel.)
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Aussagen darüber, wie die maximale Periodenlänge zu erzielen ist, trifft der Satz 20.9, für
dessen Beweis aber zunächst einige Hilfsmittel aus der Algebra und der Zahlentheorie benötigt
werden.

20.6 Satz:
Es sei m = m

′ ·m′′
mit m

′
,m

′′ ∈ N und ggT(m
′
,m

′′
) = 1. Die Periodenlänge L des durch

(m,a, b, x0) bestimmten linearen Kongruenzgenerators ist das kleinste gemeinsame Vielfache
der Periodenlänge L

′
, L

′′
der durch (m

′
, a, b, x0) bzw. durch (m

′′
, a, b, x0) bestimmten linearen

Kongruenzgeneratoren, d.h.
L = kgV(L

′
, L

′′
).

Beweis:
Sei (yi)i∈N die (nicht modulo m reduzierte) Folge mit

yi = ayi−1 + b, y0 = x0.

Ferner seien (x
′
i)i∈N und (x

′′
i )i∈N die von den linearen Kongruenzgeneratoren zu (m

′
, a, b, x0)

und (m
′′
, a, b, x0) erzeugten Folgen in {0, 1, . . . ,m′} bzw. {0, 1, . . . ,m′′}. Nach der Definition

der Periodenlängen gilt für alle natürlichen Zahlen n

mod m
′

mod m
′

yi+nL′ ≡ x
′

i+nL′
= x

′
i ≡ yi für alle i ≥ i′0

und

mod m
′′

mod m
′′

yi+nL′′ ≡ x
′′

i+nL′′
= x

′′
i ≡ yi für alle i ≥ i′′0 .

Damit gibt es c
′
i,n, c

′′
i,n ∈ Z mit

yi+nL′ = yi + c
′
i,n ·m

′
und yi+nL′′ = yi + c

′′
i,n ·m

′′

für alle i ≥ i0 := max(i
′
0, i

′′
0). Setzt man nun

L0 := kgV(L
′
, L

′′
) = n

′ · L′ = n
′′ · L′′ für n

′
, n

′′ ∈ N,

dann gilt für alle i ≥ i0:

yi + c
′
i,n ·m

′
= yi+n′L′ = yi+L0 = yi+n′′L′′ = yi + c

′′

i,n′′
·m′′

.

Wegen ggT(m
′
,m

′′
) = 1 ist m

′
ein Teiler von c

′′

i,n′′
, d.h. c

′′

i,n′′
= ci ·m

′
mit ci ∈ N. Somit folgt

yi+L0 = yi + ci ·m
′ ·m′′

= yi + ci ·m für alle i ≥ i0.

Damit findet man xi+L0 ≡ xi mod m und wegen 0 ≤ xj < m dann auch xi+L0 = xi für alle
i ≥ i0. Da L minimal gewählt ist, gilt L0 = kgV(L

′
, L

′′
) ≥ L. Deshalb muss L ein Teiler von

L0 sein, andernfalls würde sich ein Widerspruch zur Minimaleigenschaft der Periodenlänge
ergeben. Andererseits erhält man entsprechend aus

yi+L = xi + ci ·m = xi + ci ·m
′ ·m′′

für alle i ≥ i0

mit ci ∈ N, dass x
′
i+L = x

′
i und entsprechend x

′′
i+L = x

′′
i . Also sind L

′
und L

′′
und damit

auch L0 = kgV(L
′
, L

′′
) Teiler von L. Insgesamt gilt daher L = kgV(L

′
, L

′′
). �
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20.7 Bemerkung:
Durch wiederholte Anwendung der Gleichung 20.1 erhält man

xi = ai · x0 + (ai−1 + . . .+ a+ 1)b (mod m), (20.3)

d.h.

xi =

{
x0 + ib (mod m) , für a = 1,

aix0 + ai−1
a−1 · b (mod m) , für a 6= 1.

(20.4)

Wegen Satz 20.6 werden also im Folgenden die Ausdrücke ai − 1 (mod pe), wobei p eine
Primzahl und e eine natürliche Zahl ist, näher zu betrachten sein.

20.8 Satz:
Für eine Primzahl p und ein natürliche Zahl e mit pe > 2 gilt:
Aus

x ≡ 1 (mod pe) und x 6≡ 1 (mod pe+1)

folgt
xp ≡ 1 (mod pe+1) und xp 6≡ 1 (mod pe+2).

Beweis:
Wegen der Voraussetzungen ist x = 1 + qpe mit einer ganzen Zahl q, die kein Vielfaches von
p ist. Damit gilt also

xp = (1 + qpe)p =
p∑

i=0

(
p

i

)
· (qpe)i

= 1 + qpe+1 ·
[
1 +

1
p

(
p

2

)
qpe +

1
p

(
p

3

)
q2p2e + . . .+

1
p

(
p

p

)
qp−1p(p−1)e

]
.

Hierbei sind für 2 ≤ i < p die Binomialkoeffizienten(
p

q

)
=
p(p− 1) . . . (p− i+ 1)

i!

durch p teilbar, da die Binomialkoeffizienten stets ganze Zahlen sind und hier im Zähler die
Primzahl p > i auftritt. Daher sind für alle i mit 2 ≤ i < p die Terme

1
p

(
p

i

)
qi−1p(i−1)e

durch p(i−1)e teilbar. Der letzte Term ist qp−1p(p−1)e−1, der durch p teilbar ist, da wegen
pe > 2 die Ungleichung (p− 1)e > 1 gilt. Also bekommen wir für xp die Darstellung

xp = 1− qpe+1 · (1 + np) mit n ∈ N,

d.h.
xp ≡ 1 (mod pe+1) und xp 6≡ 1 (mod pe+2).

�
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20.9 Satz:
Der Lehmer–Generator hat genau dann die Periodenlänge m, wenn die folgenden Bedingungen
erfüllt sind:

a) b ist relativ prim zu m, d.h. b - m,

b) a− 1 ist Vielfaches von p für alle Primteiler p von m, und

c) a− 1 ist Vielfaches von 4, falls 4 Teiler von m ist.

Folgerung:
Insbesondere hat damit jeder Lehmer–Generator der Form xn+1 ≡ xn + b mod m mit b - m
die maximale Periodenlänge m.

Vorbemerkung zum Beweis:
Wegen Satz 20.6 hat der lineare Kongruenzgenerator mit Modul m genau dann die maximal
mögliche Periodenlänge m, wenn die entsprechenden linearen Kongruenzgeneratoren mit den
Primzahlpotenzen aus der Primfaktorenzerlegung pe1

1 · p
e2
2 · . . . · p

ek
k von m jeweils die maximal

mögliche Periodenlänge pej

j besitzen.
Daher kann im Folgenden angenommen werden, dass m = pe gilt, wobei p eine Primzahl und
e eine natürliche Zahl ist.
Der Beweis wird für beide Fälle a = 1 und a > 1 getrennt durchgeführt.
Für a = 1 hat der Generator wegen Gleichung (20.4) genau dann die Periodenlänge pe, wenn
b teilerfremd zu pe ist. Also ist in diesem Fall die Behauptung des Satzes richtig.
Es bleibt der Satz für den Fall a > 1 zu beweisen. Es wird gezeigt:

,,⇒”: Besitzt der Generator maximale Periodenlänge, so gelten die Bedingungen a) - c).

,,⇐”: Gelten die Bedinungenen a) - c), so hat der Generator maximale Periodenlänge.

Beweis:
,,⇒”: Da die Periodenlänge pe nur dann erreicht wird, wenn jede der möglichen ganzen Zahl

x mit 0 ≤ x < pe in der Periode auftritt, kann o.B.d.A. auch noch x0 = 0 angenommen
werden. Also ergibt sich aufgrund der Gleichung (20.4) für das n–te Element der Folge
die Darstellung

xn ≡
an − 1
a− 1

· b (mod pe). (20.5)

• Nachweis von Bedinungen a):
An obiger Gleichung erkennt man, dass ggT(b, pe) jedes xn teilt und daher gleich
1 sein muss. Die Bedingung aus Satz 20.9 a) ist also notwendig.

• Nachweis von Bedinungen b):
Weiterhin erkennt man aus (20.5), dass die Periodenlänge genau dann pe ist, wenn
der kleinste Wert von k mit xk = x0 = 0 gerade k = pe ist.
Um die Notwendigkeit der Bedingungen b) und c) aus Satz 20.9 zu zeigen, sei also
k = pe vorausgesetzt. Dann gilt mit (20.5) insbesondere

ape − 1
a− 1

· b ≡ 0 (mod pe). (20.6)
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Angenommen, es gelte a 6≡ 1 (mod p); dann ist 20.6 äquivalent zu

ape − 1 ≡ 0 (mod pe).

Hieraus folgt insbesondere
ape ≡ 1 (mod p).

Aber nach dem Satz von Fermat gilt ap ≡ a (mod p), woraus

ape ≡ ape−1 ≡ . . . ≡ ap ≡ a (mod p)

und damit a ≡ 1 (mod p) folgt. Dieser Widerspruch zur Annahme zeigt, dass die
Bedingung b) notwendig ist.

• Nachweis von Bedinungen c):
Um die Notwendigkeit der Bedingung c) zu überprüfen, wird angenommen, dass
p = 2 ist. Dann ist wegen a) das Inkrement b ungerade. Wäre jetzt der Multiplikator
a gerade, so wären alle xj für j ∈ N ungerade, was nicht sein kann. Es bleibt also
noch zu zeigen, dass auch a ≡ 3 (mod 4) zum Widerspruch führt. In diesem Falle
hätte man a ≡ 1 (mod 2) und a 6≡ 1 (mod 22), also mit Satz 20.8

a2 ≡ 1 (mod 22) und a2 6≡ 1 (mod 23).

Man rechnet aber sofort nach, dass a2 ≡ 9 ≡ 1 (mod 23) gilt, was den gewünsch-
ten Widerspruch liefert. Also ist auch die Bedingung c) notwendig und damit die
Richtung ,,⇒” des Satzes bewiesen.

,,⇐”: Gesucht ist der kleinste Wert n, so dass xn = x0 ist, d.h.

(an − 1)(x0(a− 1) + b)
a− 1

≡ 0 (mod m).

Nach den Voraussetzungen a) und b) ist x0(a−1)+b relativ prim zum. Es wird demnach
der kleinste Wert n gesucht, so dass gilt:

an − 1
a− 1

≡ 0 (mod m).

Es wird gezeigt, dass dieser kleinste Wert n gleich dem Modul m = pe ist.

Da die Bedingung b) des Satzes erfüllt ist, lässt sich schreiben:

a = 1 + kpf , k 6 | p, k 6= 0, f ∈ N.

pf ist demnach die maximale Potenz von p, die in a− 1 enthalten ist, d.h.

a ≡ 1 (mod pf ) und a 6≡ 1 (mod pf+1).

Im Fall m = p = 2 sind die Bedingungen a) - c) trivialerweise hinreichend.

Sei nun p > 2 oder f > 1. Dann ist auch pf > 2 und damit Satz 20.8 anwendbar. Man
erhält dann für alle natürlichen Zahlen g:

apg ≡ 1 (mod pf+g) und apg 6≡ 1 (mod pf+g+1).
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Daher gelten:

apg − 1
a− 1

≡ 0 (mod pg) und
apg − 1
a− 1

6≡ 0 (mod pg+1)

bzw.
apg − 1
a− 1

≡ 0 (mod pg) und
apg−1 − 1
a− 1

6≡ 0 (mod pg)

und insbesondere für g = e und g = e− 1

ape − 1
a− 1

≡ 0 (mod pe) und
ape−1 − 1
a− 1

6≡ 0 (mod pe).

Damit hat der lineare Kongruenzgenerator die maximale Periodenlänge pe, und folglich
sind die Bedingungen a) - c) in Satz 20.9 auch hinreichend.

�

20.10 Bemerkung:
In den Bedingungen von Satz 20.9 a) - c) kommt der Startwert x0 nicht vor. Also erhält man
für jeden Startwert x0 mit 0 ≤ x0 < m gemäß der Rechenvorschrift (20.1) eine reinperiodische
Folge mit maximaler Periodenlänge m, wenn die Bedingungen a)-c) von Satz 20.9 erfüllt
sind. Daher bezeichnet man in diesem Fall die Gleichung (20.1) auch ohne Angabe von x0

als linearen Kongruenzgenerator. Durch die Wahl von x0 bestimmt man dabei lediglich, an
welcher Stelle man in der Periode beginnt.

20.11 Beispiel:
Es sei xn+1 ≡ 5xn + 1 mod 16. Damit ergibt sich folgende Rekursion:

1 → 6 → 15 → 12 → 13 → 2 → 11 → 8
↑ ↓
0 ← 3 ← 10 ← 5 ← 4 ← 7 ← 14 ← 9

Trägt man die aufeinanderfolgenden Tupel (1, 6), (6, 15), (15, 12), . . . in ein Koordinatensy-
stem ein (siehe Abbildung 20.2), so stellt man fest, dass sie auf nur 4 Hyperebenen zu liegen
kommen.

Abbildung 20.2: Darstellung der Tupel (xn, xn+1)
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Gitter und Gitterbasen

Um zu guten Gleichverteilungen in [0, 1)n zu gelangen, muss man deshalb die Anzahl paralleler
Hyperebenen, auf denen die aufeinanderfolgenden Tupel liegen, und deren Abstand zueinander
untersuchen. Dabei spielt die Menge

Tn := {~ui := (ui, ui+1, . . . , ui+n−1)|i = 0, 1, 2, . . . ,m− 1}

der aufeinanderfolgenden n–Tupel eine besondere Rolle. Der Einfachheit halber wird Tn zu
der Menge

Gn := {u+ z|u ∈ Tn, z ∈ Zn}

in alle Koordinatenrichtungen mod 1 periodisch fortgesetzt. Für die linearen Kongruenz-
generatoren stellt die Menge Gn ein Gitter bzw. die Vereinigungsmenge von endlich vielen
verschiedenen Gittern dar.

Für die weitere Betrachtung soll zunächst der Begriff der Gitterbasis eingeführt werden:

20.12 Definition (aufgespanntes Gitter, Gitterbasis):
Es seien ~g1, . . . , ~gn n linear unabhängige Vektoren im Rn. Die Menge

G := {~g ∈ Rn : ~g =
n∑

i=1

zi~gi : zi ∈ Z, 1 ≤ i ≤ n}

wird das von ~g1, . . . , ~gn aufgespannte Gitter genannt; ~g1, . . . , ~gn wird als Gitterbasis bezeichnet.

20.13 Bemerkung:
Zu einem Gitter gibt es verschiedene Basen, die das Gitter erzeugen. Durch eine Basistransfor-
mation mit einer unimodularen Matrix, d.h. mit einer ganzzahligen Matrix U mit detU = ±1,
erhält man aus einer Gitterbasis wieder eine solche. Jedoch ist |det(~g1, . . . , ~gn)| unabhängig
von der betrachteten Gitterbasis ~g1, . . . , ~gn.

20.14 Beispiel (Natürliches Gitter):
Die Punkte im Rn (als Vektoren ausgefasst) mit ganzzahligen Koordinaten bilden ein Gitter,
das von den Einheitsvektoren (der Orthonormalbasis des Rn) erzeugt wird. Dieses Gitter wird
auch als natürliches Gitter bezeichnet.

Zu einem durch (m,a, b, x0) bestimmten gemischten Kongruenzgenerator sei für eine natürli-
che Zahl n

Vn := {~x = (xi, . . . , xi+n−1)T : xj ≡ axj−1 + b (mod m), i < j < i+ n, 0 ≤ i < m}

die Menge von allen erzeugten Punkten ~x; diese liegen im n-dimensionalen Würfel [0,m)n. Es
werde die Menge Vn zu der unendlichen Menge

Gn := {~g = ~x+m~z : ~x ∈ Vn, z ∈ Zn} (20.7)

periodisch mit Periode m fortgesetzt. Mit dieser Bezeichnung gilt der folgende Satz.
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20.15 Satz:
Der durch (m,a, b, x0) bestimmte lineare Kongruenzgenerator habe die maximale Perioden-
länge m. Dann bildet die in (20.7) definierte Menge Gn für alle x0 mit 0 ≤ x0 < m ein um
den Vektor

~g0 := b(0, 1, 1 + a, . . . , 1 + a+ . . .+ an−2)T

verschobenes Gitter mit der Gitterbasis

~g1 := (1, a, . . . , an−1)T ,

~g2 := (0,m, 0, . . . , 0)T ,

...
~gn := (0, 0, . . . , 0,m)T .

Beweis:
Zu zeigen: Gn := {g = x+mz|x ∈ Vn, z ∈ Zn} stellt das beschriebene Gitter dar.

1. Alle Punkte von Gn liegen auf dem im Satz definierten Gitter.

2. Alle Gitterpunkte lassen sich als Punkte aus der Menge Gn darstellen.

• Zu 1.
Da nach Voraussetzung der Generator die maximale Periodenlänge m hat, werden für
jedes x0 mit 0 ≤ x0 < m alle Zahlen µ mit µ ∈ {0, 1, . . . ,m − 1} erzeugt. Analog zur
Gleichung (20.3) erhält man für den k-ten Nachfolger von xi

xi+k ≡ ak · xi + b · (1 + a+ . . .+ ak−1) (mod m). (20.8)

Daher besteht Gn für alle x0 aus den Punkten ~g der Form

~g = (µ, aµ+ b, . . . , akµ+ b(1 + a+ . . .+ ak−1), . . . , an−1µ

+b(1 + a+ . . .+ an−2))T +m · (z1, . . . , zn)T

= (0, b, . . . , b(1 + a+ . . .+ an−2))T + µ(1, a, . . . , an−1)T +m · (z1, . . . , zn)T ,

wobei µ von 0 bis m − 1 variiert und z1, . . . , zn alle ganzen Zahlen durchlaufen. Also
lässt sich jeder Punkt von Gn in der Form

~g = ~g0 + µ~g1 + z1(m, 0, . . . , 0)T + z2~g2 + . . .+ zn~gn (20.9)

und wegen
(m, 0, . . . , 0)T = m~g1 − a~g2 − . . .− an−1~gn (20.10)

als
~g = ~g0 + (µ+ z1m)~g1 + (z2 − z1a)~g2 + . . .+ (zn − z1an−1)~gn (20.11)

mit 0 ≤ µ < m und z1, . . . , zn ∈ Z darstellen. Also liegen alle Punkte von Gn auf dem
in der Behauptung des Satzes beschriebenen Gitter.

• Zu 2.
Es bleibt zu zeigen, dass sich umgekehrt auch jeder Punkt

~g′ = ~g0 + z′1~g1 + z′2~g2 + . . .+ z′n~gn, z′1, . . . , z
′
n ∈ Z,
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in der Form (20.11) darstellen lässt. Dies ist aber mit

z1 :=
⌊
z′1
m

⌋
, µ := z′1 − z1m, z2 := z′2 + z1a, . . . , zn := z′n + z1a

n−1 (20.12)

erfüllt. Wegen det(~g1, . . . , ~gn) = mn−1 sind die Vektoren ~g1, . . . , ~gn linear unabhängig
und erzeugen ein Gitter mit dem Gittervolumen mn−1.

�

Der Nachteil dieser Beschreibung ist, dass die Basisvektoren für ein solches Gitter nicht ein-
deutig sind. Dies führt zu dem im Folgenden definierten Begriff der reduzierten Basis von
Minkowski. Dabei beschreiben die Basisvektoren gerade das kleinste in das Gitter einge-
schriebene Parallelogramm. Die Bestimmung dieser reduzierten Basis ist relativ aufwendig.
Es liefert jedoch ein weiteres Mass für die Güte eines Gitters.

20.16 Definition (Minkowski–reduzierte Basis):
Eine Gitterbasis ~e1, . . . , ~en heißt Minkowski–reduziert, wenn jeder Vektor ~ek die kürzeste Länge
unter allen Vektoren der Form zkgk + . . .+ zngn, zi ∈ Z, ggT(z1, . . . , zn) = 1 hat.

Auch die Minkowski–reduzierten Basisvektoren eines Gitters sind nicht eindeutig bestimmt.
Doch lässt sich zeigen, dass die von zwei Minkowski–Basen aufgespannten Parallelepipede
stets kongruent sind. Da die Vektoren einer Minkowski–Basis aufgrund der Definition der
Grösse nach geordnet sind, kann man zur Beurteilung der Gitterstruktur den sogenannten
Beyer–Quotienten heranziehen.

20.17 Definition (Beyer–Quotient):
Der Beyer–Quotient qn ist definiert durch

qn :=
|~e1|
|~en|

mit ~e1 als dem kürzesten und ~en als dem längsten Gitter–Basisvektor.

Liegt der Beyer–Quotient nahe bei 1, so bedeutet dies, dass alle Basisvektoren nahezu gleich
lang sind. Wenn ausserdem alle Winkel zwischen je zwei Basisvektoren annähernd 90◦ sind, so
kann davon ausgegangen werden, dass die Punkte des Gitters den Einheitswürfel gleichmässig
ausfüllen. Von einem guten Zufallszahlengenerator wird man deshalb verlangen, dass seine
Beyer–Quotienten qn für möglichst viele n nahe bei 1 liegen.

20.3 Erzeugung nichtgleichverteilter Zufallszahlen

Nichtgleichverteilte Zufallszahlen werden durch geeignete Transformation aus auf [0, 1) gleich-
verteilter Zufallszahlen gewonnen. Viele dieser Verfahren basieren auf der sogenannten Um-
kehrmethode und dem Transformationssatz für Dichten.

Um die Umkehrmethode einführen zu können, wird zunächst der Begriff der Pseudo–Inversen
benötigt.
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20.18 Definition (Pseudo–Inverse):
Es sei g : R→ R eine monoton nichtfallende rechtsseitig stetige Funktion und es seien

α := inf{g(x) | x ∈ R} und β := sup{g(x) | x ∈ R}.

Dann ist auf dem offenen Intervall (α, β) die Pseudo-Inverse g−1 von g durch

g−1(y) := inf{x ∈ R | g(x) ≥ y}, α < y < β,

erklärt.

20.19 Satz (Eigenschaften der Pseudo-Inversen):
Es sei g : R → R eine monoton nichtfallende rechtsseitig stetige Funktion und g−1 ihre
Pseudo-Inverse. Dann gilt:

a) g−1 ist auf (α, β) monoton nichtfallend und linksseitig stetig.

b) Es gilt g(g−1(y)) ≥ y für alle α < y < β.
Ist g in g−1(y) stetig, so gilt g(g−1(y)) = y für alle α < y < β.

c) Es gilt g−1(g(x)) ≥ x für alle α < g(x) < β.
Ist g−1 in g(x) stetig, so gilt g−1(g(x)) = x für alle α < g(x) < β.

d) Es gilt: y ≤ g(x) ⇔ g−1(y) ≤ x für α < g(x), y < β.

Beweis:
Übung. �

20.20 Satz (Umkehrmethode):
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und U : Ω → R eine auf dem Intervall [0, 1]
Rechteckverteilte (gleichverteilte) Zufallsvariable. Ferner sei Q ein Wahrscheinlichkeitsmaß
auf B mit Verteilungsfunktion F . Die Pseudo-Inverse von F sei F−1. Dann besitzt die für
alle ω ∈ Ω durch

X(ω) :=
{
F−1(U(ω)) , U(ω) ∈ (0, 1)

0 , sonst

definierte Zufallsvariable X : Ω→ R die Verteilung PX = Q.

Beweis:
Zunächst wird gezeigt, dass X messbar ist. Bezugnehmend auf Definition 20.18 ist α := 0
und β := 1. Aus der linksseitigen Stetigkeit von F−1 erhält man:

X−1({0}) = U−1
((
F−1

)−1 ({0})
)
∪ U−1 ((−∞, 0] ∪ [1,∞)) .

Wegen (F−1)−1({0}) ∈ (0, 1) ∩B und U−1 ((−∞, 0] ∪ [1,∞)) ∈ B ist X−1({0}) ∈ F . Sofern
0 6∈ B ⊂ B ist, ergibt sich wegen (F−1)−1(B) ∈ (0, 1) ∩B auch

X−1(B) = U−1
(
(F−1)−1(B)

)
∈ F.

Mit Hilfe von Satz 20.19 d) schließt man weiter:

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x) für 0 < F (x) < 1,

wobei P (U 6∈ (0, 1)) = 0 ist. �
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20.21 Beispiel (Rechteck–verteilte Zufallsvariablen):
Es sei U eine auf dem Intervall [a, b], a < b, Rechteck–verteilte Zufallsvariable. Die zu U
gehörende Verteilungsfunktion lautet:

F (x) :=


0 , x < a

,
x−a
b−a , a ≤ x < b

,
1 , x ≥ b.

Offensichtlich ist
F−1(y) = y(b− a) + a für 0 < y < 1.

Hieraus folgt: Ist U eine auf [0, 1] gleichverteilte Zufallsvariable, dann ist X := U(b − a) + a
eine auf [a, b] gleichverteilte Zufallsvariable.

20.22 Beispiel (Exponentiell verteilte Zufallsvariablen):
Für die Verteilungsfunktion F einer mit dem Parameter λ exponentiell verteilten Zufallsva-
riablen gilt:

F (x) :=
{

1− e−λx , x ≥ 0
0 , x < 0.

Die Umkehrfunktion lautet

F−1(y) = − 1
λ

ln(1− x) für 0 < y < 1.

Hieraus folgt: Ist U eine auf [0, 1] gleichverteilte Zufallsvariable, dann ist X := − 1
λ ln(1− U)

eine mit dem Parameter λ > 0 exponentiell–verteilte Zufallsvariable. Da wegen

P (1− U ≤ x) = P (U ≥ 1− x) = P (U > 1− x) = 1− (1− x) = x

mit U auch 1−U auf [0, 1] gleichverteilt ist, ist auch X := − 1
λ ln(U) eine mit dem Parameter

λ > 0 exponentiell verteilte Zufallsvariable.

20.23 Beispiel (Cauchy–verteilte Zufallsvariablen):
Für die Dichte f einer mit den Parametern α > 0 und β > 0 Cauchy–verteilten Zufallsvaria-
blen gilt:

f(x) :=
β

π[β2 + (x− α)2]
, x ∈ R.

Die zugehörige Verteilungsfunktion ist

F (x) :=
1
2

+ π−1 arctan
(
x− α
β

)
, x ∈ R,

(vgl. Stochastik I Kapitel 7.3). Die zugehörige Inverse lautet

F−1(y) = α+ β tan
(
π

[
y − 1

2

])
= α− β

tan(πy)
, 0 < y < 1.

Mit anderen Worten: Ist U auf [0, 1] gleichverteilt, dann ist

X := α− β

tan(πU)

Cauchy–verteilt mit den Parametern α > 0 und β > 0.
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20.24 Beispiel (Weibull–verteilte Zufallsvariablen):
Für die Dichte f einer mit den Parametern λ > 0 und β > 0 Weibull–verteilten Zufallsvaria-
blen gilt:

f(x) :=

 λ · β · xβ−1 · e−λxβ
, 0 ≤ x <∞

0 , x < 0.

Die zugehörige Verteilungsfunktion lautet

F (x) :=
{

1− e−λxβ
, x ≥ 0

0 , x < 0.

Die zu F Inverse ist

F−1(y) =
(
− 1
λ

ln(1− y)
) 1

β

für 0 < y < 1.

Mit anderen Worten: Ist U eine auf [0, 1] gleichverteilte Zufallsvariable, dann ist

X :=
(
− 1
λ

ln(1− U)
) 1

β

Weibull–verteilt mit den Parametern λ > 0 und β > 0.

20.25 Beispiel (Bernoulli–verteilte Zufallsvariablen):
Es seiX eine Bernoulli–verteilte Zufallsvariable mit P (X = a) = p und P (X = b) = 1−p, a <
b. X hat die Verteilungsfunktion

F (x) :=


0 , x < a
p , a ≤ x < b
1 , x ≥ b.

Die Pseudo-Inverse lautet

F−1(y) =
{
a , 0 < y ≤ p
b , p < y ≤ 1.

Bernoulli-verteilte Zufallszahlen erzeugt man also, indem man zunächst auf [0, 1) gleichver-
teilte Zufallszahlen erzeugt und dann entscheidet: Fällt u in das Intervall (0, p] setzt man
x = a, fällt u in das Intervall (p, 1], setzt man x = b.

20.26 Beispiel (Geometrisch-verteilte Zufallsvariablen):
Gesucht ist die Realisierung einer geometrisch verteilten Zufallsgrösse. Es gilt für i ∈ N:

P (X = i) = pi(1− p) =⇒ F (k) =
k∑

i=0

pi(1− p) = (1− p)1− p
k+1

1− p
= 1− pk+1.

Gesucht ist nun das kleinste k, für das F (k) = 1− pk+1 ≥ U gilt.

1− U ≥ pk+1 ⇐⇒ ln(1− U) ≥ (k + 1) ln p ⇐⇒ k + 1 ≥ ln(1− U)
ln p

⇐⇒ k =
⌊

ln(1− U)
ln p

⌋
⇐⇒ k =

⌊
lnU
ln p

⌋
.
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Das von Box und Muller stammende Verfahren zur ErzeugungN (0, 1)–verteilter Zufallszahlen
basiert auf folgendem Satz.

20.27 Satz:
Es seien U1 und U2 stochastisch unabhängige R([0, 1])–verteilte Zufallsvariablen. Dann sind
die Zufallsvariablen

X1 :=
√
−2 lnU1 · cos(2πU2) und X2 :=

√
−2 lnU1 · sin(2πU2)

stochastisch unabhängig und jeweils N (0, 1)–verteilt.

Beweis:
Wir setzen G : (0, 1)2 −→ R2 mit

G(u1, u2) := (x1, x2) :=
(√
−2 lnu1 · cos(2πu2),

√
−2 lnu1 · sin(2πu2)

)
, (u1, u2) ∈ (0, 1)2

und wenden den Transformationssatz für Dichten an. Die zu G gehörende Funktionaldeter-
minante lautet∣∣∣∣∣∣∣∣∣

∂G1

∂u1

∂G1

∂u2

∂G2

∂u1

∂G2

∂u2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
− cos(2πu2)
u1

√
−2 lnu1

− 2π
√
−2 lnu1 · sin(2πu2)

− sin(2πu2)
u1

√
−2 lnu1

2π
√
−2 lnu1 · cos(2πu2)

∣∣∣∣∣∣∣∣∣∣
=

2π cos2(2πu2)
u1

+
2π sin2(2πu2)

u1

=
2π
u1
.

Es ist

x2
1 + x2

2 = −2 lnu1 bzw. u1 = exp
(
−x

2
1 + x2

2

2

)
, (x1, x2) ∈ R2.

Damit erhält man

f(X1,X2)(x1, x2) =
1∣∣∣det

(
∂Gj

∂uj
(G−1(x1, x2))

)∣∣∣
=
u1

2π
=

1
2π
e−

x2
1+x2

2
2 , (x1, x2) ∈ R2,

und

fX1(x1) =
∫
R

1
2π
e−

x2
1+x2

2
2 dx2 =

1
2π
e−

x2
1
2

∫
R

e−
x2
2
2 dx2 =

1√
2π
e−

x2
1
2 , x1 ∈ R

bzw.

fX2(x2) =
1√
2π
e−

x2
2
2 , x2 ∈ R.

Also sind X1 und X2 jeweils N (0, 1)-verteilt und stochastisch unabhängig. �

20.28 Bemerkung:
Bekannte andere Transformationsmethoden sind die Verwerfungsmethode und die Quotien-
tenmethode.
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20.4 Monte–Carlo–Integration

Die Lösung mathematischer Probleme mittels stochastischer Experimente soll zunächst an-
hand der Monte-Carlo-Integration demonstriert werden.
Es sei g(x) eine reelle auf [a, b] integrierbare Funktion mit 0 ≤ g(x) ≤ c für alle x ∈ [a, b] und
ein c ∈ R. Es wird das Problem der Berechnung von

I :=

b∫
a

g(x) dx

betrachtet. Dazu werden die beiden folgenden Mengen definiert:

A := {(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ g(x)} und D := {(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ c}.

Abbildung 20.3: Die Mengen A und D bezogen auf eine Funktion g(x)

Sei nun (Ω,F, P ) ein Wahrscheinlichkeitsraum und Z := (U, V ) : Ω→ D ein auf D gleichver-
teilter Zufallsvektor, d.h. Z besitzt eine Dichte der Form

fZ(u, v) := f(u, v) :=
{ 1

c(b−a) , (u, v) ∈ D
0 , (u, v) 6∈ D.

Dann gilt:

P (Z ∈ A) =
∫∫
A

f(u, v) du dv =
1

c(b− a)

∫∫
A

du dv =

∫ b
a g(x)dx
c(b− a)

=
I

c(b− a)
.

Sei weiter (Zi)i∈N eine i.i.d. Folge von auf D gleichverteilten Zufallsvektoren. Es sei

θ(1)
n :=

c(b− a)
n

n∑
i=1

IA(Zi).

Da E[IA(Z1)] = P (Z1 ∈ A) =: θ <∞ gilt, folgt mit dem starkem Gesetz der großen Zahlen

θ(1)
n

P -f.s.−−−→
n→∞

%(θ) := c(b− a) ·E[θ] = I =

b∫
a

g(x) dx.
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Wenn es also gelänge, mit Hilfe eines physikalischen Experiments oder eines linearen Kongru-
enzgenerators Realisierungen eines auf Ω gleichverteilten Zufallsvektors zu erzeugen, könnte
man θ(1)

n als Schätzverfahren für I verwenden. Diese Vorgehensweise zum Schätzen von I wird
,,Hit or Miss” genannt.

20.29 Beispiel:
Bei der numerischen Integration des Integrals

π∫
0

sinx dx

erzeugt man sich zunächst auf D := [0, π] × [0, 1] gleichverteilte Punkte (u, v) und setzt die
Anzahl der Treffer ((u, v) ∈ A) in Beziehung zum Umfang der Stichprobe.

0 0.5 1 1.5 2 2.5 3
n

0.2

0.4

0.6

0.8

1

h(A)

Abbildung 20.4: Im Beispiel ist a := 0, b := π, c := 1, N := 50 und die Anzahl der Treffer 32.

Damit folgt:
π∫

0

sinx dx ≈ 1 · (π − 0) · 32
50
≈ 2.010619298 ,

was dem tatsächlichen Wert 2 schon sehr nahe kommt.
(Siehe auch Mathematica-Notebook zu diesem Beispiel.)

Algorithmus zur ,,Hit or Miss”-Methode:

1. Erzeuge auf [0, 1)× [0, 1) gleichverteilte Tupel (u1, w1), . . . , (uN , wN ).

2. NH := 0

3. Für i = 1, . . . , N führe aus:
Berechne xi := a+ ui(b− a)
Berechne g(xi)
Falls g(xi) > cwi, dann setze NH = NH + 1.

4. Führe aus I ≈ c(b− a)NH
N .
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Zur ,,Hit or Miss”-Methode gibt es noch eine interessante Alternative, die sogenannte
,,Sample Mean”-Methode (Mittelwertmethode). Dazu bezeichne X eine auf dem Intervall
[a, b] gleichverteilte Zufallsvariable, d.h. die Verteilung von X : Ω→ [a, b] besitzt eine Dichte
der Form

fX(x) := f(x) :=


1

b− a
, für a ≤ x ≤ b (a < b),

0 , sonst.

Dann lässt sich schreiben:

I :=

b∫
a

g(x) dx =

b∫
a

g(x)
f(x)

f(x) dx = EP

[
g(X)
f(X)

]
= EPX

[
g

f

]
.

Dieser Zusammenhang legt für I den Schätzer

θ(2)
n :=

1
n

n∑
i=1

g(Xi)
f(Xi)

=
b− a
n

n∑
i=1

g(Xi)

nahe, wobei (Xi)i∈N eine i.i.d. Folge von auf [a, b] gleichverteilten Zufallsvariablen ist. Das
starke Gesetz der großen Zahlen liefert für θ(2)

n ebenfalls

θ(2)
n

P -f.s.−−−→
n→∞

EP

[
g(X1)
f(X1)

]
= I =

b∫
a

g(x) dx.

Algorithmus zur ,,Sample Mean”-Methode:

1. Erzeuge eine Folge u1, . . . , uN stochastisch unabhängiger, auf [0, 1) gleichverteilter Zu-
fallszahlen.

2. Berechne xi := a+ ui(b− a) für i = 1, . . . , N .

3. Berechne g(xi) für i = 1, . . . , N .

4. Führe aus I ≈ (b− a) 1
N

∑N
i=1 g(xi).

Beide Schätzer sind erwartungstreu. Denn es gilt:

Eθ

[
θ(1)
n

]
= Eθ

[
c(b− a) · 1

n

n∑
i=1

IA(Zi)

]

=
c(b− a)

n
·

n∑
i=1

Eθ [IA(Zi)]

= c(b− a) ·Eθ [IA(Z1)]
= c · (b− a) · P (Z1 ∈ A)
= c · (b− a) · θ
= I = %(θ).
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Eθ

[
θ(2)
n

]
= Eθ

[
1
n

n∑
i=1

g(Xi)
f(Xi)

]

=
1
n

n∑
i=1

Eθ

[
g(Xi)
f(Xi)

]
= Eθ

[
g(X1)
f(X1)

]
= I.

Für die zugehörige Varianz gilt:

Varθ

[
θ(1)
n

]
= Varθ

[
c · (b− a) · 1

n

n∑
i=1

IA(Zi)

]

=
c2(b− a)2

n2

n∑
i=1

Varθ [IA(Zi)]

=
c2(b− a)2

n
Varθ [IA(Z1)]

=
c2(b− a)2

n
·
(
Eθ

[
(IA(Z1))2

]
− (Eθ [IA(Z1)])2

)
=

c2(b− a)2

n
·
(
Eθ [IA(Z1)]− (Eθ [IA(Z1)])2

)
=

c2(b− a)2

n
·
(
P (Z1 ∈ A)− (P (Z1 ∈ A))2

)
=

c2(b− a)2

n
·
(

I

c · (b− a)
− I2

c2 · (b− a)2

)
=

1
n

(c · (b− a)I − I2).

Varθ

[
θ(2)
n

]
= Varθ

[
1
n

n∑
i=1

g(Xi)
f(Xi)

]

=
1
n2

n∑
i=1

Varθ

[
g(Xi)
f(Xi)

]
=

1
n
Varθ

[
g(X1

f(X1)

]
=

1
n

(
Eθ

[(
g(X1)
f(X1)

)2
]
−
(
Eθ

[
g(X1)
f(X1)

])2
)

=
1
n

 b∫
a

g2(x)
f2(x)

· f(x) dx− I2


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=
1
n

 b∫
a

g2(x)
f(x)

dx− I2


=

1
n

(b− a) ·
b∫

a

g2(x) dx− I2


≤ 1

n

c(b− a) · b∫
a

g(x) dx− I2

 (da g(x) ≤ c ∀ x ∈ R vorausgesetzt war)

=
1
n

(c(b− a) · I − I2),

woran man erkennt, dass θ(2)
n gleichmäßig besser ist als θ(1)

n .

20.5 Stochastische Simulation von Warteschlangen

Warteschlangen sind aus betriebswirtschaftlicher Sicht meist nicht wünschenswert. Denn die
Zeit, die man in der Warteschlange zubringt, ist Untätigkeitszeit, die weder den Kunden noch
dem Betreiber des Systems zugute kommt. Den wirtschaftlichen Einfluss von Warteschlangen
kann man am besten am Beispiel der Produktion verdeutlichen. Lange Durchlaufzeiten durch
die Produktion haben zur Folge, dass man neue Produkte nicht schnell genug auf den Markt
bringen kann und der Konkurrenz das Feld überlassen muss. Da lange Durchlaufzeiten mit
hohen Beständen korreliert sind, entstehen durch die auf Bearbeitung wartenden Halbfertig-
fabrikate außerdem hohe Kapitalbindungskosten, die sich negativ auf das Betriebsergebnis
auswirken.

Das Phänomen des Wartens wird seit fast einem Jahrhundert wissenschaftlich erforscht. Be-
reits 1917 publizierte der dänische Ingenieur und Mathematiker A.K. Erlang, der bei ei-
ner Kopenhagener Telefongesellschaft beschäftigt war, eine mathematische Formel, mit de-
ren Hilfe man Fernsprechvermittlungsstellen dimensionieren konnte. Nach Erlang waren es
hauptsächlich Nachrichtentechniker, die mathematische Verfahren benutzten, um den Tele-
fonverkehr durchgängiger und effizienter zu machen. Mitte des vergangenen Jahrhunderts hieß
es, dass die Länder, die über die schlechtesten Telefonsysteme verfügten, die besten Mathema-
tiker auf dem Gebiet der Warteschlangentheorie hervorbringen würden. Mit dem Aufkommen
der Datenverarbeitung wurden diese Methoden auch zur Konzeption von Rechensystemen ver-
wendet. Ziel der Analysen ist es, bereits im Vorfeld der Planung Engpässe und Schwachstellen
zu erkennen. In letzter Zeit wird die Warteschangentheorie auch immer häufiger auf Fragen
der Produktion, des Verkehrs und der Modellierung von Geschäftsprozessen ausgedehnt. Mitt-
lerweile sind mehr als 10000 wissenschaftliche Publikationen über Warteschlangenprobleme
erschienen, die sich auf die unterschiedlichsten Bereiche des täglichen Lebens beziehen.

Beschreibung von Bediensystemen

Die Warteschlangentheorie verwendet zur Beschreibung von Bedienungssystemen ein einfa-
ches Grundmodell. Dieses Modell ist in Abbildung 20.5 dargestellt. Es besteht aus dem so-
genannten Bedienungsschalter, der über eine oder mehrere parallel arbeitende gleichartige
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Maschinen bzw. Arbeitsplätze verfügt, und aus einem Warteraum. Die Kunden treffen ein-
zeln und zu zufälligen Zeitpunkten vor dem Bedienungssystem ein. Ein neu ankommender
Kunde wird bedient, sofern mindestens eine der Maschinen frei ist, andernfalls muss er sich
in die Warteschlange einreihen.

Die Begriffe Kunde und Schalter können in der Praxis unterschiedliche Bedeutungen haben:
Fahrzeuge, die an einer Verkehrsampel warten; Computerprogramme, die in einem Rechner-
verbund zirkulieren; Telefonanrufe, die an einer Vermittlungsstelle einfallen; Werkstücke, die
von einer Maschine bearbeitet werden; Patienten, die in einer Arztpraxis auf ihre Behandlung
warten, usw.

Abbildung 20.5: Grundmodell eines Bedienungssystems

Das Grundmodell kann auf vielfältige Weise variiert werden:

• Die Kunden werden nicht einzeln, sondern gruppenweise bedient
(Systeme mit Gruppenbedienung)
Anwendung: Losfertigung in einem Produktionsbetrieb, Pendel–Busse.

• Einige Kunden verlassen das System, bevor sie bedient worden sind
(Wartesysteme mit Zeitbeschränkungen)
Anwendung: Lagerhaltung von verderblicher Ware.

• Nicht alle Bedienungsgeräte stehen jedem Kunden zur Verfügung
(Bedienungssysteme mit eingeschränkter Erreichbarkeit)
Anwendung: Fertigungsstraßen mit dedizierten Maschinen, Koppelanforderungen in ei-
nem Fernsprechnetz.

• Einige Kunden scheuen sich, in das Bedienungssystem einzutreten, weil ihnen die War-
teschlange zu lang erscheint
(Wartesysteme mit ungeduldigen Kunden)
Anwendung: Übliches Kundenverhalten an einem Post–, Bank– oder Fahrkartenschalter.

• Ein Kunde höherer Priorität verdrängt einen Kunden niedrigerer Priorität aus dem
Bedienungsprozess
(Bedienungssysteme mit Prioritätensteuerung)
Anwendung: Expreß–Los–Steuerung in einem Fertigungsprozess.

• Ein Kunde, der bei seiner Ankunft nicht sofort bedient werden kann, geht verloren
(Verlustsysteme)
Anwendung: Telefonate in einem Fernsprechnetz.
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Die Kunden fallen zu den zufälligen Zeitpunkten (Tn)n∈N in das System ein. Die Zeitspanne
In := Tn − Tn−1 zwischen der Ankunft des (n− 1)–ten Kunden und des n–ten Kunden wird
als Zwischenankunftszeit bezeichnet, wobei T0 = 0 gesetzt wird. Von den Zufallsvariablen In,
n = 1, 2, . . . , wird vorausgesetzt, dass sie stochastisch unabhängig und identisch verteilt sind
mit der Verteilungsfunktion FI(x), dem Erwartungswert E[I] und der Varianz Var[I]. Der
Kehrwert

λ :=
1

E[I]

heißt Ankunftsrate und gibt an, wieviele Kunden im Durchschnitt pro Zeiteinheit in das
System einfallen.

Die Bedienungszeiten Sn, n = 1, 2, . . . , der aufeinanderfolgenden Kunden werden ebenfalls
als stochastisch unabhängige und identisch verteilte Zufallsvariablen aufgefasst. Die Vertei-
lungsfunktion der Bedienungszeiten wird mit FS(x) bezeichnet. Für den zugehörigen Erwar-
tungswert und die zugehörige Varianz werden die Symbole E[S] und Var[S] verwendet. Der
Kehrwert

µ :=
1

E[S]

heißt Bedienrate und gibt an, wieviele Kunden im Durchschnitt pro Zeiteinheit von einem
Bedienungsgerät abgefertigt werden können. Sind mehrere parallele und gleichartige Bedie-
nungsgeräte vorhanden, erhöht sich die Bedienungsrate entsprechend der Anzahl der Geräte.

Die Bedienungsregel legt fest, in welcher Reihenfolge die wartenden Kunden abgefertigt wer-
den sollen. Folgende Regeln und Bezeichnungen sind gebräuchlich:

FIFO (FCFS) First In, First Out (First Come, First Served). Die Bedienung erfolgt in der
Reihenfolge der Ankünfte.

LIFO (LCFS) Last In, First Out (Last Come, First Served). Die Bedienung erfolgt in um-
gekehrter Reihenfolge der Ankünfte.

SIRO Selection In Random Order. Der nächste Kunde wird zufällig ausgewählt.

Non–preemptive Priority relative Priorität. Manche Kunden werden gegenüber anderen
Kunden vorrangig behandelt. Der laufende Bedienungsprozess wird jedoch nicht unter-
brochen.

Preemptive Priorität absolute Priorität. Besitzt der neu ankommende Kunde gegenüber
den anderen Kunden im System eine höhere Priorität, so wird der laufende Bedienungs-
prozess unterbrochen und mit der neuen Forderung fortgesetzt. Die alte Forderung wird
zurückgestellt.

RR Round Robin. Jeder Kunde kann den Bediener jeweils nur für ein bestimmtes Zeitinter-
vall in Anspruch nehmen. Kunden, deren Abfertigung mehr Zeit benötigt, müssen sich
deshalb mehrmals hintereinander in die Warteschlange einreihen.

Zur symbolischen Kennzeichnung der Bedienungssysteme haben D.G. Kendall und B.W. Gne-
denko die Notation

A/B/c/m
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eingeführt. Die Buchstaben A und B markieren hierbei den Verteilungstyp der Zwischenan-
kunfts– und Bedienungszeiten. Der Buchstabe c steht für die Anzahl der parallelen Bediener,
m bezeichnet die Kapazität des Warteraums.

Für den Verteilungstyp sind folgende Abkürzungen gebräuchlich:

D Deterministische Verteilung,
M Exponentialverteilung,

(M steht für die sogenannte Markov–Eigenschaft der Exponentialverteilung),
Ek Erlang–Verteilung mit den Parameter k (k = 1, 2, . . . ),
Hk Hyperexponentialverteilung mit dem Parameter k (k = 1, 2, . . . ),
PH Phasen–Typ–Verteilung,
G Allgemeine Verteilung.

20.30 Beispiel:
Die Notation M/G/3/∞ z.B. kennzeichnet ein Bedienungssystem mit exponentialverteilten
Zwischenankunftszeiten, beliebig verteilten Bedienungszeiten, drei parallelen Bedienern und
unendlicher Warteraumkapazität.

20.31 Definition (Anzahl der Kunden im System, Verweilzeit, Durchlaufzeit):
Die Leistungsbewertung von Bedienungssystemen erfolgt auf der Basis folgender stochastischer
Prozesse:

• Die Anzahl der Kunden im System (Nt)t≥0.

Dieser Prozess gibt an, wie viele Kunden sich zur Zeit t im Bedienungssystem (ein-
schließlich Schalter) aufhalten.

• Der Prozess der aufeinanderfolgenden Verweilzeiten (bzw. Durchlaufzeiten) (Vn)n∈N.

Die Zufallsvariable Vn bezeichnet die Zeit, die der n–te Kunde im Bedienungssystem
verweilt.

• Der Prozess der aufeinanderfolgenden Wartezeiten (Wn)n∈N.

Die Zufallsvariable Wn bezeichnet die Zeit, die der n–te Kunde in der Warteschlange
verbringt, bevor er bedient wird.

Simulation von Warteschlangensystemen

Für einfache Warteschlangenmodelle (insbesondere für M/M/1/∞) existieren umfangreiche
Theorien zur analytischen Bestimmung der zugehörigen Kenngrößen (siehe Stochastik IV).
Aber bereits für das Warteschlangenmodell G/G/1/∞ ist bis heute keine analytische Lösung
bekannt, weshalb man auf stochastische Simulationen angewiesen ist. Die dafür erforderli-
che Technik soll exemplarisch am Prozess (Wn)n∈N der aufeinanderfolgenden Wartezeiten
erläutert werden.

Offensichtlich gilt Wn = 0 genau dann, wenn der n-te Kunde erst bei oder nach Verlassen
des (n − 1)-ten Kunden in das System eintrifft. Unter Berücksichtigung der oben benutzten
Bezeichnungen kann diese Situation mathematisch wie folgt charakterisiert werden:
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Wn = 0 ⇔ Tn ≥ Tn−1 +Wn−1 + Sn−1

⇔ In ≥Wn−1 + Sn−1

(
da Tn =

n∑
k=1

Ik

)
⇔ Wn−1 ≤ In − Sn−1 (n = 1, 2, . . .),

wobei als Anfangsbedingung W0 := S0 := 0 gesetzt wird. Im Fall Tn < Tn−1 +Wn−1 + Sn−1

erhält man die Wartezeit des n-ten Kunden, indem man von der Verweilzeit Vn−1 des (n−1)-
ten Kunden die Zwischenankunftszeit In, d.h. die Zeit zwischen der Ankunft des n-ten und
(n− 1)-ten Kunden abzieht:

Wn = Vn−1 − In = Wn−1 + Sn−1 − In (n = 1, 2, . . .).

Fasst man beide Bedingungen zusammen, erhält man:

W0 = 0
Wn = max(Wn−1 − In + Sn−1, 0) =: (Wn−1 − In + Sn−1)+ (n = 1, 2, . . .).

Um die charakteristischen Größen von Wn wie z.B. E[Wn] zu ermitteln, wird das Prinzip der
wiederholten Versuche angewandt, d.h. man erzeugt sich unabhängige Realisierungen

(In,k)n∈N,1≤k≤N und (Sn,k)n∈N,1≤k≤N

der aufeinanderfolgenden Zwischenankunfts– und Bedienzeiten und schätzt E[Wn] mit Hilfe
des Stichprobenmittels

Wn =
1
N

N∑
k=1

Wn,k,

wobei Wn,k = (Wn−1,k − In,k + Sn−1,k)+, n ∈ N, 1 ≤ k ≤ N , und W0,k := S0,k := 0 für
k = 1, . . . , N ist. (Siehe auch MatLab-Programm zur Simulation von Warteschlangen.)

In der Praxis wird man feststellen, dass die Werte Wn,k für große n vergleichsweise stark
streuen. Für Spezialfälle (z.B. des Bediensystems M/M/1/∞) kann bewiesen werden, dass
%→ 1 Var[Wn]→∞ nach sich zieht, so dass man bei der Simulation Schwierigkeiten haben
wird, E[Wn] hinreichend genau einzugrenzen. Deshalb stellt sich die Frage nach Techniken,
mit denen die Varianz des Schätzers geeignet reduziert werden kann.

Varianzreduktion

Die Verfahren zur Varianzreduktion basieren auf Prinzipien der antithetischen (gegenläufigen)
Variablen und der sogenannten Kontrollvariable.

Varianzreduktion mittels antithetischer Variablen

20.32 Satz:
Es seien X und Y zwei identisch verteilte Zufallsvarablen mit Var[X] <∞ und Var[Y ] <∞.
Dann gilt:
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a) E
[

1
2(X + Y )

]
= E[X],

b) Var
[

1
2(X + Y )

]
= 1

2 (Var[X] + COV [X,Y ]).

Beweis:
a) E

[
1
2(X + Y )

]
= 1

2(E[X + Y ]) = 1
2(E[X] + E[Y ]) = 1

2 · 2E[X] = E[X].

b) Var
[

1
2(X + Y )

]
= 1

4 Var[X + Y ] =
1
4(Var[X] + Var[Y ] + 2COV [X,Y ]) = 1

4(2Var[X] + 2COV [X,Y ]) = 1
2(Var[X] +

COV [X,Y ]). �

Dieser Satz kann für die Simulation in folgender Weise genutzt werden:

Sind T (1)
n und T (2)

n zwei erwartungstreue Schätzer für %(θ), die identisch verteilt und negativ
korreliert sind, dann ist Tn := 1

2

(
T

(1)
n + T

(2)
n

)
ebenfalls ein erwartungstreuer Schätzer für

%(θ), der aber eine geringere Varianz besitzt als T (1)
n bzw. T (2)

n . Indem in Satz 20.32 X mit
T

(1)
n und Y mit T (2)

n identifiziert wird, erhält man

E[Tn] = E
[
1
2

(
T (1)

n + T (2)
n

)]
= E

[
T (1)

n

]
und

Var[Tn] = Var
[
1
2

(
T (1)

n + T (2)
n

)]
=

1
2

[
Var

[
T (1)

n

]
+ COV

[
T (1)

n , T (2)
n

]]
≤ 1

2
Var

[
T (1)

n

]
.

Bei dieser Vorgehensweise wird also die Varianz um mindestens die Hälfte reduziert. Demge-
genüber steht eine Verdopplung des Aufwandes bei der Stichprobenerhebung.

20.33 Satz:
Es bezeichne U eine R([0, 1])–verteilte Zufallsvariable. Dann gilt:

COV [U, 1− U ] = − 1
12
.

Beweis:
Mit U ist auch 1− U R([0, 1])–verteilt. Deshalb gilt:

E[U ] = E[1− U ] =

1∫
0

x dx =
x2

2

∣∣∣1
0

=
1
2

und

E
[
U2
]

= E
[
(1− U)2

]
=

1∫
0

x2 dx =
x3

3

∣∣∣1
0

=
1
3
.

Damit wird

COV [U, 1− U ] = E[U(1− U)]−E[U ] ·E[1− U ]

= E[U ]−E
[
U2
]
−E[U(1−E[U ])]

= (E[U ])2 −E
[
U2
]

=
(

1
2

)2

− 1
3

= − 1
12
. �
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Es seien nun FI die Verteilungsfunktion der Zwischenankunftszeiten und FS die Verteilungs-
funktion der Bedienzeiten. Die Erkenntnisse aus den Sätzen 20.32 und 20.33 kann man sich im
Zusammenhang mit der Simulation eines G/G/1/∞–Bediensystems in der folgenden Weise
zunutze machen:

Es seien
(
U

(1)
n,k

)
n∈N,1≤k≤N

und
(
U

(2)
n,k

)
n∈N,1≤k≤N

Sequenzen stochastisch unabhängiger

R([0, 1])–verteilter Zufallsvariablen. Hiermit korrespondieren die Folgen der aufeinanderfol-
genden Zwischenankunftszeiten In,k = F−1

I

(
U

(1)
n,k

)
und Bedienzeiten Sn,k = F−1

S

(
U

(2)
n,k

)
,

n ∈ N und 1 ≤ k ≤ N , wobei FI die Verteilung der Zwischenankunftszeiten und FS

die Verteilung der Bedienzeiten bedeuten. Angesichts Satz 20.33 erzeugt man hierzu Fol-
gen I ′n,k := F−1

I

(
1− U (1)

n,k

)
sowie S′n,k := F−1

S

(
1− U (2)

n,k

)
, n ∈ N und 1 ≤ k ≤ N , und ersetzt

das Stichprobenmittel Wn durch den Schätzer

W̃n =
1
N

N∑
k=1

Wn,k +W ′
n,k

2
,

wobei

Wn,k :=
[
Wn−1,k − F−1

I

(
U

(1)
n,k

)
+ F−1

S

(
U

(2)
n−1,k

)]+
,

W ′
n,k :=

[
W ′

n−1,k − F−1
I

(
1− U (1)

n,k

)
+ F−1

S

(
1− U (2)

n−1,k

)]+
ist. Man kann nun zeigen, dass sich die Gegenläufigkeiten der Variablen U (1)

n,k und 1−U (1)
n,k bzw.

U
(2)
n,k und 1−U (2)

n,k auf die Zufallsvariablen Wn,k und W ′
n,k übertragen, so dass sich tatsächlich

ein Effekt in der Form
Var

[
W̃n

]
<

1
2

Var
[
Wn

]
einstellt (vgl. Mitchell, B.: Various Reduction by Antithetic Variates in GI/G/1 Queueing
Simulation, Oper. Res. 21, 1973, 988-997). Hierbei spielt die Monotonie von FI und FS bzw.
F−1

I und F−1
S eine wesentliche Rolle.

Varianzreduktion mittels Kontrollvariablen

Das Prinzip der Kontrollvariablen nutzt folgenden Zusammenhang aus:

20.34 Satz:
Es seien X und Y Zufallsvariablen mit Var[X] <∞, Var[Y ] <∞ und c ∈ R. Dann gilt:

(i)

E[X + c(Y −E[Y ])] = E[X]
Var[X + c(Y −E[Y ])] = Var[X] + c2 Var[Y ] + 2cCOV [X,Y ] .

(ii) Die Funktion f : c 7→ Var[X + c(Y −E[Y ])] nimmt ihr Minimum an für

c = c∗ := −COV [X,Y ]
Var[Y ]

.
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Beweis:
(i) Es gilt:

E[X + c(Y −E[Y ])] = E[X] + c(E[Y ]−E[Y ]) = E[X]
Var[X + c(Y −E[Y ])] = Var[X] + Var[c(Y −E[Y ])] + 2COV [X, c(Y −E[Y ])]

= Var[X] + c2 Var[Y ] + 2cCOV [X,Y ] .

(ii) Es wird
f(c) = Var[X] + c2 Var[Y ] + 2cCOV [X,Y ] , ∀ c ∈ R

gesetzt und differenziert

d

dc
f(c) = 2c ·Var[Y ] + 2COV [X,Y ] , ∀ c ∈ R.

Die Bedingung
d

dc
f(c) = 0 führt auf

c = c∗ := −COV [X,Y ]
Var[Y ]

.

Und wegen d2

dc2
f(c) = 2Var[Y ] ≥ 0 ist c∗ Minimum von f . �

In der Praxis kann dieses Prinzip wie folgt genutzt werden:
Ist X := Tn ein erwartungstreuer Schätzer für %(θ) und Y eine Zufallsvariable mit bekanntem
Erwartungswert E[Y ] und bekannter Varianz Var[Y ], dann ist

T̂n := Tn + c∗(Y −E[Y ])

ebenfalls ein erwartungstreuer Schätzer für %(θ), wobei

Var
[
T̂n

]
≤ Var[Tn]

gilt. Ein Nachteil der Methode ist, dass die Kovarianz COV [Tn, Y ] nur empirisch anhand
eines Verlaufs geschätzt werden kann.

20.6 Statistik regenerativer Prozesse

Die Theorie der regenerativen Prozesse lässt sich zur Auswertung von Simulationen nutzen.
Aufgrund der Definition eines regenerativen Prozesses weiß man, dass die Zufallsvektoren

(Y1, X1), (Y2, X2), . . . , (Yn, Xn), . . .

mit

Yj :=
∫

[Sj−1,Sj)

f(Zs) ds bzw. Yj :=
Sj−1∑

n=Sj−1

f(Zn)

und Xj := Sj − Sj−1, j ∈ N, unabhängig und identisch verteilt sind.
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Es soll das Problem der Schätzung von r := E[f(Z∗)] := limt→∞E[f(Zt)] betrachtet wer-
den. Aufgrund der Sätze 18.8 und 18.9 ist dies gleichbedeutend mit der Schätzung von
E[Y1] /E[X1]. Ebenfalls interessant ist die Berechnung eines Konfidenzintervalles für unsere
Schätzung r̂, d.h. eines Intervalls, in dem der gesuchte Wert mit einer gewissen Wahrschein-
lichkeit liegt.
Hierfür werden die Zufallsvariablen Vj := Yj − rXj , j ∈ N, betrachtet. Die Folge (Vj)j∈N ist
eine i.i.d. Folge. Für Vj gilt insbesondere:

E[Vj ] = E[Yj ]− rE[Xj ] = E[Yj ]−
(

E[Y1]
E[X1]

)
·E[Xj ] = 0.

Wir nehmen 0 < σ2 = Var[Vj ] = E
[
V 2

j

]
<∞ an und setzen

Y :=
1
n

n∑
j=1

Yj , X :=
1
n

n∑
j=1

Xj und V :=
1
n

n∑
j=1

Vj .

Somit gilt

V = Y − r ·X =
1
n

n∑
j=1

(Yj − r ·Xj).

Mit Hilfe des zentralen Grenzwertsatzes schließt man, dass für x ∈ R gilt

lim
n→∞

P

(
n · V − n · 0
σ ·
√
n

≤ x
)

= lim
n→∞

P

(
V ·
√
n

σ
≤ x

)
= lim

n→∞
P

(
(Y − rX) ·

√
n

σ
≤ x

)
= lim

n→∞
P

(
(r̂ − r) ·

√
n

σ/X
≤ x

)
= Φ(x), x ∈ R,

wobei Φ die Standardnormalverteilung bezeichnet und r̂ := Y
X

als Schätzer für r verwendet
wurde.
Man geht nun davon aus, dass der Fehler standardnormalverteilt ist. Es sei nun z∗0 := Φ−1(1−
θ
2) bzw. Φ(z∗0) = 1− θ

2 das Quantil der Ordnung 1− θ der Standardnormalverteilung. Damit
gilt

lim
n→∞

P

(
−z∗0 ≤

√
n(r̂ − r)
σ/X

≤ z∗0
)

= lim
n→∞

P

(
r̂ − z∗0σ

X
√
n
≤ r ≤ r̂ +

z∗0σ

X
√
n

)
= 1− θ.

Hieraus ergibt sich das Konfidenzintervall zum Niveau 1− θ

r := r̂ ± z∗0 · σ
X
√
n
.

Das Problem hierbei ist, dass die Streuung σ unbekannt ist. Sie lässt sich aber wie folgt
schätzen:

σ2 = E
[
(Y1 − rX1)2

]
= Var[Y1]− 2 · r ·COV[Y1, X1] + r2 ·Var[X1] ≈ s11 − 2r̂s12 + r̂2s22,
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wobei

s11 =
1

n− 1

n∑
j=1

(Yj − Y )2 =
1

n− 1

n∑
j=1

Y 2
j −

1
n(n− 1)

 n∑
j=1

Yj

2

s22 =
1

n− 1

n∑
j=1

(Xj −X)2 =
1

n− 1

n∑
j=1

X2
j −

1
n(n− 1)

 n∑
j=1

Xj

2

s12 =
1

n− 1

n∑
j=1

(Yj − Y )(Xj −X) =
1

n− 1

n∑
j=1

YjXj −
1

n(n− 1)

 n∑
j=1

Yj

 n∑
j=1

Xj

 .

Zusammenfassung:

• Man beobachtet n Regenerationszyklen.

• Daraus lassen sich für jeden Zyklus Yj und Xj berechnen.

• Aus Yj und Xj können Y , X, r̂, s11, s12, s22 und s2 bestimmt werden.

• Man berechnet r := r̂ ± z∗0 ·s
X
√

n
.

20.35 Beispiel:
Mittlere Wartezeit in einem G/G/1/∞–System:

1. Stichprobe:

w1 := 0 w11 := 0 w21 := 10 w31 := 16
w2 := 10 w12 := 12 w22 := 8 w32 := 4
w3 := 8 w13 := 9 w23 := 14 w33 := 0
w4 := 15 w14 := 18 w24 := 14 w34 := 8
w5 := 17 w15 := 18 w25 := 13 w35 := 18
w6 := 13 w16 := 10 w26 := 10 w36 := 12
w7 := 18 w17 := 0 w27 := 8 w37 := 18
w8 := 12 w18 := 16 w28 := 12 w38 := 19
w9 := 2 w19 := 0 w29 := 13 w39 := 8
w10 := 5 w20 := 5 w30 := 23 w40 := 4

w41 := 0

2. Es gibt n := 5 Zyklen.
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X1 = 10, Y1 :=
10∑
i=1

wi = 100

X2 = 6, Y2 :=
16∑

i=11

wi = 67

X3 = 2, Y3 :=
18∑

i=17

wi = 16

X4 = 14, Y4 :=
32∑

i=19

wi = 150

X5 = 8, Y5 :=
40∑

i=33

wi = 87

3. Berechnung weiterer Größen:

Y :=
1
5
·

5∑
i=1

Yi = 84

X :=
1
5
·

5∑
i=1

Xi = 8

r̂ := Y /X = 10.5

s11 :=
1
4
·

5∑
i=1

Y 2
i −

1
20

(
5∑

i=1

Yi

)2

= 2383.5

s12 = 217.5
s22 = 20
s2 = 21

4. Konfidenzintervall zum Niveau 0.9:

I = 10.5± z∗0 ·
√

21
8 ·
√

5
= 10.5± 0.4214.
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Anhang A

Alternative Definition der
Laplace-Transformierten

Oftmals wird die Laplace–Transformation auch wie folgt definiert:

ĝ(s) :=
∫
R+

e−stg(t) dt.

Die zugehörige Faltung lautet dann:

(g1∗̂g2)(t) :=


∫

[0,t]

g1(t− s)g2(s) ds , t ≥ 0

0 , t < 0.

Die Sätze 17.13 und 17.14 gelten für diese Definition ebenfalls:

Analog zu Satz 17.13 gilt: Für g1, g2 ∈ B gilt g1∗̂g2 ∈ B, denn:

|(g1∗̂g2)(t)| ≤
t∫

0

|g(t− s)| |g(s)| ds ≤ sup
0≤s≤t

|g1(s)| · sup
0≤s≤t

|g2(s)| · t <∞.

Mit den Voraussetzungen F, F1, F2, F3, g, g1, g2 ∈ B und c ∈ R gilt Satz 17.14 ebenfalls für
die Laplace–Transformation f̂ und die Faltung ∗̂. Wie oben sind nur die Punkte a), f) und g)
zu zeigen (alle anderen folgen wie oben direkt aus Eigenschaften des Integrals):

a) Es gilt:

((f1∗̂f2)∗̂f3)(t) =
∫ t

0
(f1∗̂f2)(t− s)f3(s) ds

(∗)
=

∫ 0

t
(f1∗̂f2)(u)f3(t− u)(−1) du

=
∫ t

0

∫ u

0
f1(u− v)f2(v) dv f3(t− u) du

(∗∗)
=

∫ t

0

∫ 0

u
f1(w)f2(u− w)(−1) dw f3(t− u) du
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=
∫ t

0

∫ u

0
f1(w)f2(u− w)f3(t− u) dw du

(∗∗∗)
=

∫ t

0

∫ t

w
f1(w)f2(u− w)f3(t− u) du dw

(∗∗∗∗)
=

∫ t

0
f1(w)

∫ 0

t−w
f2(t− w − x)f3(x)(−1) dx dw

=
∫ t

0
f1(w)(f2∗̂f3)(t− w) dw

= (f1∗̂(f2∗̂f3))(t).

(∗): Substitution von s durch u := t − s, (∗∗): Substitution von v durch w := u − v,
(∗∗∗): Die Integration verläuft über folgenden Bereich:

(∗∗∗∗): Substitution von u durch x := t− u.

f) Mit der Substitution u := t− s und du
ds = −1 gilt:

(g1∗̂g2)(t) =
∫ t

0
g1(t− s)g2(s) ds =

∫ 0

t
g1(u)g2(t− u)(−1) du

=
∫ t

0
g1(u)g2(t− u) du = (g2∗̂g1)(t).

g) Es gilt:

f̂ ∗̂g =
∫ ∞

0
e−st(f ∗̂g)(s) ds

=
∫ ∞

0

∫ s

0
f(s− u)g(u)e−st du ds

(∗)
=

∫ ∞

0

∫ ∞

u
f(s− u)g(u)e−st ds du

=
∫ ∞

0

∫ ∞

u
f(s− u)e−t(s−u)g(u)e−tu ds du

(∗∗)
=

∫ ∞

0

∫ ∞

0
f(v)e−tvg(u)e−tu dv du

=
∫ ∞

0
f(v)e−tv dv ·

∫ ∞

0
g(u)e−tu du

= f̂(t) · ĝ(t).

208



Kapitel A. Alternative Definition der Laplace-Transformierten

(∗): Die Integration verläuft über folgenden Bereich:

(∗∗): Substitution von s durch v := s− u.
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Anhang B

Tabelle der χ2–Verteilung

Anzahl der Freiheitsgrade
F (x)

1 2 3 4 5 6 7 8 9 10
0.001 0.00 0.00 0.02 0.09 0.21 0.38 0.60 0.86 1.15 1.48
0.005 0.00 0.01 0.07 0.21 0.41 0.68 0.99 1.34 1.73 2.16
0.01 0.00 0.02 0.11 0.30 0.55 0.87 1.24 1.65 2.09 2.56
0.025 0.00 0.05 0.22 0.48 0.83 1.24 1.69 2.18 2.70 3.25
0.05 0.00 0.10 0.35 0.71 1.15 1.64 2.17 2.73 3.33 3.94

0.1 0.02 0.21 0.58 1.06 1.61 2.20 2.83 3.49 4.17 4.87
0.25 0.10 0.58 1.21 1.92 2.67 3.45 4.25 5.07 5.90 6.74
0.5 0.45 1.39 2.37 3.36 4.35 5.35 6.35 7.34 8.34 9.34
0.75 1.32 2.77 4.11 5.39 6.63 7.84 9.04 10.22 11.39 12.55
0.9 2.71 4.61 6.25 7.78 9.24 10.64 12.02 13.36 14.68 15.99

0.95 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31
0.975 5.02 7.38 9.35 11.14 12.83 14.45 16.01 17.53 19.02 20.48
0.99 6.63 9.21 11.35 13.28 15.09 16.81 18.48 20.09 21.67 23.21
0.995 7.88 10.69 12.84 14.86 16.75 18.55 20.28 21.96 23.59 25.19
0.999 10.83 13.82 16.27 18.47 20.52 22.46 24.32 26.13 27.88 29.59

Anzahl der Freiheitsgrade
F (x)

11 12 13 14 15 16 17 18 19 20
0.001 1.83 2.21 2.62 3.04 3.48 3.94 4.42 4.90 5.41 5.92
0.005 2.60 3.07 3.57 4.07 4.60 5.14 5.70 6.26 6.84 7.43
0.01 3.05 3.57 4.11 4.66 5.23 5.81 6.41 7.01 7.63 8.26
0.025 3.82 4.40 5.01 5.63 6.26 6.91 7.56 8.23 8.91 9.59
0.05 4.57 5.23 5.89 6.57 7.26 7.96 8.67 9.39 10.12 10.85

0.1 5.58 6.30 7.04 7.79 8.55 9.31 10.09 10.86 11.65 12.44
0.25 7.58 8.44 9.30 10.17 11.04 11.91 12.79 13.68 14.56 15.45
0.5 10.34 11.34 12.34 13.34 14.34 15.34 16.34 17.34 18.34 19.34
0.75 13.70 14.85 15.98 17.12 18.25 19.37 20.49 21.60 22.72 23.83
0.9 17.28 18.55 19.81 21.06 22.31 23.54 24.77 25.99 27.20 28.41

0.95 19.68 21.03 22.36 23.68 25.00 26.30 27.59 28.87 30.14 31.41
0.975 21.92 23.34 24.74 26.12 27.49 28.85 30.19 31.53 32.85 34.17
0.99 24.73 26.22 27.69 29.14 30.58 32.00 33.41 34.81 36.19 37.57
0.995 26.76 28.30 29.82 31.32 32.80 34.27 35.72 37.16 38.58 40.00
0.999 31.26 32.91 34.53 36.12 37.70 39.25 40.79 42.31 43.82 45.32

Beispiel: Bei 3 Freiheitsgraden ist F = 0.99 für x = 11.35.
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Anzahl der Freiheitsgrade
F (x)

21 22 23 24 25 26 27 28 29 30
0.001 6,4 7,0 7,5 8,1 8,7 9,2 9,8 10,4 11,0 11,6
0.005 8,0 8,6 9,3 9,9 10,5 11,2 11,8 12,5 13,1 13,8
0,01 8,9 9,5 10,2 10,9 11,5 12,2 12,9 13,6 14,3 15,0
0,025 10,3 11,0 11,7 12,4 13,1 13,8 14,6 15,3 16,0 16,8
0,05 11,6 12,3 13,1 13,8 14,6 15,4 16,2 16,9 17,7 18,5

0,1 13,2 14,0 14,8 15,7 16,5 17,3 18,1 18,9 19,8 20,6
0,25 6,3 17,2 18,1 19,0 19,9 20,8 21,7 22,7 23,6 24,5
0,5 20,3 21,3 22,3 23,3 24,3 25,3 26,3 27,3 28,3 29,3
0,75 24,9 26,0 27,1 28,2 29,3 30,4 31,5 32,6 33,7 34,8
0,9 29,6 30,8 32,0 33,2 34,4 35,6 36,7 37,9 39,1 40,3

0,95 32,7 33,9 35,2 36,4 37,7 38,9 40,1 41,3 42,6 43,8
0,975 35,5 36,8 38,1 39,4 40,6 41,9 43,2 44,5 45,7 47,0
0,99 38,9 40,3 41,6 43,0 44,3 45,6 47,0 48,3 49,6 50,9
0,995 41,4 42,8 44,2 45,6 46,9 48,3 49,6 51,0 52,3 53,7
0,999 46,8 48,3 49,7 51,2 52,6 54,1 55,5 56,9 58,3 59,7

Anzahl der Freiheitsgrade
F (x)

40 50 60 70 80 90 100 > 100 (Näherung)
0,001 17,9 24,7 31,7 39,0 46,5 54,2 61,9 (h− 3, 09)2/2
0,005 20,7 28,0 35,5 43,3 51,2 59,2 67,3 (h− 2, 58)2/2
0,01 22,2 29,7 37,5 45,4 53,5 61,8 70,1 (h− 2, 33)2/2
0,025 24,4 32,4 40,5 48,8 57,2 65,6 74,2 (h− 1, 96)2/2
0,05 26,5 34,8 43,2 51,7 60,4 69,1 77,9 (h− 1, 64)2/2

0,1 29,1 37,7 46,5 55,3 64,3 73,3 82,4 (h− 1, 28)2/2
0,25 33,7 42,9 52,3 61,7 71,1 80,6 90,1 (h− 0, 67)2/2
0,5 39,3 49,3 59,3 69,3 79,3 89,3 99,3 h2/2
0,75 45,6 56,3 67,0 77,6 88,1 98,6 109,1 (h + 0, 67)2/2
0,9 51,8 63,2 74,4 85,5 96,6 107,6 118,5 (h + 1, 28)2/2

0,95 55,8 67,5 79,1 90,5 101,9 113,1 124,3 (h + 1, 64)2/2
0,975 59,3 71,4 83,3 95,0 106,6 118,1 129,6 (h + 1, 96)2/2
0,99 63,7 76,2 88,4 100,4 112,3 124,1 135,8 (h + 2, 33)2/2
0,995 66,8 79,5 92,0 104,2 116,3 128,3 140,2 (h + 2, 58)2/2
0,999 73,4 86,7 99,6 112,3 124,8 137,2 149,4 (h + 3, 09)2/2

In der letzten Spalte ist h =
√

2m− 1
(m = Anzahl der Freiheitsgerade)
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Anhang C

Tabelle der
Standardnormalverteilung

Φ(z) =
1√
2π

∫ z

−∞
e−

x2
2 dx

z 0 1 2 3 4 5 6 7 8 9
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9777 0.9783 0.9788 0.9793 0.9798 0.9803 0.9807 0.9812 0.9816

499 844 083 217 248 178 007 738 372 911
2.1 0.9821 0.9825 0.9829 0.9834 0.9838 0.9842 0.9846 0.9849 0.9853 0.9857

356 708 970 142 226 224 137 966 713 379
2.2 0.9860 0.9864 0.9867 0.9871 0.9874 0.9877 0.9880 0.9883 0.9886 0.9889

966 474 906 263 545 755 894 962 962 893
2.3 0.9892 0.9895 0.9898 0.9900 0.9903 0.9906 0.9908 0.9911 0.9913 0.9915

759 559 296 969 581 133 625 060 437 758
2.4 0.9918 0.9920 0.9922 0.9924 0.9926 0.9928 0.9930 0.9932 0.9934 0.9936

025 237 397 506 564 572 531 443 309 128
2.5 0.9937 0.9939 0.9941 0.9942 0.9944 0.9946 0.9947 0.9949 0.9950 0.9952

903 634 323 969 574 139 664 151 600 012
2.6 0.9953 0.9954 0.9956 0.9957 0.9958 0.9959 0.9960 0.9962 0.9963 0.9964

388 729 035 308 547 754 930 074 189 274
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9971 0.9972 0.9973

330 358 359 333 280 202 099 972 821 646
2.8 0.9974 0.9975 0.9975 0.9976 0.9977 0.9978 0.9978 0.9979 0.9980 0.9980

449 229 988 726 443 140 818 476 116 738
2.9 0.9981 0.9981 0.9982 0.9983 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986

342 929 498 052 589 111 618 110 588 051
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Beispiel: Φ(2.01) = 0.9777844 .
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Anhang D

Quantile der
Standardnormalverteilung

up = Φ−1(p)

p 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.50 0.0000 0.0251 0.0502 0.0753 0.1004 0.1257 0.1510 0.1764 0.2019 0.2275

0.60 0.2533 0.2793 0.3055 0.3319 0.3585 0.3853 0.4125 0.4399 0.4677 0.4959

0.70 0.5244 0.5534 0.5828 0.6128 0.6433 0.6745 0.7063 0.7388 0.7722 0.8064

p 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.800 0.8416 0.8452 0.8488 0.8524 0.8560 0.8596 0.8633 0.8669 0.8705 0.8742

0.810 0.8779 0.8816 0.8853 0.8890 0.8927 0.8965 0.9002 0.9040 0.9078 0.9116

0.820 0.9154 0.9192 0.9230 0.9269 0.9307 0.9346 0.9385 0.9424 0.9463 0.9502

0.830 0.9542 0.9581 0.9621 0.9661 0.9701 0.9741 0.9782 0.9822 0.9863 0.9904

0.840 0.9945 0.9986 1.0027 1.0069 1.0110 1.0152 1.0194 1.0237 1.0279 1.0322

0.850 1.0364 1.0407 1.0450 1.0494 1.0537 1.0581 1.0625 1.0669 1.0714 1.0758

0.860 1.0803 1.0848 1.0893 1.0939 1.0985 1.1031 1.1077 1.1123 1.1170 1.1217

0.870 1.1264 1.1311 1.1359 1.1407 1.1455 1.1503 1.1552 1.1601 1.1650 1.1700

0.880 1.1750 1.1800 1.1850 1.1901 1.1952 1.2004 1.2055 1.2107 1.2160 1.2212

0.890 1.2265 1.2319 1.2372 1.2426 1.2481 1.2536 1.2591 1.2646 1.2702 1.2759

0.900 1.2816 1.2873 1.2930 1.2988 1.3047 1.3106 1.3165 1.3225 1.3285 1.3346

0.910 1.3408 1.3469 1.3532 1.3595 1.3658 1.3722 1.3787 1.3852 1.3917 1.3984

0.920 1.4051 1.4118 1.4187 1.4255 1.4325 1.4395 1.4466 1.4538 1.4611 1.4684

0.930 1.4758 1.4833 1.4909 1.4985 1.5063 1.5141 1.5220 1.5301 1.5382 1.5464

0.940 1.5548 1.5632 1.5718 1.5805 1.5893 1.5982 1.6072 1.6164 1.6258 1.6352

0.950 1.6449 1.6546 1.6646 1.6747 1.6849 1.6954 1.7060 1.7169 1.7279 1.7392

0.960 1.7507 1.7624 1.7744 1.7866 1.7991 1.8119 1.8250 1.8384 1.8522 1.8663

0.970 1.8808 1.8957 1.9110 1.9268 1.9431 1.9600 1.9774 1.9954 2.0141 2.0335

0.980 2.0537 2.0749 2.0969 2.1201 2.1444 2.1701 2.1973 2.2262 2.2571 2.2904

0.990 2.3263 2.3656 2.4089 2.4573 2.5121 2.5758 2.6521 2.7478 2.8782 3.0902

p 0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

0.9990 3.0902 3.1214 3.1559 3.1947 3.2389 3.2905 3.3528 3.4316 3.5401 3.7190

Für p-Werte mit 0 < p < 0.5 gilt: up = −u1−p
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Anhang E

Zeichenerklärungen

N Menge der natürlichen Zahlen
Q Menge der rationalen Zahlen
R Menge der reellen Zahlen
C Menge der komplexen Zahlen
M Menge der maßdefinierenden Funktionen auf R, die in (−∞, 0) ver-

schwinden
B Menge der nichtnegativen reellen Funktionen, die auf jedem Intervall der

Form [0, t] beschränkt sind
In Menge der links offenen und rechts abgeschlossenen Intervalle im Rn,

n ∈ N
Bn := σ(In) “σ–Algebra der Borelschen Mengen des Rn”
R := R ∪ {−∞,+∞}
B := {B,B ∪ {−∞}, B ∪ {+∞}, B ∪ {−∞,+∞}|B ∈ B}

P(M) Potenzmenge von M
(a, b] := {x|a < x ≤ b} “links offenes, rechts abgeschlossenes Intervall”
n! := n . . . (n− 1) · · · · · 2 · 1 “Fakultät von n”

(N)n := N !
n! = N · (N − 1) · · · · · (N − n+ 1) “n–te untere Faktorielle von N”(

n
k

)
:=

n!
k! · (n− k)!

“n über k”

F (a− 0) meint den linksseitigen Limes von F (a)
↑ konvergiert von unten gegen

X
d= Exp(λ) X ist exponential–verteilt

X
d= Y X und Y sind identisch verteilt

Re(x) Realteil der komplexen Zahl x
Im(x) Imaginärteil der komplexen Zahl x

O(n), o(n) seien die Landau-Symbole.
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Anhang F

Literatur

Stochastik I

Folgende Bücher werden als begleitende Literatur zum Teil I des Skriptes empfohlen:

• H. Bauer:
Maß- und Integrationstheorie,
Walter de Gruyter, Berlin, 1990.
ISBN: 3110127725
Preis: 26.95 €
Kurzbeschreibung:
,,Viele Gebiete der Mathematik und ihrer Anwendungen [...] erfordern solide Kenntnisse
aus der Maß- und Integrationstheorie. Das Lehrbuch [...] führt den Leser [...] schnell,
verlässlich und präzise zu den wichtigsten Ergebnissen der Maß- und Integrationstheo-
rie hin. [...] Zahlreiche Beispiele erläutern die Bedeutung der erzielten Ergebnisse.[...]
Übungsaufgaben laden den Leser zum vertieften Eindringen in den behandelten Stoff
ein.”

• H. Bauer:
Wahrscheinlichkeitstheorie,
5. Auflage, Walter de Gruyter, Berlin, 2002.
ISBN: 3110172364
Preis: 36.95 €
Kurzbeschreibung:
,,Das vorliegende Buch soll dem Studierenden als Wegführer in die Wahrscheinlichkeits-
theorie dienen. Der Leser soll dabei mit den wichtigsten Ideen, Methoden und Resultaten
dieser sich heute schnell entwickelnden und verzweigenden mathematischen Theorie be-
kanntgemacht werden. [...] Da heutzutage die Wahrscheinlichkeitstheorie unlöslich mit
der Maß- und Integrationstheorie verbunden ist, verfolgt das Buch zugleich aber auch
ein zweites Ziel, nämlich den Leser mit den Grundzügen der Maßtheorie vertraut zu
machen. [...]”

• W. Behnen, G. Neuhaus:
Grundkurs Stochastik,
3. Auflage, Teubner-Verlag, Stuttgart, 1995.
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ISBN: 3930737698
Preis: 24.00 €
Kurzbeschreibung:
,,Eine integrierte Einführung in die Wahrscheinlichkeitstheorie und Mathematische Sta-
tistik für Mathematiker, Wirtschaftsmathematiker, Informatiker und Physiker.
Es enthält: Wahrscheinlichkeitsmodelle, Anwendungspostulat und statistische Tests;
mehrstufige Zufallsexperimente und grundlegende diskrete Modelle; Wahrscheinlich-
keitsmodelle über euklidischen Räumen; Koppelung von allgemeinen Zufallsexperimen-
ten (Satz von Fubini); Parameterschätzung (auch in approximativen Modellen); Konfi-
denzbereiche für Modellparameter; das Testen von Hypothesen.”

• M. A. Berger:
An Introduction to Probability and Stochastic Processes,
Springer–Verlag, New York, 1992.
ISBN: 3540977848
Kurzbeschreibung:
,,This is a textbook which will provide students with a straightforward introduction
to the mathematical theory of probability. It is written with the aim of presenting the
central results and techniques of the subject in a complete and self-contained account.
(...) Any student who has a familiarity with calculus and basic algebra will be able to
use this text and throughout there are a wide variety of exercises to illustrate and to
develop ideas. [...]”

• O. Beyer, H. Hackel, V. Pieper, J. Tiedge:
Wahrscheinlichkeitsrechnung und mathematische Statistik,
7. Auflage, Teubner-Verlag, Stuttgart, 1995.
ISBN: 3-8154-2075-X
Kurzbeschreibung:
,,Die Reihe ,,Mathematik für Ingenieure, Naturwissenschaftler, Ökonomen und Land-
wirte” umfasst den [...] Lehrstoff für die Mathematikausbildung der genannten Diszi-
plinen, bietet Möglichkeiten zur Vertiefung sowie Spezialisierung und unterstützt die
Individualisierung des Studiums. [...] Das Lehrwerk ist nach modernen fachlichen und
hochschulpädagogischen Prinzipien aufgebaut. [...]”

• P. Billingsley:
Probability and Measure,
2nd edition, John Wiley and Sons, New York, 1986.
ISBN: 0471007102
Preis: 102.90 €
Kurzbeschreibung:
,,Intertwines measure theory and modern probability: probability problems generate
an interest in measure theory and measure theory is then developed and applied to
probability. Illustrates the connections probability theory has with applied mathematics
on the one hand and with pure mathematics on the other.”

• M. Fisz:
Wahrscheinlichkeitsrechnung und mathematische Statistik,
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VEB, Deutscher Verlag der Wissenschaften 1989.
ISBN: 3326000790
Kurzbeschreibung:
,,Dieses Buch ist in der Hauptsache für Mathematiker bestimmt; es dürfte aber auch
[...] solchen Lesern zugänglich sein, die [...] über gewisse Kenntnisse in der höheren
Mathematik verfügen und sich für die Anwendungen der Wahrscheinlichkeitsrechnung
interessieren. Der Leser findet in diesem Buch eine Einführung in die moderne Wahr-
scheinlichkeitsrechnung und die moderne mathematische Statistik. [...] Das Buch enthält
zahlreiche Anwendungsbeispiele. [...]”

• P. Gänssler und W. Stute:
Wahrscheinlichkeitstheorie,
Springer–Verlag, Berlin, 1977.
ISBN: 3540084185
Kurzbeschreibung:
,,Für das Verständnis des vorliegenden Textes sind [...] Grundkenntnisse aus einer Vor-
lesung ,,Einführung in die Wahrscheinlichkeitstheorie und Mathematische Statistik”
wünschenswert. [...] Auf eine Diskusion diskreter Modelle ist deshalb bewusst verzich-
tet worden. Die [...] getroffene Stoffauswahl umfasst eine zweisemestrige Vorlesung über
Wahrscheinlichkeitstheorie. Neben der Vermittlung klassischer Grundlagen liegt der me-
thodische Schwerpunkt auf der Konstruktion stochastischer Modelle unter besonderer
Berücksichtigung einiger für die Anwendungen in der Mathematischen Statistik wichti-
gen Resultate. [...] ”

• M. Greiner/G. Tinhofer:
Stochastik für Studienanfänger der Informatik,
Hanser, München, 1996.
ISBN: 3-446-18636-0
Kurzbeschreibung:
,,Dieses Lehrbuch bietet einen Grundstock an Lehrstoff aus Wahrscheinlichkeitstheorie
und Statistik, wie er in der Informatik benötigt wird und verbindet diesen Lehrstoff
mit der Begriffswelt, die Informatiker in ihrem Berufsalltag vorfinden. Hierbei wird be-
sonderes Gewicht auf die Aspekte Methodik und Modellierung gelegt. Der Leser soll
[...] zukünftig in der Lage sein, Fragen aus seinem Berufsalltag in ein geeignetes sto-
chastisches Modell umzusetzen und die ermittelten Resultate anschließend im Rahmen
der ursprünglichen Fragestellung zu interpretieren.[...] Mehr als hundert Beispiele, Auf-
gaben und deren Lösungen sowie ein Kompromiss zwischen mathematischer Strenge
und ausgewogener textlicher Darstellung des Stoffes motivieren den Leser zur aktiven
Teilnahme an der Entwicklung und Lösung von Problemen aus der Stochastik.”

• E. Henze:
Einführung in die Maßtheorie,
Bibl. Institut, Mannheim, 1971.
ISBN: 341100505X
Kurzbeschreibung:
,,Bei dieser Einführung in die Maß- und Integrationstheorie werden gleichzeitig die not-
wendigen Ergebnisse und Methoden für den Einstieg in die moderne Wahrscheinlich-
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keitstheorie bereitgestellt. Das Buch wendet sich in erster Linie an Studenten der Ma-
thematik, der Informatik und der Physik, kann aber auch anderen interessierten Lesern
von Nutzen sein.”

• E. Henze:
Stochastik für Einsteiger,
Bibl. Institut, Mannheim, 1997.
ISBN: 3528368942
Kurzbeschreibung:
,,[...] Dieses Buch soll dem Leser einen Einstieg in die Stochastik, die Kunst des ,,ge-
schickten Vermutens”, vermitteln und ihn in die Lage versetzen [...] kritisch und kom-
petent mitreden zu können. Es enthält 160 Übungsaufgaben mit Lösungen. [...] Als
Lehrbuch zwischen gymnasialem Mathematikunterricht und Universität wendet es sich
unter anderem an: [...] Studienanfänger an Universitäten, Fachhochschulen und Berufs-
akademien; Quereinsteiger aus Industrie und Wirtschaft.”

• H. Heuser:
Lehrbuch der Analysis. Teil 2 Mathematische Leitfäden,
Teubner, Stuttgart, 2002.
ISBN: 3519522322
Kurzbeschreibung:
,,Bei der Abfassung des zweiten Bandes [...] wollte ich die Theorie ausführlich und
fasslich darstellen, ausgiebig motivieren und durch viele Beispiele und Übungen zum si-
cheren Besitz des Lesers machen. Außerdem wollte ich Brücken schlagen zu den Anwen-
dungen analytischer Methoden in den allerverschiedensten Wissenschaften. [...] Dabei
stehen diesmal im Vordergrund der Überlegungen Funktionen, deren Argumente und
Werte Vektoren aus dem Rp oder sogar Elemente aus noch viel allgemeineren Räumen
sind. [...]”

• K. Hinderer:
Grundbegriffe der Wahrscheinlichkeitstheorie,
Springer–Verlag, 1980.
ISBN: 3540073094
Kurzbeschreibung:
,,Das Buch [...] bietet eine solide, gut motivierte Darstellung mit einer Fülle konkre-
ter Beispiele, ergänzt durch sorgfältig ausgesuchte Aufgaben nach jedem Paragraphen.
Sowohl die historischen als auch die weiterführenden Bemerkungen geben eine gute
Übersicht über Probleme und Fragestellungen aus der Wahrscheinlichkeitstheorie.”

• G. Hübner:
Stochastik. Eine Einführung für Mathematiker, Informatiker und Ingenieure.,
4. Auflage, Vieweg Verlag, 2003.
ISBN: 3528254432
Preis: 22.50 €
Kurzbeschreibung:
,,Dieses Buch soll Informatiker, Ingenieure und Mathematiker in die Lage versetzen,
konkrete Vorgänge mit Zufallseinfluss in den wesentlichen Aspekten zu verstehen, zu
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modellieren und daraus Prognosen und Entscheidungshilfen abzuleiten. [...] Das Buch
[...] richtet sich [...] an [...] Informatiker, Ingenieure, Mathematiker und Mathematik–
Lehrer, die sich grundlegende Kenntnisse in stochastischer Modellierung und erste Ein-
blicke in Anwendungsbereiche verschaffen wollen. [...] Besonders auf die Belange der
Informatik zugeschnitten ist die Einbeziehung von Modellen und Bewertungen für Be-
dienungsprobleme und Kommunikationsnetze auf elementarem Niveau. [...]”

• U. Krengel:
Einführung in die Wahrscheinlichkeitstheorie und Statistik,
6. Auflage, Vieweg, 2002.
ISBN: 3528672595
Preis: 22.90 €
Kurzbeschreibung:
,,Dieses Buch wendet sich an alle, die [...] in die Ideenwelt der Stochastik eindringen
möchten. Stochastik ist die Mathematik des Zufalls. [...] Die beiden Hauptgebiete der
Stochastik sind Wahrscheinlichkeitstheorie und Statistik. In der Wahrscheinlichkeits-
theorie untersucht man zufällige Prozesse mit festen als bekannt angenommenen steu-
ernden Wahrscheinlichkeiten. [...] Darüber hinaus liefert die Wahrscheinlichkeitstheorie
Grundlagen für die Statistik, in der aus beobachteten Daten Schlüsse über unbekannte
Wahrscheinlichkeiten und über zweckmäßiges Verhalten gezogen werden sollen. [...]”

• K. Krickeberg/H. Ziezold:
Stochastische Methoden,
4. Auflage, Springer–Verlag, Berlin, 1995.
ISBN: 3-540-57792-0
Kurzbeschreibung:
,,Im Vordergrund [...] stehen die eigentlichen ,,stochastischen” Ideen und ihre prakti-
schen Anwendungen, insbesondere in der Statistik, ohne dass mathematische strenge
und Schönheit zu kurz kommen. Über die üblichen Grundlagen hinaus finden sich Kapi-
tel über Simulation, nichtparametrische Statistik und Regression- und Varianzanalyse.
[...] Besonderer Anziehungspunkt dieses Buches ist die ,,genetische” Entwicklung der
verschiedenen Typen von Wahrscheinlichkeitsverteilungen, ausgehend von der hyper-
geometrischen Verteilung. [...]”

• J. Lehn/H. Wegmann:
Einführung in die Statistik,
4. Auflage, Teubner, 2004.
ISBN: 3519320711
Preis: 22.90 €
Kurzbeschreibung:
,,Eine elementare Darstellung statistischer Schätz– und Testverfahren einschließlich der
zugrundeliegenden Modellbildung für Mathematiker, Informatiker, Wirtschaftswissen-
schaftler, Naturwissenschaftler und Ingenieure.
Es enthält: Methoden der Beschreibenden Statistik; Zufallsvariablen und ihre Vertei-
lungen; Gesetze der Großen Zahlen und ihre Eigenschaften; Tests bei Normalvertei-
lungsannahmen; χ2-Tests und Kontingenztafeln; verteilungsunabhängige Tests; einfache
Varianzanalyse und Regression.”
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• R. Mathar/D. Pfeiffer:
Stochastik für Informatiker,
Teubner, 1990.
ISBN: 3519022400
Kurzbeschreibung:
,,Das vorliegende Buch [...] wendet sich vor allem an Informatikstudenten und Mathe-
matikstudenten mit Nebenfach Informatik mit dem Ziel, stochastische Grundbegriffe
unter besonderer Berücksichtigung Informatik–spezifischer Aspekte zu vermitteln. [...]
Ziel des Buches ist es daher, eine einheitliche und möglichst geschlossene Übersicht
über die zum Verständnis benötigten Grundlagen zu geben. [...] Trotz des überwiegen-
den Lehrbuchcharakters dieses Textes haben wir uns allerdings auch bemüht, neuere
Entwicklungen, die z.T. bisher nur in Originalarbeiten vorliegen, mit einzubeziehen, um
dort, wo es im Rahmen unseres Zugangs möglich ist, Anschluss an Fragestellungen der
aktuellen Forschung zu erlangen. [...]”

• J. Pfanzagl:
Elementare Wahrscheinlichkeitsrechnung,
Gruyter, Berlin, 1988.
ISBN: 3110114194
Kurzbeschreibung:
,,Die vorliegende Einführung der Wahrscheinlichkeitsrechnung ist ,,elementar” in dem
Sinne, dass weder Kenntnisse aus der Maßtheorie noch aus der Funktionentheorie vor-
ausgesetzt werden. [...] Das Anliegen des Buches ist die Entwicklung anwendungsbe-
zogenen stochastischen Denkens. Diesem Ziel dient eine verhältnismäßig große Anzahl
von Beispielen, die [...] zeigen sollen, dass es sich bei der Wahrscheinlichkeitsrechnung
um ein Teilgebiet der Mathematik handelt, das durch Anwendungen immer wieder neue
Facetten erhält. [...]”

• P. P. Spies:
Grundlagen stochastischer Modelle,
Hanser, München, 1982.
ISBN: 3446137114

Literatur speziell zu Kapitel 4

• J. Banks:
Principles of Quality Control,
John Wiley and Sons, New York, 1989.
ISBN: 0471635510

• D.C. Montgomery:
Introduction to Statistical Quality Control,
2nd edition, John Wiley and Sons, New York, 1991.
ISBN: 0471656313
Kurzbeschreibung:
,,This book is about the use of modern statistical methods for quality control and im-
provement. It provides comprehensive coverage of the subject from basic principles to
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state-of-art concepts and applications. The objective is to give the reader a sound under-
standing of the principles and the basis for applying them in a variety of both product
and nonproduct situations. While statistical techniques are emphasized throughout, the
book has a strong engineering and management orientation. [...] By presenting theory,
and supporting the theory with clear and relevant examples, Montgomery helps the
reader to understand the big picture of important concepts. [...]”

• H. Rinne und H.–J. Mittag:
Statistische Methoden der Qualitätssicherung,
3. Auflage, Carl Hanser Verlag, München, 1995.
ISBN: 3446180060
Kurzbeschreibung:
,,Dieses Buch ist bewusst anwendungsorientiert geschrieben und zeichnet sich durch eine
besonders sorgfältige didaktische Gestaltung aus. Es enthält: Zahlreiche Abbildungen
und Fotos; mehr als 100 Übungsaufgaben mit ausführlichen Lösungen; viele durchge-
rechnete Anwendungsbeispiele; verständnisfördernde, zusammenfassende Übersichten;
kommentierte Literaturangaben.”

• W. Uhlmann:
Statistische Qualitätskontrolle,
2. Auflage, Teubner–Verlag, Stuttgart, 1982.
ISBN: 3519123061
Kurzbeschreibung:
,,Ein Lehrbuch für Statistiker, Mathematiker, Ingenieure und Wirtschaftswissenschaft-
ler. Es enthält: Wahrscheinlichkeitstheoretische Grundlagen; statistische Grundlagen;
Eingangs- und Endkontrolle; kostenoptimale Prüfpläne; sequentielle Tests; Kontrollkar-
ten; Kosten und Kontrollabstand; kontinuierliche Stichprobenpläne.”

Literatur speziell zu Kapitel 8

• F. Beichelt:
Zuverlässigkeits– und Instandhaltungstheorie,
Teubner, Stuttgart, 1993.
ISBN: 3519029855
Kurzbeschreibung:
,,Das Buch ist eine moderne Einführung in die Zuverlässigkeits– und Instandhaltungs-
theorie auf der Grundlage stochastischer Modellbildung.[...] Zahlreiche numerische Bei-
spiele erleichtern dainhaltliche Verständnis. Das Buch wendet sich an Praktiker und
Studierende mathematisch-naturwissenschaftlich-technischer Fachrichtungen. [...]”

• K.–W. Gaede:
Zuverlässigkeit — Mathematische Modelle,
Hanser, München, 1977.
ISBN: 3446123709
Kurzbeschreibung:
,,Dieses Buch behandelt in leicht verständlicher und mathematisch sauberer Form die
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Problemstellungen der Zuverlässigkeitstheorie und die zu ihrer Lösung nötigen ma-
thematischen Modelle. Die erforderlichen Begriffe und die ausführlich beschriebenen
Lösungsverfahren werden an praxisorientierten Beispielen erläutert. [...] Damit ist das
Buch [...] auch zum Selbststudium für alle Ingenieure, Informatiker, Physiker und Ma-
thematiker geeignet, die in der Praxis Zuverlässigkeitsprobleme zu bearbeiten haben.”

• P. Gessner/H. Wacker:
Dynamische Optimierung,
Hansa, München, 1972.
ISBN: 3446115390
Kurzbeschreibung:
,,Dieses Buch wendet sich an den Praktiker. Es versucht im Bereich der dynamischen Op-
timierung ähnlich wie bei der linearen Optimierung das Modelldenken einzuführen. [...]
Alle jene Optimierungsprobleme der Unternehmensforschung werden behandelt, bei de-
nen es darum geht, zeitabhängige Prozesse optimal zu steuern oder zu beeinflussen. [...]
Hierzu werden viele realistische Beispiele diskutiert. [...] Für den an der Theorie weniger
interessierten Praktiker sind für jedes Modell die Rechenschritte für sich verständlich
aufgelistet. [...]”

• K. Neumann:
Dynamische Optimierung,
Bibliographisches Institut AG, Mannheim, 1969.
ISBN: 3411007141
Kurzbeschreibung:
,,Das vorliegende Taschenbuch ist aus einer Vorlesung [...] entstanden. Der Stoff der Vor-
lesung ist durch Anwendungsbeispiele aus den verschiedensten Gebieten (Lagerhaltung,
chemische Reaktortechnik, Regelungstechnik, Zuverlässigkeitstheorie, Produktions- und
Wirtschaftssteuerung u.a.) [...] ergänzt worden. [...]”

Stochastik II

Die nachfolgenden Bücher eignen sich zum Nacharbeiten des Teil II:

• A.O. Allen:
Probability, Statistics and Queueing Theory,
Academic Press, London, 2nd. Edition, 1990.
ISBN: 0120510510

• G. Alsmeyer:
Erneuerungstheorie,
Teubner-Verlag, Stuttgart, 1991.
ISBN: 3519027305

• G. Aumann/O. Haupt:
Einführung in die reelle Analysis, Band I,
de Gruyter, Bln., 1981.
ISBN: 3110019701
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• F. Beichelt/P. Franken:
Zuverlässigkeit und Instandhaltung: Mathematische Methoden,
Hanser-Verlag, München, 1984.
ISBN: 3446139060

• U.N. Bhat:
Sixty years of queueing theory,
Management Science 15,280-294, 1969.

• E. Brockemeyer, H.L. Halstrom, A. Jensen:
The Life and Works of A.K. Erlang,
Acta Polystechnica Scandinavia, Mathematics and Computing Machinery Series, 6,
1960.

• J.A. Buzacott/J.G. Shantikumar:
Stochastic Models of Manufacturing Systems,
Prentice Hall, 1993.
ISBN: 0138475679
Preis: 90.90 €

• Y.S. Chow/H. Teicher:
Probability Theory - Independence, Interchangeability, Martingales,
Springer-Verlag, New York, 1988.
ISBN: 0387406077

• E. Cinlar:
Introduction to stochastic processes,
Prentice–Hall, 1975.

• J. W. Cohen:
The single server queue,
North Holland Publishing Company, Amsterdam, 1969.

• G.H. Fichtenholz:
Differential- und Integralrechnung II,
VEB Deutscher Verlag der Wissenschaften, Berlin, 1974.
ISBN: 3817112793
Preis: 34.80 €

• D. Gross/C.M. Harris:
Fundamentals of Queueing Theory,
John Wiley and Sons, New York, 2nd. Edition, 1986.
ISBN: 0471170836
Preis: 108.50 €

• D. L. Iglehart/G. S. Shedler:
An Introduction to the Regenerative Method for Simulation Analysis,
Springer–Verlag, Berlin, 1977.
ISBN: 3540084088
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• D. L. Iglehart/G. S. Shedler:
Regenerative Simulation of Response Times in Networks of Queues,
Springer–Verlag, Berlin, 1980.
ISBN: 3540099425

• S. Karlin/H.M. Taylor:
A first course in stochastic processes,
Academic Press, 1975.
Preis: 83.50 €

• L. Kleinrock:
Queueing Systems, Volume 1,
John Wiley ans Sons, 1975.

• L. Kleinrock:
Queueung Systems, Volume 2,
John Wiley and Sons, 1976.

• J. Kohlas:
Stochastische Methoden des Operations Research,
Teubner, 1977.
ISBN: 3519023423

• M. Kolonko:
Stochastik I, Skriptum zur Vorlesung,
TU Clausthal, 2005.

• M. Kolonko:
Stochastik II, Skriptum zur Vorlesung,
TU Clausthal, 2006.

• S.S. Lavenberg:
Computer Performance Modeling Handbook,
Academic Press, San Diego, 1983.
ISBN: 0124387209

• S. I. Resnick:
Adventures in Stochastic Processes,
Birkhäuser, Boston, 1992.
ISBN:0817635912
Preis: 65.50 €

• T.L. Saaty:
Elements of Queueing Theory with Applications,
Mc Graw Hill, New York, 1961.
ISBN: 0486645533

• P. Tran-Gia:
Analytische Leistungsbewertung verteilter Systeme,
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Springer-Verlag, Berlin, 1996.
ISBN: 3540606661
Kurzbeschreibung:
,,Dieses Buch vermittelt die gängigen Methoden der Modellbildung und Analyse verteil-
ter Systeme, die in der Leistungsbewertung von Rechner- und Kommunikationssystemen
sowie von Fertigungssystemen angewendet werden. Zunächst werden die Grundlagen der
Wahrscheinlichkeitsrechnung, der stochastischen Prozesse, der Markov- und der Erneue-
rungsprozesse behandelt, die zum Verständnis der analytischen Leistungsbewertungs-
verfahren erforderlich sind. Grundmodelle der klassischen Nachrichtenverkehrstheorie
und des Operations Research werden eingehend beschrieben, wobei Modellierungs- und
Anwendungsaspekte im Vordergrund stehen. Abschließend werden moderne Analyseme-
thoden vorgestellt, z.B. zeitdiskrete Analyseverfahren und Algorithmen sowie die Klasse
der matrixanalytischen Methoden.”
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Anhang G

Historie

In der folgenden Auflistung werden einige für die Entwicklung der Stochastik bedeutende
Mathematiker mit ihren Lebensdaten und kurzen Beschreibungen ihrer Wirkungsfelder auf-
geführt. Die Liste erhebt keinen Anspruch auf Vollständigkeit. Insbesondere fehlen wichtige
Mathematiker, die nicht direkt im Bereich der Stochastik gewirkt haben, durch ihre Arbeiten
zur Maß- oder Integrationstheorie die moderne Stochastik aber erst ermöglichten.

• Thomas Bayes
(∗ 1702 in London, England; † 17. April 1761 in Tunbridge Wells, Kent, England)

Thomas Bayes studierte ab 1719 Theologie an der Universität in Edinburgh und be-
schäftige sich nebenbei mit Mathematik. 1733 wurde er Pfarrer der presbyterianischen
Kapelle in Tunbridge Wells, 35 Meilen südöstlich von London. 1742 ernannte man Bayes
zum Mitglied der Royal Society, obwohl der bis zu diesem Zeitpunkt noch keinerlei
mathematische Arbeiten veröffentlich hatte. Insgesamt publizierte Bayes selbst nur 2
Arbeiten. Seine wichtigten Forschungsergebnisse, die unter anderem auch den später
als ,,Formel von Bayes” benannten Satz enthielten, wurden erst aus seinem Nachlass
bekannt.

• Richard Ernest Bellman
(∗ 26. August 1920 in New York; † 19. März 1984 in Santa Monica, Californien)

Bellman studierte bis 1943 am Brooklyn College (B.A.) sowie an der University of
Wisconsin (M.A.) Mathematik. Danach arbeitete er 2 Jahre in Los Alamos in der theo-
retischen Physik. Seit 1965 lehrte er an der Universität von Southern California, Los
Angeles, als Professor für Mathematik, Elektroingenieurwesen und Medizin.

1953 stellte Bellman die Methode der dynamischen Programmierung auf, die für die
Entscheidungstheorie sowie für die Variationsrechnung und optimalen Steuerung we-
sentlich ist. Bellman beschäftige sich auch mit der Modellierung biologischer Prozesse
und der Theorie der unscharfen Mengen.

• Familie Bernoulli
Die schweizer Gelehrtenfamilie Bernoulli hat über mehrere Generationen hinweg sehr
große Beiträge zur Mathematik geleistet.

Im Folgenden werden nur die beiden Mitglieder der Bernoulli-Familie aufgeführt, die
sich wesentlich mit stochastischen Fragestellungen beschäftigt haben. Insbesondere wer-
den Jakob Bernoulli II, Johann Bernoulli I, Johann Bernoulli II, Johann Bernoulli III,
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Niklaus Bernoulli I und Niklaus Bernoulli II, die allesamt bedeutende Mathematiker
waren, hier nicht näher erwähnt.

– Daniel Bernoulli
(∗ 8. Februar 1700 in Groningen; † 17. März 1782 in Basel)
Daniel Bernoulli interessierte sich hauptsächlich für Anwendungen der Mathema-
tik. Er entwickelte das Prinzip zur Lösung algebraischer Gleichungen mit Hilfe
von rekurrenten Reihen (,,Methode von Bernoulli”) und untersuchte Kettenbrüche.
Außerdem lieferte er wichtige Beiträge zur Wahrscheinlichkeitstheorie, die später
teilweise von Laplace in seine Theorie aufgenommen wurden.

– Jakob Bernoulli I
(∗ 27. Dezember 1654 in Basel; † 16. August 1705 in Basel)
Jakob Bernoulli I ist der erste Gelehrte in der Familie der Bernoullis und über-
haupt der erste bekannte Schweizer Mathematiker. Er befasste sich überwiegend
mit analytischen Fragestellungen (er stand u.a. mit Leibniz, der gerade eine In-
finitesimalmethoden aufgestellt hatte, in Kontakt), sowie mit stochastischen Pro-
blemen. Seine Arbeit baute auf den Ergebnissen von Huygens über das Glücks-
spiel auf. In einer, erst nach seinem Tode durch seinen Neffen Niklaus Bernoulli
I veröffentlichten Arbeit, stellte Jakob Bernoulli I bereits das Gesetz der großen
Zahlen auf und verallgemeinerte viele kombinatorische Ansätze von Huygens.

• Emile Borel
(∗ 7. Januar 1871 Saint-Affrique; † 3. Februar 1956 in Paris)

Borel beschäftige sich zunächst mit Funktionentheorie. Nach seiner Tätigkeit als For-
schungsbeirat im Kriegsministerium von 1914–1918 übernahm er den Lehrstuhl für
Wahrscheinlichkeitsrechnung und mathematische Physik an der Sorbonne. Während
seiner Arbeit in der Funktionentheorie präge Borel den Begriff des Maßes und der
überabzählbaren Überdeckung. Ab 1905 befasste sich Borel mit den Nutzungsmöglich-
keiten seiner Maßtheorie in der Wahrscheinlichkeitstheorie. Außerdem ist Borel Mitbe-
gründer der Spieltheorie und bewies das Minimax-Theorem für 3 Spieler.

• Guido Fubini
(∗ 19. Januar 1879 in Venedig; † 6. Juni 1943 in New York)

Zu den wichtigsten Arbeiten Fubinis gehört der 1907 von ihm bewiesene und später nach
ihm benannte Satz. Darüber hinaus befasste sich Fubini mit projektiver Differentialgeo-
metrie sowie der Theorie diskontinuierlicher Gruppen und automorpher Funktionen.

• Andrej Nikolajewitsch Kolmogorov
(∗ 25. April 1903 in Tambow; 20. Oktober 1987 in Moskau)

Kolmogorov gilt als einer der bedeutensten Mathematiker der Gegenwart. Er befasste
sich vorwiegend mit Wahrscheinlichkeitstheorie, mathematischer Statistik und Logik,
Maß- und Integrationstheorie, Funktionnalanalysis sowie Informations- und Algorith-
mentheorie. Nebenbei entwarf er Lehrpläne und Schulbücher für den Mathematikunter-
richt und prägte so zu großen Teilen den Mathematikunterricht in der Sowjetunion.

Mit seiner Arbeit ,,Grundbegriffe der Wahrscheinlichkeitsrechnung” von 1933 löste er
das 6. Problem der berühmten 23 von Hilbert gestellten mathematischen Probleme.
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• Pierre Simon Marquis de Laplace
(∗ 28. März 1749 in Beaumont-en-Auge; † 5. März 1827 in Paris)

Laplace befasste sich sehr viel mit partiellen Differential– und Differenzengleichungen.
Seine Entwicklung der Laplace-Transformation diente ihm dazu, Naturerscheinungen
analytisch zu erfassen. Neben vielen Arbeiten zu physikalischen Themen befasste er sich
mit Themen der Wahrscheinlichkeitsrechnung. Seine 1812 erschienene Theorie stellte ei-
ne umfassende Darstellung der damals bekannten Wahrscheinlichkeitstheorie dar. In ihr
wurde der Begriff der Wahrscheinlichkeit definiert, sowie die mathematische Erwartung
erörtert. Zudem greift Laplace in seiner Arbeit das, von J. Bernoulli gefundene Gesetz
der großen Zahlen auf.

Auf Laplace geht auch die Idee zurück, dass das Geschehen in einem physikaischen Sy-
stem exakt vorherbestimmbar sei, wenn nur alle Anfangszustände bekannt sind (,,La-
placescher Determinismus”).

Laplace war neben seiner Tätigkeit als Forscher ab 1794 Vorsitzender der Kommission
für Maße und Gewichte und unter Napoleon Bonaparte Minister des Inneren.

• Henri Lebesgue
(∗ 28. Juni 1875 in Beauvais (Frankreich); † 26. Juli 1941 in Paris)

Lebesgue erkannte, dass viele zu seiner Zeit gültigen Theorien für eine Reihe von Frage-
stellungen unzureichend waren. 1902 verallgemeinerte er den Riemannschen Integralbe-
griff zu dem wesentlich leistungsfähigeren Lebesgueschen Integral. Lebesgues Resultate
wurden zunächst nur zögernd aufgenommen, stellen heute aber die Grundlage für die
moderne Analysis dar.

• Andrej Andrejewitch Markov
(∗ 14. Juni 1856 in Gouvernement Rjasan; † 20. Juli 1922 in Petrograd)

Markov studierte von 1874–1878 unter anderem bei Tschebyscheff und beschäftigte sich
zunächst hauptsätlich mit Fragestellungen der Zahlen– und Funktionentheorie. Später
befasste er sich überwiegend mit Wahrscheinlichkeitsrechnung. Dabei legte er wichtige
Grundlagen zur Entwicklung der Theorie der stochastischen Prozesse. Außerdem ent-
wickelte Markov die Theorie der später nach ihm benannten Markovschen Prozesse bzw.
Ketten.

• Pafnuti Lwowitch Tschebyscheff
(∗ 16. Mai 1821 in Okatowo; † 8. Dezember 1894 in Petersburg)

Tschebyscheff befasste sich zunächst überwiegend mit Zahlentheorie. Unter anderem
wirkte er an der Herausgabe der zahlentheoretischen Manusskripte Eulers mit. Später
beschäftige er sich dann überwiegend mit wahrscheinlichkeitstheoretischen Fragestel-
lungen. Insbesondere erarbeitete er die Gesetzmäßigkeiten von Summen unabhängiger
Summanden. Er verdeutlichte die Wichtigkeit solcher Begriffe wie Zufallsgröße oder Er-
wartungswert, verallgemeinerte das Gesetz der großen Zahlen und vereinfachte dessen
Beweis erheblich.

• Bernhard Georg Friedrich Riemann
(∗ 17. September 1826 in Breselenz bei Dannenberg; † 20. Juli 1866 in Selasca in Italien)
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Riemann studierte ab 1846 an der Universität in Göttingen zunächst Theologie und
Philosophie, wechselte dann aber bald zur Mathematik. In seiner 1854 vorgelegten Ha-
bilitationsschrift führte Riemann das später nach ihm benannte Riemann-Integral ein.
Neben der Integrationstheorie befasste er sich mit vielen weiteren mathematischen Ge-
bieten. So forschte Riemann u.a. auf dem Gebiet der partiellen Differentialgleichungen,
sowie in der Zahlentheorie und der nichteuklidischen Geometrie. Die Ideen Riemanns
sind bis heute von großer Bedeutung: Die Riemannsche Hypothese über die Nullstellen
der ζ-Funktion wird in sehr vielen Sätzen der Zahlentheorie verwendet. Beweisen lies
sich die Riemannsche Hypothese allerdings bis heute nicht.

Weitere Informationen und diverse Biographien finden sich unter:

• S. Gottwald, H.-J. Ilgauds, K.-H. Schlote:
Lexikon bedeutender Mathematiker,
Verlag Harri Deutsch, Thun, 1990.
ISBN: 3-8171-1164-9

• Turnbell Server, Biographies
http://www-groups.dcs.st-and.ac.uk/

• Mathematik.ch: Bedeutende Mathematiker
http://www.mathematik.ch/mathematiker/

• Wikipedia (Kategorie: Mathematiker)
http://de.wikipedia.org/wiki/Kategorie:Mathematiker
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Stichwortverzeichnis

P–integrierbar, 8
α-Quantil, 65
Überlagerungsprozess, 140
Überlebensfunktion, 156

Ablehnungsbereich, 70
absolut–stetig, 79
Alter, 110
Alternative, 69
Ankunftsrate, 195
Annahmebereich, 70
Anzahl der Kunden im System, 196
aperiodisch, 142
arithmetisch verteilt, 118
asymptotisch erwartungstreu, 60
aufgespanntes Gitter, 182
Ausfallrate, 156

Bayes, Thomas, 231
Bedienrate, 195
Bedienungsregel, 195
Bedienungsschalter, 193
Bedienungszeiten, 195
bedingte Überlebenswahrscheinlichkeit, 157
bedingte Dichte, 88
bedingte Erwartung, 76
bedingte Restlebensdauer, 157
bedingte Verteilung, 88
bedingter Erwartungswert, 76, 96
Bellman, Richard Ernest, 231
Bernoulli, Daniel, 232
Bernoulli, Jakob I, 232
Bernoulliverteilung, 11
Beyer–Quotient, 184
Bias, 54
Borel, Emile, 232
Borelraum, 85

charakteristische Funktion, 10
Cramér-Rao-Schranke, 58

Decreasing Failure Rate, 157
definit

positiv–semi-, 13
Diskrepanz

n–dimensionale, 176
Dreiecksverteilung, 12
Durchlaufzeiten, 196

Einpunktverteilung, 11
einseitiges Testproblem, 69
Erneuerungsargument, 108
Erneuerungsfolge, 100
Erneuerungsfunktion, 102
Erneuerungsgleichung, 108
Erneuerungsprozess, 100, 101

modifiziert, 137
stationär, 138

Erneuerungszeitpunkt, 100
Erwartung

bedingt, 79
erwartungstreu, 54
erwartungstreuer Schätzer mit minimaler Va-

rianz, 56
Erwartungswert, 8

Faltung, 105
Filtration, 146
Fisher–Information, 58
Fourier–Transformierte, 10
Fubini, Guido, 232

Gütefunktion, 70
gemischter Kongruenzgenerator, 174
Gitterbasis, 182
Gitterkonstante, 118
gleichmäßig besser, 66

Havarieerneuerung, 158
Havarieinstandsetzung, 156
Hit or Miss Methode, 191
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homogen, 140
Hypothese, 69
Hypothesentest, 70

Increasing Failure Rate, 157
inhomogen, 140

Kennfunktion, 66
Kolmogorov, Andrej Nikolajewitsch, 232
Konfidenzintervall, 65, 201
Konfidenzkoeffizient, 65
Konfidenzniveau, 65
Konvergenz in Verteilung, 26, 33
kritischen Bereich, 70
kumulative Ausfallrate, 161
kumulativen Kosten des i–ten Zyklus, 158
Kunde, 194

Länge des i–ten Zyklus, 158
Laplace, Pierre Simon Marquis de, 233
Laplace–Transformierte, 100
Lebensdauer, 100, 156
Lebensdauerfunktion, 156
Lebesgue, Henri, 233
Likelihood-Funktion, 62
lineare Kongruenzmethode, 174

Markov, Andrej Andrejewitch, 233
Maximum-Likelihood-Schätzer, 62
minimale Reparatur, 158
Minkowski–reduzierte Basis, 184
Mittelwertmethode, 191
multiplikativer Kongruenzgenerator, 174

natürliches Gitter, 182

Operationscharakteristik, 70

Periodenlänge, 176
periodisch, 142
Poissonprozess, 140
Poissonverteilung, 11
positiv–semidefinit, 13
prophylaktisch, 158
prophylaktischer Instandsetzung, 156
Pseudo-Inverse, 185
Punktschätzer, 53

Quantil, 65

Rückwärtsrekurrenzzeit, 110
Raummittel, 151
Regenerationspunkte, 146
Regenerationszyklus, 146, 202
regenerativer Prozess, 146
rekurrent, 142
Restlebenszeit, 110
Riemann, Bernhard Georg Friedrich, 233
Riemann–integrierbar

direkt, 126

Sample Mean Methode, 191
Satz

von Bochner, 14
Schätzer, 53, 201

gleichmäßig bester, 56
Schätzwerte, 53
Schalter, 194
schwach konsistent, 53
schwache Konvergenz, 26, 27, 33
semidefinit

positiv–, 13
stark konsistent, 53
statistisches Modell, 52
Stichprobe vom Umfang n, 52
Stichprobenkovarianz, 55
Stichprobenmittelwert, 53
Stichprobenmoment, 53
Stichprobenvarianz, 53
Stoppzeit, 146
straff, 27

Test zum (Signifikanz-) Niveau α, 71
Testproblem, 69

einseitiges, 69
zweiseitiges, 69

totale Erneuerung, 158
transient, 142
trennscharf, 71
Tschebyscheff, Pafnuti Lwowitch, 233

Umkehrformel, 14
Umkehrmethode, 185
unverfälscht, 66
unverzerrt, 54

vage Konvergenz, 27
Verteilung
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bedingte, 85
regulär bedingte, 85

Verweilzeiten, 196
verzerrt, 54
Verzerrung, 54
vollständig gleichverteilt, 176
Vorwärtsrekurrenzzeit, 110

Wahrscheinlichkeit
bedingte, 84
regulär bedingte, 85

Wahrscheinlichkeitsverteilung
Bernoulli, 11
Einpunkt, 11
Poisson, 11

Waldsche Gleichung, 83
Warteraum, 194
Wartezeiten, 196
Wirkungsgrad, 56

Zählprozess, 101
Zeitmittel, 151
Zeitpunkt der n–ten Erneuerung, 100
Zufallsvariable

komplexwertig, 8
Zufallszahlengeneratoren, 173
Zuverlässigkeitsfunktion, 156
zweiseitiges Testproblem, 69
Zwischenankunftszeit, 195
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