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9.6 Tabelle mit Kenngrößen verschiedener Verteilungen . . . . . . . . . . . . . . . 165
9.7 Weitere Hilfsmittel aus der Maß– und Integrationstheorie . . . . . . . . . . . 167
Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
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Vorwort

Vorwort zur ersten Auflage

Die Wahrscheinlichkeitstheorie hat sich seit ihrer axiomatischen Begründung durch A. N. Kol-
mogorov im Jahre 1936 zu einem bedeutenden mathematischen Teilgebiet entwickelt und ist
heute integraler Bestandteil der universitäten Ausbildung von Mathematikern. Die Wahr-
scheinlichkeitstheorie befasst sich mit der Abstraktion und der Modellierung von Zufalls-
vorgängen. Ihre Anfänge reichen weit in das 16. Jahrhundert zurück. Damals waren an den
königlichen Höfen Glücksspiele in Mode und Gelehrte wie Pascal, Fermat und Huygens fragten
nach den Gewinnchancen in diesen Spielen unter Zugrundelegung unterschiedlichster Spiel-
regeln. Die Untersuchungen wurden fortgesetzt von J. Bernoulli, der das berühmte schwache
Gesetz der großen Zahlen entdeckte, mit dem sich die asymptotische Stabilisierung der rela-
tiven Häufigkeit eines Zufallsereignisses mathematisch begründen lässt. Dieses Prinzip bildet
die mathematische Vorlage für den axiomatischen Aufbau der Wahrscheinlichkeitstheorie.
Das Konstruktionsprinzip für allgemeine Wahrscheinlichkeitsmaße und die damit verbunde-
nen Existenzsätze verdanken wir C. Caratheodory. Die moderne Wahrscheinlichkeitstheorie
ist durch einen starken Anwendungsbezug geprägt. Ob es sich um Fragen der Spracherken-
nung, der Produktionsplanung, der Bewertung von Optionspreismodellen, der Ausbreitung
infektiöser Krankheiten oder der Entschlüsselung genetischer Codes handelt, überall ist Sto-
chastik im Spiel. Der besondere Reiz der Stochastik liegt darin, dass in ihr viele mathemati-
sche Disziplinen wie Maßtheorie, Funktionalanalysis, Operatortheorie, Funktionentheorie und
diskrete Mathematik zusammengeführt werden.

Das Online–Skriptum zur Stochastik ist aus Vorlesungen hervorgegangen, die ich seit 1993
regelmäßig an der Technischen Universität Clausthal abhalte. Eine Besonderheit in Claus-
thal ist, dass Mathematik– und Informatik–Studenten ein gemeinsames Grundstudium durch-
laufen und die Wirtschaftsmathematiker und Wirtschaftsinformatiker diesselben Stochastik–
Vorlesungen hören. Ich halte es für eine gute Idee, die Zusammenarbeit von Mathematikern
und Informatikern bereits in der Ausbildung zu fördern. Denn Mathematik und Informatik
bedingen einander in besonderer Weise. Die gemeinsame Ausbildung setzt natürlich die Be-
reitschaft voraus, sich für das jeweils andere Fach zu begeistern. Indem wir in besonderem
Maße auf Anwendungen und innermathematische Zusammenhänge eingehen, versuchen wir,
beiden Gruppen mit der Vorlesung gerecht zu werden. Da wir am eigentlichen und vorwie-
gend Maßtheorie–orientierten Vorlesungsstoff keine Abstriche vornehmen wollen, bieten wir
in Form verschiedener Applets zusätzliche Erklärungs– und Lernhilfen an. Hierin sehen wir
einen besonderen Vorteil der eLearning–Technologien.

Die Technologie für das Online–Skriptum haben mein langjähriger Mitarbeiter Dr. Michael
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Frank und meine ehemaligen Diplomanden Torsten Hiddessen und Thomas Rosenau ent-
wickelt. Die technische Weiterentwicklung des Systems ist durch die finanzielle Förderung im
Rahmen von ELAN (elearning academic network Niedersachsen) und durch das besondere En-
gagement meines Mitarbeiters Dipl. Math. Alexander Herzog sichergestellt. Korrektur gelesen
und Verbesserungsvorschläge eingebracht haben Dipl. Math. Sylvia Arns, Dipl. Math. Alex-
ander Herzog, Dipl. Math. Susanne Lühr und unsere Hilfsassistenten Thomas Riemer und
Henning Schmidt. Die Applets wurden von Thorsten Hiddessen und Volker Hein program-
miert. Die grafische Gestaltung stammt von Franzika Dannehl. Aber auch meinem Kollegen,
Prof. Dr. Joachim Hilgert, der nach einem Prototypen des Online-Skriptums im WS 01/02
und im SS 02 in Clausthal die Stochastik gelesen hat, verdanke ich wichtige Korrekturhinweise
und Anmerkungen. Ihnen allen sei hiermit mein herzlichster Dank ausgesprochen.

Thomas Hanschke Clausthal, Oktober 2004

Vorwort zur zweiten Auflage

Die zweite Auflage unterscheidet sich von der ersten im Wesentlichen durch einige strukturelle
Änderungen und die Hinzunahme weiterer Illustrationen. Bei der Durchführung halfen diesmal
besonders Dipl.-Math. Sylvia Arns, Dipl.-Math. Alexander Herzog und unser Hilfsassistent
Hendrik Baumann.

Thomas Hanschke Clausthal, Oktober 2006
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Auf Stochastik I aufbauende Vorlesungen

Die Stochastik I Vorlesung stellt die Basis für eine Reihe weiterführender Veranstaltungen
dar, die man der nachstehenden Grafik entnehmen kann.

(Siehe auch PowerPoint-Präsentation zum Stochastik–Vorlesungsplan.)
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Kapitel 1

Einführung und
grundlegende Begriffe

In diesem Kapitel werden die Objekte erläutert, mit denen Zufallsexperimente mathematisch
beschrieben werden. Außerdem wird das von A.N. Kolmogorov stammende Axiomensystem
der Wahrscheinlichkeitstheorie vorgestellt.

Schlüsselwörter: Zufallsexperiment, Elementarereignis, Stichprobenraum, Ereig-
nis, Rechenregeln für Ereignisse, absolute und relative Häufigkeit, Wahrscheinlich-
keit, Axiomensystem nach Kolmogorov.
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Kapitel 1. Einführung und grundlegende Begriffe

1.1 Zufallsexperiment

Die Stochastik stellt Methoden und Verfahren zur Beschreibung und Analyse von Zufalls-
vorgängen zur Verfügung.

Stochastische Problemstellungen sind etwa:

• Aussagen über die Genauigkeit von Messergebnissen

• Vergleich der Verträglichkeit von Medikamenten

• Zuverlässigkeit technischer Systeme

• Gewinnchancen bei Glücksspielen

• Aussagekraft von Meinungsumfragen, Hochrechnungen

• Populationsprozesse, Ausbreitung infektiöser Krankheiten

• Vererbung von Eigenschaften

Der vermeintliche Zufall ist allgegenwärtig: In einem Produktionsprozess fallen unvorherge-
sehen Maschinen aus und führen zu Staus auf den Transportbändern. Die Fußball–Europa–
Meisterschaft fiel anders aus, als von den Experten prognostiziert wurde. Trotz akribisch
dokumentierter Permanenzen eines Roullette–Tisches bleibt der Ausgang des nächsten Spiels
ungewiss. Doch auch eine algorithmisch erzeugte Zahlenfolge werden wir als zufällig erachten,
solange wir ihr Bildungsgesetz nicht durchschaut haben. Angesichts dieser Beispiele mögen
Zweifel aufkommen, ob Begriffe wie ,,Zufall” und ,,Wahrscheinlichkeit” überhaupt mathema-
tisch objektivierbar sind oder mangels übergeordneter Erkenntnise lediglich Ausdruck einer
subjektiv empfundenen Unsicherheit sind. Die Stochastik will und kann diesen eher philo-
sophischen Sachverhalt nicht aufklären, sondern versucht durch geeignete Abstraktion und
Modellbildung, Gesetzmäßigkeiten in Zufallserscheinungen zu erkennen und mathematisch zu
erfassen. In der Regel beschränkt sich die Stochastik deshalb auch auf solche Zufallsexpe-
rimente, die analog einem physikalischen Experiment reproduzierbar und durch hinreichend
lange Beobachtung geeignet überprüft werden können.

1.1 Definition (Zufallsexperiment):
Unter einem Zufallsexperiment versteht man einen, im Prinzip beliebig oft, wiederholbaren
Vorgang mit ungewissem Ausgang.

1.2 Beispiel:
Zufallsexperimente in diesem Sinne sind

• der einmalige Wurf einer Münze,

• die Wartezeit am Postschalter oder

• die Gewinnausschüttung an einem Spielautomaten.

Keine Zufallsexperimente in diesem Sinne sind

• der Ausgang der nächsten Bundestagswahl,

• die Niederschlagsmenge in Clausthal–Zellerfeld am 20. Oktober 2009.

12



1.2. Ergebnisraum

1.2 Ergebnisraum

Zu Beginn eines Zufallsexperiments muss festgelegt werden, welche Resultate (Elementarer-
eignisse) für die Untersuchtung relevant sind und im mathematischen Modell berücksichtigt
werden sollen. Der zugrundegelegte Ergebnisraum bestimmt gewissermaßen den Detaillie-
rungsgrad der Modellbildung.

1.3 Definition (Elementarereignisse, Ergebnisraum, Stichprobenmenge):
Die konkreten Ergebnisse eines Zufallsexperimentes heißen Elementarereignisse. Die Men-
ge aller Elementarereignisse wird Ergebnisraum, Ergebnismenge oder auch Stichprobenmenge
genannt und mit Ω bezeichnet.

1.4 Beispiel:
• Das Werfen eines Würfels: Ω := {1, 2, 3, 4, 5, 6}.

• Die Wartezeit an einer Ampel: Ω := {ω ∈ R | ω ≥ 0}.

• Der Betriebszustand von n Maschinen, defekt (≡ 1) oder intakt (≡ 0):
Ω := {(ω1, . . . , ωn) | ωi ∈ {0, 1}, i = 1, . . . , n}.

1.3 Ereignisse

Aus den Elementarereignissen lassen sich kompliziertere Ereignisse zusammensetzen. Im Fall
des Würfelspiels kann man z.B. auch das Ereignis A, eine ungerade Augenzahl zu würfeln,
betrachten. Man schreibt dann A = {1, 3, 5} und sagt, dass das Ereignis A eingetreten ist,
wenn der beobachtete Versuchsausgang in A liegt. Deswegen definiert man:

1.5 Definition (Ereignis):
Wenn Ω diskret ist, d.h. endlich oder höchstens abzählbar unendlich ist, so heißen die Teil-
mengen der Stichprobenmenge Ω Ereignisse. Man sagt, dass das Ereignis A eingetreten ist,
wenn der beobachtete Ausgang des Zufallsexperimentes in A liegt (ω ∈ A). Ist Ω diskret, dann
ist die Menge aller Ereignisse gerade die Potenzmenge P(Ω) von Ω.

1.6 Beispiel:
• Das Ereignis ”gerade Augenzahl“ beim Würfeln: A := {2, 4, 6}.

• Das Ereignis, dass mindestens 2 von n Maschinen defekt sind:
A := {ω ∈ Ω | ω1 + · · ·+ ωn ≥ 2}.

Mit Hilfe der mengentheoretischen Grundoperationen lassen sich weitere Ereignisse bilden.
1.7 Bemerkung (Interpretation von Ereignissen):
Es seien A,B,A1, A2, . . . Ereignisse, dann gilt:

Ω := ”sicheres Ereignis, das immer eintritt“,
∅ := ”unmögliches Ereignis, das nie eintreten kann“,

A ∪B := ”A oder B treten ein“,
A ∩B := ”A und B treten ein“,
A\B := ”A, aber nicht B, tritt ein“; kurz: ”A ohne B“,
A := ”A tritt nicht ein“,⋃

n∈NAn := ”mindestens ein An tritt ein“,⋂
n∈NAn := ”alle An treten ein“.
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Kapitel 1. Einführung und grundlegende Begriffe

1.8 Bemerkung (Übersicht über die Eigenschaften von Mengen):
Für allgemeine Mengen gelten folgende Beziehungen:

1. Komplementbildung:
A = A, Ω = ∅, ∅ = Ω.

2. Die Durchschnittsbildung ist kommutativ und assoziativ:
A∩B = B ∩A, A∩ (B ∩C) = (A∩B)∩C, A∩A = A, A∩Ω = A, A∩∅ = ∅,
A ∩A = ∅.

3. Die Vereinigungsbildung ist kommutativ und assoziativ:
A ∪ B = B ∪ A, A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∪ A = Ω, A ∪ A = A, A ∪ Ω = Ω,
A ∪∅ = A.

4. Es gelten die Distributivgesetze:
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

5. Absorptionsgesetze:
A ∪ (A ∩B) = A, A ∩ (A ∪B) = A.

6. Reziprozitätsgesetze:
A ∩B = A ∪B, A ∪B = A ∩B.

7. A ⊂ B ⇐⇒ A ⊃ B.

8. Die Regeln von de Morgan:⋃
n∈N

An =
⋂

n∈N
An,

⋂
n∈N

An =
⋃

n∈N
An.

1.9 Bemerkung (σ–Algebra):
Im Falle eines beliebigen Stichprobenraumes können aus logischen Gründen nicht alle Teil-
mengen von Ω als Ereignisse zugelassen werden. Im Falle einer allgemeinen Ergebnismenge
Ω ist es daher notwendig, sich auf kleinere Mengensysteme als P(Ω) zurückziehen, die aber
hinsichtlich ihrer Verknüpfungsstruktur noch universell genug sind, um alle im Experiment
enthaltenen Möglichkeiten reflektieren zu können. An die Stelle der Potenzmenge tritt ein
Mengensystem F ⊆ P(Ω) mit folgenden Eigenschaften:

(i) Ω ∈ F,

(ii) für A ∈ F ist A ∈ F,

(iii) für jede Folge (An)n∈N von Elementen aus F gilt:
⋃

n∈N
An ∈ F.

F nennt man σ–Algebra über Ω. F wird sich später als der natürliche Definitionsbereich von
Wahrscheinlichkeitsmaßen herausstellen.

Man erkennt sofort, dass aufgrund der Forderung (ii) mit Ω auch die leere Menge ∅ und
aufgrund der Regeln von de Morgan mit ∪n∈NAn auch ∩n∈NAn zu F gehören. Damit ergibt
sich, dass F bzgl. aller wesentlichen Mengenoperationen abgeschlossen ist und alle wesentlichen
Ereignisse enthalten sollte.

Das Ziel ist es nun, jedem Ereignis A ∈ F eine Maßzahl P (A) zuzuordnen, die angibt, welche
Chance A hat, bei einem Zufallsexperiment einzutreten.
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1.4. Wahrscheinlichkeit

1.4 Wahrscheinlichkeit

Ein naheliegender Weg, den Begriff der Wahrscheinlichkeit zu definieren, ist der folgende:
Das Zufallsexperiment wird n–mal unter gleichen Bedingungen durchgeführt. Dabei wird
beobachtet, wie oft das Ereignis A eingetreten ist.

1.10 Definition (absolute Häufigkeit, relative Häufigkeit):
Für jedes Ereignis A wird mit H(A) := Hn(A) gezählt, wie oft es in einer Versuchsreihe der
Länge n aufgetreten ist. H(A) wird absolute Häufigkeit und

h(A) := hn(A) :=
H(A)
n

relative Häufigkeit des Ereignisses A in einer Versuchsreihe der Länge n genannt.

Auf den ersten Blick nachteilig ist, dass h(A) von n und der jeweiligen Versuchsreihe mit
deren Bedingungen abhängt. Die Erfahrung zeigt jedoch, dass sich die relativen Häufigkeiten
mit größer werdendem Stichprobenumfang stabilisieren.

0 2000 4000 6000 8000 10000
n

0.1

0.2

0.3

0.4

h(A)

Abbildung 1.1: Stabilisierung von relativen Häufigkeiten

1.11 Beispiel:
• Als Zufallsexperiment wird das Werfen eines Würfels betrachtet. In Abhängigkeit von

der Versuchslänge n ergibt sich für die relative Häufigkeit des Ereignisses A:=”Augen-
zahl 6 gewürfelt“, der Graph aus Abbildung 1.1. Es ist deutlich zu erkennen, dass sich
h(A) um den Wert 1/6 stabilisiert.

• Das Geschlecht von Neugeborenen: A:=”männlich“: h(A) −−−→
n→∞

0.514.

Man überprüft leicht folgende Eigenschaften absoluter und relativer Häufigkeiten:

a) Nichtnegativität: H(A) ≥ 0, d.h. h(A) ≥ 0,

b) Normiertheit: H(Ω) = n, d.h. h(Ω) = 1,

c) Additivität: Für A∩B = ∅ gilt H(A∪B) = H(A)+H(B) d.h. h(A∪B) = h(A)+h(B).
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Das auf A.N. Kolmogorov zurückgehende Axiomensystem der Wahrscheinlichkeitstheorie ori-
entiert sich an diesen Eigenschaften relativer Häufigkeiten, wobei aus mathematischen Grün-
den die Eigenschaft der Additivität durch die Eigenschaft der sogenannten σ-Additivität
ersetzt wird.

1.12 Definition (Axiomensystem nach Kolmogorov):
Gegeben sei eine σ–Algebra F über einem Stichprobenraum Ω 6= ∅. Jede Abbildung P : F → R

mit den Eigenschaften

1. Nichtnegativität: ∀ A ∈ F : P (A) ≥ 0

2. Normiertheit: P (Ω) = 1

3. P ist σ–additiv, d.h. sei A1, A2, . . . eine Folge von paarweise unvereinbaren Ereignissen
(Ai ∩Aj = ∅ für i 6= j), dann gilt:

P

⋃
j∈N

Aj

 =
∑
j∈N

P (Aj)

heißt Wahrscheinlichkeitsmaß auf F bzw. Ω.
Das Tupel (Ω,F, P ) heißt Wahrscheinlichkeitsraum über Ω.
(Siehe auch Lebensdaten von Kolmogorov im Anhang D.)

Folgerung:
Aus dem Axiomensystem ergibt sich unmittelbar:

4. P (∅) = 0

5. (Additivität) A ∩B = ∅ =⇒ P (A ∪B) = P (A) + P (B)

6. P (A) = 1− P (A)

7. (Monotonie) A ⊆ B =⇒ P (A) ≤ P (B)
Aus dieser Eigenschaft folgt insbesondere P (A) ≤ 1 für alle A ∈ F, da stets A ⊆ Ω gilt.

8. (Additionssatz) Für beliebige A,B ∈ F gilt

P (A ∪B) = P (A) + P (B)− P (A ∩B).

9. (Formel von Sylvester–Poincaré) In Erweiterung zum Additionssatz gilt für beliebige
A1, . . . , An ∈ F:

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

P (Ak)−
n∑

k1,k2=1
k1<k2

P (Ak1 ∩Ak2) +
n∑

k1,k2,k3=1
k1<k2<k3

P (Ak1 ∩Ak2 ∩Ak3)

+ · · ·+ (−1)n−1 · P (A1 ∩ · · · ∩An).

Beweis:
4. Es gilt: 1 = P (Ω) = P (Ω ∪∅ ∪ · · · ∪∅ ∪ . . . ) 3)

= P (Ω) + P (∅) + · · · ⇒ P (∅) = 0.

5. Aussage 5 folgt unmittelbar aus Aussage 3.
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6. Die Behauptung folgt unmittelbar aus der Additivität und der Zerlegung Ω = A ∪A.

7. Die Behauptung folgt unmittelbar aus der Additivität und der ZerlegungB = A∪(B\A).

8. Es gilt A∪B = A∪(B\A), A∩(B\A) = ∅, (A∩B)∪(B\A) = B und (A∩B)∩(B\A) = ∅,
d.h.

P (A ∪B) = P (A ∪ (B\A)) = P (A) + P (B\A).

Da P (B) = P ((A ∩ B) ∪ (B\A)) = P (A ∩ B) + P (B\A) äquivalent ist zu P (B\A) =
P (B)− P (A ∩B), folgt insgesamt

P (A ∪B) = P (A) + P (B)− P (A ∩B).

9. Es gilt zunächst

P (A1 \A2) = P (A1 \A2) + P (A1 ∩A2)− P (A1 ∩A2)
3.)
= P ((A1 \A2) ∪ (A1 ∩A2))− P (A1 ∩A2) = P (A1)− P (A1 ∩A2).

Der Beweis der Formel von Sylvester–Poincaré erfolgt durch Induktion. Für n = 2 ist
die Aussage mit dem Additionssatz identisch. Für n > 2 gilt:

P (∪n
k=1Ak) = P

(((
n−1⋃
k=1

Ak

)
\An

)⋃(
An \

n−1⋃
k=1

Ak

)⋃((
n−1⋃
k=1

Ak

)
∩An

))
3.)
= P

(((
n−1⋃
k=1

Ak

)
\An

)⋃((
n−1⋃
k=1

Ak

)
∩An

))
+ P

(
An \

n−1⋃
k=1

Ak

)

= P

(
n−1⋃
k=1

Ak

)
+ P

(
An \

n−1⋃
k=1

Ak

)
+ P

((
n−1⋃
k=1

Ak

)
∩An

)

−P

((
n−1⋃
k=1

Ak

)
∩An

)

= P

(
n−1⋃
k=1

Ak

)
+ P (An)− P

((
n−1⋃
k=1

Ak

)
∩An

)

= P

(
n−1⋃
k=1

Ak

)
+ P (An)− P

(
n−1⋃
k=1

(Ak ∩An)

)
IV= ∑n−1

k=1 P (Ak)−
∑n−1

k1,k2=1
k1<k2

P (Ak1
∩Ak2

)+...+(−1)n−2P (A1∩An−1)︸ ︷︷ ︸
=P(

⋃n−1
k=1 Ak)

+P (An)

−
∑n−1

k=1
P (Ak∩An)−

∑n−1

k1,k2=1
k1<k2

P (Ak1
∩Ak2

∩An)+...+(−1)n−2P (A1∩An−1∩An)

︸ ︷︷ ︸
=P(

⋃n−1
k=1 Ak∩An)

17
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=
n∑

k=1

P (Ak)−
n−1∑

k1,k2=1
k1<k2

P (Ak1 ∩Ak2)−
n−1∑
k=1

P (Ak ∩An)

︸ ︷︷ ︸
=−

∑n
k1,k2=1
k1<k2

P (Ak1
∩Ak2

)

+ . . .+

(−1)n−2P (A1∩...∩An−1)−(−1)n−3
∑n−1

k=1 P (A1∩...∩Ak−1∩Ak+1∩...∩An−1∩An)︸ ︷︷ ︸
=(−1)n−2

∑n
k=1 P (A1∩Ak−1∩Ak+1∩...∩An)

+

−(−1)n−2P (A1 ∩ . . . ∩An)︸ ︷︷ ︸
=(−1)n−1P (A1∩...∩An)

=
n∑

k=1

P (Ak)−
n∑

k1,k2=1
k1<k2

P (Ak1 ∩Ak2) +
n∑

k1,k2,k3=1
k1<k2<k3

P (Ak1 ∩Ak2 ∩Ak3)

+ · · ·+ (−1)n−1 · P (A1 ∩ · · · ∩An).

(Siehe auch PowerPoint-Präsentation zu diesem Beweis.)
�
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Kapitel 2

Diskrete
Wahrscheinlichkeitsverteilungen

In diesem Kapitel werden anhand einfacher diskreter Zufallsexperimente die Grundprinzipien
stochastischer Modellbildung und die Konstruktion von Wahrscheinlichkeitsmaßen erläutert.

Schlüsselwörter: Konstruktion diskreter Wahrscheinlichkeitsmaße, Wahrschein-
lichkeitsvektor, Laplace–Experiment, Urnenmodelle, Hypergeometrische Verteilung,
Binomialverteilung, Poisson–Verteilung, diskrete reellwertige Zufallsvariable, Bild-
maß, Verteilung einer Zufallsvariablen, Kenngrößen einer diskreten Zufallsvariablen,
Erwartungswert, Varianz, k–tes Moment, k–tes zentrales Moment, erzeugende Funk-
tion.
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2.1 Konstruktion diskreter Wahrscheinlichkeitsmaße

In der Einführung wurde festgestellt, dass σ–Algebren den natürlichen Definitionsbereich von
Wahrscheinlichkeitsmaßen darstellen. Im Fall eines diskreten Zufallsexperimentes bietet es
sich an, als Ereignisalgebra die Potenzmenge P(Ω) über Ω zu verwenden. Da selbst bei einem
endlichen Wahrscheinlichkeitsraum die Mächtigkeit der Potenzmenge in Abhängigkeit von
der Mächtigkeit des Ergebnisraumes sehr rasch anwächst, ist es meist schwierig, P (A) für alle
A ⊆ Ω explizit anzugeben. Im Fall des Würfelspiels hatte sich allerdings herausgestellt, dass
P (A) bereits durch die Werte pω := P ({ω}) für alle ω ∈ Ω festgelegt ist. Dieser Sachverhalt
soll jetzt näher untersucht werden.

2.1 Definition (Wahrscheinlichkeitsvektor, diskreter Wahrscheinlichkeitsraum):
Es sei Ω eine diskrete Stichprobenmenge. Ein Vektor p := (pω)ω∈Ω mit den Eigenschaften

(i) pω ≥ 0 für alle ω ∈ Ω

(ii)
∑

ω∈Ω

pω = 1 (d.h. die Reihe ist (abs.) konvergent gegen 1)

heißt Wahrscheinlichkeitsvektor über Ω. Das Tupel (Ω, p) wird auch
diskreter Wahrscheinlichkeitsraum genannt.

2.2 Satz:
Es sei Ω eine diskrete Stichprobenmenge und p := (pω)ω∈Ω ein Wahrscheinlichkeitsvektor über
Ω.

a) Ist P ein Wahrscheinlichkeitsmaß über (Ω,P(Ω)), so wird durch

pω := P ({ω}) ∀ ω ∈ Ω

ein Wahrscheinlichkeitsvektor p über Ω definiert.

b) Ist p := (pω)ω∈Ω ein Wahrscheinlichkeitsvektor über Ω, so gibt es genau ein Wahr-
scheinlichkeitsmaß P über (Ω,P(Ω)) mit

pω = P ({ω}) ∀ ω ∈ Ω.

Damit ist die Zuordnung P 7→ (pω)ω∈Ω eine Bijektion zwischen Wahrscheinlichkeitsmaßen
und Wahrscheinlichkeitsvektoren.

Beweis:
a) Da P (A) ≥ 0 ist für alle A ∈ P(Ω), gilt natürlich auch pω := P ({ω}) ≥ 0 für alle ω ∈ Ω.

Aus Ω =
⋃

ω∈Ω{ω} folgt, dass

∑
ω∈Ω

pω =
∑
ω∈Ω

P ({ω}) σ−add= P

(⋃
ω∈Ω

{ω}

)
= P (Ω) = 1.

b) Wir definieren P (A) :=
∑

ω∈A pω für alle A ⊆ Ω. Offensichtlich ist P (A) ≥ 0 für alle
A ⊆ Ω und P (Ω) =

∑
ω∈Ω pω = 1. Für paarweise disjunkte Mengen gilt außerdem

P

(⋃
i∈N

Ai

)
=

∑
ω∈

⋃
i∈N Ai

pω
abs.Konv.=

∑
i∈N

∑
ω∈Ai

pω
abs.Konv.=

∑
i∈N

P (Ai),
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d.h. P ist auch σ–additiv. Mit der σ-Additivität ergibt sich auch die Eindeutigkeit der
Definition von P :

P (A) = P

(⋃
ω∈A

ω

)
σ−add.=

∑
ω∈A

P ({ω}) =
∑
ω∈A

pω.

2.2 Laplacescher Wahrscheinlichkeitsraum

Bei der Betrachtung der Wahrscheinlichkeit für das Auftreten einer bestimmten Augenzahl
beim Würfelspiel stellt man fest, dass alle Elementarereignisse mit der annähernd gleichen
relativen Häufigkeit auftreten. Dieser Sachverhalt gibt Anlass zu folgender Definition:

2.3 Definition (Laplacescher Wahrscheinlichkeitsraum):
Ein endlicher Wahrscheinlichkeitsraum (Ω, P ) heißt Laplacescher Wahrscheinlichkeitsraum,
falls für alle ω ∈ Ω

pω =
1
|Ω|

gilt. P heißt Gleichverteilung oder Laplacesche Wahrscheinlichkeitsverteilung über Ω. Die
Wahrscheinlichkeit eines Ereignisses A ⊂ Ω ist dann:

P (A) =
|A|
|Ω|

.

(Siehe auch Lebensdaten von Laplace im Anhang D.)

2.4 Beispiel (Spiel mit zwei Würfeln):
Beim gleichzeitigen Spiel mit zwei Würfeln ergibt sich als Ergebnisraum

Ω := {(ω1, ω2) | ωi ∈ {1, . . . , 6}; i = 1, 2}.

Es gilt |Ω| = 36. Das Ereignis A:=”Die Summe der Augenzahlen ist 7“ entspricht der Menge

A = {(ω1, ω2) | ω1 + ω2 = 7} = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

Es ist |A| = 6. Unter der Annahme eines Laplaceschen Wahrscheinlichkeitsraums folgt

P (A) =
|A|
|Ω|

=
6
36

=
1
6
.

2.3 Das Urnenmodell

In einer Urne befinden sich gut durchmischt N Kugeln. Darunter sind R schwarze und N −R
weiße Kugeln. Es werden der Urne zufällig n Kugeln entnommen. Es stellt sich die Frage:

Wie groß ist die Wahrscheinlichkeit, dass sich unter den n gezogenen Kugeln genau
k (k ≤ n, k ≤ R) schwarze befinden?
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Abbildung 2.1: Urnenmodell

Ziehen ohne Zurücklegen

Offensichtlich lassen sich die Kugeln auf zwei verschiedene Arten ziehen und wieder zurück-
legen (Ziehen mit Zurücklegen und Ziehen ohne Zurücklegen). Zuerst wird das Ziehen ohne
Zurücklegen betrachtet, d.h. es wird davon ausgegangen, dass die Kugeln nacheinander gezo-
gen und außerhalb der Urne belassen werden. Zur Lösung des Problems wird angenommen,
dass die R schwarzen Kugeln von 1 bis R und die N − R weißen Kugeln von R + 1 bis N
durchnumeriert seien:

• • • . . . • ◦ . . . ◦
1 2 3 . . . R R+ 1 . . . N

schwarze Kugeln weiße Kugeln

Der Ergebnisraum ist dann

Ω := {(ω1, . . . , ωn)|ωj ∈ {1, . . . , N}, 1 ≤ j ≤ n, ωi 6= ωj für i 6= j}.

Um die Mächtigkeit von Ω, d.h. die Anzahl |Ω| der Elemente von Ω zu bestimmen, wird
angenommen, dass die Kugeln in n Kästchen abgelegt seien.

22222 . . .2

Die jeweilige Anzahl der Möglichkeiten, die n Kästchen zu belegen, ergibt sich wie folgt:

1. Kästchen: N Möglichkeiten
2. Kästchen: N − 1 Möglichkeiten
...
n. Kästchen: N − (n− 1) Möglichkeiten

Da sich die Möglichkeiten von Kästchen zu Kästchen multiplizieren, ergibt sich

|Ω| = (N)n := N · (N − 1) · · · · · (N − (n− 1)) =
N !

(N − n)!
.

(N)n heißt n–te untere Faktorielle von N .
Das Ereignis Ak, dass sich unter den n gezogenen Kugeln genau k schwarze befinden, besteht
aus allen n–Tupeln (ω1, . . . , ωn), für die genau k Komponenten kleiner oder gleich R sind.
Zunächst gibt es genau

n · (n− 1) · · · (n− k + 1)
k · (k − 1) · · · 2 · 1

=:
(
n

k

)
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Möglichkeiten, die k schwarzen Kugeln auf die n Kästchen zu verteilen, denn: Für die erste
Kugel gibt es n mögliche Kästchen, für die zweite n − 1 usw. und schließlich für die k–te
n − k + 1 mögliche Kästchen. Da die schwarzen Kugeln untereinander nicht unterscheidbar
sind, kommt es nicht auf die Reihenfolge an, in der sie auf die Kästchen aufgeteilt werden,
d.h. schwarze Kugel 1 in Kästchen 1 und schwarze Kugel 2 in Kästchen 2 führt zu demselben
Ergebnis wie schwarze Kugel 1 in Kästchen 2 und schwarze Kugel 2 in Kästchen 1. Die
auf diese Weise doppelt gezählten Möglichkeiten müssen also wieder herausdividiert werden:
Vertauscht man also die schwarzen Kugeln untereinander, so gibt es für die erste schwarze
Kugel k mögliche Positionen, für die zweite k− 1 usw. und schließlich für die k–te Kugel nur
noch eine mögliche Position. Damit ergibt sich obiger Quotient.

Ein gewähltes Muster wird festgehalten und es wird wieder nach der Anzahl der Möglichkeiten,
die einzelnen Kästchen zu belegen, gefragt.

1. schwarzes Kästchen: R Möglichkeiten
2. schwarzes Kästchen: R− 1 Möglichkeiten
...
k. schwarzes Kästchen: R− k + 1 Möglichkeiten

1. weißes Kästchen: N −R Möglichkeiten
2. weißes Kästchen: N −R− 1 Möglichkeiten
...

n− k. weißes Kästchen: N −R− (n− k) + 1 Möglichkeiten

Zusammenzählen der Möglichkeiten ergibt

|Ak| =
(
n

k

)
(R)k(N −R)n−k.

Damit wird

pk = P (Ak) =
|Ak|
|Ω|

=

(
n
k

)
(R)k(N −R)n−k

(N)n

=
n!

k!(n−k)!(R)k(N −R)n−k

(N)n

=
(R)k

k!
(N−R)n−k

(n−k)!

(N)n

n!

=

(
R
k

)(
N−R
n−k

)(
N
n

) (k = 0, 1, . . . , n).

Offensichtlich ist pk ≥ 0 für k = 0, 1, . . . , n. Um nachzuweisen, dass die Folge (pk)n
k=0 einen

Wahrscheinlichkeitsvektor über Ω′ = {0, 1, . . . , n} darstellt, muss die Identität

n∑
k=0

(
R

k

)(
N −R

n− k

)
=
(
N

n

)
bewiesen werden. Der Beweis folgt sofort aus der Tatsache, dass Ω die disjunkte Vereinigung
der Ak mit k = 0, . . . , n ist. Alternativ lässt sich die Gleichung auch durch Nachrechnen
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verifizieren. Zunächst wird folgende Gleichung betrachtet:

(1 + x)N = (1 + x)R(1 + x)N−R.

Mit dem Binomischen Lehrsatz folgt weiter:

(1 + x)N =
N∑

n=0

(
N

n

)
xn = (1 + x)R(1 + x)N−R

=
R∑

k=0

(
R

k

)
xk

N−R∑
j=0

(
N −R

j

)
xj

=
R∑

k=0

N−R∑
j=0

(
R

k

)(
N −R

j

)
xk+j

=
N∑

n=0

(
n∑

k=0

(
R

k

)(
N −R

n− k

))
xn.

Die Behauptung ergibt sich nun durch Koeffizientenvergleich.

2.5 Definition (hypergeometrische Verteilung):
Es seien N,R, n ∈ N mit N ≥ R und n ≤ N . Das durch den Wahrscheinlichkeitsvektor

pk :=

(
R
k

)(
N−R
n−k

)(
N
n

) (k = 0, 1, . . . , n)

auf (Ω′,P(Ω′)) definierte Wahrscheinlichkeitsmaß heißt hypergeometrische Verteilung mit den
Parametern N , R und n; kurz Hg(n,R,N).

2.6 Beispiel (Lotto ”6 aus 49“):
Mit N := 49, R := 6, n := 6 und k ∈ {0, 1, . . . , 6} gilt:

p0 =

(
6
0

)(
43
6

)(
49
6

) ≈ 0.4359,

p1 =

(
6
1

)(
43
5

)(
49
6

) ≈ 0.4130,

p2 =

(
6
2

)(
43
4

)(
49
6

) ≈ 0.1323,

p3 =

(
6
3

)(
43
3

)(
49
6

) ≈ 0.0176,

p4 =

(
6
4

)(
43
2

)(
49
6

) ≈ 0.9686 · 10−3,

p5 =

(
6
5

)(
43
1

)(
49
6

) ≈ 0.1845 · 10−4,

p6 =

(
6
6

)(
43
0

)(
49
6

) ≈ 0.7150 · 10−7.
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2 4 6 8 10
k

0.1

0.2

0.3

0.4

p

Abbildung 2.2: Hypergeometrische Verteilung mit N := 30, R := 8 und n := 20

Ziehen mit Zurücklegen

Beim Ziehen mit Zurücklegen wird jede gezogene Kugel sofort wieder in die Urne zurückgelegt.
Nach erneutem Durchmischen wird die nächste Kugel gezogen. In diesem Fall kann jedes der
n Kästchen mit jeder der N Kugeln belegt werden. Folglich ist

Ω := {1, . . . , N}n = {(ω1, . . . , ωn) | ωj ∈ {1, . . . , N}, j = 1, . . . , n}.

Damit ist |Ω| = Nn.
Ak besteht aus allen (ω1, . . . , ωn) ∈ Ω, für die genau k Komponenten kleiner oder gleich R
sind. Da die Kugeln zurückgelegt werden, kann jedes der k schwarzen Kästchen mit jeder der
R schwarzen und jedes der n− k weißen Kästchen mit jeder der N −R weißen Kugeln belegt
werden. Folglich ist

|Ak| =
(
n

k

)
Rk(N −R)n−k (k = 0, 1, . . . , n)

und

P (Ak) =
(
n

k

)(
R

N

)k (N −R

N

)n−k

(k = 0, 1, . . . , n).

Mit den Vereinbarungen p := R/N und q := 1− p = (N −R)/N ergibt sich

pk = P (Ak) =
(
n

k

)
pkqn−k (k = 0, 1, . . . , n).

Damit definiert (pk)n
k=0 einen Wahrscheinlichkeitsvektor auf Ω′ = {0, . . . , n}, denn es gilt

pk ≥ 0 für k = 0, 1, . . . , n und
n∑

k=0

pk =
n∑

k=0

(
n

k

)
pkqn−k = (p+ q)n = 1.
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2.7 Definition (Binomialverteilung):
Es seien 0 ≤ p ≤ 1, q := 1−p und n ∈ N, dann heißt die durch den Wahrscheinlichkeitsvektor

pk :=
(
n

k

)
pkqn−k (k = 0, 1, . . . , n)

auf der Menge Ω′ := {0, . . . , n} definierte Wahrscheinlichkeitsverteilung Binomialverteilung
mit den Parametern n und p, kurz B(n, p).

5 10 15 20
k

0.05

0.1

0.15

0.2

0.25

p

Abbildung 2.3: Binomialverteilung mit p := 0.3 und n := 20

2.8 Beispiel (Roulette–Spiel):
Beim Roulette–Spiel sei pk die Wahrscheinlichkeit, in einer Spielserie vom Umfang n genau k–
mal ”Zero“ zu haben. Die Berechnung von pk kann auf die Binomialverteilung zurückgeführt
werden, indem N := 37, R := 1, p := R/N = 1/37 und q := 36/37 gesetzt wird. Damit gilt

pk =
(
n

k

)(
1
37

)k (36
37

)n−k

(k = 0, 1, . . . , n).

Allgemein lässt sich der Parameter p der Binomialverteilung als Wahrscheinlichkeit für das
Eintreten eines bestimmten Ereignisses A interpretieren. pk ist dann die Wahrscheinlichkeit
für das k–malige Eintreten bei n gleichwertigen (unabhängigen) Wiederholungen des Zufalls-
experimentes.

2.4 Beziehungen zwischen den Verteilungen

Wenn sich in der Urne wesentlich mehr Kugeln befinden, als gezogen werden, sollte es keine
Rolle spielen, ob die gezogenen Kugeln wieder zurückgelegt werden oder nicht. Für prak-
tische Rechnungen kann man sich daher auf das einfachere Modell der Binomialverteilung
zurückziehen.
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Formaler ausgedrückt besteht zwischen der hypergeometrischen und der Binomialverteilung
folgende Beziehung:

2.9 Satz:
Es seien 0 < p ≤ 1 und n ∈ N fest gewählt. Falls N,R→∞, so dass R/N → p, dann gilt:

Hg(n,R,N)(k) −→ B(n, p) (k), (k = 0, 1, . . . , n).

Bemerkung:
In der Stochastik II wird diese Art der Konvergenz auch als ,,schwache Konvergenz” oder
,,Konvergenz in Verteilung” bezeichnet (vgl. Kapitel 14 ,,Schwache Konvergenz und zentraler
Grenzwertsatz”).

Beweis:
Für p < 1 gelten die Implikationen

R

N
−−−−→
N→∞

p =⇒ N −R

N
−−−−→
N→∞

1− p =⇒ N −R
falls p<1−−−−→

N→∞
∞,

wohingegen
(

N−R
N

)
→ 0 für p = 1 gilt. Somit folgt zunächst für p < 1:

Hg(n,R,N)(k) =

(
R
k

)(
N−R
n−k

)(
N
n

) =
(N −R)!

(n− k)!(N −R− n+ k)!
R!

(R− k)!k!
(N − n)!n!

N !

=
(
n

k

)
(R)k(N −R)n−k

(N)n

=
(
n

k

)(
R

N

)k (N −R

N

)n−k (R)k

Rk

(N−R)n−k

(N−R)n−k

(N)n

Nn

−−−−→
N→∞

(
n

k

)
pk(1− p)n−k = B(n, p)(k).

Falls p = 1 ist, so gilt wegen (Nj −Rj)n−k ≤ (Nj −Rj)n−k und (Nj)n

Nn
j
,

(Rj)k

Rk
j
−−−→
j→∞

1, dass

Hg(n,Rr, Nj)(k) =
(
n

k

)(
R

N

)k

︸ ︷︷ ︸
→1k

(
N −R

N

)n−k

︸ ︷︷ ︸
→0

(R)k

Rk

(N−R)n−k

(N−R)n−k

(N)n

Nn︸ ︷︷ ︸
beschr.

−−−−→
N→∞

0 = B(n, 1)(k)

für k < n und

Hg(n,Rr, Nj)(n) =

(
R
n

)(
N−R

0

)(
N
n

) =

(
R
n

)(
N
n

) −−−→
j→∞

1 = B(n, 1)(n).

�

2.10 Beispiel:
In einer Stadt mit 2 Millionen Einwohnern stimmen 800.000 (40%) für eine bestimmte Partei.
100 Personen werden zufällig ausgewählt. Die Verteilung der Anzahl der Einwohner unter
jenen 100, die für diese Partei stimmen, ist:

Hg(100, 800 000, 2 000 000) ≈ B(100, 0.4) .
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Abbildung 2.4: Binomialverteilung mit n := 100 und p := 0.4 sowie hypergeometrische Ver-
teilung mit N := 2 000 000, R := 800 000 und n := 100; es ist in der Grafik kein Unterschied
zwischen den beiden Verteilungen erkennbar.

Es ist
max

k∈{0,100}
|Hg(100, 800 000, 2 000 000)(k)− B(100, 0.4) (k)| < 3 · 10−6.

2.11 Satz:
Es seien k ∈ N0, k < n und λ > 0 fest gewählt. Setze pn = λ/n, so folgt:

lim
n→∞

B(n, pn) (k) =
λk

k!
e−λ.

Beweis:
Allgemein lässt sich folgendes Teleskop-Produkt schreiben:

B(n, pn) (k) =
B(n, pn) (k)

B(n, pn) (k − 1)
· B(n, pn) (k − 1)
B(n, pn) (k − 2)

· . . . · B(n, pn) (1)
B(n, pn) (0)

· B(n, pn) (0).

Für k = 0 gilt

lim
n→∞

B(n, pn) (0) = lim
n→∞

(
n

0

)
p0

n(1− pn)n = lim
n→∞

(
1− λ

n

)n

= lim
n→∞

exp
(
n ln

(
1− λ

n

))
= exp

(
lim

n→∞
n ln

(
1− λ

n

))
= exp

(
−λ · lim

n→∞
−n
λ

ln
(

1− λ

n

))
= exp(−λ · ln′(1)) = e−λ.

Ferner gilt:

B(n, pn) (k)
B(n, pn) (k − 1)

=

(
n
k

)
pk

n(1− pn)n−k(
n

k−1

)
pk−1

n (1− pn)n−k+1
=

n!
k!·(n−k)! · pn

n!
(k−1)!·(n−k+1)! · (1− pn)

=
n− k + 1

k
·

λ
n

1− λ
n

=
λ

k
· n− k + 1

n
· 1
1− λ

n

−−−→
n→∞

λ

k
.
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Folglich gilt

B(n, p) (k) −−−→
n→∞

λk

k!
e−λ.

�

Abbildung 2.5: Die Grafik verdeutlicht die Annäherung der Binomialverteilung an die Pois-
sonverteilung im Falle λ := 15. Die Grenzfunktion ist rechts dargestellt.

2.12 Bemerkung:
Die Größen

pk :=
λk

k!
e−λ (k = 0, 1, . . .)

bilden einen Wahrscheinlichkeitsvektor über Ω := N0, denn es ist pk ≥ 0 für alle k und es gilt

∞∑
k=0

λk

k!
e−λ =

( ∞∑
k=0

λk

k!

)
e−λ = eλe−λ = 1.

2.13 Definition (Poissonverteilung):
Es sei λ ∈ R+. Das durch den Wahrscheinlichkeitsvektor

pk :=
λk

k!
e−λ (k = 0, 1, 2, . . .)

definierte Wahrscheinlichkeitsmaß über (N0,P(N0)) heißt Poissonverteilung mit dem Para-
meter λ, kurz P (λ).

2.14 Beispiel:
Es sei bekannt, dass pro Jahr 0.005% einer Bevölkerungsgruppe durch einen gewissen Unfall
verletzt wird. Bei einer Versicherung sind 10.000 Personen gegen diesen Unfall versichert.
Gesucht ist die Wahrscheinlichkeit, dass in einem Jahr mindestens drei Versicherungsneh-
mer verunglücken. Diesem Zufallsexperiment liegt offensichtlich die Binomialverteilung mit
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2 4 6 8 10 12 14
k

0.05

0.1

0.15

0.2

0.25

p

Abbildung 2.6: Poissonverteilung mit λ := 3

den Parametern n := 10000 und p := 0.00005 zugrunde. Für die Approximation durch die
Poissonverteilung wird λ := n · p = 0.5 gesetzt. Es ergibt sich:

P (es verunglücken mindestens 3) = 1− P (es verunglücken maximal 2)

= 1−
2∑

k=0

pk = 1−
2∑

k=0

λk

k!
e−λ = 1− e−0.5

(
1 +

1
2

+
1
8

)
≈ 0.0144 = 1.44%.

2.5 Diskrete Zufallsvariable

Im Zusammenhang mit dem Würfelspiel wurde gefragt, wie groß die Wahrscheinlichkeit ist,
eine der Zahlen 1 bis 6 bzw. eine gerade oder ungerade Augenzahl zu würfeln. In beiden Fällen
wurde als Ereignisalgebra die Potenzmenge P(Ω) von Ω := {1, . . . , 6} zugrundegelegt, die be-
reits 26 = 64 verschiedene Elemente enthält. Hätte man sich von Anfang an auf die Ereignisse
A := {1, 3, 5} (ungerade Augenzahl) und A := {2, 4, 6} (gerade Augenzahl) beschränkt, so
hätte als Ereignisalgebra ebensogut das Mengensystem F := {∅, A,A,Ω} verwendet werden
können, in der die Ereignisse A und A sogar als Elementarereignisse auftreten. Es kann sich
also durchaus als sinnvoll erweisen, einen gegebenen Wahrscheinlichkeitsraum den prakti-
schen Erfordernissen entsprechend einzuschränken bzw. zu modifizieren. Der Übergang von
einem Wahrscheinlichkeitsraum (Ω,F, P ) zu einem anderen (Ω′,F′, P ′) wird im Allgemeinen
mit Hilfe einer Abbildung X : Ω → Ω′ vollzogen. In diesem Zusammenhang stellt sich die
Frage, wie man die über (Ω,F) gegebene Bewertung P zu einer Bewertung P ′ auf (Ω′,F′) aus-
dehnen kann. Da man das Ereignis A′ ∈ F′ immer dann beobachtet, wenn im ursprünglichen
Experiment ein ω mit X(ω) ∈ A′ eintritt, definiert man

P ′(A′) := PX(A′) := P (X−1(A′)) = P ({ω ∈ Ω | X(ω) ∈ A′}) ∀ A′ ∈ F′.
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Wenn man in dieser Weise vorgeht, muss sichergestellt werden, dass für alle A′ ∈ F′ die
Bedingung

X−1(A′) = {ω ∈ Ω | X(ω) ∈ A′} ∈ F

erfüllt ist, denn nur für Elemente A ∈ F ist P (A) definiert. Eine Abbildung X : Ω → Ω′ mit
dieser Eigenschaft heißt Zufallsvariable. Ersetzt man Ω und Ω′ durch diskrete Mengen und
F und F′ durch die zugehörigen Potenzmengen P(Ω) und P(Ω′), dann ist diese Bedingung
aufgrund der Beziehung

X−1(A′) = X−1(A′ ∩ Ω′) =
⋃

ω′∈A′∩Ω′

X−1({ω′})

stets erfüllt (siehe Abbildung 2.7). Außerdem ist sofort ersichtlich, dass

PX({ω′i}) := P (X−1({ω′i}))

einen Wahrscheinlichkeitsvektor auf Ω′ darstellt und PX deshalb für alle A′ ∈ P (Ω′) eindeutig
definiert ist (siehe Satz 2.2).

Abbildung 2.7: Zufallsvariable

2.15 Definition (diskrete Zufallsvariable, Bildmaß, Verteilung):
Es seien Ω und Ω′ diskrete Stichprobenmengen und die Potenzmengen P(Ω) und P(Ω′) seien
die zugehörigen σ–Algebren. Jede Abbildung X : Ω → Ω′ heißt diskrete Zufallsvariable. Ist
Ω′ ⊆ R spricht man von einer reellwertigen diskreten Zufallsvariable. Das durch X induzierte
Wahrscheinlichkeitsmaß PX auf F′ := P(Ω′) heißt Bildmaß von P unter X bzw. die Verteilung
von X unter P .

2.16 Beispiel (Spiel mit zwei Würfeln I):
Es soll die Abbildung X : (ω1, ω2) → min(ω1, ω2) betrachtet werden.

min(ω1, ω2) :

ω1\ω2 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 2 3 3 3 3
4 1 2 3 4 4 4
5 1 2 3 4 5 5
6 1 2 3 4 5 6
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Somit ist

PX({1}) = P (X−1({1})) = P ({(1, 1), (1, 2), . . . , (1, 6), (2, 1), (3, 1), . . . , (6, 1)}) =
11
36
.

Analog gilt

PX({1}) =
11
36
, PX({4}) =

5
36
,

PX({2}) =
9
36
, PX({5}) =

3
36
,

PX({3}) =
7
36
, PX({6}) =

1
36
.

(Siehe auch PowerPoint-Präsentation zu diesem Beispiel.)

2.17 Beispiel (Spiel mit zwei Würfeln II):
Es soll die Abbildung X : Ω × Ω → Ω′ = {2, . . . , 12} mit X : (ω1, ω2) → ω1 + ω2 betrachtet
werden.

ω1 + ω2 :

ω1\ω2 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

d.h.

PX({2}) =
1
36
, PX({6}) =

5
36
, PX({10}) =

3
36
,

PX({3}) =
2
36
, PX({7}) =

6
36
, PX({11}) =

2
36
,

PX({4}) =
3
36
, PX({8}) =

5
36
, PX({12}) =

1
36
.

PX({5}) =
4
36
, PX({9}) =

4
36
.

(Siehe auch PowerPoint-Präsentation zu diesem Beispiel.)

2.6 Kenngrößen einer diskreten Zufallsvariablen

Ein Hochschullehrer der Stochastik möchte herausfinden, ob sich das Leistungsniveau seiner
Studentinnen und Studenten gegenüber früheren Jahren verändert hat. Aus diesem Grunde
vergleicht er die Klausurergebnisse des laufenden mit denen eines früheren Jahrgangs. Als
Klausurergebnis mögen die Punktzahlen xi, i = 1, . . . , r, mit den absoluten Häufigkeiten
Hn(xi) auftreten. Dann wird man

x :=
1
n

(Hn(x1) · x1 + . . .+Hn(xr) · xr)

= hn(x1) · x1 + . . .+ hn(xr) · xr,
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2.6. Kenngrößen einer diskreten Zufallsvariablen

als die mittlere oder erwartete Punktzahl pro Teilnehmer bezeichnen (wobei hn(xi) die relative
Häufigkeit des Elementarereignisses xi bezeichnet) und denjenigen Jahrgang als den besseren
ansehen, für den dieser Wert der größere ist. Wenn sich die relativen Häufigkeiten für n→∞
gegen die Grenzwerte pi := P ({xi}) stabilisieren kann die Fragestellung mit Mitteln der
Stochastik untersucht werden. Allgemein kann definiert werden:

2.18 Definition (Erwartungswert):
Es sei X eine reellwertige Zufallsvariable über dem diskreten Wahrscheinlichkeitsraum (Ω, P ).
Ist die Reihe

E[X] :=
∑

x∈X(Ω)

x · P (X = x) =
∑

x∈X(Ω)

x · PX({x})

absolut konvergent, so heißt ihr Wert Erwartungswert von X.

2.19 Bemerkung:
Die absolute Konvergenz der Reihe wird gefordert, damit E[X] von der Reihenfolge der Sum-
mation unabhängig ist.
Bei der Definition des Erwartungswertes wurde das Bildmaß PX zugrundegelegt. Aufgrund
der Beziehung

E[X] :=
∑

x∈X(Ω)

x · PX(X = x) =
∑

x∈X(Ω)

x
∑

ω|X(ω)=x

pω

=
∑

x∈X(Ω)

∑
ω|X(ω)=x

X(ω)pω =
∑
ω∈Ω

X(ω) · pω

kann jedoch ebensogut das originäre Maß verwendet werden.

2.20 Beispiel (Erwartungswert beim Spiel mit einem Würfel):
Es seien xi = i und pi = 1/6 für i = 1, . . . , 6. Damit gilt also:

E[X] =
6∑

i=1

i · pi =
1
6

6∑
i=1

i =
21
6

= 3.5 .

2.21 Beispiel (Erwartungswert beim Spiel mit zwei Würfeln):
Es ergibt sich Ω := {(k, `) | k, ` = 1, . . . , 6}, F = P(Ω) und Ω′ := ’Summe der Augenzahlen’ =
{2, . . . , 12}. Somit wird die Zufallsgröße X : Ω → Ω′ mit X(k, `) := k + ` betrachtet. Der
Erwartungswert von X berechnet sich unter Zugrundelegung einer Gleichverteilung wie folgt:

E[X] =
12∑

j=2

j · P ({ω = (k, `) ∈ Ω | k + ` = j})

= 2 · 1
36

+ 3 · 2
36

+ 4 · 3
36

+ 5 · 4
36

+ 6 · 5
36

+ 7 · 6
36

+

+ 8 · 5
36

+ 9 · 4
36

+ 10 · 3
36

+ 11 · 2
36

+ 12 · 1
36

= 7.
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2.22 Bemerkung:
Ist X : Ω → Ω′ eine reellwertige diskrete Zufallsvariable und g : Ω′ → R eine reellwertige
Funktion auf Ω′, so ist Y := g ◦ X eine reellwertige Zufallsvariable. Mit EP [Y ] bezeichnen
wir den Erwartungswert von Y bzgl. P und mit

EPX
[g] :=

∑
ω′∈Ω′

g(ω′) · PX({ω′})

den Erwartungswert von g bzgl. PX .

2.23 Satz:
Der Erwartungswert EP [Y ] existiert genau dann, wenn EPX

[g] existiert und es ist EP [Y ] =
EPX

[g].

Beweis:
Existiert einer der beiden Erwartungswerte, so lässt sich mit Hilfe des Umordnungssatzes der
jeweils andere berechnen:

EP [Y ] =
∑
ω∈Ω

g(X(ω)) · pω =
∑

ω′∈Ω′

g(ω
′
) ·

∑
ω∈X−1({ω}′ )

pω

=
∑

ω′∈Ω′

g(ω
′
) · P (X−1({ω′}) =

∑
ω′∈Ω′

g(ω
′
) · PX({ω′}) = EPX

[g].

2.24 Definition (k–te Moment, k–te zentrale Moment, Varianz):
Es sei X eine reellwertige diskrete Zufallsvariable mit den Werten x1, x2, . . . und den Wahr-
scheinlichkeiten p1 := P (X = x1), p2 := P (X = x2), . . . Gilt

∑∞
i=1

∣∣xk
i

∣∣ pi < ∞, dann nennt
man

E
[
Xk
]

:=
∞∑
i=1

xk
i · pi

das k–te Moment von X. Gilt
∑∞

i=1

∣∣(xi − E[X])k
∣∣ pi <∞, dann nennt man

E
[
(X − E[X])k

]
:=

∞∑
i=1

(xi − E[X])kpi

das k–te zentrale Moment von X. Das zweite zentrale Moment wird auch die Varianz von X
genannt, kurz Var[X].

2.25 Satz:
Es seien X und Y reellwertige diskrete Zufallsvariablen über demselben Wahrscheinlichkeits-
raum (Ω, p), für die E[X] und E[Y ] existieren. Dann gilt für a, b ∈ R:

E[aX + b] = a · E[X] + b

und
E[X + Y ] = E[X] + E[Y ] .

Für E
[
X2
]
<∞ gilt außerdem

Var[X] = E
[
X2
]
− (E[X])2 (Verschiebungssatz)

und
Var[aX + b] = a2 ·Var[X] .
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Beweis:
Mit pi := P (X = xi) gilt

E[aX + b] =
∞∑
i=1

(axi + b)pi = a

∞∑
i=1

xipi + b

∞∑
i=1

pi

= a

∞∑
i=1

xipi + b = a · E[X] + b

bzw.

E[aX + b] =
∑
ω∈Ω

[aX(ω) + b]pω = a
∑
ω∈Ω

X(ω)pω + b
∑
ω∈Ω

pω = a · E[X] + b.

Entsprechend gilt

E[X + Y ] =
∑
ω∈Ω

[X(ω) + Y (ω)]pω =
∑
ω∈Ω

X(ω)pω +
∑
ω∈Ω

Y (ω)pω = E[X] + E[Y ] .

Weiter ist

Var[X] = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + (E[X])2

]
= E

[
X2
]
− 2E[X] E[X] + (E[X])2 = E

[
X2
]
− (E[X])2

und

Var[aX + b] = E
[
(aX + b− aE[X]− b)2

]
= E

[
a2(X − E[X])2

]
= a2 Var[X] .

�

2.26 Beispiel:
Die Zufallsvariable X sei binomialverteilt mit den Parametern n und p. Dann gilt:

E[X] =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

=
n∑

k=0

kn!
k!(n− k)!

pk(1− p)n−k

= n · p ·
n∑

k=1

(n− 1)!
(k − 1)!(n− k)!

pk−1(1− p)n−k

= n · p ·
n−1∑
k=0

(n− 1)!
k!(n− k − 1)!

pk(1− p)n−k−1

= n · p ·
n−1∑
k=0

(
n− 1
k

)
pk(1− p)n−1−k

= n · p.
E
[
X2
]

= E[X(X − 1)] + E[X]
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=
n∑

k=2

k(k − 1)
(
n

k

)
pk(1− p)n−k + np

=
n∑

k=2

k(k − 1)
n!

k!(n− k)!
pk(1− p)n−k + np

= n(n− 1)p2
n∑

k=2

(n− 2)!
(k − 2)!(n− k)!

pk−2(1− p)n−k + np

= n(n− 1)p2
n−2∑
k=0

(
n− 2
k

)
pk(1− p)n−2−k + np

= n2p2 − np2 + np.

Insgesamt folgt damit:

Var[X] = E
[
X2
]
− (E[X])2 = n2p2 − np2 + np− n2p2 = np(1− p).

2.27 Beispiel:
Die Zufallsgröße X sei Poisson–verteilt mit dem Parameter λ. Dann gilt:

E[X] =
∞∑

k=0

k · pk =
∞∑

k=0

k · λ
k

k!
e−λ = λ ·

∞∑
k=1

λk−1

(k − 1)!
e−λ

= λ · eλ · e−λ = λ.

E
[
X2
]

= E[X(X − 1) +X] = E[X(X − 1)] + E[X]

=
∞∑

k=2

k · (k − 1) · λ
k

k!
e−λ + λ = λ2 ·

∞∑
k=2

λk−2

(k − 2)!
e−λ + λ

= λ2 · eλ · e−λ + λ = λ2 + λ.

Folglich ist:
Var[X] = E

[
X2
]
− (E[X])2 = λ2 + λ− λ2 = λ.

(Siehe auch PowerPoint-Präsentation zu diesem Beispiel.)

2.7 Erzeugende Funktion

Oftmals ist die direkte Berechnung von Erwartungswert und Varianz aufwendig. Die in diesem
Abschnitt betrachtete erzeugende Funktion stellt einen alternativen Weg zur Berechnung der
Kenngrößen dar.

2.28 Definition (erzeugende Funktion):
Für eine auf N0 verteilte Zufallsvariable X mit der Verteilung pk := PX({k}) = P (X = k),
k = 0, 1, 2, . . ., z ∈ C heißt die Potenzreihe

G(z) := E
[
zX
]

=
∞∑

k=0

pkz
k, |z| ≤ 1,

erzeugende Funktion von X bzw. (pk)∞k=0.
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2.29 Bemerkung:
• Wegen

∑∞
k=0 pk = 1 konvergiert G(z) mindestens für alle |z| ≤ 1, z ∈ C.

• Der Wahrscheinlichkeitsvektor p := (pk)∞k=0 ist durch G(z) eindeutig bestimmt (und
umgekehrt). Insbesondere gilt:

pk = P (X = k) =
G(k)(0)
k!

(k = 0, 1, 2, . . .),

wobei G(k) die k–te Ableitung von G bedeutet.

2.30 Satz:
Es sei G(z) die erzeugende Funktion der diskreten Zufallsvariable X mit Werten in N0. Dann
gilt:

E[X · (X − 1) · . . . · (X − k + 1)] = lim
z→1−

G(k)(z) = lim
z→1−

dkG(z)
dzk

, k ∈ N,

genau dann, wenn E
[
Xk
]
<∞ ist.

Beweis:
Mit E

[
Xk
]

sind auch alle E[Xm] für 0 ≤ m ≤ k endlich, da |X(ω)|m ≤ |X(ω)|k gilt, falls
|X(ω)| ≥ 1 ist. Für |z| < 1 gilt:

G(k)(z) =
∞∑

`=0

` · (`− 1) · . . . · (`− k + 1)·︸ ︷︷ ︸
≤`k

P (X = `) · z`−k.

und |`kp`z
`−k| ≤ `kp`. Wenn E

[
Xk
]
< ∞ ist, so folgt mit E

[
Xk
]

=
∑∞

`=0 `
kp` die folgende

Identität (und damit insbesondere die absolute Konvergenz der Reihe)

E[X · (X − 1) · . . . · (X − k + 1)] = lim
z→1−

G(k)(z) = lim
z→1−

dkG(z)
dzk

.

Die Umkehrung kann durch Induktion über k gezeigt werden, wobei die Identität

Xm+1 = X(X − 1) · · · (X −m) +
m∑

k=1

ckX
k

für passende ck ∈ Z benutzt wird. �

2.31 Beispiel:
Die Zufallsvariable X sei binomialverteilt mit den Parametern n und p, d.h.

pk := P (X = k) :=
(
n

k

)
pk(1− p)n−k (k = 0, 1, . . . , n).

Dann ist

G(z) =
n∑

k=0

(
n

k

)
pk(1− p)n−kzk =

n∑
k=0

(
n

k

)
(pz)k(1− p)n−k

= (pz + q)n, z ∈ C,

E[X] = lim
z→1−

G′(z) = p
(
n · (pz + q)n−1

) ∣∣∣
z=1

= n · p.
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2.32 Beispiel:
Die Zufallsvariable X sei Poisson–verteilt mit dem Parameter λ > 0, d.h.

pk := P (X = k) :=
λk

k!
e−λ (k = 0, 1, 2, . . .).

Dann gilt

G(z) =
∞∑

k=0

pkz
k =

∞∑
k=0

λk

k!
e−λzk =

∞∑
k=0

(λz)k

k!
e−λ

= e−λeλz = e−λ(1−z), z ∈ C,

E[X] = lim
z→1−

G′(z) =
(
e−λ(1−z)λ

) ∣∣∣
z=1

= λ.

2.33 Beispiel:
Die Zufallsvariable X sei hypergeometrisch verteilt mit den Parametern n, R und N , d.h.

pk := P (X = k) :=

(
R
k

)(
N−R
n−k

)(
N
n

) (k = 0, . . . , R).

Dann gilt

G(z) =
∞∑

k=0

pkz
k =

∞∑
k=0

(
R
k

)(
N−R
n−k

)(
N
n

) zk,

E[X] =
R∑

k=0

kpk =
R∑

k=0

(
R
k

)(
N−R
n−k

)(
N
n

) k =
R∑

k=1

R!
(k − 1)!(R− k)!

·
(
N−R
n−k

)(
N
n

)
= R

R∑
k=1

(R− 1)!
(k − 1)!((R− 1)− (k − 1))!

·

((N−1)−(R−1)
(n−1)−(k−1)

)
N(N−1)!

n(n−1)!((N−1)−(n−1))!

= n
R

N

R−1∑
k=0

(R− 1)!
k!((R− 1)− k)!

·

((N−1)−(R−1)
(n−1)−k)

)(
N−1
n−1

)
= n

R

N

R−1∑
k=0

Hg(n− 1, R− 1, N − 1)(k) = n
R

N
.

2.34 Bemerkung:
Die Varianz einer Zufallsgröße berechnet sich mit Hilfe der erzeugenden Funktion wie folgt:

Var[X] = E
[
X2
]
− (E[X])2 = E[X(X − 1) +X]− (E[X])2

= G′′(1) +G′(1)− (G′(1))2,

falls G in z = 1 zweimal stetig differenzierbar ist.

2.35 Beispiel:
Für die Binomialverteilung gilt

G(z) = (pz + q)n, z ∈ C.
G′(z) = n · (pz + q)n−1 · p, z ∈ C.
G′′(z) = n · (n− 1) · (pz + q)n−2 · p2, z ∈ C.
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Also

Var[X] = G′′(1) +G′(1)− (G′(1))2 = n · (n− 1) · p2 + n · p− (n · p)2

= n2 · p2 − n · p2 + n · p− n2 · p2 = n · p · (1− p).

2.36 Beispiel:
Für die Poissonverteilung gilt

G(z) = e−λ(1−z), z ∈ C.
G′(z) = e−λ(1−z) · λ, z ∈ C.
G′′(z) = e−λ(1−z) · λ2, z ∈ C.

Also
Var[X] = G′′(1) +G′(1)− (G′(1))2 = λ2 + λ− λ2 = λ.
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Kapitel 3

Bedingte Wahrscheinlichkeiten

Manchmal erhält man bei der Durchführung eines Zufallsexperimentes eine Teilinformation
darüber, wie das Experiment verlaufen wird. Die Kenntnis solcher Zusatzinformationen macht
eine Revision der ursprünglichen Wahrscheinlichkeitsbewertung erforderlich und führt auf den
Begriff der bedingten Wahrscheinlichkeit. In der Praxis werden bedingte Wahrscheinlichkeiten
verwendet, um die Wahrscheinlichkeiten komplizierter, zusammengesetzter Ereignisse zu be-
rechnen. In diesem Zusammenhang spielt auch der Begriff der stochastischen Unabhängigkeit
eine zentrale Rolle.

Schlüsselwörter: Bedingte relative Häufigkeit, bedingte Wahrscheinlichkeit, Spur-
σ-Algebra, Satz von der totalen Wahrscheinlichkeit, a–priori–Verteilung, a–post-
eriori–Verteilung, Multiplikationssatz, stochastische Unabhängigkeit, paarweise und
vollständige Unabhängigkeit.
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3.1 Begriffe und Zusammenhänge

In der Praxis treten oftmals Problemstellungen auf, bei denen Teilinformationen über den
Ausgang eines Zugfallsexperiments bekannt werden, bevor das endgültige Ergebnis eintritt.
Diese Informationen können die Wahrscheinlichkeit für das Eintreten eines bestimmten Er-
eignisses beeinflussen, wie die folgenden Beispiele verdeutlichen:

3.1 Beispiel:
• Ein Pokerspiel enthält genau 52 Karten, bestehend aus den vier verschiedenen Farben

(♣, ♠, ♥, ♦) mit jeweils 13 Karten. Eine Pokerhand erhält immer 5 Karten.

Abbildung 3.1: ,,Kartenspieler” von Paul Cezanne, siehe www.Heinrich-Boell.de

Gefragt wird nach der Wahrscheinlichkeit des Ereignisses F , einen ”Flush“ zu erhalten,
d.h. dass alle Karten in einer Hand von derselben Farbe sind.

|Ω| =
(

52
5

)
, |F | = 4 ·

(
13
5

)
=⇒ P (F ) =

4 ·
(
13
5

)(
52
5

) ≈ 0.002.

Erhält man nun die Vorabinformation, dass alle Karten, die man bekommen hat, rot
sind (♥, ♦), so ändert sich die Wahrscheinlichkeit für das Eintreten von F .

∣∣Ω′∣∣ = (26
5

)
, |F | = 2 ·

(
13
5

)
=⇒ P (F ) =

2 ·
(
13
5

)(
26
5

) ≈ 0.039.

• Wir betrachten die Wartezeiten in der Mensa.

Es werden zwei Essen ausgegeben. W1 sei das Ereignis, dass die Wartezeit eines Stu-
denten kleiner gleich 10 Minuten ist und W2 die Wahrscheinlichkeit, dass die Wartezeit
größer ist als 10 Minuten. Eine Umfrage ergab folgende Statistik:

Anzahl Essen I Essen II

W1 7000 3500 3500

W2 3000 2500 500

Hieraus folgt

h(W1) =
7000

7000 + 3000
= 0.7 und h(W2) =

3000
7000 + 3000

= 0.3.
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3.1. Begriffe und Zusammenhänge

Abbildung 3.2: Mensa der TU Clausthal

Kennt man die Präferenz eines Studenten, ändern sich die Wahrscheinlichkeiten gemäß

h(Wi | I) =
H(Wi ∩ I)
H(I)

=
H(Wi ∩ I)

n
· n

H(I)

=
h(Wi ∩ I)
h(I)

=

{
3500
6000 ≈ 0.583 für i = 1
2500
6000 ≈ 0.417 für i = 2

,

dabei sei h(Wi|I) die relative Häufigkeit für das Ereignis Wi unter der Bedingung, dass
der Student Essen I gewählt hat.

Für h(B) > 0 heißt h(A | B) = h(A∩B)
h(B) bedingte relative Häufigkeit von A unter B.

Beobachtung: Bedingte relative Häufigkeiten stabilisieren sich für n → ∞ ebenso wie die
relativen Häufigkeiten.

3.2 Definition (bedingte Wahrscheinlichkeit):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und B ∈ F mit P (B) > 0. Dann heißt für
jedes A ∈ F

P (A | B) :=
P (A ∩B)
P (B)

die bedingte Wahrscheinlichkeit von A unter B bzgl. P .

Folgerung:
A ∩B = ∅ =⇒ P (A | B) = 0 und B ⊂ A =⇒ P (A | B) = 1.

Wahrscheinlichkeitstheoretisch bedeutet der Übergang von P (A) zu P (A|B) die Einschränk-
ung der ursprünglichen σ–Algebra F auf das Mengensystem F′, das aus F hervorgeht, indem
man alle ihre Elemente mit B schneidet. Es stellt sich heraus, dass F′ eine σ–Algebra über
Ω′ = B ist. Entsprechend definieren P (A|B) ein Wahrscheinlichkeitsmaß auf F und die Ein-
schränkung von P (A|B) auf F′ ein Wahrscheinlichkeitsmaß auf F′. Diesem Nachweis dienen
die beiden nachfolgenden Sätze:

3.3 Satz:
Es seien F eine σ–Algebra über Ω und Ω′ eine nichtleere Menge mit Ω′ ⊆ Ω. Dann ist F′ :=
{Ω′ ∩A | A ∈ F} eine σ–Algebra über Ω′, die sogenannte Spur–σ–Algebra.
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Beweis:
1. Ω′ ∈ F′:

Wegen Ω′ ⊆ Ω ist Ω′ ∩ Ω = Ω′. Da Ω ∈ F ist, ist deshalb auch Ω′ ∈ F′.

2. A′ ∈ F′ ⇒ A
′ ∈ F′:

Es sei A′ ∈ F′. Aufgrund der Definition von F′ gibt es ein A ∈ F mit A′ = Ω′ ∩A. Da F

eine σ–Algebra ist, ist A ∈ F. Dann ist Ã = Ω′ ∩ A ∈ F′. Ã ist aber das Komplement
von A′ in F′, denn es gilt:

A′ ∩ Ã = (Ω′ ∩A) ∩ (Ω′ ∩A) = Ω′ ∩ (A ∩A) = Ω′ ∩∅ = ∅ ,

A′ ∪ Ã = (Ω′ ∩A) ∪ (Ω′ ∩A) = Ω′ ∩ (A ∪A) = Ω′ ∩ Ω = Ω′ .

3. Für jede Folge (A′n)n∈N von Elementen aus F′ ist
⋃

n∈N
A′n ∈ F′:

Es sei (A′n)n∈N eine Folge von Elementen aus F′. Dann gibt es aufgrund der Definition
von F′ eine Folge (An)n∈N von Elementen aus F, so dass A′n = Ω′ ∩ An für alle n ∈ N
gilt. Da F eine σ–Algebra ist, ist

⋃
n∈NAn ∈ F. Mit der Definition von F′ folgt weiter:

Ω′ ∩
⋃

n∈N
An ∈ F′.

Es gilt aber

Ω′ ∩
⋃

n∈N
An =

⋃
n∈N

(Ω′ ∩An) =
⋃

n∈N
A′n, also

⋃
n∈N

A′n ∈ F.

�

3.4 Satz:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und B ∈ F mit P (B) > 0. P (· | B) : F → R

definiert durch

P (A | B) :=
P (A ∩B)
P (B)

(A ∈ F)

ein Wahrscheinlichkeitsmaß über Ω.

Beweis:
1) Aus der Definition der bedingten Wahrscheinlichkeit folgt für alle A ∈ F sofort P (A |

B) ≥ 0.

2) Es gilt P (Ω | B) = P (Ω∩B)
P (B) = P (B)

P (B) = 1, d.h. P (· | B) ist normiert.

3) Es sei (Ai)i∈N eine Folge von paarweise fremden Elementen von F. Dann gilt:

P

(⋃
i∈N

Ai | B

)
=

P

((⋃
i∈N

Ai

)
∩B

)
P (B)

=

P

(⋃
i∈N

(Ai ∩B)

)
P (B)

=

∑
i∈N

P (Ai ∩B)

P (B)
(σ–Additivität von P )

=
∑
i∈N

P (Ai | B)

und es folgt die σ–Additivität von P (· | B). �
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Dieser Satz rechtfertigt die Bezeichnung bedingte Wahrscheinlichkeit.

3.5 Beispiel (Regenwahrscheinlichkeit):
An einer Wetterstation (nicht in Clausthal) wurde die Regenwahrscheinlichkeit in Abhängig-
keit des Monats aufgezeichnet:

Monat Jan Feb Mär Apr Mai Jun
Wahrscheinlichkeit für Regentag 15% 15% 25% 25% 20% 25%

Monat Jul Aug Sep Okt Nov Dez
Wahrscheinlichkeit für Regentag 30% 20% 25% 30% 25% 25%

Bekannt sind also die bedingten Wahrscheinlichkeiten

P (,,Regentag”|Monat = i) für i = 1, . . . , 12.

Gesucht ist die durchschnittliche Regenwahrscheinlichkeit für das ganze Jahr.
Mit Ai :=,,ein zufällig gewählter Tag liegt in Monat i” ist P (A1) = 31

365 , P (A2) = 28
365 ,

P (A3) = 30
365 , P (A4) = 31

365 usw. und damit lässt sich allgemein schreiben:

P (,,Regentag”) =
12∑
i=1

P (,,Regentag”|Monat = i) · P (Ai).

Also:

P (,,Regentag”) =
31
365

· P (,,Regentag”|Monat = 1) +

28
365

· P (,,Regentag”|Monat = 2) +

31
365

· P (,,Regentag”|Monat = 3) +

30
365

· P (,,Regentag”|Monat = 4) + . . .

≈ 0.234.

In dem Beispiel wurde also rückwärts von einer bedingten Wahrscheinlichkeit auf eine unbe-
dingte Wahrscheinlichkeit geschlossen. Dieser Sachverhalt soll nun im folgenden Satz allgemein
bewiesen werden:

3.6 Satz (Satz von der totalen Wahrscheinlichkeit):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Bn)n∈N eine Folge paarweise fremder
Mengen aus F mit Ω =

⋃
n∈NBn und P (Bn) > 0 ∀ n ∈ N. Dann gilt für jedes Ereignis A ∈ F:

P (A) =
∑
n∈N

P (A | Bn) · P (Bn).

Beweis:
Es sei A = A∩Ω = A∩

⋃
n∈N

Bn =
⋃

n∈N
(A∩Bn) und (A∩Bn)∩ (A∩Bm) = ∅ für m 6= n . Es

folgt

P (A) = P

(⋃
n∈N

(A ∩Bn)

)
=
∑
n∈N

P (A ∩Bn) Def. 3.2=
∑
n∈N

P (A | Bn) · P (Bn).

�
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Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit kann von bedingten Wahrscheinlich-
keiten P (A|Bi) auf die unbedingte Wahrscheinlichkeit P (A) geschlossen werden (sofern die
P (Bi) bekannt sind). Im Folgenden soll noch ein Schritt weiter gegangen werden: Es soll jetzt
P (Bi|A) bestimmt werden. Gerade diese Fragestellung hat sehr viele praktische Anwendun-
gen, wie sich in Beispiel 3.9 zeigen wird.

3.7 Satz (Formel von Bayes):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Bn)n∈N eine Folge paarweise fremder
Mengen aus F mit Ω =

⋃
n∈NBn und P (Bn) > 0 ∀ n ∈ N. Dann gilt für jedes Ereignis B ∈ F

mit P (B) > 0 und alle k ∈ N:

P (Bk | B) =
P (B | Bk) · P (Bk)∑

n∈N
P (B | Bn) · P (Bn)

.

(Siehe auch Lebensdaten von Bayes im Anhang D.)

Beweis:
Aus Satz 3.6 folgt

P (B) =
∑
n∈N

P (B | Bn) · P (Bn) .

Außerdem ist
P (Bk ∩B) = P (Bk | B) · P (B) = P (B | Bk) · P (Bk) .

Es ergibt sich

P (Bk | B) =
P (Bk ∩B)
P (B)

=
P (B | Bk) · P (Bk)∑

n∈N
P (B | Bn) · P (Bn)

.

�

3.8 Definition (a–priori–Verteilung, a–posteriori–Verteilung):
• (P (Bk))k∈N nennt man a–priori–Verteilung (vor dem Eintreten von B).

• (P (Bk | B))k∈N nennt man a–posteriori–Verteilung (nach dem Eintreten von B).

3.9 Beispiel:
,,Let’s make a deal” (3-Tore-Problem):
In einer Spielshow wird der Kandidat vor drei verschlossene Türen gestellt. Hinter einer der
Türen wartet ein Gewinn, in allen anderen Fällen geht der Kandidat leer aus. Der Kandidat
wählt eine Tür aus, die aber nicht geöffnet wird. Stattdessen öffnet der Quizmaster eine der
beiden anderen Türen, hinter der sich jedoch nichts befindet. Nun wird der Kandidat vor die
Wahl gestellt, bei der gewählten Tür zu bleiben oder sich für die andere, noch nicht geöffnete
Tür zu entscheiden. Es stellt sich die Frage, ob der Kandidat seine Gewinnchance erhöhen
kann, wenn er sich umentscheidet.
Zur Klärung des Sachverhalts werden folgende Bezeichnungen eingeführt:
U :=,,eine Umentscheidung führt zu Gewinn” und r :=,,richtige Tür war von Anfang an
gewählt”. Wurde bereits von Anfang an die richtige Tür gewählt, so führt eine Umentschei-
dung zum Verlust (P (U |r) = 0). Wurde allerdings von Anfang an die falsche Tür gewählt, so
führt eine Umentscheidung zum Gewinn (P (U |r) = 1). Die Wahrscheilichkeit, von Anfang an
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die richtige Tür gewählt zu haben, beträgt 1
3 , also P (r) = 1

3 . Damit ergibt sich mit dem Satz
von der totalen Wahrscheinlichkeit:

P (U) = P (U |r) · P (r) + P (U |r) · P (r) = 0 · 1
3

+ 1 · 2
3

=
2
3
.

Das Ergebnis zeigt, dass sich im Allgemeinen die Gewinnwahrscheinlichkeit erhöht, wenn sich
der Kandidat umentscheidet.

Fertigungs–Ausschussanteil:
Die Produktion in einer Fabrik erfolgt durch drei Maschinen. Diese sind zu verschiedenen
Anteilen an der Gesamtproduktion beteiligt und weisen folgende Ausschussraten auf:

Maschine A Maschine B Maschine C

Anteil an der Gesamtproduktion 20% 50% 30%

Ausschussrate 1% 3% 4%

Abbildung 3.3: Eine der drei Maschinen

Demnach lauten die Parameter des Systems:

P (A) = 20%, P (B) = 50%, P (C) = 30%
P (,,Ausschuss”|A) = 1%, P (,,Ausschuss”|B) = 3%, P (,,Ausschuss”|C) = 4%.

Wir berechnen zunächst den Ausschussanteil bezogen auf die gesamte Produktion. Dieser
lässt sich mit Hilfe des Satzes von der totalen Wahrscheinlichkeit berechnen:

P (,,Ausschuss”) =
∑

M∈{A,B,C}

P (,,Ausschuss”|M) · P (M)

= 1% · 20% + 3% · 50% + 4% · 30% = 2.9%.

Mit Hilfe des Satzes von Bayes lässt sich jetzt auch noch bestimmen, wie gross die Wahr-
scheinlichkeit dafür ist, dass ein Ausschussteil von Maschine A stammt:

P (A|,,Ausschuss”) =
P (,,Ausschuss”|A) · P (A)∑

M∈{A,B,C} P (,,Ausschuss”|M) · P (M)
=

1% · 20%
2,9%

≈ 6,90%.
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Die entsprechenden Wahrscheinlichkeiten für die anderen beiden Maschinen sind:

P (B|,,Ausschuss”) =
3% · 50%

2,9%
≈ 51,72% und

P (C|,,Ausschuss”) =
4% · 30%

2,9%
≈ 41,38%.

Multiple–Choice–Test:
Eine Prüfungsfrage in einem Multiple–Choice–Test hat n mögliche Antworten, von denen k
(0 ≤ k ≤ n) richtig sind. Hat ein Student sich vorbereitet, so sollte er die richtigen Antworten
auswählen können. Hat ein Student sich nicht vorbereitet, so muss er raten und wählt j der
n möglichen Antworten zufällig aus.

Es sei P (,,Student hat sich vorbereitet”) =: p.

Gesucht ist die Wahrscheinlichkeit (in Abhängigkeit von p und n), dass der Student sich
vorbereitet hat, wenn man weiß, dass er die richtigen Antworten gewählt hat.

Lösungsmenge: Ω := {(0, 0); (0, 1); (1, 0); (1, 1)}

(0,0) := ”nicht vorbereitet, falsche Antwort“

(0,1) := ”nicht vorbereitet, richtige Antwort“

(1,0) := ”vorbereitet, falsche Antwort“

(1,1) := ”vorbereitet, richtige Antwort“

A := {(0, 1); (1, 1)} = ”richtige Antwort“

B := {(1, 0); (1, 1)} = ”der Student hat sich vorbereitet“

Es gilt P (B) = p ∈ (0, 1], außerdem wird angenommen, dass es Studenten gibt, die die
richtigen Antworten gegeben haben, d.h. dass P (A) > 0 gilt. Ein Student, der sich vorbereitet
hat, gebe immer die richtigen Antworten, d.h. P (A | B) = 1 und ein nicht vorbereiteter
Student wähle zufällig j der n Antworten. In diesem Fall ist P (A | B) = 1

2n , da er bei jeder
der n möglichen Antworten raten muss, ob sie richtig ist oder nicht und dabei jeweils eine
Chance von 1

2 hat. Gesucht ist P (B | A). Zur Lösung des Problems wird die Formel von Bayes
verwendet:

P (B | A) =
P (A | B) · P (B)

P (A | B) · P (B) + P (A | B) · P (B)
=

1 · p
1·p+ 1

2n ·(1−p)
=

p

p+ 1−p
2n

−−−→
n→∞

1.

D.h., je größer die Anzahl der Antworten ist, desto wahrscheinlicher ist es, dass der Student
sich vorbereitet hat, wenn man weiß, dass er die richtige Antwort gegeben hat.

Beachte: Es wurde in dem Beispiel vorausgesetzt, dass die n möglichen Antworten der Frage
unabhängig voneinander sind, d.h. es gibt keine Antworten der Form ,,Es gilt A.” und ,,Es
gilt nicht A.” Wenn es Antworten gibt, die sich gegenseitig ausschließen, so gilt nicht mehr
P (A | B) = 1

2n , sondern nur noch 1
2 ≥ P (A | B) > 1

2n .

Da aber in jedem Fall P (Student hat eine Frage richtig beantwortet | B) < 1 ist, lässt sich
trotzdem P (B | A) → 1 durch die Erhöhung der Anzahl der Fragen erreichen.

Spam–Filter:
In der eMail–Kommunikation stellen Spam-Mails (unerwünschte Werbemails) ein ständig
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wachsendes Ärgernis dar. Der naheliegenste Ansatz, Spam automatisiert auszufiltern, besteht
darin, eine Liste von Wörtern anzulegen, die fast nur in Spam-Mails vorkommen. Tritt ei-
nes der Wörter aus dieser Liste in der Mail auf, so wird diese als Spam aussortiert. Mit
einem solchen Ansatz werden aber auch erwünschte Mails aussortiert, sofern diese eines der
Schlüsselwörter enthalten. Außerdem muss die Liste ständig aktualisiert und erweitert werden,
um möglichst viel Spam zu erfassen.

Einen anderen Ansatz, der diese beiden Nachteile weitgehend ausgleicht, stellen die lernfähigen
Bayes–Filter dar. (Die Spam-Filter von Mozilla und Thunderbird funktionieren nach diesem
Prinzip.) Zunächst muss der Filter einige Zeit trainiert werden, indem man Mails manuell
als Spam markiert. Der Spam–Filter liest alle Spam– und alle Nicht–Spam–Mails und zählt
dabei, wie häufig welches Wort auftritt. (Dabei werde jedes Wort nur jeweils ein Mal pro Mail
gezählt).

Nach dem Scannen von 2000 Mails (je 1000 Spam– und Nicht–Spam–Mails) könnte sich z.B.
folgende Tabelle mit Wort–Häufigkeiten ergeben haben:

absolute Häufigkeit
Wort in Spam–Mails in Nicht–Spam–Mails gesamt
Viagra 500 0 500
enlargement 400 0 400
money 350 3 353
buy 300 4 304
credit 250 10 260

...
eigener Name 250 800 1050
Software 150 200 350

...
Dir 0 500 500
und 10 700 710
der 0 950 950
die 0 950 950

Mit Hilfe dieser Daten lassen sich nun u.a. folgende bedingte Wahrscheinlichkeiten aufstellen:

P (,,Viagra” tritt auf | Spam) = 50%
P (,,enlargement” tritt auf | Spam) = 40%

P (,,money” tritt auf | Spam) = 35%
P (,,buy” tritt auf | Spam) = 30%

P (,,credit” tritt auf | Spam) = 25%
P (,,eigener Name” tritt auf | Spam) = 25%

...
P (,,der” tritt auf | kein Spam) = 95%
P (,,die” tritt auf | kein Spam) = 95%

P (,,eigener Name” tritt auf | kein Spam) = 80%
P (,,und” tritt auf | kein Spam) = 70%
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P (,,Dir” tritt auf | kein Spam) = 50%.
...

Das Verhältnis von Spam zu normalen Mails sei bekannt. In diesem Beispiel sind es 50%.
Für die absoluten Eintrittswahrscheinlichkeiten gilt dann:

P (,,money” tritt auf) = 17,65%
P (,,credit” tritt auf) = 13%

P (,,eigener Name” tritt auf) = 52,5%
...

Erhält man nun eine neue Mail, so wird diese vom Spam–Filter nach den bekannten Schlüs-
selwörtern durchsucht. Wenn die Mail jetzt die Wörter ,,money”, ,,credit” oder den Namen
des Empfängers enthält (und sonst keine bekannten Schlüsselwörter), so lässt sich mit Hilfe
der Formel von Bayes Folgendes berechnen:

P (Spam|,,money” tritt auf) =
P (,,money” tritt auf | Spam) · P (Spam)

P (,,money” tritt auf)

=
35% · 50%

17,65%
≈ 99, 15%,

P (Spam|,,credit” tritt auf) =
P (,,credit” tritt auf | Spam) · P (Spam)

P (,,credit” tritt auf)

=
25% · 50%

13%
≈ 96, 15%,

P (Spam|,,eigener Name” tritt auf) =
P (,,eigener Name” tritt auf | Spam) · P (Spam)

P (,,eigener Name” tritt auf)

=
25% · 50%

52,5%
≈ 23,81%.

Abschließend wird der Mittelwert über alle drei Wahscheinlichkeiten gebildet:

1
3
· (P (Spam|,,money”) + P (Spam|,,credit”) + P (Spam|,,eigener Name”)) ≈ 73,04%.

Überschreitet dieser Wert eine vorgegebene Grenze, so wird die Mail als Spam aussortiert.
Zur technischen Ausführung und zu weiteren Details siehe:

• Paul Graham: ,,A Plan for Spam”

• Gary Robinson: ,,Spam Detection”

3.10 Satz (Multiplikationssatz):
Sei (Ω,F, P ) ein Wahrscheinlichkeitsraum. Für A0, . . . , An ∈ F gelte P (A0∩A1∩· · ·∩An−1) >
0. Dann gilt:

P

 n⋂
j=0

Aj

 = P (A0) · P (A1 | A0) · P (A2 | A0 ∩A1) · · · · · P (An | A0 ∩A1 ∩ · · · ∩An−1).
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Beweis:
Mit A0 ∩A1 ∩ · · · ∩An−1 ⊂ A0 ∩A1 ∩ · · · ∩An−2 ⊂ · · · ⊂ A0 ∩A1 ⊂ A0 folgt

0 < P (A0 ∩ · · · ∩An−1) ≤ P (A0 ∩ · · · ∩An−2) ≤ · · · ≤ P (A0).

Der Rest wird durch Induktion bewiesen. Den Induktionsanfang stellt die Definition der
bedingten Wahrscheinlichkeit dar:

P (A0 ∩A1) = P (A0) · P (A1 | A0).

Der Induktionsschluss von n auf n+ 1 erfolgt durch:

P (A0 ∩ · · · ∩An ∩An+1) = P (A0 ∩ · · · ∩An) · P (An+1 | A0 ∩ · · · ∩An) (Def.)
= P (A0) · · · · · P (An | A0 ∩ . . . ∩An−1) · P (An+1 | A0 ∩ · · · ∩An).

�

3.11 Beispiel (Urnenmodell von Pólya):
Gegeben sei eine Urne, die r rote Kugeln und s schwarze Kugeln enthält. Nach der zufälligen
Entnahme einer Kugel wird diese mit c weiteren desselben Typs zurück in die Urne gelegt.

Abbildung 3.4: Urnenmodell von Pólya

Gesucht ist die Wahrscheinlichkeit dafür, bei n Ziehungen jeweils eine rote Kugel zu ziehen.
Hierzu wird das Ereignis Ai := ”im i–ten Versuch eine rote Kugel ziehen“ definiert. Nun kann
die gesuchte Wahrscheinlichkeit wie folgt beschrieben werden: P (A1∩A2∩· · ·∩An). Mit Hilfe
des Multiplikationssatzes lässt sich die gesuchte Wahrscheinlichkeit berechnen:

P (A1 ∩ · · · ∩An) = P (A1) · P (A2 | A1) · · · · · P (An | A1 ∩ · · · ∩An−1)

=
r

r + s
· r + c

r + s+ c
· r + 2c
r + s+ 2c

· . . . · r + (n− 1)c
r + s+ (n− 1)c

.

(Siehe auch PowerPoint-Präsentation zu diesem Beispiel.)

3.2 Stochastische Unabhängigkeit

Diese Abschnitt behandelt den Begriff der stochastischen Unabhängigkeit. Als Motivation
diene das folgende Beispiel:
Es wird eine Population Ω medizinischer Probanden betrachtet, in der sich solche befinden, die
rauchen (R), die nicht rauchen (R), die an Lungenkrebs erkrankt sind (L) oder nicht erkrankt
sind (L). Unter der Annahme, dass das Rauchen keinen Einfluss auf die Entstehung von
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Lungenkrebs habe, erwartet man, dass in der Gruppe der Raucher genauso viele Probanden an
Lungenkrebs erkrankt sind wie in der Gruppe der Nichtraucher, d.h. im Fall einer hinreichend
großen Population sollte gelten:

|L ∩R|
|R|

=

∣∣L ∩R∣∣∣∣R∣∣
⇐⇒ |L ∩R| / |Ω|

|R| / |Ω|
=

∣∣L ∩R∣∣ / |Ω|∣∣R∣∣ / |Ω|
bzw.

P (L ∩R)
P (R)

=
P (L ∩R)
P (R)

⇐⇒ P (L | R) = P (L | R) .

Diese Feststellung gibt Anlass zu folgender Definition:

3.12 Definition (stochastisch unabhängig):
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und A,B ∈ F mit P (B) > 0 und P (B) > 0. A
heißt stochastisch unabhängig von B bzgl. P , falls

P (A | B) = P (A | B)

gilt.

3.13 Satz:
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und A,B ∈ F mit P (B) > 0. Dann sind folgende
Aussagen äquivalent:

a) P (A | B) = P (A | B), falls P (B) > 0.

b) P (A | B) = P (A).

c) P (A ∩B) = P (A) · P (B).

Beweis:
a) =⇒ b):

P (A) = P (A | B) · P (B) + P (A | B) · P (B)

= P (A | B) · P (B) + P (A | B) · P (B)

= P (A | B) ·
(
P (B) + P (B)

)
= P (A | B) · P (Ω) = P (A | B) .

b) =⇒ a):

P (A) = P (A | B) · P (B) + P (A | B) · P (B)

= P (A) · P (B) + P (A | B) · P (B)

⇐⇒ P (A) · (1− P (B)) = P (A | B) · P (B)

⇐⇒ P (A) · P (B) = P (A | B) · P (B)

⇐⇒ P (A) = P (A | B) .
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b) =⇒ c):

P (A | B) =
P (A ∩B)
P (B)

=⇒ P (A ∩B) = P (A | B) · P (B) = P (A) · P (B) .

c) =⇒ b):

P (A | B) =
P (A ∩B)
P (B)

=
P (A) · P (B)

P (B)
= P (A) .

�

3.14 Beispiel:
Es wird das Werfen eines Würfels betrachtet. Es seien A := {1, 3, 5} und B := {3, 4, 5, 6} und
somit P (A) = 1/2 und P (B) = 2/3. A und B sind unabhängig, da

P (A ∩B) = P ({3, 5}) =
1
3

=
1
2
· 2
3

= P (A) · P (B) .

3.15 Bemerkung:
Die stochastische Unabhängigkeit zweier Ereignisse geht beim Übergang zu einem anderen
Wahrscheinlichkeitsmaß im allgemeinen verloren.

3.16 Beispiel:
Es seien Ω := {1, 2, 3}, A := {1} und B := {1, 2}. Man wähle zwei Wahrscheinlichkeitsmaße
P und P ′ wie folgt: P ({1}) := 1, P ({2}) := P ({3}) := 0 und P ′({i}) := 1

3 für i = 1, 2, 3.
Unter dem Wahrscheinlichkeitsmaß P sind A und B stochastisch unabhängig, denn es gilt:

P (A ∩B) = P ({1}) = 1 = 1 · 1 = P (A) · P (B).

Unter P ′ sind A und B jedoch nicht unabhängig:

P ′(A ∩B) = P ′({1}) =
1
3
6= 2

9
=

1
3
· 2
3

= P ′(A) · P ′(B).

3.17 Definition (paarweise Unabhängigkeit):
Endlich viele Ereignisse Ai ∈ F (i = 1, . . . , n) heißen paarweise stochastisch unabhängig bzgl.
P , wenn gilt:

P (Ai ∩Aj) = P (Ai) · P (Aj) für i 6= j.

Eine Frage in diesem Zusammenhang ist, ob aus P (A1 ∩ A2 ∩ A3) = P (A1) · P (A2) · P (A3)
auch die paarweise Unabhängigkeit der Ereignisse A1, A2 und A3 folgt. Dieses Problem führt
zum Begriff der vollständigen Unabhängigkeit (siehe Definition 3.19).

3.18 Beispiel:
Es seien Ω := {1, 2, 3}, P ({1}) := 1

2 , P ({2}) := 1
2 , P ({3}) := 0, A1 = {1}, A2 := {2} und

A3 = {3}. Dann gilt:

P (A1 ∩A2 ∩A3) = P (A1) · P (A2) · P (A3),

aber
P (A1 ∩A2) = 0 6= 1

4
= P (A1) · P (A2).
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3.19 Definition (vollständig stochastisch unabhängig):
Endlich oder abzählbar unendlich viele Ereignisse Ai ∈ F heißen
vollständig stochastisch unabhängig bzgl. P , wenn gilt:

P (Ai1 ∩ · · · ∩Aim) = P (Ai1) · · · · · P (Aim)

für je endlich viele paarweise verschiedene Indizes i1, . . . , im ∈ N, m ∈ N.

3.20 Bemerkung:
Die vollständige Unabhängigkeit ist eine schärfere Forderung als die paarweise Unabhängig-
keit. Aus der paarweisen Unabhängigkeit folgt nicht notwendig auch die vollständige Un-
abhängigkeit.

3.21 Beispiel:
In einer Urne befinden sich vier Lose mit den Zahlen 6, 7, 10 und 15. Der Urne wird zufällig
ein Los entnommen. Tk sei das Ereignis, dass die gezogene Zahl durch k teilbar ist. Es gilt:

P (T2) = P ({6, 10}) = 0.5
P (T3) = P ({6, 15}) = 0.5
P (T5) = P ({10, 15}) = 0.5

P (T2 ∩ T3) = P ({6}) = 0.25 = 0.5 · 0.5 = P (T2) · P (T3)
P (T2 ∩ T5) = P ({10}) = 0.25 = 0.5 · 0.5 = P (T2) · P (T5)
P (T3 ∩ T5) = P ({15}) = 0.25 = 0.5 · 0.5 = P (T3) · P (T5)

P (T2 ∩ T3 ∩ T5) = P (∅) = 0 6= 0.5 · 0.5 · 0.5 = P (T2) · P (T3) · P (T5) .

(Siehe auch PowerPoint-Präsentation zu diesem Beispiel.)
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Kapitel 4

Statistische Methoden der
Qualitätssicherung

Sowohl während seiner Entwicklung als auch während seiner Herstellung durchläuft ein Pro-
dukt verschiedene Qualifizierungsstufen. Die Sicherstellung seiner technischen Spezifikatio-
nen durch prozessintegrierte Meßsysteme und computergestützte Auswerteverfahren stellt
für alle Unternehmen eine besondere Herausforderung dar. Besonders Großserien–Hersteller
wie PC–, Automobil-, Elektronik- oder Lebensmittelhersteller müssen sich darauf verlassen
können, dass die von ihnen verwendeten Komponenten und Zutaten einwandfrei sind. Aber
auch der Kunde möchte sicher sein, ein fehlerfreies Produkt zu erwerben. Eventuell erfor-
derlich werdende Garantieleistungen und Rückrufaktionen sind nicht nur mit hohen Kosten
sondern auch mit einem erheblichen Vertrauensschwund bei den Kunden verbunden. Aus die-
sem Grund betreiben fast alle großen Firmen ein umfassendes Qualitätsmanagement, das die
mit der Qualitätsüberwachung einhergehenden Geschäftsprozesse koordiniert und die für die
Erfassung und Auswertung der Qualitätsdaten erforderlichen Methoden und Verfahren zur
Verfügung stellt. Aufgrund der Datenmengen werden dabei auch große Anforderungen an die
Informationstechnik gestellt.
Die Organisation des Qualitätsmanagement und die Installation von Qualitätssystemen wird
in verschiedenen Richtlinien geregelt. Entsprechende Empfehlungen findet man u.a. in der
DIN ISO 900x. Unter dem Druck des Wettbewerbs sehen sich viele Unternehmen gezwungen,
ihre Qualitätssysteme von unabhängigen Institutionen zertifizieren zu lassen.

Schlüsselwörter: Gut–Schlecht–Prüfung, Stichprobenplan, Stichprobe, Annahme-
zahl, Test, Null–Hypothese, Alternativ–Hypothese, Lieferantenrisiko, Konsumen-
tenrisiko, Fehler 1. Art, Fehler 2. Art, Signifikanzniveau, Gütefunktion, Operati-
onscharakteristik, Gutgrenze, Schlechtgrenze, Steilheit, Indifferenzpunkt, Philips–
Stichprobenplan, Maximaler mittlerer Durchschlupf, Mittlerer Prüfaufwand.
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4.1 Hypothesentest

Die statistische Qualitätskontrolle ist ein Teilgebiet der Stochastik. Sie beschäftigt sich sowohl
mit Methoden für die laufende Prozesskontrolle als auch mit Verfahren für die Wareneingangs-
und Endkontrolle. Im ersten Fall wird anhand von Messungen überprüft, ob die beobachte-
ten Toleranzen noch akzeptabel sind oder ein Eingreifen in den Prozess erforderlich machen
(sogenannte messende oder Attribut–Prüfung). Im zweiten Fall geht es um die Frage, ob die
angelieferten Komponenten bzw. die ausgelieferten Produkte den vereinbarten Qualitätsan-
forderungen genügen oder nicht (sogenannte zählende oder Gut–Schlecht–Prüfung). Dieser
Abschnitt beschäftigt sich zunächst mit der Gut–Schlecht–Prüfung.

Der mit einer Vollkontrolle einhergehende technische und personelle Aufwand steht oftmals
in keinem Verhältnis zum Erlös, der mit dem Produkt erzielt werden kann, oder zum Risiko,
das mit dem Versagen des Produkts verbunden ist. Hinzu kommt, dass viele Prüfverfahren
zerstörenden Charakter haben, weshalb eine Vollkontrolle nicht in Frage kommt. Umfangrei-
che Tests verlängern außerdem die Durchlaufzeiten durch die Fertigung, was im Rahmen einer
schlanken Produktion nicht erwünscht ist. Die mathematischen Verfahren der Gut–Schlecht–
Prüfung zielen darauf ab, die mit der Qualitätsüberprüfung verbundenen Kosten aufgrund
einer Stichprobenprüfung zu reduzieren und die Möglichkeit einer Fehlentscheidung unter
Kontrolle zu halten.

Abbildung 4.1: Prinzip der Stichprobenprüfung

Im Fall einer Stichprobenprüfung stellt sich die Frage, wie man anhand der Anzahl fehlerhaf-
ter Stücke in der Stichprobe auf den Ausschussanteil in der gesamten Lieferung schließen kann.
Diese Frage soll mit Hilfe von statistischen Tests beantwortet werden. Unter einem statisti-
schen Test versteht man ein Verfahren zur Überprüfung einer Hypothese über den Parameter
einer Wahrscheinlichkeitsverteilung. Im einfachsten Fall entnimmt man dem Los vom Umfang
N eine zufällige Stichprobe vom Umfang n und verwendet als sogenannte Testgröße X die
Anzahl fehlerhafter Stücke in der Stichprobe. Liegt X unterhalb einer kritischen Grenze c (so-
genannte Annahmezahl) wird die Lieferung angenommen, andernfalls zurückgewiesen. Diese
Vorgehensweise wird als Einfach– oder (n− c)–Stichprobenplan bezeichnet, wobei n und c
noch genauer zu bestimmen sind.

Wichtige Begriffe der Testtheorie

Wenn man im Urnenmodell in der Fassung ohne Zurücklegen (siehe 2.3) die Anzahl der Kugeln
N mit der Anzahl der angelieferten Stücke und die Anzahl der schwarzen Kugeln R mit der
Anzahl der fehlerhaften Stücke identifiziert, stellt man fest, dass X einer hypergeometrischen
Verteilung mit den Parametern N , R und n genügt. Dabei bezeichnet p = R/N den wahren,
aber unbekannten Ausschussanteil. Die Hypothesen über die zugrundeliegende Verteilung
lauten damit:
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4.1. Hypothesentest

Abbildung 4.2: Schema des einfachen Stichprobenplans

H0 : p ≤ p0 Der Ausschussanteil liegt unterhalb einer kritischen Grenze p0, d.h. die Lieferung
erfüllt die geforderten Qualitätsmerkmale (sogenannte Null–Hypothese).

H1 : p > p0 Der Ausschussanteil liegt oberhalb einer kritischen Grenze p0, d.h. die Lieferung
erfüllt die geforderten Qualitätsmerkmale nicht (sogenannte Alternativ–Hypothese).

Je kleiner der Wert der Testgröße, umso deutlicher spricht er für H0 und gegen H1. Diese
Vorgehensweise birgt offensichtlich zwei Risiken:
Der Lieferant hat das Risiko α, dass er aufgrund eines zufällig schlechten Stichprobenergebnis-
ses die Lieferung zurückerhält, obgleich sie eigentlich den vereinbarten Qualitätsanforderungen
genügt.
Der Abnehmer hat das Risiko β, dass er aufgrund eines zufällig guten Stichprobenergebnisses
die Lieferung akzeptiert, obgleich sie den vereinbarten Qualitätsanforderungen nicht genügt.
Im Hinblick auf die wirtschaftlichen Auswirkungen von Fehlentscheidungen bei der Qualitäts-
prüfung sollten das Lieferanten- und Abnehmerrisiko möglichst klein sein.
Zur Beurteilung eines Tests stehen verschiedene Kriterien zur Verfügung. Die Funktion

G(p) := P (X ∈ {c+ 1, . . . , n}) = P (X > c)

wird als Gütefunktion bezeichnet. Diese stellt einen Zusammenhang zwischen der Ablehn-
wahrscheinlichkeit für H0 und dem unbekannten Parameter p her. Der Begrenzung des Liefe-
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rantenrisikos dient die Forderung

G(p) = P (X > c) < α für alle p ≤ p0. (4.1)

Ein Test, der diese Bedingung erfüllt, nennt man Test zum Signifikanzniveau α. Üblicherweise
wählt man α = 0.1, 0.05 oder 0.01.
Die Beurteilung des Konsumentenrisikos geschieht mit Hilfe der Funktion

L(p) := P (X ∈ {0, 1, . . . , c}) = P (X ≤ c),

die als Operationscharakteristik bezeichnet wird. Der Zusammenhang zwischen G(p) und L(p)
ist

G(p) = 1− L(p).

Damit lässt sich die Bedingung (4.1) auch in der Form

1− L(p) < α für alle p ≤ p0

bzw.

L(p) > 1− α für alle p ≤ p0

schreiben.

4.2 Konstruktion von (n-c)-Stichprobenplänen

Wie bereits erwähnt, tragen Lieferant und Abnehmer bei einer Stichprobenprüfung unter-
schiedliche Risiken. Sie verfolgen deshalb auch unterschiedliche Ziele:

Zielsetzung des Lieferanten
Wenn der (unbekannte) Ausschussanteil p der Lieferung nicht größer als eine Gutgrenze (AQL;
Acceptance Quality Limit) p1−α ist, soll die Lieferung mit einer möglichst großen Wahrschein-
lichkeit, nämlich 1−α, angenommen werden. α beschreibt das Risiko des Lieferanten, dass die
Lieferung zurückgewiesen wird, obgleich sie den vereinbarten Qualitätsanforderungen genügt.
Lehnt man die Hypothese H0 (”Lieferung genügt den vereinbarten Qualitätsanforderungen“)
zu Unrecht ab, spricht man von einem Fehler 1. Art. Üblicherweise verwendet man α = 0.1,
α = 0.05 oder α = 0.01.

Zielsetzung des Abnehmers
Wenn der Ausschussanteil p größer oder gleich einer Schlechtgrenze (LQ; Limiting Quality)
pβ, pβ > p1−α, ist, soll die Lieferung mit einer möglichst großen Wahrscheinlichkeit 1 −
β abgelehnt werden. β ist folglich das Risiko des Abnehmers, dass er eine unzureichende
Lieferung akzeptiert. Nimmt man die Hypothese H0 (”Lieferung genügt den vereinbarten
Qualitätsanforderungen“) zu Unrecht an, spricht man von einem Fehler 2. Art. Üblicherweise
verwendet man β = 0.1, β = 0.05 oder β = 0.01.
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Gemeinsame Zielsetzung
Da jede Kontrolle mit Zeit und Geld verbunden ist, haben beide Vertragsparteien ein Interesse
daran, dass der Prüfaufwand n möglichst gering ist.
Die Wahrscheinlichkeit, dass ein angeliefertes Los akzeptiert wird, ist bei hypergeometrisch
verteiltem X

L = LN,n,c(p) = P (X ≤ c) =
c∑

k=0

(
R
k

)(
N−R
n−k

)(
N
n

) , (4.2)

wobei p = R/N den wahren (aber unbekannten) Ausschussanteil in der Lieferung bezeichnet.
Die Annahmewahrscheinlichkeit LN,n,c(p) als Funktion von p wird Operationscharakteristik
des (n− c)–Stichprobenplans genannt.

Es bleibt die Frage, wie die Werte n und c eines Stichprobenplanes bestimmt werden. Gibt
man die Werte α, β, p1−α und pβ vor, so besteht die Idee darin, die Zahlen n und c so zu
wählen, dass die Operationscharakteristik durch die beiden Punkte (p1−α, 1− α) und (pβ, β)
verläuft. Dadurch werden sowohl die Zielsetzung des Lieferanten als auch die des Abnehmers
und, bei der Wahl eines möglichst kleinen n, auch die gemeinsame Zielsetzung erfüllt. Da
es aber in Abhängigkeit von n und c nur endlich viele Operationscharakteristiken gibt, ist
dieses Problem in seiner strengen Form im allgemeinen nicht lösbar, weshalb man die folgende
Abschwächung wählt:
Bestimme n und c, so dass gilt:

LN,n,c(p1−α) ≥ 1− α, LN,n,c(pβ) ≤ β, n→ Min. (4.3)

p1-� p�

1

0

�

1-�

p

Abbildung 4.3: Beispiel einer Operationscharakteristik

Im Folgenden werden einige Verfahren zur Bestimmung von n und c vorgestellt:

Das Verfahren von Günther

Das Verfahren von Günther beruht auf der Feststellung, dass sich die Operationscharak-
teristik für größer werdende n immer stärker an die x–Achse anschmiegt und für größer
werdende c angehoben wird, d.h.
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

LN,n+1,c(p) ≤ LN,n,c(p), c fest, n = c, c+ 1, . . . , N − 1

LN,N,c(p) =

{
1 für c ≥ Np

0 für c < Np

LN,n,c+1(p) ≥ LN,n,c(p), n fest, c = 0, 1, . . . , n− 1
LN,c,c(p) = 1.

Beweis:
(i) Wir unterscheiden zwei Fälle:

Bei der Prüfung der ersten n Teile der Lieferung mögen sich bereits c als defekt erwiesen
haben. Ist das (n+ 1)-te Element in Ordnung, so wird die Lieferung angenommen. Ist
es defekt, so wird die Lieferung abgelehnt.

Waren unter den ersten n Teilen weniger als c defekt, so wird die Lieferung auf jeden
Fall angenommen, unabhängig davon ob das (n + 1)-te defekt ist oder nicht. (Da in
diesem Fall die Gesamtzahl der defekten Teile höchsten c betragen kann.)

Durch die Erhöhung des Losumfangs kann folglich die Annahmewahrscheinlichkeit nur
gleich bleiben oder abnehmen.

(ii) Für n = N gilt:

LN,N,c(p) =
c∑

k=0

(
R
k

)(
N−R
N−k

)(
N
N

) =
c∑

k=0

(
R

k

)(
N −R

N − k

)
.

Für k > R ist
(
R
k

)
= 0 und für k < R ist N − k > N −R bzw. es ist

(
N−R
N−k

)
= 0. Damit

kann nur der Summand mit k = R ungleich 0 sein:

LN,N,c(p) =
min{R,c}∑

k=R

(
R

k

)(
N −R

N − k

)
.

Ist c < R := Np, so ist die Summe leer und somit = 0, andernfalls ist

LN,N,c(p) =
min{R,c}∑

k=R

(
R

k

)
︸ ︷︷ ︸

=1

(
N −R

N − k

)
︸ ︷︷ ︸

=1

= 1.

(iii) Da in der Reihe

LN,n,c(p) :=
c∑

k=0

(
R
k

)(
N−R
n−k

)(
N
n

)
alle Summanden ≥ 0 sind, kann der Wert der Summe nicht kleiner werden kann, wenn
ein Summand hinzugefügt wird. Somit muss also LN,n,c+1(p) ≥ LN,n,c(p) gelten.

�
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Praktische Vorgehensweise zur Bestimmung von n und c:
Indem man mit c := 0 anfängt, versucht man zunächst durch Vergrößern von n die Bedin-
gung LN,n,0(pβ) < β für alle p ≥ pβ zu befriedigen. Hat man erstmals ein n gefunden mit
LN,n,0(pβ) < β, überprüft man die Bedingung LN,n,0(p1−α) ≥ 1 − α. Der Prozess bricht ab,
wenn diese Bedingung erfüllt ist. Andernfalls setzt man c := 1 und wiederholt die Proze-
dur, bis man ein n findet mit LN,n,1(pβ) ≤ β. Ist zugleich LN,n,1(p1−α) ≥ 1 − α, endet das
Verfahren. Andernfalls setzt man den Algorithmus mit c := 2 in entsprechender Form fort.

4.1 Beispiel:
Es seien N := 100, AQL:= 0.01, LQ:= 0.15 und α := β := 0.1. Dann ergibt sich nach dem
Algorithmus von Günther:

c := 0 n := 1 L(pβ) = 0.85
n := 2 L(pβ) = 0.721
...
n := 13 L(pβ) = 0.1039
n := 14 L(pβ) = 0.0860 < β = 0.1 L(p1−α) = 0.86 < 1− α = 0.9

c := 1 n := 1 L(pβ) = 1
...
n := 22 L(pβ) = 0.1061
n := 23 L(pβ) = 0.0902 < β = 0.1 L(p1−α) = 1 > 1− α = 0.9

Der gesuchte Stichprobenplan ist von der Form (23− 1). (Siehe auch Mathematica-Notebook
und PowerPoint-Präsentation zu diesem Beispiel.)

Abbildung 4.4: Beispiel einer Operationscharakteristik LN,n;c(p) fürN = 100 und verschiedene
Werte von (n; c).

Zur Vereinfachung der Berechnung von LN,n,c(p) können auch die Approximationen durch die
Binomial– und Poisson–Verteilung verwendet werden. Bezeichnet

Ln,c(p) :=
c∑

m=0

(
n

m

)
pm(1− p)n−m, 0 ≤ p ≤ 1,
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die Operationscharakteristik bzgl. der Binomialverteilung mit den Parametern n und p, so
gilt

lim
N→∞

LN,n,c(p) = Ln,c(p).

Diese Näherung ist für n
N ≤ 0.1 hinreichend genau.

Die Operationscharakteristik Ln,c(p) kann ihrerseits durch die Operationscharakteristik bzgl.
der Poissonverteilung

L∗n,c(p) :=
c∑

m=0

(np)m

m!
e−np

angenähert werden, falls n ≥ 100 und p < 0.05.

Das Verfahren von Günther kann nicht nur mit der hypergeometrischen Verteilung sondern
in derselben Weise auch mit der Binomial– und der Poissonverteilung als Modellverteilung
durchgeführt werden.

Die χ2-Methode

Will man n und c numerisch bestimmen, bietet sich das Verfahren von P. Peach und S.B. Lit-
tauer an, das auf der Poisson–Verteilung als Modellverteilung basiert und den folgenden Zu-
sammenhang ausnutzt:

4.2 Satz:
Für c = 0, 1, 2, . . . und alle λ ≥ 0 gilt:

c∑
k=0

pλ(k) =
c∑

k=0

λk

k!
e−λ = 1−G

(
2λ; 2(c+ 1)

)
= 1−

2λ∫
0

1
2c+1c!

yce−y/2 dy, (4.4)

wobei G die sogenannte χ2–Verteilung mit 2(c+ 1) Freiheitsgraden bedeutet.

Beweis:
Es seien

f(λ) :=
c∑

k=0

λk

k!
e−λ und g(λ) := 1−

2λ∫
0

1
2c+1 · c!

yce−y/2dy, λ ≥ 0.

Im Folgenden wird gezeigt, dass f(0) = g(0) und f ′(λ) = g′(λ) für alle λ ≥ 0 gilt.

(i) Offensichtlich ist f(0) = 1 = g(0).

(ii) Es gilt

f ′(λ) =

(
e−λ

c∑
k=0

λk

k!

)′
= e−λ

[
c∑

k=1

kλk−1

k!
−

c∑
k=0

λk

k!

]

= e−λ

[
c∑

k=1

λk−1

(k − 1)!
−

c+1∑
k=1

λk−1

(k − 1)!

]
= − e−λλ

c

c!
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und

g′(λ) = − 1
2c+1 · c!

· d
dλ

∫ 2λ

0
yce−y/2 dy = − 1

2c+1 · c!
· d
dλ

∫ λ

0
2cxce−x · 2 dx

= − 1
c!
· d
dλ

∫ λ

0
xce−x dx

Es sei F (x) :=
∫
xce−x dx. Damit folgt weiter:

g′(λ) = − 1
c!
· d
dλ

(F (λ)− F (0)) = − 1
c!
λce−λ,

was zu zeigen war. �

Für die Annahmewahrscheinlichkeit eines (n−c)–Stichprobenplans unter Zugrundelegung der
Poisson–Verteilung gilt:

L∗n,c(p) :=
c∑

k=0

(np)k

k!
e−np = 1−

2np∫
0

1
2c+1c!

yc · e−y/2 dy

= 1−G(2np; 2(c+ 1)), np ≥ 0. (4.5)

Setzt man diese Beziehung in die beiden Abschätzungen der Operationscharakteristik (4.3)
ein, erhält man

L∗n,c(p1−α) ≥ 1− α ⇐⇒ 1−G(2np1−α; 2(c+ 1)) ≥ 1− α

⇐⇒ G(2np1−α; 2(c+ 1)) ≤ α

⇐⇒ G−1(α; 2(c+ 1)) ≥ 2np1−α

⇐⇒ G−1(α; 2(c+ 1))
2p1−α

≥ n,

bzw.

L∗n,c(pβ) ≤ β ⇐⇒ 1−G(2npβ; 2(c+ 1)) ≤ β

⇐⇒ G(2npβ; 2(c+ 1)) ≥ 1− β

⇐⇒ G−1(1− β; 2(c+ 1)) ≤ 2npβ

⇐⇒ G−1(1− β; 2(c+ 1))
2pβ

≤ n.

Fasst man diese Ungleichungen zusammen, erhält man das folgende abschließende Resultat.

4.3 Satz:
Ein (n− c) Stichprobenplan erfüllt die Bedingungen

L∗n,c(p1−α) ≥ 1− α und L∗n,c(pβ) ≤ β

genau dann, wenn gilt:

G−1(1− β; 2(c+ 1))
2pβ

≤ n ≤ G−1(α; 2(c+ 1))
2p1−α

. (4.6)
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Indem man für c nacheinander die natürlichen Zahlen c = 0, 1, 2, . . . einsetzt, ermittelt man
das kleinste c, zu dem es eine natürliche Zahl n > c gibt, die der Bedingung (4.6) genügt.

4.4 Beispiel:
Es seien N := 6000, p1−α := 0.015, α := 0.05, 1 − α := 0.95, pβ := 0.12 und β := 0.025,
1− β := 0.975. In diesem Fall tritt an die Stelle von (4.6) folgende Ungleichung:

G−1(0.975; 2(c+ 1))
0.24

≤ n ≤ G−1(0.05; 2(c+ 1))
0.03

.

Mit Hilfe der Tabelle für die χ2–Verteilung (siehe Anhang A) findet man

c
G−1(0.975; 2(c+ 1))

0.24
G−1(0.05; 2(c+ 1))

0.03
0 7.38/0.24 = 30.75 > 3.33 = 0.1/0.03
1 11.14/0.24 = 46.42 > 23.67 = 0.71/0.03
2 14.45/0.24 = 60.21 > 54.67 = 1.64/0.03
3 17.53/0.24 = 73.04 < 91 = 2.73/0.03

Hieraus folgt c = 3 und n = 74. (Siehe auch PowerPoint-Präsentation zu diesem Beispiel.)

Vorgabe des Indifferenzpunktes und der Steilheit

Aus der Operationscharakteristik wird klar, dass ein (n − c)–Stichprobenplan umso besser
zwischen einer guten und einer schlechten Lieferung trennt, je steiler die Annahmekennlinie
verläuft. Als Maß für die Trennschärfe verwendet man den Quotienten

Trennschärfe :=
Gutgrenze

Schlechtgrenze
=

AQL
LQ

, (4.7)

der im Idealfall in der Nähe von 1 liegen würde, was aber nur durch einen sehr hohen Prüfauf-
wand zu erreichen wäre.
Das Stichprobensystem der Firma Philips orientiert sich an der Steilheit der Operationscha-
rakteristik. Die Steilheit h0 wird dabei im sogenannten Indifferenzpunkt p0.5 gemessen, der
durch die Gleichung

L(p0.5) = 0.5 (4.8)

bestimmt ist. Als Steilheit wird

h0 := − p

L(p)
· dL(p)

dp

∣∣∣∣
p=p0.5

= −p0.5

0.5
· dL(p)

dp

∣∣∣∣
p=p0.5

definiert. Wählt man als Modellverteilung die Poissonverteilung, so ergibt sich

h0 = −2p0.5

dL∗n,c(p)
dp

∣∣∣∣
p=p0.5

=
2(np0.5)c+1

c!
e−np0.5 .
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Abbildung 4.5: Indifferenzpunkt und Steilheit

Andererseits gilt aufgrund früherer Überlegungen:

L∗n,c(p0.5) = 1−G(2np0.5; 2(c+ 1)) = 0.5

⇐⇒ G(2np0.5; 2(c+ 1)) = 0.5

⇐⇒ G−1(0.5; 2(c+ 1)) = 2np0.5

⇐⇒ 1
2
G−1(0.5; 2(c+ 1)) = np0.5.

Beim Philips Stichprobensystem wird nun folgendermaßen vorgegangen: Gegeben sind h0 und
p0.5. Es sind n und c so zu bestimmen, dass

h0 =
2(np0.5)c+1

c!
e−np0.5 ≥ h0 und

1
2
G−1(0.5; 2(c+ 1)) = np0.5

gilt.
Um diese beiden Bedingungen zu erfüllen, wird genau wie beim Algorithmus von Günther
vorgegangen. Es wird zunächst c := 0, c := 1, . . . gesetzt, bis man zum ersten Mal

h0 =
2(n · p0.5)c+1

c!
e−n·p0.5 ≥ h0

erzielt hat. Der zugehörige Stichprobenumfang n wird mit Hilfe der Gleichung

n :=
[
G−1(0.5; 2(c+ 1))

2 · p0.5

]
ermittelt, wobei [x] die kleinste ganze Zahl größer oder gleich x bedeutet.

4.5 Beispiel:
Es seien N := 1500, h0 := 1.5 und p0.5 := 0.03.

Tabelle der χ2–Verteilung

c G−1(0.5;2(c+1)) x=
G−1(0.5;2(c+1))

2
h0= 2xc+1e−x

c!
≥h0=1.5 n=

[
G−1(0.5;2(c+1))

2·p0.5

]
0 1.39 0.695 0.694 nein
1 3.36 1.68 1.052 nein
2 5.35 2.675 1.319 nein
3 7.34 3.67 1.541 ja [122.33]=123
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Der gesuchte Stichprobenplan ist folglich von der Form (n − c) = (123 − 3). (Siehe auch
PowerPoint-Präsentation zu diesem Beispiel.)

4.6 Bemerkung:
Die Werte n und c eines Stichprobenplanes können bei gegebenem Indifferenzenpunkt p0.5

und gegebener Steilheit h0 auch durch Näherungsformeln bestimmt werden. Aus der Tabelle
der χ2-Verteilung lässt sich die Approximation G−1(0.5; 2(c+ 1)) ≈ 2(c+ 1)− 0.66 ableiten.
Daraus ergeben sich folgende Abschätzungen: c = π · 2h0

2 − 1 und n = c+ 0.67 · p0.5.

4.3 Maximaler mittlerer Durchschlupf

Trotz sorgfältiger Kontrolle kann bei der Anwendung eines (n − c)–Stichprobenplans nicht
verhindert werden, dass defekte Einheiten die Prüfung passieren. Die Tests sind lediglich
darauf ausgerichtet, dass eine Lieferung mit einer Qualitätslage p ≤ p1−α mit großer Wahr-
scheinlichkeit angenommen und eine Lieferung mit einer Qualitätslage p ≥ pβ mit großer
Wahrscheinlichkeit abgelehnt wird. Der Anteil durchschlüpfender defekter Einheiten Y ist
deshalb ein weiteres Beurteilungskriterium für einen (n− c)–Stichprobenplan.
Es wird zunächst angenommen, dass der Lieferant Lose mit konstanter Qualitätslage p an-
liefert. Die Darstellung der Zufallsvariablen Y hängt davon ab, wie mit den Einheiten der
Stichprobe und, bei Ablehnung, auch mit den im Los verbleibenden Einheiten verfahren wird.
Unter der Annahme, dass die Teile in der Stichprobe grundsätzlich nicht weiterverwendet wer-
den und bei Ablehnung eine Vollkontrolle erfolgt, bei der sämtliche defekten Teile durch gute
ersetzt werden, erhält man:

Y =

{
p, falls X ≤ c

0, falls X > c
,

wobei X wieder die Anzahl defekter Einheiten in der Stichprobe bedeutet. Der Erwartungs-
wert von Y ist

E[Y ] = p · P (X ≤ c) + 0 · P (X > c) = p · L(p)

und wird mittlerer Durchschlupf (englisch: Average Outgoing Quality (AOQ)) genannt.
Für den Konsumenten ist der maximale mittlere Durchschlupf (Average Outgoing Quality
Limit (AOQL)) von besonderem Interesse:

AOQL := max
0≤p≤1

p · L(p).

Um den AOQL zu berechnen, wird wieder die Approximation durch die Poissonverteilung
benutzt:

AOQL = max
p≥0

p · L∗n,c(p) = max
p≥0

p ·
c∑

k=0

(n · p)k

k!
e−n·p.

4.7 Satz:
Es gibt genau ein p ∈

(
0, c+2

n

)
mit

AOQL = max
p≥0

p · L∗n,c(p) = p · L∗n,c(p).
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0.005

0.01

0.015

0.02

0.025

0.03

E�Y�

Abbildung 4.6: Mittlerer Durchschlupf E[Y ] bei n := 100 und c := 4

Dabei ist p ist eindeutig bestimmt durch die Gleichung
c∑

k=0

(n · p)k

k!
=

(n · p)c+1

c!

und es gilt

AOQL =
(n · p)c+2

c! · n
e−np.

Beweis:
Zu zeigen sind:

• Existenz der Maximalstelle p

• Bestimmung des Maximums durch

(i) d
dpp · L

∗
n,c(p) = 0

(ii) d2

dp2 p · L∗n,c(p) < 0

Die Existenz einer Maximalstelle p von p · L∗n,c(p) ist aufgrund der Beziehungen

p · L∗n,c(p)


= 0 , für p = 0
> 0 , für p > 0
→ 0 , für p→∞

gesichert.

Zu (i): Es gilt
d

dp
p · L∗n,c(p) = L∗n,c + p · d

dp
L∗n,c(p).

Mit L∗n,c(p) = f(np) wie im Beweis von Satz 4.2 und der dort berechneten Ableitung
von f

d

dp
L∗n,c(p) =

d

dp
f(np) = n · f ′(np) = −n · e−np (np)c

c!
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folgt
d

dp
p · L∗n,c(p) =

(
c∑

k=0

(n · p)k

k!
− (n · p)c+1

c!

)
e−np

und somit insgesamt

d

dp
p · L∗n,c(p) = 0

⇐⇒
c∑

k=0

(np)k

k!
e−np = e−np (np)c+1

c!

⇐⇒
c∑

k=0

(n · p)k

k!
=

(n · p)c+1

c!
.

Zu (ii) Es gilt:

d2

dp2
pL∗n,c(p) =

d

dp

(
L∗n,c(p) + p

d

dp
L∗n,c(p)

)
=

d

dp
L∗n,c(p) +

d

dp
L∗n,c(p) + p · d

2

dp2
L∗n,c(p)

= 2 · d
dp
L∗n,c(p) + p · d

2

dp2
L∗n,c(p)

und damit folgt durch Einsetzen

d2

dp2
pL∗n,c(p) = −2e−npn

c+1pc

c!
− pnc+1

c!
· d
dp
e−nppc

= −2
nc+1pc

c!
e−np − pnc+1

c!
e−np(−npc + cpc−1)

=
nc+1pc

c!
e−np(np− (c+ 2))


< 0 für 0 < p < c+2

n

= 0 für p = c+2
n

> 0 für p > c+2
n .

Deswegen muss die Maximalstelle p im Intervall
(
0, c+2

n

)
liegen.

Unter Verwendung der letzten Identität aus Punkt (i) erhält man nun mit

AOQL = max
p≥0

p · L∗n,c(p) = p · L∗n,c(p) = p ·
c∑

k=0

(n · p)k

k!
· e−np

= p · (n · p)c+1

c!
· e−np =

(n · p)c+2

c! · n
· e−np

die behauptete Identität für den maximalen mittleren Durchschlupf AOQL. �

An den letzten beiden Ausdrücken erkennt man, dass die Größen x = n ·p und x′ = n ·AOQL
nur noch von c abhängen und deshalb leicht tabelliert werden können.
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4.4. Mittlerer Prüfaufwand

c n · p n ·AOQL
0 1.000 0.3679
1 1.618 0.840
2 2.270 1.371
3 2.945 1.942
4 3.640 2.544
5 4.349 3.168
6 5.071 3.812
7 5.804 4.472
8 6.546 5.146
9 7.297 5.831
10 8.055 6.528

Mit Hilfe dieser Tabelle lassen sich der maximale mittlere Durchschlupf und die dazugehörige
Qualitätslage p für beliebige (n− c)–Stichprobenpläne leicht berechnen.

4.8 Beispiel:
Bei einem (n − c)–Stichprobenplan mit n := 100 und c := 3 ist der maximale mittlere
Durchschlupf

AOQL =
1.942
100

= 0.01942.

Die zugehörige Qualitätslage ist

p =
2.945
100

= 0.02945.

4.4 Mittlerer Prüfaufwand

Mit jeder Stichprobenprüfung ist ein gewisser technischer Aufwand verbunden, der Kosten
verursacht. Bei der Berechnung des mittleren Prüfaufwands wird wie bei der Berechnung des
maximalen mittleren Durchschlupfs vorgegangen und angenommen, dass bei einer Ablehnung
eine Vollkontrolle stattfindet, bei der alle defekten Teile durch gute ersetzt werden. In diesem
Fall ergibt sich für die Anzahl M der zu prüfenden Stücke

M =

{
n, falls X ≤ c

N, falls X > c.

Die durchschnittliche Anzahl zu prüfender Einheiten ist deshalb

E[M ] = n · P (X ≤ c) +N · P (X > c) = n · L(p) +N(1− L(p)).

4.9 Beispiel:
Es seien n := 150 und c := 3. Die Lose vom Umfang N := 2000 werden mit einer mittleren
Qualitätslage von 1% angeliefert.
Es ist

L∗150,3(0.01) = 0.9344

und deshalb
E[M ] = 150 · 0.9344 + 2000 · 0.0656 = 271.36.
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Mengensysteme

In der Einführung wurde bereits festgestellt, dass σ–Algebren den natürlichen Definitionsbe-
reich von Wahrscheinlichkeitsmaßen darstellen. Im Vorgriff auf die beiden Maß–Fortsetzungs-
sätze, die im nächsten Kapitel behandelt werden, erweist es sich als zweckmäßig, als Vorstufen
von σ–Algebren auch einfachere Mengensysteme zu untersuchen.

Schlüsselwörter: Semiring, Ring, Algebra, Dynkin–System, σ–Algebra, Erzeugen-
densystem, Darstellungssatz für Ringe, σ–Algebra der Borelschen Mengen.
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5.1 Begriffe und Zusammenhänge

In diesem Abschnitt werden verschiedene Typen von Mengensysteme eingeführt und ihre
Eigenschaften untersucht.

5.1 Definition (vereinigungsstabil, durchschnittsstabil):
Es seien Ω eine nichtleere Menge und M ⊆ P(Ω).

• M heißt vereinigungsstabil — ∪–stabil —, wenn mit A,B ∈ M auch A ∪B ∈ M ist.

• M heißt durchschnittsstabil oder einfach schnittstabil — ∩–stabil —, wenn mit A,B ∈
M auch A ∩B ∈ M ist.

5.2 Definition (Semiring):
Ein System S von Teilmengen von Ω heißt Semiring über Ω, wenn es folgende Eigenschaften
besitzt:

(i) ∅ ∈ S,

(ii) S ist ∩–stabil,

(iii) A,B ∈ S =⇒ es existieren n ∈ N und C1, . . . , Cn ∈ S mit Ci ∩ Cj = ∅ für i 6= j, so
dass A\B =

⋃n
i=1Ci ist.

Es sei jetzt speziell Ω := Rn, n ∈ N, gewählt. Bezeichnen a := (a1, . . . , an) und b :=
(b1, . . . , bn) zwei Punkte des Euklidischen Raumes Rn mit a ≤ b, d.h. ai ≤ bi für i = 1, . . . , n,
dann versteht man unter einem linksseitig offenen und rechtsseitig abgeschlossenen Intervall
die folgende Punktmenge:

(a, b](n) := {x = (x1, . . . , xn) ∈ Rn | ai < xi ≤ bi; i = 1, . . . , n}.

Im Folgenden soll gezeigt werden, dass die Mengen

In := {(a, b](n) | a, b ∈ Rn, a ≤ b}

einen Semiring über Ω := Rn bilden. Dies wird zunächst im folgenden Beispiel für n = 1, 2
anschaulich dargestellt und dann in Satz 5.4 allgemein bewiesen.

5.3 Beispiel:
Das Mengensystem In ist für n = 1, 2 ein Semiring über Ω := Rn. Denn:

1. Der Fall n := 1:

a) Die leere Menge ∅ wird durch (a, a] hinzugezogen.

b) Der Durchschnitt von zwei linksseitig offenen und rechtsseitig abgeschlossenen In-
tervallen A := (a, b] und B := (c, d] ist entweder leer oder wieder ein solches
Intervall, wie die nachfolgenden Abbildungen zeigen:
a

(
b

]︸ ︷︷ ︸
A

c

(
d

]︸ ︷︷ ︸
B

A ∩B = ∅ ∈ I1,

a

(
c

(
b

]︸︷︷︸
C

d

] A ∩B = C = (c, b] ∈ I1,
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a

(
c

(
d

]︸ ︷︷ ︸
B

b

]

︸ ︷︷ ︸
A

B ⊂ A =⇒ A ∩B = B ∈ I1.

c) Schließlich ist A\B = A∩B gleich A (falls A und B disjunkt sind) oder wieder ein
Intervall bzw. Vereinigung von höchstens zwei Intervallen desselben Typs:

a

(
b

]︸ ︷︷ ︸
A

c

(
d

]︸ ︷︷ ︸
B

A ∩B = ∅ =⇒ A \B = A ∩B = A ∈ I1,

a

( ]︸ ︷︷ ︸
C

c

(
b

]
d

] A \B = A ∩B = C = (a, c] ∈ I1,

a

( ]︸ ︷︷ ︸
C1

c

(
d

](
b

]︸ ︷︷ ︸
C2

B ⊂ A =⇒ A \B = A ∩B = C1 ∪ C2, wobei
C1, C2 ∈ I1 und C1 ∩ C2 = ∅,

c

(
a

(
b

]︸︷︷︸
A

d

]

︸ ︷︷ ︸
B

A ⊂ B =⇒ A\B = A ∩ B = ∅ ∈ I1. (Siehe auch

PowerPoint-Präsentation zu diesem Beispiel.)

2. Der Fall n := 2:

a) Die leere Menge ∅ wird durch (a, a]× (a, a] hinzugezogen.

b) Auch I2 ist ∩–stabil, wie die nachfolgenden Abbildungen zeigen:

A B A ∩B = ∅ ∈ I2,

A

B

C A ∩B 6= ∅ =⇒ A ∩B = C ∈ I2,

A B B ⊂ A =⇒ A ∩B = B ∈ I2.

c) Für alle möglichen Fälle ist A \B ∈ I2:
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A B A\B = A ∩B = A ∈ I2

2C1C

C3
B A\B = C1 ∪ C2 ∪ C3 ∈ I2

4

C C5C

C

6

8

1 3C2C

C

7

C

B

A\B =
8⋃

i=1

Ci ∈ I2

(Siehe auch PowerPoint-Präsentation zu diesem Beispiel.)

5.4 Satz:
Das Mengensystem

In := {(a, b](n) | a, b ∈ Rn, a ≤ b}

ist ein Semiring über Ω := Rn.

Beweis:
Folgende Eigenschaften sind nachzuweisen:

1. Es gilt ∅ ∈ In, denn es ist ∅ = (a, a](n) ∈ In.

2. Der Schnitt zweier Intervalle aus In ist wieder ein Intervall aus In:
Es seien (a, b](n) und (c, d](n) zwei Intervalle aus In. Mit ei := max{ai, ci} und fi :=
min{bi, di} gilt:

(a, b](n) ∩ (c, d](n) = (e, f ](n) ∈ In.

Dabei ist zu beachten, dass (e, f ](n) leer ist, wenn für ein 1 ≤ i ≤ n gilt ei ≥ fi.

3. Für zwei Elemente A,B ∈ In mit A ⊆ B lässt sich A \ B als endliche Vereinigung von
Elementen aus In darstellen:
Es seien A := (a, b](n) und B := (c, d](n) zwei Intervalle aus In. Mit ei := max{ai, ci}
und fi := min{bi, di} gilt zunächst wie im 2. Punkt A ∩ B = C := (e, f ](n) und damit
A \B = A \ C. Außerdem gilt

ai ≤ ei ≤ fi ≤ bi ∀ i = 1, . . . , n,

da nach Wahl der ci und der di gilt: (c, d](n) ⊆ (a, b](n). Damit lässt sich allgemein
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schreiben:

(a, b](n) \ (c, d](n) =


a1

...
an

 ,

b1...
bn




(n)

\


c1...
cn

 ,

d1
...
dn




(n)

=



a1

a2
...
an

 ,


c1
b2
...
bn




(n)

∪



d1

a2
...
an

 ,


b1
b2
...
bn




(n)

∪




c1
a2

a3
...
an

 ,


d1

c2
b3
...
bn




(n)

∪




c1
d2

a3
...
an

 ,


d1

b2
b3
...
bn




(n)

...

∪




c1
...

cn−1

an

 ,


d1
...

dn−1

cn




(n)

∪




c1
...

cn−1

dn

 ,


d1
...

dn−1

bn




(n)

Dabei sind die Vereinigungen disjunkt und einige der 2n Stücke eventuell leer.

�

5.5 Definition (Ring):
Ein System R von Teilmengen einer nichtleeren Menge Ω heißt ein Ring über Ω, wenn es die
folgenden Eigenschaften besitzt:

(i) ∅ ∈ R,

(ii) R ist ∪–stabil,

(iii) A,B ∈ R =⇒ A\B ∈ R.

5.6 Definition (Algebra):
Ein System A von Teilmengen einer nichtleeren Menge Ω heißt eine Algebra über Ω, wenn
gilt:

(i) Ω ∈ A,

(ii) A ist ∪–stabil,

(iii) A ∈ A =⇒ A ∈ A.

5.7 Definition (σ–Algebra):
Ein System F von Teilmengen einer nichtleeren Menge Ω heißt σ–Algebra über Ω, wenn es
die folgenden Eigenschaften besitzt:
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(i) Ω ∈ F,

(ii) A ∈ F =⇒ A ∈ F.

(iii) Für jede Folge (An)n∈N von Elementen aus F ist
⋃

n∈N
An ∈ F.

5.8 Beispiel (Visualisierung einer σ–Algebra):

5.9 Bemerkung:
1. R := {∅} ist der kleinste Ring über Ω für jedes Ω.

2. Es gilt {σ–Algebra} ⊇ {Algebra} ⊇ {Ring} ⊇ {Semiring}.

3. F := {∅,Ω} ist die kleinste σ–Algebra über Ω für jedes Ω.

4. F := P(Ω) ist die größte σ–Algebra über Ω für jedes Ω.

5. Jede σ–Algebra über Ω ist eine Algebra über Ω.

6. Ist R ein Ring über Ω, dann ist R auch ∩–stabil, denn:

A,B ∈ R
(iii)
=⇒ A\B ∈ R,

A,A\B ∈ R
(iii)
=⇒ A\(A\B) ∈ R.

Es gilt aber

A\(A\B) = A ∩ (A\B) = A ∩ (A ∩B)

= A ∩ (A ∪B) (Reziprozitätsgesetz)

= (A ∩A) ∪ (A ∩B) (Distributivgesetz)
= A ∩B.
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7. Ein Ring R über Ω ist genau dann eine Algebra über Ω, wenn Ω ∈ R gilt. Um dies zu
zeigen wird zunächst angenommen, dass R ein Ring über Ω ist und dass Ω ∈ R ist. In
diesem Fall ist noch zu zeigen, dass mit A ∈ R auch A ∈ R gilt. Aus A,Ω ∈ R folgt
aber sofort: Ω\A = A ∈ R. Es wird jetzt angenommen, dass R eine Algebra über Ω ist.
In diesem Fall muss noch gezeigt werden, dass mit A,B ∈ A auch A\B ∈ A ist. Aus
A,B ∈ A folgt jedoch A\B = A ∩B = A ∪B ∈ A. Wegen ∅ = Ω gehört auch die leere
Menge zu A.

8. Es sei F eine σ–Algebra über Ω. Dann gilt: Für jede Folge (An)n∈N von Elementen aus
F ist

⋂
n∈NAn ∈ F, denn:

An ∈ F =⇒ Ān ∈ F =⇒
⋃

n∈N
Ān ∈ F =⇒

⋃
n∈N

Ān =
⋂

n∈N
Ān =

⋂
n∈N

An ∈ F.

Es ist mitunter schwierig, bei einem vorgegebenen Mengensystem direkt festzustellen, ob es
sich um eine σ-Algebra handelt. Diese Schwierigkeit lässt sich jedoch mit Hilfe der nachfolgend
eingeführten Dynkin-Systemen umgehen.

5.10 Definition (Dynkin–System):
Ein System D von Teilmengen von Ω heißt Dynkin–System über Ω, wenn es die folgenden
Eigenschaften besitzt:

(i) Ω ∈ D,

(ii) Für D,E ∈ D mit D ⊆ E gilt: E \D ∈ D.

(iii) Für jede Folge (An)n∈N paarweise disjunkter Mengen aus D ist auch
⋃

n∈N
An ∈ D.

5.11 Bemerkung:
• Jede σ-Algebra ist ein Dynkin-System, denn für A,B ∈ F gilt B ∈ F und nach Bemer-

kung 5.9.7 gilt A \B = A ∩B ∈ F.

• Mit der Wahl E := Ω in (ii) folgt auch sofort: A ∈ D ⇒ A ∈ D.

Der nachfolgende Satz 5.12 charakterisiert den Zusammenhang zwischen Dynkin–Systemen
und σ–Algebren.

5.12 Satz:
Es sei D ein Dynkin–System über Ω. D ist genau dann eine σ–Algebra, wenn D ∩–stabil ist.

Beweis:
Da die Richtung ,,D ist σ-Algebra ⇒ D ist Dynkin-System” nach Bemerkung 5.11 gilt, ist
nur die Umkehrung ,,D ist ∩–stabiles Dynkin-System ⇒ D ist σ-Algebra” zu zeigen.
Da sich die ersten beiden Eigenschaften einer σ-Algebra direkt aus der Definition der Dynkin-
Systeme ergeben, bleibt nur noch der Nachweis zu führen, dass für jede Folge A1, A2, . . . ∈ D

(An nicht notwendig paarweise disjunkt) auch
⋃

n∈NAn ∈ D ist.
D ist nach Voraussetzung ∩–stabil, somit folgt

⋂n
m=1 Ām ∈ D für alle n. Ferner bildet (An ∩⋂n−1

m=1 Ām)n∈N eine Folge paarweise fremder Mengen aus D. Es gilt

⋃
n∈N

An ⊇
⋃

n∈N

(
An ∩

n−1⋂
m=1

Ām

)
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aber auch ⋃
n∈N

An ⊆
⋃

n∈N

(
An ∩

n−1⋂
m=1

Ām

)
,

wie man sich folgendermaßen klarmachen kann: Es sei x ∈
⋃

n∈NAn, dann existiert ein n0,
so dass x ∈ An0 und x /∈ Ak, k = 1, . . . , n0 − 1 (falls n0 > 1, sonst trivial). Es folgt x ∈ Āk,
k = 1, . . . , n0 − 1, sowie x ∈

⋂n0−1
k=1 Āk und damit x ∈ An0 ∩

⋂n0−1
k=1 Āk.

Insgesamt folgt also ⋃
n∈N

(
An ∩

n−1⋂
m=1

Ām

)
︸ ︷︷ ︸

∈D

=
⋃

n∈N
An ∈ D .

5.2 Erzeugendensysteme

Im nächsten Kapitel wird gezeigt, wie Maße von kleineren Mengensystemen (Semiringen)
auf größere Mengensysteme (σ-Algebren) fortgesetzt werden können. Dafür muss zunächst
beschrieben werden, wie man aus kleinen Mengensystemen größere bilden kann. In diesem
Abschnitt werden dafür die sogenannten Erzeugendensysteme eingeführt, die genau dies lei-
sten.

5.13 Satz:
Es seien I eine beliebige Indexmenge und Xi für jedes i ∈ I ein Ring, eine Algebra, ein
Dynkin–System oder eine σ–Algebra über Ω. Dann ist

X :=
⋂
i∈I

Xi = {A ⊆ Ω|A ∈ Xi ∀ i ∈ I}

ein Mengensystem desselben Typs wie die Xi.

Beweis:
Der Satz wird im Folgenden exemplarisch für Ringe bewiesen. Für Algebren, Dynkin-Systeme
und σ-Algebren verläuft der Beweis analog.

1. ∅ ∈ Xi ∀ i =⇒ ∅ ∈
⋂
i∈I

Xi,

2. A ∈
⋂
i∈I

Xi ∧B ∈
⋂
i∈I

Xi =⇒ A,B ∈ Xi ∀ i ∈ I, Xi sind Ringe

=⇒ A ∪B ∈ Xi ∀ i ∈ I =⇒ A ∪B ∈
⋂
i∈I

Xi,

3. A ∈
⋂
i∈I

Xi ∧B ∈
⋂
i∈I

Xi =⇒ A,B ∈ Xi ∀ i ∈ I, Xi sind Ringe

=⇒ A\B ∈ Xi ∀ i ∈ I =⇒ A\B ∈
⋂
i∈I

Xi. �
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5.14 Bemerkung:
Der Durchschnitt von Semiringen ist im Allgemeinen kein Semiring mehr, wie das folgende
Gegenbeispiel zeigt. Es seien

S1 := {∅, {1}, {2}, {3}, {1, 2, 3}} und
S2 := {∅, {1}, {2, 3}, {1, 2, 3}}

zwei Semiringe über Ω := {1, 2, 3}. Der Schnitt

S := S1 ∩ S2 = {∅, {1}, {1, 2, 3}}

ist zwar gegenüber der Durchschnittsbildung abgeschlossen und enthält die leere Menge, doch
es gilt:

S1 : {1, 2, 3}\{1} = {2, 3} = {2} ∪ {3} mit {2}, {3} ∈ S1,

S2 : {1, 2, 3}\{1} = {2, 3} ∈ S2,

S : {1, 2, 3}\{1} = {2, 3} und 6 ∃
n⋃

i=1

Ci = {2, 3} mit Ci ∈ S.

5.15 Satz:
Es sei Ω 6= ∅ und B ein beliebiges System von Teilmengen von Ω. Dann gibt es unter den
Ringen, Algebren, Dynkin–Systemen bzw. σ–Algebren, die B enthalten, jeweils ein kleinstes
solches System (symbolisch M(B) = R(B),A(B),D(B) bzw. σ(B)) nämlich

M(B) :=
⋂
{M′ | M′ ⊇ B, M′ ist Ring, Algebra, Dynkin–System bzw. σ–Algebra}.

M(B) heißt das von B erzeugte System und B der Erzeuger des Systems.

Beweis:
Die Existenz eines solchen Systems folgt aus der Tatsache, dass die Potenzmenge P(Ω) die
Menge B umfaßt und alle Eigenschaften eines Ringes, einer Algebra, eines Dynkin–Systems
bzw. einer σ–Algebra besitzt. Die Behauptung ergibt sich nun unmittelbar aus Satz 5.13,
wonach der Durchschnitt von Ringen, Algebren, Dynkin–Systemen bzw. σ–Algebren wieder
ein Ring, eine Algebra, ein Dynkin–System bzw. eine σ–Algebra ist. �

5.16 Satz:
Es seien Ω eine nichtleere Menge und E ⊆ P(Ω). Ist E ∩–stabil, so stimmen das von E
erzeugte Dynkin–System D(E) und die von E erzeugte σ–Algebra σ(E) überein.

Beweis:
Da jede σ–Algebra auch ein Dynkin–System ist, gilt D(E) ⊆ σ(E). Lässt sich umgekehrt
nachweisen, dass D(E) eine σ–Algebra ist, so folgt auch σ(E) ⊆ D(E) und somit D(E) = σ(E).
Nach Satz 5.12 muss dafür nur noch überprüft werden, ob D(E) mit je zwei Mengen A und
B auch A ∩B enthält. Betrachte folgendes System für beliebiges A ∈ D(E):

DA := {C ⊆ Ω | A ∩ C ∈ D(E)}.

Zeige zunächst, dass DA ein Dynkin–System ist. Mithilfe der ∩–Stabilität von E gilt dann
E ⊆ DE für alle E ∈ E ⇒ D(E) ⊆ DE ,
d.h. E ∩D ∈ D(E) für alle E ∈ E und alle D ∈ D(E),
d.h. D(E) ⊆ DD (D ∈ D(E)).
Es bleibt zu zeigen, dass DA ein Dynkinsystem ist:
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• Wegen A ∩ Ω = A ∈ D(E) ist Ω ∈ DA.

• Seien weiter B,C ∈ DA mit B ⊆ C. Dann ist (A∩C)\(A∩B) ∈ D(E), weil A∩C ⊇ A∩B
und D(E) Dynkin–System ist. Es gilt aber (A ∩ C) \ (A ∩ B) = A ∩ (C \ B), so dass
C \B ∈ DA.

• Sei nun (Dn)n∈N eine Folge paarweise fremder Mengen aus DA. Da D(E) Dynkin–
System ist, folgt

⋃
n∈N

(A∩Dn) ∈ D(E) und wegen
⋃

n∈N
(A∩Dn) = A∩

⋃
n∈N

Dn ist deshalb⋃
n∈N

Dn ∈ DA. �

5.17 Definition (separabel):
Eine σ–Algebra F heißt separabel, wenn es ein abzählbares Teilmengensystem K ⊂ P(Ω) gibt
mit σ(K) = F.

5.18 Satz (Darstellungssatz für Ringe):
Ist S ein Semiring, so ist der von S erzeugte Ring die Klasse K aller Mengen E, die eine
endliche Zerlegung der Form

E =
n⋃

i=1

Ai , Ai ∈ S (i = 1, . . . , n), Ai ∩Aj = ∅ für i 6= j,

gestatten.

Beweis:
Es ist nur zu zeigen, dass K ein Ring ist. Denn jeder Ring R′, der S enthält, beinhaltet auch
alle Mengen der Form E =

⋃m
i=1Ai, Ai ∈ S. Um zu zeigen, dass K ein Ring ist, müssen die

Ringeigenschaften nachgewiesen werden.

(i) Es gilt offensichtlich ∅ ∈ K, da mit
⋃1

i=1Ai, Ai ∈ S automatisch K ⊇ S gilt und ∅ ∈ S
ist.

(ii) Um E \D ∈ K zu zeigen, wird die folgende Umformung verwendet:

E\D =

(
m⋃

i=1

Ai

)
\

 n⋃
j=1

Bj

 =

(
m⋃

i=1

Ai

)
∩

n⋃
j=1

Bj =

(
m⋃

i=1

Ai

)
∩

 n⋂
j=1

Bj


=

m⋃
i=1

n⋂
j=1

(Ai ∩Bj) =
m⋃

i=1

n⋂
j=1

(Ai\Bj),

d.h. E\D besitzt eine endliche Zerlegung in disjunkte Mengen der Form
⋂n

j=1(Ai\Bj),
i = 1, . . . ,m. Nach Voraussetzung sind aber Ai, Bj ∈ S. Deshalb gilt Ai\Bj =

⋃k
`=1C`

mit C` ∈ S, weshalb Ai\Bj aus K sein muss. Ist K ∩–stabil, so würde
⋂n

j=1(Ai\Bj) ∈ K
für i = 1, . . . ,m folgen. Dann wäre E\D endliche Vereinigung von disjunkten Mengen
aus S, d.h. E\D ∈ K.
Die ∩–Stabilität von K zeigt man so:
Es seien E,D ∈ K, d.h. es gibt Zerlegungen der Form

E =
m⋃

i=1

Ai, Ai ∈ S und D =
n⋃

j=1

Bj , Bj ∈ S.
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Mit Hilfe des Distributivgesetzes folgt

E ∩D =

(
m⋃

i=1

Ai

)
∩

 n⋃
j=1

Bj

 =
m⋃

i=1

n⋃
j=1

(Ai ∩Bj), Ai ∩Bj ∈ S,

d.h. E ∩D besitzt eine Zerlegung in disjunkte Mengen der Form Ai ∩Bj ∈ S. Folglich
gilt E ∩D ∈ K, d.h. K ist ∩–stabil.

(iii) Die ∪-Stabilität lässt sich wie folgt zeigen:
Für E,D ∈ K ist E ∪ D = (E\D) ∪ D eine Zerlegung von E ∪ D in zwei disjunkte
Mengen E\D ∈ K und D ∈ K. E∪D ist somit eine endliche Vereinigung von disjunkten
Mengen aus S, d.h. E ∪D ∈ K. �

5.3 Die σ–Algebra der Borelschen Mengen

Im Folgenden sollen noch einmal der Semiring In := {(a, b](n) | a, b ∈ Rn} aller endlichen,
links offenen und rechts abgeschlossenen Intervalle des Rn sowie die Elemente der von In

erzeugten σ–Algebra σ(In), die auch σ–Algebra der Borelschen Mengen genannt und mit Bn

bezeichnet wird, betrachtet werden. Da es sich bei den Ergebnissen von Zufallsexperimenten
in der Regel um reelle Zahlen oder reellwertige Vektoren handelt, spielt die σ–Algebra der
Borelschen Mengen in der Wahrscheinlichkeitstheorie und deren Anwendungen naturgemäß
eine besondere Rolle.
(Siehe auch Lebensdaten von Borel im Anhang D.)

Da die Vereinigung bzw. der Durchschnitt von abzählbar vielen Mengen aus Bn wieder ein
Element von Bn ist, gehören neben den Intervallen (a, b](n) auch die folgenden Mengen zu
Bn:

[a, b](n) := {x = (x1, . . . , xn) ∈ Rn | ai ≤ xi ≤ bi; i = 1, . . . , n}

=
⋂
j∈N

(
a− 1

j
, b

]
(n)

∈ Bn,

(a, b)(n) := {x = (x1, . . . , xn) ∈ Rn | ai < xi < bi; i = 1, . . . , n}

=
⋃
j∈N

(
a, b− 1

j

]
(n)

∈ Bn,

(−∞, b](n) := {x = (x1, . . . , xn) ∈ Rn | −∞ < xi ≤ bi; i = 1, . . . , n}

=
⋃

m∈N
((−m, . . . ,−m), b](n) ∈ Bn,

{b} = (a, b](n)\(a, b)(n) ∈ Bn.

Es seien
K(x, y; r) := {(x̃, ỹ) ∈ R2 : (x− x̃)2 + (y − ỹ)2 < r}

die offene Kreisschreibe um (x, y) mit Radius r > 0 und

K[x, y; r] := {(x̃, ỹ) ∈ R2 : (x− x̃)2 + (y − ỹ)2 ≤ r}

die abgeschlossene Kreisschreibe um (x, y) mit Radius r > 0. Beide gehören zu B2, denn:
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• Es ist
K(x, y; r) =

⋃
(q1,q2)∈(Q×Q)∩K(x,y;r)

(q1 − δ, q1 + δ)× (q2 − δ, q2 + δ)

mit δ := δ(q1, q2, x, y, r) = 1√
2

(
r −

√
(q1 − x)2 + (q2 − y)2

)
, wobei (q1 − δ, q1 + δ) ×

(q2 − δ, q2 + δ) ∈ B2 sind.

• Es ist

K[x, y; r] =
∞⋂

n=1

K

(
x, y; r +

1
r

)
.

(q ,q )=(0,0), 0,7071 2 ��

(q ,q )=(0,1/2),

0,35
1 2

��

(q ,q )=(0,3/4),

0,1768
1 2

��
(q ,q )=(-1/2,1/2),

0,207
1 2

��

-1

-1 1

1

Abbildung 5.1: Veranschaulichung von K(0, 0; 1) =
⋃

(q1,q2)∈(Q×Q)∩K(x,y;r)(q1 − δ, q1 + δ) ×
(q2 − δ, q2 + δ)

Auf ähnliche Weise kann gezeigt werden, dass als Erzeugendensystem für Bn ebenso die
linksseitig abgeschlossenen und rechtsseitig offenen Intervalle des Rn hätten gewählt wer-
den können. Insbesondere bilden auch die offenen oder die kompakten Mengen des Rn ein
Erzeugendensystem der σ–Algebra der Borelschen Mengen Bn.

Literatur zu Kapitel 5

Folgende Bücher werden als begleitende Literatur zu diesem Kapitel des Skriptes empfohlen:
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Einführung in die Maßtheorie,
Bibl. Institut, Mannheim, 1971.
ISBN: 341100505X

• R. Mathar/D. Pfeiffer:
Stochastik für Informatiker,
Teubner, 1990.
ISBN: 3519022400

• P. P. Spies:
Grundlagen stochastischer Modelle,
Hanser, München, 1982.
ISBN: 3446137114

87



Kapitel 5. Mengensysteme

88



Kapitel 6

Mengenfunktionen

Im Folgenden wird der Begriff des Wahrscheinlichkeitsmaßes behandelt. So wie es sich bei
den bisherigen Betrachtungen als zweckmäßig erwies, neben der primär interessierenden σ–
Algebra auch Mengensysteme mit verwandten Strukturen zu untersuchen, wird es sich auch in
diesem Kapitel als nützlich herausstellen, neben Wahrscheinlichkeitsmaßen zunächst allgemei-
nere Mengenfunktionen zu untersuchen. Im Zusammenhang mit der Konstruktion allgemeiner
Wahrscheinlichkeitsmaße spielen die beiden Maßfortsetzungssätze von C. Caratheodory eine
zentrale Rolle, die zusammen mit dem Axiomensystem von A.N. Kolmogorov die Grundlage
der modernen Wahrscheinlichkeitstheorie bilden.

Schlüsselwörter: Inhalt, Prämaß, Maß, Wahrscheinlichkeitsmaß, Stetigkeit von un-
ten, Stetigkeit von oben, Fortsetzung, 1. und 2. Maß–Fortsetzungssatz, σ–endlich,
äußeres Maß.
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6.1 Grundbegriffe

In diesem Absachnitt geht es allgemein um Mengenfunktionen und ihre Eigenschaften.

6.1 Definition (nichtnegativ, additiv, σ–additiv, subadditiv, σ–subadditiv):
Es seien S ein Semiring über Ω und µ : S → R ∪ {∞} eine numerische Funktion.

• µ heißt nichtnegativ, wenn µ(∅) = 0 und µ(A) ≥ 0 für alle A ∈ S ist.

• µ heißt additiv, wenn für alle A,B ∈ S mit A ∩B = ∅ und A ∪B ∈ S gilt:

µ(A ∪B) = µ(A) + µ(B).

• µ heißt σ–additiv, wenn für jede Folge (An)n∈N von paarweise fremden Elementen aus
S (d.h. Ai ∩Aj = ∅ für i 6= j) mit

⋃
n∈NAn ∈ S gilt:

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

• µ heißt subadditiv, wenn für alle A,B ∈ S mit A ∪B ∈ S gilt:

µ(A ∪B) ≤ µ(A) + µ(B).

• µ heißt σ–subadditiv, wenn für jede Folge (An)n∈N von Elementen aus S mit
⋃

n∈NAn∈
S gilt:

µ

(⋃
n∈N

An

)
≤
∑
n∈N

µ(An).

6.2 Bemerkung:
Die Einschränkung S → R∪{∞} anstelle von S → R∪{−∞,+∞} wird gemacht, um sinnlose
Ausdrücke wie ∞−∞ zu vermeiden.

6.3 Definition (Inhalt, Prämaß und Maß):
Es seien S ein Semiring über Ω und µ : S → R ∪ {∞} eine numerische Funktion. Dann gilt:

• µ heißt Inhalt, wenn µ nichtnegativ und additiv ist.

• µ heißt Prämaß, wenn µ nichtnegativ und σ–additiv ist.

Mit Hilfe der Begriffe Inhalt und Prämaß lassen sich nun die zentralen Begriffe der Maßtheorie
und der Wahrscheinlichkeitstheorie definieren:

• µ heißt Maß, wenn µ Prämaß und S eine σ–Algebra ist.

• µ heißt Wahrscheinlichkeitsmaß, wenn µ ein Maß ist und µ(Ω) = 1 gilt.

6.4 Definition (endlich):
• Ein Inhalt oder Prämaß µ heißt endlich, wenn µ(A) <∞ für alle A ∈ S ist.

• Ein Maß µ heißt endlich, falls µ(Ω) <∞ ist.
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6.5 Bemerkung:
1. Es seien R ein Ring über Ω und ω ∈ Ω. Die Abbildung µ : R → R ∪ {∞} sei definiert

durch

µ(A) :=
{

1 , ω ∈ A
0 , ω 6∈ A .

Dann ist µ ein endliches Prämaß. Ist R eine σ–Algebra, so ist µ ein Wahrscheinlich-
keitsmaß (sogenanntes Dirac–Maß).

Veranschaulichung:

Gegeben sei die σ-Algebra R := {∅, {1}, {2, 3}, {1, 2, 3}} über Ω := {1, 2, 3}. Wähle
ω := 1. Dann ergibt sich µ(∅) = 0, µ({1}) = 1, µ({2, 3}) = 0, µ({1, 2, 3}) = 1.

2. Jedes Prämaß ist ein Inhalt.

3. Es sei (µn)n∈N eine Folge von Wahrscheinlichkeitsmaßen, die alle auf einer σ–Algebra
F über Ω definiert sind. Es sei weiter (αn)n∈N eine Folge von nichtnegativen reellen
Zahlen mit

∑
n∈N αn = 1. Die numerische Funktion µ : F → R ∪ {∞} mit

µ(A) :=
∑
n∈N

αnµn(A), ∀ A ∈ F

ist ein Wahrscheinlichkeitsmaß auf F.

Beweis der σ–Additivität:

µ

(⋃
n∈N

An

)
=
∑
m∈N

αmµm

(⋃
n∈N

An

)
(Def. von µ)

=
∑
m∈N

αm

∑
n∈N

µm(An) (σ–Additivität der µm)

=
∑
n∈N

∑
m∈N

αm µm(An) (Umordnungssatz für abs. konv. Reihen)

=
∑
n∈N

µ(An) (Def. von µ).

4. Es sei F : R→ R eine monoton wachsende Funktion. Die auf dem Semiring I1 der links
offenen und rechts abgeschlossenen Intervalle (a, b] ⊂ R, a ≤ b durch

µ((a, b]) := F (b)− F (a)

definierte Mengenfunktion ist ein endlicher Inhalt auf I1. Denn es gilt:

(a) µ(∅) = µ((a, a]) = F (a)− F (a) = 0.
(b) µ((a, b]) = F (b)− F (a) ≥ 0 für a ≤ b aufgrund der Monotonie von F .
(c) Es seien (a, b] und (a′, b′] zwei Intervalle aus I1 mit b = a′. Die Eigenschaft b = a′

wird gefordert, um (a, b]∪(a′, b′] = (a, b′] ∈ I1 und (a, b]∩(a′, b′] = ∅ sicherzustellen.
Dann gilt:

µ((a, b] ∪ (a′, b′]) = µ((a, b′]) = F (b′)− F (a)
= F (a′)− F (a) + F (b′)− F (a′)
= F (b)− F (a) + F (b′)− F (a′) (wegen b = a′)
= µ((a, b]) + µ((a′, b′]).
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6.6 Satz:
Es seien R ein Ring über Ω und µ : R → R ∪ {∞} ein Inhalt. Dann gilt:

a) Für alle A,B ∈ R gilt: µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

b) µ ist monoton, d.h. ∀ A,B ∈ R mit A ⊂ B gilt µ(A) ≤ µ(B). (Isotonie)

c) Für alle A,B ∈ R mit A ⊂ B und µ(A) < ∞ gilt µ(B\A) = µ(B) − µ(A). (Subtrakti-
vität)

d) µ ist subadditiv.

e) Ist µ ein Prämaß, dann ist µ σ–subadditiv.

Beweis:
a) Für alle A,B ∈ R gilt:

A ∪B = A ∪ (B\A), wobei A ∩ (B\A) = ∅ ist,
(A ∩B) ∪ (B\A) = B, wobei (A ∩B) ∩ (B\A) = ∅ ist.

Damit wird

µ(A ∪B) = µ(A) + µ(B\A),
µ(A ∩B) + µ(B\A) = µ(B).

Addition dieser beiden Gleichungen ergibt:

µ(A ∪B) + µ(A ∩B) + µ(B\A) = µ(A) + µ(B\A) + µ(B) bzw.
µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

b) und c) Für alle A,B ∈ R mit A ⊂ B gilt: B = A ∪ (B\A) und A ∩ (B\A) = ∅. Damit
gilt:

µ(B) = µ(A) + µ(B\A) ⇐⇒ µ(B\A) = µ(B)− µ(A) =⇒ µ(B) ≥ µ(A).

d) Aufgrund von a) gilt:

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) ≤ µ(A) + µ(B).

e) Es sei (An)n∈N eine Folge von Elementen aus R mit
⋃

n∈NAn ∈ R. Es werden B1 := A1

und Bn := An\
n−1⋃
m=1

Am für n ≥ 2 gesetzt. Dann gilt
⋃

n∈N
Bn =

⋃
n∈N

An, Bn ⊆ An und

Bn ∈ R für alle n sowie Bi ∩Bj = ∅ für i 6= j. Aus der σ–Additivität von µ folgt jetzt

µ

(⋃
n∈N

An

)
= µ

(⋃
n∈N

Bn

)
=
∑
n∈N

µ(Bn) (da µ σ–additiv ist)

≤
∑
n∈N

µ(An) (da µ monoton ist)

�

92



6.1. Grundbegriffe

6.7 Satz:
Es seien F eine σ–Algebra über Ω und µ : F → R ∪ {∞} ein Maß. Dann gilt:

a) Für jede Folge (An)n∈N von Elementen aus F mit An ⊆ An+1 für alle n ∈ N (sogenannte
monoton wachsende Folge) gilt:

µ

(⋃
n∈N

An

)
= lim

n→∞
µ(An).

b) Ist µ endlich, dann gilt für jede Folge (An)n∈N von Elementen aus F mit An+1⊆An für
alle n ∈ N (sogenannte monoton fallende Folge):

µ

(⋂
n∈N

An

)
= lim

n→∞
µ(An).

Die unter a) angegebene Eigenschaft von µ bezeichnet man als Stetigkeit von unten, die unter
b) als Stetigkeit von oben.

Beweis:
a) O.B.d.A. sei µ(An) <∞ ∀ n ∈ N (sonst trivial).

Es wird B1 := A1 und Bn+1 = An+1\An für n ≥ 1 gesetzt. Dann gilt: Bi ∩Bj = ∅ für
i 6= j und

⋃
n∈NBn =

⋃
n∈NAn. Hieraus folgt:

µ

(⋃
n∈N

An

)
= µ

(⋃
n∈N

Bn

)
=
∑
n∈N

µ(Bn) (µ ist σ–additiv)

= µ(A1) +
∞∑

n=1

µ(An+1\An)

= µ(A1)+ lim
m→∞

m∑
n=1

µ(An+1)− µ(An) (aufgrund von Satz 6.6 c))

= lim
m→∞

µ(Am).

b) Allgemein gilt:

µ

(⋂
n∈N

An

)
= µ

(⋃
n∈N

An

)
(Regeln von de Morgan)

= µ

(
Ω\

⋃
n∈N

An

)
(Definition des Komplements)

= µ(Ω)− µ

(⋃
n∈N

An

)
(aufgrund von Satz 6.6 c))

= µ(Ω)− µ

(⋃
n∈N

(Ω\An)

)
.
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Es gilt aber Ω\A1 ⊆ Ω\A2 ⊆ Ω\A3 ⊆ · · · . Deshalb kann Satz 6.7 a) angewandt werden,
mit dem sich

µ

(⋃
n∈N

(Ω\An)

)
= lim

n→∞
µ(Ω\An) = µ(Ω)− lim

n→∞
µ(An)

ergibt. Damit wird

µ

(⋂
n∈N

An

)
= lim

n→∞
µ(An).

�

6.2 Erster Maß–Fortsetzungssatz

Die beiden nachfolgenden Abschnitte sind der Konstuktion allgemeiner Wahrscheinlichkeits-
maße gewidmet. Die Grundlage hierfür bilden die beiden Maßfortsetzungssätze, die von C. Ca-
ratheodory stammen und auf folgender Erkenntnis beruhen: Ist S ein durchschnittsstabiles
Mengensystem und P ein Wahrscheinlichkeitsmaß auf der von S erzeugten σ–Algebra, dann
ist untergewissen Regularitätsbedingungen P durch seine Einschränkung P |S auf S bereits
eindeutig bestimmt. Für die Praxis genügt es folglich, eine geeignete Mengenfunktion P auf
S zu definieren und nachzuweisen, dass ihre Erweiterung auf F ein Wahrscheinlichkeitsmaß
darstellt. Dieser Nachweis erfolgt in zwei Schritten. Man betrachtet zunächst die Erweiterung
von P auf den von S erzeugten Ring (erster Fortsetzungssatz) und schließt dann weiter auf
die von S erzeugte σ–Algebra (zweiter Fortsetzungssatz).

6.8 Definition (Fortsetzung, Erweiterung, Restriktion, Einschränkung):
Es seien M1 und M2 zwei Mengensysteme über Ω mit M1 ⊂ M2. Gilt für die beiden Men-
genfunktionen ν : M1 → R ∪ {∞} und µ : M2 → R ∪ {∞} die Beziehung ν(A) = µ(A) für
alle A ∈ M1, dann nennt man µ eine Fortsetzung (Erweiterung) von ν auf M2 und ν eine
Restriktion (Einschränkung) von µ auf M1.

6.9 Satz (1. Fortsetzungssatz):
Für jeden Inhalt ν auf einem Semiring S ist

µ(A) =
n∑

i=1

ν(Ai) mit A :=
n⋃

i=1

Ai, Ai ∈ S, i = 1, . . . , n, und Ai ∩Aj = ∅ für i 6= j

die einzige Fortsetzung von ν zu einem Inhalt auf R = R(S). Ist ν ein Prämaß, dann ist auch
µ ein Prämaß.

Beweis:
Nach dem Darstellungssatz für Ringe 5.18 kann jede Menge E ∈ R(S) in der Form E =

p⋃
i=1

Ai,

Ai ∈ S für i = 1, . . . , p und Ai ∩Aj = ∅ für i 6= j dargestellt werden. Es wird

µ(E) =
p∑

i=1

ν(Ai)

gesetzt und gezeigt:

94



6.2. Erster Maß–Fortsetzungssatz

(i) µ ist wohldefiniert, d.h. µ(E) ist unabhängig von der gewählten Zerlegung der Menge
E.

(ii) µ ist Inhalt.

(iii) µ ist eindeutig.

(iv) Ist ν Prämaß, so ist auch µ Prämaß.

Zu (i) µ ist wohldefiniert. Sind E =
⋃p

i=1Ai und E =
⋃q

j=1Bj mitAi, Bj ∈ S (i = 1, . . . , p; j =
1, . . . , q) und Ai ∩ Ak = ∅ für i 6= k, Bj ∩ B` = ∅ für j 6= ` zwei endliche Zerlegungen
von E, dann ist zu zeigen:

p∑
i=1

ν(Ai)
!=

q∑
j=1

ν(Bj).

Offensichtlich sind

Ai = Ai ∩ E = Ai ∩

 q⋃
j=1

Bj

 =
q⋃

j=1

(Ai ∩Bj) (i = 1, . . . , p)

Bj = E ∩Bj =

(
p⋃

i=1

Ai

)
∩Bj =

p⋃
i=1

(Ai ∩Bj) (j = 1, . . . , q)

Zerlegungen von Ai und Bj in paarweise fremde Mengen Ai ∩ Bj ∈ S für i = 1, . . . , p
und j = 1, . . . , q. Es gilt also

p∑
i=1

ν(Ai) =
p∑

i=1

ν

 q⋃
j=1

(Ai ∩Bj)


=

p∑
i=1

q∑
j=1

ν(Ai ∩Bj) (da ν additiv ist)

=
q∑

j=1

p∑
i=1

ν(Ai ∩Bj)

=
q∑

j=1

ν

(
p⋃

i=1

(Ai ∩Bj)

)

=
q∑

j=1

ν(Bj).

Zu (ii) µ ist ein Inhalt. Hierfür ist zu zeigen, dass µ nichtnegativ und additiv ist. Die Nicht-
negativität von µ folgt unmittelbar aus der Definition von µ. Für die Additivität wird
E := E′ ∪ E′′ mit E′ ∩ E′′ = ∅ und E,E′, E′′ ∈ R(S) betrachtet. Es existiert dann
Zerlegungen

E′ =
p⋃

i=1

A′i, E′′ =
q⋃

j=1

A′′j , A′i, A
′′
j ∈ S, i = 1, . . . , p, j = 1, . . . , q,
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so dass

E = E′ ∪ E′′ =
p⋃

i=1

A′i ∪
q⋃

j=1

A′′j

gilt. Da wegen E′ ∩ E′′ = ∅ auch A′i ∩A′′j = ∅ ist, gilt

µ(E) =
p∑

i=1

ν(A′i) +
q∑

j=1

ν(A′′j ) = µ(E′) + µ(E′′).

Zu (iii) µ ist eindeutig. Es sei ϑ eine weitere Erweiterung von ν und E ∈ R(S) mit E :=
⋃p

i=1Ai,
dann gilt:

ϑ(E) =
p∑

i=1

ϑ(Ai) (ϑ ist Inhalt)

=
p∑

i=1

µ(Ai) (µ = ϑ auf S)

= µ(E).

Zu (iv) Ist ν Prämaß, so ist auch µ Prämaß. Zunächst wird gezeigt: Mit ν ist auch µ σ–additiv.
Ist E :=

⋃
n∈NEn eine Zerlegung von E ∈ R(S) mit En ∈ R(S) und En ∩ Em = ∅ für

n 6= m, so ist zu zeigen:

µ(E) !=
∑
n∈N

µ(En).

Aufgrund des Darstellungssatzes für Ringe 5.18 existieren für E und En Zerlegungen
der Form:

E =
p⋃

i=1

Ai, Ai ∈ S, Ai ∩Aj = ∅ für i 6= j,

En =
pn⋃

j=1

Bnj , Bnj ∈ S, Bnj ∩Bnk = ∅ für j 6= k.

Hieraus folgt:

E =
∞⋃

n=1

pn⋃
j=1

Bnj ,

Ai = Ai ∩ E =
∞⋃

n=1

pn⋃
j=1

(Ai ∩Bnj),

Bnj = E ∩Bnj =
p⋃

i=1

(Ai ∩Bnj).
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Die Mengen Ai ∩Bnj sind paarweise fremd. Folglich gilt:

µ(E) =
p∑

i=1

ν(Ai) (Definition der Erweiterung)

=
p∑

i=1

ν

 ∞⋃
n=1

pn⋃
j=1

(Ai ∩Bnj)

 (aufgrund der speziellen Zerlegung der Ai)

=
p∑

i=1

∞∑
n=1

pn∑
j=1

ν(Ai ∩Bnj) (ν ist nach Voraussetzung σ–additiv)

=
∞∑

n=1

pn∑
j=1

p∑
i=1

ν(Ai ∩Bnj) (Umordnungssatz für abs. konv. Reihen)

=
∞∑

n=1

pn∑
j=1

ν

(
p⋃

i=1

(Ai ∩Bnj)

)
(ν ist additiv)

=
∞∑

n=1

pn∑
j=1

ν(Bnj) (aufgrund der speziellen Zerlegung der Bnj)

=
∞∑

n=1

pn∑
j=1

µ(Bnj) (µ = ν auf S)

=
∞∑

n=1

µ

 pn⋃
j=1

Bnj

 (µ ist additiv)

=
∞∑

n=1

µ(En). �

6.3 Zweiter Maß–Fortsetzungssatz

Im ersten Maß–Fortsetzungssatz wurde die Erweiterung eines Prämaßes ν auf einem Semiring
S zu einem Prämaß ν auf dem von S erzeugten Ring R = R(S) behandelt. Der zweite
Maßfortsetzungssatz behandelt die Erweiterung eines Prämaßes µ auf S zu einem Maß auf
σ(S). Für den Beweis, der auf eine Idee von C. Carathéodory zurückgeht, benötigen wir einige
Vorbereitungen.

Für beliebiges U ∈ P(Ω) wird Ŝ(U) als das System aller Folgen A1, A2, . . . ∈ S mit U ⊆⋃∞
n=1An definiert. Es sei

µ∗(U) := inf

{ ∞∑
n=1

µ(An) | (An)n∈N ∈ Ŝ(U)

}
für alle U ∈ P(Ω) , (6.1)

hierbei ist inf ∅ := ∞.

Im folgenden Satz werden zunächst einige wichtige Eigenschaften von µ∗ festgehalten.
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6.10 Satz:
Die in (6.1) definierte Fortsetzung µ∗ des Prämaßes µ auf dem Semiring S über Ω besitzt
folgende Eigenschaften:

(1) µ∗(U) ≥ 0 für alle U ∈ P(Ω),

(2) µ∗(∅) = 0,

(3) U1 ⊂ U2 ⇒ µ∗(U1) ≤ µ∗(U2),

(4) µ∗ (
⋃∞

n=1 Un) ≤
∑∞

n=1 µ
∗(Un).

Beweis:
(1) µ∗(U) ≥ 0 folgt direkt aus der Definition von µ∗.

(2) µ∗(∅) = 0 folgt mit (∅,∅, . . .) ∈ Ŝ(∅).

(3) U1 ⊆ U2 ⇒ µ∗(U1) ≤ µ∗(U2) folgt aus U1 ⊆ U2 ⇒ Ŝ(U1) ⊆ Ŝ(U2).

(4) Zu zeigen ist µ∗ (
⋃∞

n=1 Un) ≤
∑∞

n=1 µ
∗(Un). Es wird µ∗(Un) <∞ angenommen. Wähle

ein beliebiges, aber festes ε > 0.
Für jedes n ∈ N gibt es eine Folge (An,m)n,m=1,2,... ∈ Ŝ(U) mit

∞∑
m=1

µ(An,m) ≤ µ∗(Un) +
ε

2n
.

Die Folge (An,m)n,m=1,2,... liegt in Ŝ(
⋃∞

n=1 Un). Hieraus entsteht

µ∗

( ∞⋃
n=1

Un

)
≤
∑
m,n

µ(An,m) ≤
∞∑

n=1

(
µ∗(Un) +

ε

2n

)
≤

∞∑
n=1

µ∗(Un) + ε.

Da ε > 0 beliebig gewählt war, folgt die Aussage. �

6.11 Definition (äußeres Maß, induziertes äußeres Maß):
a) Jede Abbildung µ∗ : P(Ω) → R ∪ {∞} mit den Eigenschaften aus Satz 6.10 heißt ein

äußeres Maß auf Ω.

b) Die durch (6.1) definierte Mengenfunktion µ∗ wird als das vom Prämaß µ
induzierte äußere Maß bezeichnet.

Im Folgenden wird die eindeutig bestimmte Fortsetzung des Prämaßes µ auf den Ring R :=
R(S) wieder mit µ bezeichnet (vgl. Satz 6.9).

6.12 Lemma:
Es gilt µ∗(B) = µ(B) für alle B ∈ R.
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Beweis:
Der Darstellungssatz für Ringe 5.18 besagt, dass jedes B ∈ R in der Form B =

⋃n
i=1Ci, n ∈

N, Ci ∈ S,Ci ∩ Cj = ∅, i 6= j dargestellt werden kann. Daraus folgt:

(C1, C2, . . . , Cn,∅,∅, . . .) ∈ Ŝ(B) ⇒ µ∗(B) ≤ µ(B).

Wenn µ∗(B) = ∞ ist, ist alles gezeigt. Es sei also µ∗(B) < ∞ ⇒ Ŝ(B) 6= ∅, und es sei
nun (An)n∈N ∈ Ŝ(B). Es folgt: An ∈ S ⊂ R ⇒ (An ∩ B) ∈ R.

⋃∞
n=1An ⊇ B ⇒ B =⋃∞

n=1(An ∩B). Wird nun D1 := (A1 ∩B) und Dn := (An ∩B)\
⋃n−1

j=1 (Aj ∩B) ∈ R für n ≥ 2
gesetzt, so ergibt sich

B =
∞⋃

n=1

Dn, Di ∩Dj = ∅, i 6= j.

Da µ ein Prämaß ist und Dn ⊂ An, n ∈ N, ist, folgt

µ(B) =
∞∑

n=1

µ(Dn) ≤
∞∑

n=1

µ(An).

Also ist
µ(B) ≤ µ∗(B).

�

Existenz

Wenn man zeigen kann, dass jedes von µ : S → R∪{∞} induzierte äußere Maß eingeschränkt
auf σ(S) ein Maß bildet, hätte man eine Fortsetzung gefunden.

Für das weitere Vorgehen wird der Begriff der µ∗–Messbarkeit eingeführt:

6.13 Definition (µ∗–messbar):
Es sei µ∗ ein äußeres Maß auf Ω. G ∈ P(Ω) heißt µ∗–messbar, falls

µ∗(U) = µ∗(U ∩G) + µ∗(U ∩G) für alle U ∈ P(Ω) (6.2)

gilt.

6.14 Satz:
Es sei µ∗ ein äußeres Maß auf Ω. Dann ist das System A aller µ∗–messbaren Mengen G ⊂ Ω
eine σ–Algebra über Ω, und die Restriktion von µ∗ auf A ist ein Maß.

Beweis:
1. Schritt: A ist eine Algebra und µ∗ ein Prämaß auf A.

Ω ∈ A : µ∗(U) = µ∗(U ∩ Ω) + µ∗(U ∩∅). G ∈ A ⇒ G ∈ A (wegen (6.2)).

Es seien nun G,H ∈ A und U ⊆ Ω beliebig:

µ∗(U) = µ∗(U ∩G) + µ∗(U ∩G)

= µ∗(U ∩G ∩H) + µ∗(U ∩G ∩H) + µ∗(U ∩G ∩H) + µ∗(U ∩G ∩H). (6.3)
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Wenn U durch U ∩ (G ∪H) in (6.3) ersetzt wird, ergibt sich:

µ∗(U ∩ (G ∪H)) = µ∗(U ∩G ∩H) + µ∗(U ∩G ∩H) + µ∗(U ∩G ∩H). (6.4)

(6.4) in (6.3) eingesetzt ergibt:

µ∗(U) = µ∗(U ∩ (G ∪H)) + µ∗(U ∩ (G ∪H)), d.h. G ∪H ∈ A ⇒ A ist eine Algebra.

Weiter wird gezeigt, dass µ∗ σ-additiv auf A ist.

G1, G2, . . . ∈ A seien paarweise disjunkt und U ⊆ Ω beliebig. Nach (6.3) und mit G = G1

und H = G2 folgt:

µ∗(U ∩ (G1 ∪G2)) = µ∗(U ∩G1) + µ∗(U ∩G2). (6.5)

Durch vollständige Induktion ergibt sich daraus:

µ∗

U ∩ n⋃
j=1

Gj

 =
n∑

j=1

µ∗(U ∩Gj) für alle n ∈ N. (6.6)

Wird in (6.6) U := Ω gesetzt, so ergibt sich wegen Satz 6.10(3)

µ∗

 ∞⋃
j=1

Gj

 ≥ µ∗

 n⋃
j=1

Gj

 =
n∑

j=1

µ∗(Gj) für alle n ∈ N,

oder

µ∗

 ∞⋃
j=1

Gj

 ≥
∞∑

j=1

µ∗(Gj) ≥ µ∗

 ∞⋃
j=1

Gj


wegen Satz 6.10(4), d.h. µ∗ ist ein Prämaß auf A.

2. Schritt: A ist eine σ–Algebra.
Da A als Algebra ∩–stabil ist, genügt es zu zeigen, dass A ein Dynkin-System ist (vgl.
Satz 5.12). Es seien also G1, G2, . . . ∈ A paarweise disjunkt, und U ⊆ Ω beliebig. Setze
G :=

⋃∞
j=1Gj . Da A eine Algebra ist, erhält man wegen (6.2), (6.6) und Satz 6.10(3)

µ∗(U) = µ∗

U ∩ n⋃
j=1

Gj

+ µ∗

U ∩ n⋃
j=1

Gj


≥ µ∗

U ∩ n⋃
j=1

Gj

+ µ∗(U ∩G) =
n∑

j=1

µ∗(U ∩Gj) + µ∗(U ∩G)

für alle n ∈ N. Mit Hilfe von Satz 6.10, Eigenschaften (3) und (4), gilt schließlich:

µ∗(U) ≥
∞∑

j=1

µ∗(U ∩Gj) + µ∗(U ∩G) ≥ µ∗(U ∩G) + µ∗(U ∩G) ≥ µ∗(U).

Also
G ∈ A ⇒ A ist ein Dynkin-System .

�
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Wenn nun µ∗ das von µ induzierte äußere Maß ist, dann muss noch gezeigt werden, dass allle
A ∈ S µ∗–messbar sind. In diesem Falle ist S ⊆ U. Hieraus folgt σ(S) ⊆ U, und damit ist
µ∗ eingeschränkt auf σ(S) ein Maß, das µ fortsetzt. Im Allgemeinen ist U jedoch größer als
σ(S). In diesem Zusammenhang wird der folgende Satz gezeigt:

6.15 Satz:
Wenn µ∗ das von µ induzierte äußere Maß ist, dann sind alle B ∈ R = R(S) µ∗–messbar.

Beweis:
Es seien B ∈ R und U ⊂ Ω beliebig. Wegen Satz 6.10, Eigenschaften (1) und (4), gilt immer:

µ∗(U) ≤ µ∗(U ∩B) + µ∗(U ∩B).

Ist Ŝ(U) = ∅, so folgt µ∗(U) = ∞, und alles ist gezeigt. Es sei nun (An)n∈N ∈ Ŝ(U).
Aus B ∈ R ergibt sich B =

⋃n
i=1Ci, Ci ∈ S, Ci1 ∩ Ci2 = ∅ für i1 6= i2. Aus Aj\B ∈ R

folgt: Aj\B =
⋃nj

i=1Dj,i mit Dj,i ∈ S, Dj,i1 ∩ Dj,i2 = ∅ für i1 6= i2, j ∈ N. Somit folgt
∆1 := (Aj ∩Ci)j∈N,1≤i≤n ∈ Ŝ(U ∩B) und ∆2 := (Dj,i)j∈N,1≤i≤nj ∈ Ŝ(U\B) = Ŝ(U ∩B). Da
µ additiv auf R ist, ergibt sich

µ(Aj) = µ(Aj ∩B) + µ(Aj\B) =
n∑

i=1

µ(Aj ∩ Ci) +
nj∑
i=1

µ(Dj,i)

für alle j ∈ N. Hieraus folgt wiederum

∞∑
j=1

µ(Aj) =
∑

E1∈∆1

µ(E1) +
∑

E2∈∆2

µ(E2) ≤ µ∗(U ∩B) + µ∗(U ∩B)

für jedes (Aj)j∈N ∈ Ŝ(U). Daraus ergibt sich schließlich

µ∗(U) ≥ µ∗(U ∩B) + µ∗(U ∩B).

Folglich ist B µ∗–messbar. �

Eindeutigkeit

6.16 Definition (σ–endlich):
Es seien S ein Semiring über Ω und µ ein Prämaß (Inhalt) auf (Ω, S). M ⊆ S sei ein
Mengensystem über Ω. µ heißt σ–endlich in M, wenn es Mengen A1 ⊆ A2 ⊆ . . . ∈ M mit⋃∞

j=1Aj = Ω und µ(Aj) <∞, j ∈ N, gibt.

6.17 Satz (Eindeutigkeitssatz für Maße):
Es sei M ein ∩–stabiles System von Teilmengen von Ω. Sind µ1 und µ2 zwei Maße auf σ(M),
die auf M übereinstimmen und dort σ–endlich sind, so stimmen sie auch auf σ(M) überein.

Beweis:
Zu zeigen ist, dass für alle M ∈ σ(M) gilt: µ1(M) = µ2(M). Für E ∈ M mit µ1(E) = µ2(E) <
∞ wird DE := {D ∈ σ(M) | µ1(E ∩D) = µ2(E ∩D)} gesetzt.

Behauptung: DE ist ein Dynkin-System.
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1. Wegen µ1(E ∩ Ω) = µ1(E) = µ2(E) = µ2(E ∩ Ω) gilt Ω ∈ DE .

2. Es seien A,B ∈ DE mit A ⊆ B. Mit Satz 6.6 gilt:

µ1(E ∩ (B \A)) = µ1((E ∩B) \ (E ∩A))
= µ1(E ∩B)− µ1(E ∩A)
= µ2(E ∩B)− µ2(E ∩A)
= µ2((E ∩B) \ (E ∩A))
= µ2(E ∩ (B \A)).

Damit gilt also µ1(E ∩ (B \A)) = µ2(E ∩ (B \A)) bzw. B \A ∈ DE .

3. Es sei (Dn)n∈N eine Folge paarweise disjunkter Elemente von DE . Dann gilt:

µ1

(
E ∩

⋃
n∈N

Dn

)
= µ1

(⋃
n∈N

(E ∩Dn)

)
=

∑
n∈N

µ1(E ∩Dn)

=
∑
n∈N

µ2(E ∩Dn)

= µ2

(
E ∩

⋃
n∈N

Dn

)
,

also ist
⋃

n∈NDn ∈ DE .

Damit ist DE ein Dynkin-System.
Da mit A,B ∈ M auch A ∩ B ∈ M gilt, folgt zunächst M ⊆ DE . Somit gilt für das von
M erzeugte Dynkin-System D(M) die Beziehung D(M) ⊆ DE . Nach Satz 5.12 folgt deshalb
D(M) = DE = σ(M) und es ergibt sich:

µ1(E ∩A) = µ2(E ∩A) ∀ A ∈ σ(M) und ∀ E ∈ M mit µ1(E) = µ2(E).

Aufgrund der σ–Endlichkeit von µ1 und µ2 existiert eine Folge (An)n∈N von Mengen aus M

mit
⋃

n∈N
An = Ω und µ1(An) = µ2(An) <∞ ∀ n ∈ N. Wie oben ist

µ1(An ∩A) = µ2(An ∩A) ∀ A ∈ σ(M), n ∈ N.

Es wird nun B1 := A1, B2 := A2 \ A1, . . . , Bn := An \ (A1 ∪ . . . ∪ An−1) gesetzt, so dass
(Bn)n∈N eine Folge von paarweise fremden Mengen aus σ(M) wird. Man beachte, dass Bn ∈
σ(M); Bn ⊆ An ∀ n ∈ N und

∞⋃
n=1

Bn =
∞⋃

n=1
An = Ω gilt. Damit ergibt sich

µ1(Bn ∩A) = µ1(An ∩ (Bn ∩A)) = µ2(An ∩ (Bn ∩A)) = µ2(Bn ∩A) ∀ A ∈ σ(M), n ∈ N.

Da A =
∞⋃

n=1
(Bn ∩A) ist, folgt aus der σ–Additivität von µ1 und µ2:

µ1(A) =
∞∑

n=1

µ1(Bn ∩A) =
∞∑

n=1

µ2(Bn ∩A) = µ2(A) ∀ A ∈ σ(M). �
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Damit ist nun der zweite Maßfortsetzungssatz 6.18 bewiesen:

6.18 Satz (2. Fortsetzungssatz):
Es sei µ ein Prämaß auf einem Semiring S über Ω. Dann ist

µ∗(A) := inf

{ ∞∑
n=1

µ(An) | (An)n∈N ∈ Ŝ(A)

}
, A ∈ σ(S),

ein Maß auf σ(S), das µ fortsetzt. Ist µ σ–endlich auf S, so ist µ∗ die einzige Fortsetzung
von µ zu einem Maß auf σ(S).

Borel-Maß

Im Hinblick auf die Konstruktion von Wahrscheinlichkeitsmaßen auf der σ–Algebra der Bo-
relschen Mengen Bn im nächsten Kapitel wird nun der Begriff des Borel–Maßes eingeführt.

6.19 Definition (Borel–Maße):
Ein Maß µ auf (Rn,Bn), für welches µ(K) < ∞ für jedes kompakte K ⊂ Rn ist, heißt ein
Borel–Maß auf (Rn,Bn).
(Siehe auch Lebensdaten von Borel im Anhang D.)

6.20 Lemma:
µ ist genau dann ein Borel–Maß auf (Rn,Bn), wenn es auf In endlich ist.

Beweis:
Die Äquivalenz folgt aus dem Satz von Heine-Borel, der besagt, dass jedes kompakte K ⊂ Rn

eine Teilmenge eines Intervalls [a, b] für geeignet gewählte a, b ∈ Rn ist. �

6.21 Satz:
Jedes Borel-Maß µ auf (Rn,Bn) ist eindeutig durch seine Werte auf In bestimmt.

Beweis:
Es wird Satz 6.17 angewandt: Bn = σ(In). In ist als Semiring ∩–stabil, µ ist endlich auf In

und es gilt
∞⋃

n=1

((−n, . . . ,−n), (n, . . . , n)] = Rn,

d.h. µ ist σ–endlich auf In. �
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Kapitel 7

Maßdefinierende Funktionen

Als eine erste Anwendung der beiden Maß–Fortsetzungssätze wird die Konstruktion von
Maßen und Wahrscheinlichkeitsmaßen auf der σ–Algebra der Borelschen Mengen (R,B)
behandelt. Grundlegend hierfür sind die Begriffe der maßdefinierenden Funktion und der
Verteilungsfunktion. Anschließend werden Beispiele von Wahrscheinlichkeitsmaßen und Ver-
teilungsfunktionen vorgestellt.

Schlüsselwörter: Maßdefinierende Funktion, Verteilungsfunktion, Korrespon-
denzsatz, Rechenregeln für maßdefinierende Funktionen und Verteilungsfunktio-
nen, Lebesgue–Maß, Exponentialverteilung, Riemann–Dichte, Rechteck–Vertei-
lung, Weibull–Verteilung, Normalverteilung, Standard–Normalverteilung, logarith-
mische Normalverteilung, χ2–Verteilung, Cauchy–Verteilung, Gammaverteilung, Er-
lang–Verteilung, Betaverteilung
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Kapitel 7. Maßdefinierende Funktionen

7.1 Korrespondenzsatz

Maße und Wahrscheinlichkeitsmaße über (R,B) lassen sich durch spezielle reelle Funktionen
erzeugen. Dabei sind solche Funktionen von besonderem Interesse, die die Existenz eines
Maßes µ über (R,B) mit der Eigenschaft

µ((a, b]) = F (b)− F (a)

nach sich ziehen.

7.1 Definition (maßdefinierende Funktion, Verteilungsfunktion):
Eine Funktion F : R → R heißt maßdefinierende Funktion über R, falls sie monoton nicht-
fallend und rechtsseitig stetig ist. Eine Funktion F : R → R heißt Verteilungsfunktion über
R, falls sie monoton nichtfallend, rechtsseitig stetig und normiert, d.h. lim

x→−∞
F (x) = 0 und

lim
x→+∞

F (x) = 1, ist.

7.2 Satz:
Zu jeder maßdefinierenden Funktion F : R→ R gibt es genau ein Maß µF über (R,B) mit

µF ((a, b]) = F (b)− F (a) ∀ a, b ∈ R mit a ≤ b.

Ist F eine Verteilungsfunktion, dann ist µF ein Wahrscheinlichkeitsmaß, das mit PF bezeich-
net wird.

Beweis:
Zu zeigen sind:

(1.) Existenz von µF .

(2.) Ist F Verteilungsfunktion, so ist µF Wahrscheinlichkeitsmaß.

Zu (1.): Um die Existenz von µF zu zeigen, betrachten wir den Semiring I1 der links offenen
und rechts abgeschlossenen Intervalle (a, b], a, b ∈ R mit a < b, auf dem ν := ν((a, b]) :=
F (b)− F (a) bekanntlich einen Inhalt definiert (siehe Beispiel 6.5).

(a) Ist ν σ–additiv und somit ein Prämaß, kann ν aufgrund des ersten Maßfortset-
zungssatzes eindeutig zu einem Prämaß Ψ auf dem von I1 erzeugten Ring R(I1)
fortgesetzt werden.

(b) Ist ν σ–endlich, so existiert aufgrund des zweiten Maßfortsetzungssatzes eine ein-
deutige Fortsetzung von Ψ zu einem Maß µF auf der von I1 erzeugten σ–Algebra
σ(I1) = B1.

Zu (a): Beweis der σ–Additivität.
(An)n∈N bezeichne eine Folge von paarweise fremden Mengen aus I1 mit der Ei-
genschaft A =

⋃
n∈NAn ∈ I1. Mit ψ wird die eindeutige Fortsetzung von ν auf den

von I1 erzeugten Ring R(I1) bezeichnet. Es werden

ν(A) = ν

( ∞⋃
n=1

An

)
≥

∞∑
n=1

ν(An)
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7.1. Korrespondenzsatz

und

ν(A) = ν

( ∞⋃
n=1

An

)
≤

∞∑
n=1

ν(An)

gezeigt. Aufgrund der Additivität und der Monotonie von ψ gilt:
m∑

n=1
ν(An) =

m∑
n=1

ψ(An) da ν und ψ auf I1 übereinstimmen

= ψ

(
m⋃

n=1
An

)
da lediglich

⋃m
n=1An ∈ R(I1) vorausgesetzt

werden kann, muss ψ anstelle von ν
herangezogen werden

≤ ψ

( ∞⋃
n=1

An

)
aufgrund der Monotonie von ψ

= ν

( ∞⋃
n=1

An

)
da
⋃∞

n=1An ∈ I1 vorausgesetzt war und

ν und ψ auf I1 übereinstimmen
Hieraus folgt

∞∑
n=1

ν(An) = lim
m→∞

m∑
n=1

ν(An) ≤ ν

( ∞⋃
n=1

An

)
= ν(A).

Es bleibt ν(
⋃∞

n=1An) ≤
∑∞

n=1 ν(An) zu zeigen.
Für n = 1, 2, . . . sei

A := (a, b], An := (an, bn]
gesetzt und für beliebige δ > 0 und δn > 0, n = 1, 2, . . . , sei

A′ := (a+ δ, b], A′n := (an, bn + δn].
Offensichtlich gilt:

A = (a, a+ δ] ∪ (a+ δ, b], A′n = (an, bn] ∪ (bn, bn + δn]
und
ν(A) = ν((a, a+ δ]) + ν((a+ δ, b]), ν(A′n) = ν((an, bn])

+ν((bn, bn + δn])
= F (a+ δ)− F (a) + ν(A′) = ν(An) + F (bn + δn)

−F (bn).
Da F als rechtsseitig stetig vorausgesetzt war, gibt es zu jedem ε > 0 ein δ > 0
und ein δn > 0, n = 1, 2, . . . , so dass gilt:
ν(A) ≤ ν(A′) + ε

2 , ν(A′n) ≤ ν(An)
+ ε

2n+1 (n = 1, 2, . . . ).
(∗)

Die Intervalle (an, bn + δn) bilden eine offene Überdeckung des Intervalls [a+ δ, b]
und damit auch von (a+ δ, b]:

A′ = (a+ δ, b] ⊆ A∗ := [a+ δ, b] ⊆
∞⋃

n=1

(an, bn + δn) ⊆
∞⋃

n=1

A′n. (7.1)

Nach dem Überdeckungssatz von Heine–Borel reichen endlich viele der A′n zur
Überdeckung der Menge A′ aus:

A′ ⊆
∞⋃

n=1

A′n ⊆
k⋃

n=1

A′n für ein k ∈ N,
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Kapitel 7. Maßdefinierende Funktionen

Damit folgt:

ν(A) ≤ ν(A′) +
ε

2
= ψ(A′) +

ε

2
da ν = ψ auf I1

≤ ψ

(
k⋃

n=1

A′n

)
+
ε

2
aufgrund von (7.1)

≤
k∑

n=1

ψ(A′n) +
ε

2
da ψ subadditiv ist

=
k∑

n=1

ν(A′n) +
ε

2
da ν = ψ auf I1

≤
k∑

n=1

(
ν(An) +

ε

2n+1

)
+
ε

2
aufgrund von (∗)

≤
∞∑

n=1

ν(An) + ε da
∞∑

n=1

ε

2n+1
=
ε

2
.

Da ε > 0 beliebig gewählt werden kann, folgt hieraus die Behauptung.

Zu (b): Für die σ–Endlichkeit von ν ist die Existenz einer Mengenfolge (An)n∈N aus I1

mit A1 ⊂ A2 ⊆ A3 ⊆ . . . ,
⋃

n∈NAn = R und ν(An) <∞ für alle n nachzuweisen.
Hierfür wird An = (−n, n], n ∈ N, gewählt. Offensichtlich gilt A1 ⊆ A2 ⊆ A3 ⊆ . . .
und

⋃
n∈NAn = R. Außerdem ist ν((−n, n]) = F (n)−F (−n) <∞ für alle n. Es ist

somit der zweite Fortsetzungssatz (Satz 6.18) anwendbar, d.h. es gibt ein eindeutig
bestimmtes Maß µF : σ(I1) → R ∪ {∞}, das ν fortsetzt und σ-endlich ist.

Zu (2.): Ist F Verteilungsfunktion, so ist µF Wahrscheinlichkeitsmaß.
Es wird gezeigt, dass aus den beiden Aussagen limx→−∞ F (x) = 0 und
limx→+∞ F (x) = 1 die Eigenschaft µF (R) = 1 folgt. Dafür wird zunächst bewiesen,
dass F (x) = µF ((−∞, x]) für alle x ∈ R gilt. Da µF stetig von unten ist (siehe Satz
6.7a)), folgt:

µF ((−∞, x]) = µF

( ⋃
n∈N

(−n, x]
)

= lim
n→∞

µF ((−n, x]) = lim
n→∞

(F (x)− F (−n))

= F (x)− lim
n→∞

F (−n) = F (x)− 0 = F (x).

Aufgrund der Darstellung R =
⋃

n∈N(−∞, n] und der Tatsache, dass µF stetig von
unten ist (siehe Satz 6.7a)), folgt

µF (R) = µF

( ⋃
n∈N

(−∞, n]
)

= lim
n→∞

µF (−∞, n] = lim
n→∞

F (n) = 1.

�

Die Verteilungsfunktion F wird durch die im folgenden Satz beschriebenen Eigenschaften
gekennzeichnet:
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7.2. Rechenregeln für maßdefinierende Funktionen

7.3 Satz:
Gegeben sei ein Wahrscheinlichkeitsmaß P über (R,B) und eine Funktion F : R → R mit
der Eigenschaft F (x) = P ((−∞, x]) für alle x ∈ R. Dann gilt:

a) F ist monoton nichtfallend,

b) F ist rechtsseitig stetig,

c) lim
x→−∞

F (x) = 0 und lim
x→+∞

F (x) = 1,

d.h. F ist eine Verteilungsfunktion.

Beweis:
Die Aussage a) folgt unmittelbar aus der Annahme, dass P monoton ist (vgl. Satz 7.2). Für
den Nachweis von b) muss noch gezeigt werden, dass für jede monoton fallende Folge (xn)n∈N
mit limn→∞ xn = 0 auch limn→∞[F (x+ xn)− F (x)] = 0 für alle x ∈ R gilt. Da P stetig von
oben ist (siehe Satz 6.7b)), gilt aber:

lim
n→∞

[F (x+ xn)− F (x)] = lim
n→∞

P ((x, x+ xn]) = P
( ∞⋂

n=1

(x, x+ xn]
)

= P (∅) = 0.

Die Aussage c) lässt sich ebenfalls mit Hilfe von Satz 6.7 beweisen:

0 = P (∅) = P

( ⋂
n∈N

(−∞,−n]
)

= lim
n→∞

P ((−∞,−n]) = lim
n→∞

F (−n)

1 = P (Ω) = P

( ⋃
n∈N

(−∞, n]
)

= lim
n→∞

P ((−∞, n]) = lim
n→∞

F (n).
�

7.4 Bemerkung:
Die Kernaussage dieses Kapitels liegt in der Existenz einer bijektiven Abbildung von Vertei-
lungsfunktionen über R und Wahrscheinlichkeitsmaßen auf (R,B). Dieser Sachverhalt wird
als Korrespondenzsatz bezeichnet.

7.2 Rechenregeln für maßdefinierende Funktionen

7.5 Satz (Rechenregeln für maßdefinierende Funktionen):
Es sei F eine maßdefinierende Funktion über R und µF das korrespondierende Maß auf
(R,B), dann gilt für alle a, b ∈ R mit a < b:

a) µF ((a, b]) = F (b)− F (a),

b) µF ((a, b)) = F (b− 0)− F (a),

c) µF ([a, b]) = F (b)− F (a− 0),

d) µF ({a}) = F (a)− F (a− 0),

e) µF ([a, b)) = F (b− 0)− F (a− 0),

wobei mit F (x − 0) der linksseitige Grenzwert von F an der Stelle x bezeichnet werde (ent-
sprechend F (x+ 0)).
Ist F eine Verteilungsfunktion über R und bezeichnet PF das zugehörige Wahrscheinlichkeits-
maß auf (R,B), dann gilt für alle x ∈ R:
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Kapitel 7. Maßdefinierende Funktionen

f) PF ((−∞, x]) = F (x),

g) PF ((−∞, x)) = F (x− 0),

h) PF ((x,∞)) = 1− F (x).

Beweis:
a) Diese Behauptung ist gleichbedeutend mit der Aussage von Satz 7.2.

b)

µF ((a, b)) = µF

( ∞⋃
n=1

(
a, b− 1

n

])
Satz 6.7a)

= lim
n→∞

µF

((
a, b− 1

n

])
= lim

n→∞
F

(
b− 1

n

)
− F (a) = F (b− 0)− F (a).

c)

µF ([a, b]) = µF

( ∞⋂
n=1

(
a− 1

n
, b

])

= lim
n→∞

µF

((
a− 1

n
, b

])
(µF ist stetig von oben (siehe Satz 6.7b)))

= lim
n→∞

(
F (b)− F

(
a− 1

n

))
= F (b)− F (a− 0).

d)

µF ({a}) = µF

( ∞⋂
n=1

(
a− 1

n
, a

])
= lim

n→∞
µF

((
a− 1

n
, a

])
= lim

n→∞

(
F (a)− F

(
a− 1

n

))
= F (a)− F (a− 0).

e) µF ([a, b)) = µF ((a, b) ∪ {a}) = µF ((a, b)) + µF ({a}) = F (b− 0)− F (a− 0).

f) Wurde bereits unter (iv) im Beweis von Satz 7.2 gezeigt.

g) PF ((−∞, x)) = PF ((−∞, x]\{x}) = PF ((−∞, x]) − PF ({x}) = F (x) − (F (x) − F (x −
0)) = F (x− 0).

h) PF ((x,∞)) = PF (R\(−∞, x]) = PF (R)− PF ((−∞, x]) = 1− F (x). �

7.6 Beispiel:
Die Funktion

F (x) :=


0 , x < 0,
1
8 , 0 ≤ x < 1,
4
8 , 1 ≤ x < 2,
7
8 , 2 ≤ x < 3,
1 , 3 ≤ x
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7.3. Beispiele für maßdefinierende Funktionen

Abbildung 7.1: Darstellung der Verteilungsfunktion F (x)

definiert eine Verteilungsfunktion über R.
Man verifiziert leicht:

PF ((−1, 5]) = F (5)− F (−1) = 1− 0 = 1.

PF ((0.5, 2]) = F (2)− F (0.5) =
7
8
− 1

8
=

3
4
.

PF ([1.5, 3)) = F (3− 0)− F (1.5− 0) =
7
8
− 4

8
=

3
8
.

PF ((0, 1)) = F (1− 0)− F (0) =
1
8
− 1

8
= 0.

PF ({2}) = F (2)− F (2− 0) =
7
8
− 4

8
=

3
8
.

PF ((−∞, 1.5]) = F (1.5) =
4
8

=
1
2
.

PF ((1,∞)) = 1− F (1) =
4
8

=
1
2
.

(Siehe auch Mathematica-Notebook zu diesem Beispiel und PowerPoint-Präsentation zu die-
sem Beispiel.)

7.3 Beispiele für maßdefinierende Funktionen

Wurden die diskreten Wahrscheinlichkeitsmaße in Kapitel 2 durch die Summe ihrer Wahr-
scheinlichkeiten beschrieben, so kennzeichnet die stetigen Wahrscheinlichkeitsmaße auf B eine
Dichte bezüglich des Lebesgue Maßes.

Das Lebesgue-Maß λ auf (R,B) ist dabei das mit der maßdefinierenden Funktion

F (x) := x ∀ x ∈ R

korrespondierende Maß λ = λF über B. Es ist die Fortsetzung des elementargeometrischen
Inhalts

λ((a, b]) = F (b)− F (a) = b− a, ∀ a, b ∈ R, a ≤ b.

(Siehe auch Lebensdaten von Lebesgue im Anhang D.)
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Kapitel 7. Maßdefinierende Funktionen

7.7 Definition (Dichte):
Man bezeichnet eine uneigentlich Riemann-integrierbare Funktion f : R → R+ mit der Ei-
genschaft ∫

R

f(t) dt = 1

als Dichte. (Siehe auch Lebensdaten von Riemann im Anhang D.)

Um einen Zusammenhang zwischen dem Wahrscheinlichkeitsmaß P und der Dichte f herzu-
stellen, wird die Verteilungsfunktion F betrachtet:
Da die Verteilungsfunktion monoton ist, ist sie (λ– fast überall) differenzierbar (siehe Defini-
tion 9.35). Setze

f :=
d

dx
F.

Mit den Ergebnissen der vorhergehenden Kapitel folgt dann

PF ((−∞, x]) = F (x) =
∫ x

−∞
f(t) dt, x ∈ R

und

PF ((a, b]) = F (b)− F (a) =
∫ b

a
f(t) dt, a, b ∈ R, a ≤ b.

Es lässt sich zeigen, dass die Ableitung der Verteilungsfunktion eine Dichte ist. Damit kann
das nachfolgende Ergebnis formuliert werden:

Es sei f : R→ R+ eine Dichte. Dann wird durch

F (x) :=
∫ x

−∞
f(t) dt, x ∈ R

eine Verteilungsfunktion F über R und damit ein Wahrscheinlichkeitsmaß PF auf (R,B)
definiert. Die Funktion f wird auch Dichte der Wahrscheinlichkeitsverteilung PF genannt.

Es werden nun einige Beispiele für maßdefinierende Funktionen bzw. stetige Wahrscheinlich-
keitsmaße und ihre korrespondierenden Verteilungsfunktionen und Dichten angegeben:

Die Rechteckverteilung

Für jedes Paar a, b ∈ R mit a < b wird durch

f(x) :=
{

1
b−a , x ∈ [a, b]
0 , x 6∈ [a, b],

eine Riemann–Dichte über R definiert. Das zugehörige Wahrscheinlichkeitsmaß heißt
Rechteck(a, b)–Verteilung oder Gleichverteilung auf [a, b], kurz R(a, b). Die zugehörige Vertei-
lungsfunktion lautet:

F (x) :=


0 , x < a

x−a
b−a , a ≤ x ≤ b

1 , x ≥ b.

112



7.3. Beispiele für maßdefinierende Funktionen

Abbildung 7.2: Dichtefunktion der Rechteckverteilung mit a := 2 und b := 4.

Es ist sofort ersichtlich, dass∫
R

f(x) dx =
∫ b

a

1
b− a

dx =
1

b− a

∫ b

a
1 dx = 1

gilt, sowie dass F (−∞) = 0 und F (∞) = 1 ist.

Die Rechteck–Verteilung spielt bei der Erzeugung von Zufallszahlen und der Simulation sto-
chastischer Prozesse eine wichtige Rolle.

Die Exponential–Verteilung

Es sei λ > 0. Die Funktion F : R→ R mit

F (x) :=
{

1− e−λx , x ≥ 0
0 , x < 0

definiert eine Verteilungsfunktion über R. Man nennt F Exponentialverteilung mit dem Pa-
rameter λ. Für die Exponentialverteilung mit dem Parameter λ verwenden wir das Symbol
Exp(λ).

Abbildung 7.3: Verteilungsfunktion der Exponentialverteilung mit λ := 0.2.

Man beachte, dass F stetig und an allen Stellen x 6= 0 differenzierbar ist:

f(x) :=
dF (x)
dx

=
{
λe−λx , x ≥ 0

0 , x < 0.
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Abbildung 7.4: Dichtefunktion der Exponentialverteilung mit λ := 0.2.

Der Nachweis von
∫
R f(x) dx = 1 erfolgt durch Nachrechnen:∫

R

f(x) dx =
∫ ∞

0
λe−λx dx = λ

[
− 1
λ
e−λx

]∞
0

= 0− (−1) = 1.

Diese Verteilung eignet sich besonders zur Modellierung von Lebensdauern, wie etwa dem
Ausfallverhalten einer Maschine oder der Dauer eines Telefonats im Callcenter.

Weibull–Verteilung

Für λ, β > 0 definiert

f(x) :=
{
λ · β · xβ−1 · e−λxβ

, x ≥ 0
0 , x < 0

eine Wahrscheinlichkeitsdichte über R.

Abbildung 7.5: Dichtefunktion der Weibullverteilung mit λ := 1 und β := 2.

Integration liefert zunächst
∫
f(x) dx = −e−λxβ

+ c =: F (x) für x ≥ 0. Das Einsetzen
der Bedingung F (∞) = 1 ergibt c = 1. Daher lautet die zu der Dichte f(x) gehörende
Verteilungsfunktion:

F (x) :=
{

1− e−λxβ
, x ≥ 0

0 , x < 0.
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7.3. Beispiele für maßdefinierende Funktionen

Abbildung 7.6: Verteilungsfunktion der Weibullverteilung mit λ := 1 und β := 2.

Damit ergibt sich auch für die Bedingung
∫
R f(x) dx = 1:

∫
R

f(x) dx =
∫ ∞

0
λ · β · xβ−1 · e−λxβ

dx =
[
−e−λxβ

]∞
0

= 0− (−1) = 1.

Das zu der Verteilungsfunktion korrespondierende Wahrscheinlichkeitsmaß PF über (R,B)
heißt Weibull–Verteilung mit den Parametern λ, β. Für den Fall β = 1 ergibt sich die Expo-
nentialverteilung.
Die Weibull–Verteilung findet Anwendung in der Zuverlässigkeitstheorie, etwa bei der Model-
lierung von Lebensdauern bei Geräten mit Abnutzungserscheinungen.

Die Normalverteilung

Die Funktion

f(x) :=
1

σ
√

2π
e−

1
2(

x−µ
σ )2

, x ∈ R,

wird als Gaußsche Glockenkurve mit den Parametern µ ∈ R und σ > 0 bezeichnet und
definiert eine Wahrscheinlichkeitsdichte über R. Die korrespondierende Verteilungsfunktion
lautet

F (x) :=

x∫
−∞

f(t)dt =

x∫
−∞

1
σ
√

2π
e−

1
2(

t−µ
σ )2

dt, x ∈ R.

Die zu F (x) gehörende Verteilung PF auf (R,B) wird Normalverteilung mit den Para-
metern µ und σ genannt. Im Fall µ = 0 und σ = 1 spricht man von der sogenannten
Standard–Normalverteilung. Für die Normalverteilung verwendet man das Symbol N (µ, σ).
Im Fall der Standard–Normalverteilung verwendet man anstelle von F (x) das Symbol Φ(x)
und anstelle von f(x) das Symbol ϕ(x).

Um die Werte der Normalverteilung zu berechnen, genügt es, die Standard–Normalverteilung
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Abbildung 7.7: Dichtefunktion der Normalverteilung mit Lokalisationsparameter µ := 2 und
Streuparameter σ := 1.

zu kennen, denn mit der Substitution y = (t− µ)/σ und σ · dy = dt erhält man

F (x) =

x∫
−∞

f(t) dt =
1

σ
√

2π

x∫
−∞

e−
1
2
( t−µ

σ
)2 dt

=
1√
2π

x−µ
σ∫

−∞

e−y2/2 dy =

x−µ
σ∫

−∞

ϕ(y) dy

= Φ
(
x− µ

σ

)
, x ∈ R.

Dies ist der Grund, warum in Statistik–Büchern lediglich die Standard–Normalverteilung
tabelliert ist. Für den Nachweis von

+∞∫
−∞

ϕ(x) dx = 1

benutzt man die Beziehung

(√
2π
∫ +∞

−∞
ϕ(x) dx

)2

=

 +∞∫
−∞

exp(−t2/2) dt

2

=

+∞∫
−∞

+∞∫
−∞

exp(−x2/2) exp(−y2/2) dx dy

=

+∞∫
−∞

+∞∫
−∞

exp
(
−x

2 + y2

2

)
dx dy,
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die mit Hilfe von Polarkoordinaten, d.h. mit Hilfe der Substitution dx dy = r dϑ dr, in

2π∫
0

∞∫
0

exp(−r2/2)r dr dϑ = 2π [− exp(−r2/2)]
∣∣∞
0

= 2π

überführt werden kann. Damit gilt also:

(√
2π
∫ +∞

−∞
ϕ(x) dx

)2

= 2π bzw.

+∞∫
−∞

ϕ(x) dx = 1.

Die Normalverteilung erhält ihre Bedeutung hauptsächlich aus dem ,,zentralen Grenzwert-
satz”, der besagt, dass Summen aus unabhängigen aber identisch verteilten Zufallsvariablen
gegen die Normalverteilung konvergieren (vgl. Kapitel 14.3 in Stochastik II).

Logarithmische Normalverteilung

Für µ ∈ R und σ > 0 definiert auch

f(x) :=


1

σx
√

2π
e−(log(x)−µ)2/2σ2

, x > 0

0 , x ≤ 0

eine Wahrscheinlichkeitsdichte über R. Das zugehörige Wahrscheinlichkeitsmaß über (R,B)
heißt logarithmische Normalverteilung.
Die logarithmische Normalverteilung kann auf die Standardnormalverteilung zurückgeführt
werden. Mit der Substitution y = (log(t)− µ)/σ und dy = σt · dt ergibt sich:

F (x) =
∫ x

−∞
f(t) dt =

∫ x

0

1
σt
√

2π
e
− 1

2

(
log(t)−µ

σ

)2

dt

=
∫ log(x)−µ

σ

0

1√
2π
e−

y2

2 dy

= Φ
(

log(x)− µ

σ

)
, x ∈ R.

Damit folgt auch sofort
∫
R f(x) dx = F (∞) = limx→∞ Φ

(
log(x)−µ

σ

)
= 1.

Die logarithmische Normalverteilung wird als Modellverteilung bei Lebensdauer– und Festig-
keitsproblemen eingesetzt.

Die Cauchy–Verteilung

Für λ > 0 und µ ∈ R definiert

f(x) :=
1
π
· λ

λ2 + (x− µ)2
, x ∈ R,

117



Kapitel 7. Maßdefinierende Funktionen

2 4 6 8
x

0.05

0.1

0.15

0.2

y

Abbildung 7.8: Dichtefunktion der logarithmischen Normalverteilung mit Parametern µ := 1
und σ := 1.

eine Wahrscheinlichkeitsdichte über R, denn es ist
∞∫

−∞

f(x)dx =

∞∫
−∞

1
λπ

· 1

1 +
(x−µ

λ

)2dx (
z :=

x− µ

λ
, dz =

1
λ
dx

)

=

∞∫
−∞

1
π

1
1 + z2

dz

=
1
π

 0∫
−∞

1
1 + z2

dz +

∞∫
0

1
1 + z2

dz


=

1
π

 lim
a→−∞

0∫
a

1
1 + z2

dz + lim
b→+∞

b∫
0

1
1 + z2

dz


=

1
π

(
lim

a→−∞
(− arctan a) + lim

b→+∞
(arctan b)

)
=

1
π

(π
2

+
π

2

)
= 1.

Die zu f gehörende Verteilungfunktion heißt Cauchy–Verteilung.

Die Gammaverteilung

Es seien b, p ∈ R+. Das zur Dichte

f(x) :=


bp

Γ(p)
xp−1e−bx , x ≥ 0

0 , x < 0

gehörende Wahrscheinlichkeitsmaß P auf (R,B) heißt Gammaverteilung mit den Parametern
b und p, kurz Gamma(b, p). Dabei sei Γ(p) die Gamma-Funktion an der Stelle p:

Γ(p) :=

∞∫
0

xp−1e−xdx.
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Abbildung 7.9: Dichtefunktion der Cauchy–Verteilung mit Lokalisationsparameter µ := 4 und
Streuparameter λ := 2.

Abbildung 7.10: Dichtefunktion der Gammaverteilung mit variablem Parameter b bei kon-
stantem p (links) und entsprechend umgekehrt (rechts).

Die Tatsache, dass
∫ +∞
−∞ f(x) dx = 1 ist, folgt aus der Beziehung

Γ(p) ·
∞∫

−∞

f(x) dx =

∞∫
0

bpxp−1e−bx dx

=

∞∫
0

(bx)p−1e−bxb dx (z := bx und dz = b dx gesetzt)

=

∞∫
0

zp−1e−z dz = Γ(p).

Für die Gammaverteilung wird das Kürzel Gamma(b, p) verwendet. Die Gammaverteilung
wird unter anderem als Modellverteilung in der Zuverlässigkeitstheorie und der Warteschlan-
gentheorie verwendet. Als Spezialfälle der Gammaverteilung ergeben sich die χ2–Verteilung
und die Erlang-Verteilung (siehe unten).
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Die χ2–Verteilung

Das Wahrscheinlichkeitsmaß P mit der Dichte

f(x) :=


1

2
n
2 Γ
(

n
2

)xn
2
−1e−

x
2 , x ≥ 0

0 , x < 0

heißt χ2–Verteilung mit n Freiheitsgraden, n ∈ N. Die χ2–Verteilung ergibt sich aus der Gam-
maverteilung, indem p := n

2 und b := 1
2 gesetzt wird. (Damit folgt auch sofort

∫
R f(x) dx = 1.)

Abbildung 7.11: Dichtefunktion der χ2–Verteilung mit variablem Freiheitsgrad n.

Die χ2–Verteilung spielt eine zentrale Rolle in der mathematischen Statistik.

Die Erlang–Verteilung

Es seien n ∈ N und b ∈ R+. Das zur Dichte

f(x) :=

{
bn

(n−1)!x
n−1e−bx , x ≥ 0
0 , x < 0

gehörende Wahrscheinlichkeitsmaß P auf (R,B) heißt Erlang-Verteilung mit den Parame-
tern b und n, kurz Erlang(b, n). Für diesen Spezialfall der Gammaverteilung lässt sich die
zugehörige Verteilungsfunktion F (x) in geschlossener Form darstellen:

F (x) :=

 1− e−bx ·
n−1∑
k=0

(bx)k

k!
, x ≥ 0

0 , x < 0.

Die Behauptung lässt sich durch Differenzieren leicht verifizieren:

F
′
(x) =−

[
−b · e−bx ·

n−1∑
k=0

(bx)k

k!
+ e−bx · b ·

n−1∑
k=1

(bx)k−1

(k − 1)!

]

= b · e−bx · (bx)n−1

(n− 1)!
=

bn

(n− 1)!
xn−1 · e−bx = f(x), x ≥ 0.
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Abbildung 7.12: Dichtefunktion der Erlangverteilung mit variablem Parameter b bei konstan-
tem p = 3 (links) und entsprechend umgekehrt (rechts) mit b = 2.

Da die Erlang–Verteilung ein Spezialfall der Gammaverteilung ist, ist somit
∫
R f(x) dx = 1

sichergestellt.
Die Erlang–Verteilung verdankt ihren Namen dem dänischen Mathematiker A.K. Erlang,
der 1908 Mitarbeiter der Copenhagen Telephone Company wurde und mit seinen Arbeiten
zur Leistungsbewertung von Fernsprechvermittlungssystemen den Grundstein für die Warte-
schlangentheorie legte.

Die Betaverteilung

Das Wahrscheinlichkeitsmaß über (R,B) mit der Riemann–Dichte

f(x) :=


(b− a)1−p−q

B(p, q)
(x− a)p−1(b− x)q−1 , x∈(a, b)

0 , x6∈(a, b)

mit a, b ∈ R, a < b und p, q > 0 heißt Betaverteilung 1. Art über dem Intervall (a, b). Der
Ausdruck

B(p, q) :=

1∫
0

tp−1(1− t)q−1 dt

stellt dabei die Betafunktion dar. Für die Betaverteilung mit den Parametern p und q wird
das Symbol Beta(p, q) verwendet.
Die Tatsache, dass

∫
R f(x) dx = 1 gilt, folgt durch nachrechnen; mit der Substitution x =

(b− a)t+ a bzw. t = x−a
b−a und dx

dt = b− a ergibt sich:∫
R

f(x) dx =
(b− a)1−p−q

B(p, q)

∫ b

a
(x− a)p−1(b− x)q−1 dx

=
(b− a)1−p−q

B(p, q)

∫ 1

0
(b− a)p−1tp−1(b− a− (b− a)t)q−1 · (b− a) dt

=
(b− a)1−p−q

B(p, q)
· (b− a)p+q−1

∫ 1

0
tp−1(1− t)q−1 dt︸ ︷︷ ︸

=B(p,q)

= 1.
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Die Betaverteilung hat Anwendungen in der Netzplantechnik, in der sie zur Modellierung von
Übergangszeiten verwendet wird.

Abbildung 7.13: Dichtefunktion der Betaverteilung mit Parameter q := 4 und variablem p.
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Kapitel 8

Messbare Abbildungen

In diesem Kapitel wird der Begriff der Zufallsvariablen auf allgemeine Wahrscheinlichkeits-
räume ausgedehnt. Um die damit zusammenhängenden Fragen beantworten zu können, wird
auf den Begriff der messbaren Abbildung aus der Maßtheorie zurückgegriffen.

Schlüsselwörter: Umkehrabbildung, Urbild, operationstreu, messbare Abbildung,
Indikatorvariable, Bildmaß, Zufallsvariable, Zufallsgröße, Zufallsvektor, Verteilungs-
funktion einer Zufallsvariable
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8.1 Messbare Abbildungen und Bildmaße

Bei manchen Fragestellungen erweist es sich als zweckmäßig, einen gegebenen Wahrscheinlich-
keitsraum (Ω,F, P ) durch einen modifizierten Wahrscheinlichkeitsraum (Ω′,F′, P ′) zu erset-
zen, wobei Ω′ aus Ω durch eine Abbildung T : Ω → Ω′ hervorgeht. In diesem Zusammenhang
stellt sich die Frage, wie P ′ von P abhängt bzw. wie T beschaffen sein muss, um P ′ direkt
aus P gewinnen zu können.

8.1 Definition (Urbild):
a) Es sei T : Ω → Ω′ eine beliebige Abbildung von Ω in Ω′. Dann ist die zu T gehörige

Umkehrabbildung T−1 : P(Ω′) → P(Ω) definiert durch

T−1(A′) := {ω ∈ Ω | T (ω) ∈ A′} ∀ A′ ∈ P
(
Ω′) .

T−1(A′) heißt das Urbild von A′ unter T .

b) Ist M′ ein Mengensystem über Ω′, so heißt das Mengensystem

T−1(M′) := {T−1(A′) | A′ ∈ M′}

das Urbild von M′ unter T .

8.2 Satz (Eigenschaften von T ):
Es sei T : Ω → Ω′ eine Abbildung von Ω in Ω′ und es seien ferner A′, A′1, A

′
2, . . . ∈ P(Ω′).

Dann gilt:

(i) T−1(∅) = ∅,

(ii) T−1(A′) = T−1(A′),

(iii)
⋃
i∈I

T−1(A′i) = T−1

(⋃
i∈I

A′i

)
,

(iv)
⋂
i∈I

T−1(A′i) = T−1

(⋂
i∈I

A′i

)
.

Man sagt, T ist operationstreu.

Beweis:
(i) Folgt direkt aus der Definition.

(ii) ω ∈ T−1(A′) ⇐⇒ T (ω) ∈ A′ ⇐⇒ T (ω) /∈ A′ ⇐⇒ ω /∈ T−1(A′) ⇐⇒ ω ∈ T−1(A′).

(iii) ω ∈
⋃
i∈I

T−1(A′i) ⇐⇒ ∃ i ∈ I : T (ω) ∈ A′i ⇐⇒ T (ω) ∈
⋃
i∈I

A′i ⇐⇒ ω ∈ T−1

(⋃
i∈I

A′i

)
.

(iv) ω∈
⋂
i∈I

T−1(A′i) ⇐⇒ ∀ i∈I : T (ω)∈A′i ⇐⇒ T (ω)∈
⋂
i∈I

A′i ⇐⇒ ω∈T−1

(⋂
i∈I

A′i

)
.

�
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Folgerungen:

(v) T−1(Ω′) = T−1(∅)
(ii)
= T−1(∅)

(i)
= ∅ = Ω.

(vi) A′ ⊆ B′ =⇒ T−1(A′) ⊆ T−1(B′).

(vii) T−1(A′1\A′2) = T−1(A′1)\T−1(A′2).

(viii) T−1(A′1) ∩ T−1(A′2) = ∅ falls A′1 ∩A′2 = ∅.

8.3 Satz:
Es sei T : Ω → Ω′ eine beliebige Abbildung. Dann gilt:

a) Das Urbild T−1(F′) einer σ–Algebra F′ über Ω′ ist eine σ–Algebra über Ω.

b) Ist F eine σ–Algebra über Ω, so ist das System

S := {A′ ⊂ Ω′ | T−1(A′) ∈ F}

eine σ–Algebra über Ω′.

Beweis:
Der Beweis ergibt sich unmittelbar aus Satz 8.2. �

Damit lässt sich nun der Begriff des Messraums einführen:

8.4 Definition (Messraum, messbar):
Sind Ω eine Menge und F eine σ–Algebra über Ω, so nennt man das Paar (Ω,F) Messraum.
Es seien (Ω,F) und (Ω′,F′) zwei Messräume. Eine Abbildung T : Ω → Ω′ heißt F–F′–messbar,
wenn T−1(F′) ⊆ F ist.

8.5 Beispiel:
1. Es seien (Ω,F) und (Ω′,F′) zwei beliebige Messräume. Die konstante Abbildung T : Ω →

Ω′ mit T (ω) := c für alle ω ∈ Ω ist messbar, denn es gilt:

T−1(F′) =

{
Ω ∈ F , falls c ∈ F′

∅ ∈ F , falls c /∈ F′.

2. Es seien (Ω,F) und (Ω′,F′) zwei Messräume und A ⊆ Ω. Die Indikatorvariable

T (ω) = IA(ω) :=
{

1 , ω ∈ A
0 , ω /∈ A

ist genau dann F–F′–messbar, wenn A ∈ F ist. Denn es gilt:

T−1(A′) =


∅ , für 06∈A′, 1 6∈ A′

A , für 06∈A′, 1∈ A′

A , für 0∈A′, 1 6∈ A′

Ω , für 0∈A′, 1∈ A′.
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Mit Hilfe messbarer Abbildungen können Maße auf andere Messräume übertragen werden,
wie aus dem nachfolgenden Satz hervorgeht.

8.6 Satz (Bild, Bildmaß):
Es seien T : (Ω,F) → (Ω′,F′) eine messbare Abbildung und µ ein Maß auf (Ω,F).

a) Mit der Festlegung µ′(A′) := µ(T−1(A′)) für alle A′ ∈ F′ wird ein Maß µ′ auf (Ω′,F′)
definiert.

b) Ist µ ein Wahrscheinlichkeitsmaß auf (Ω,F), dann ist auch µ′ ein Wahrscheinlichkeits-
maß auf (Ω′,F′).

µ′ heißt das Bild oder Bildmaß von µ unter T .

Beweis:
zu a) Es gilt (siehe Satz 8.2):

µ′(A′) = µ(T−1(A′)) ≥ 0 ∀ A′ ∈ F′

µ′(∅) = µ(T−1(∅)) = µ(∅) = 0.

Aufgrund der σ–Additivität von µ gilt für jede Folge paarweise fremder Mengen (A′i)i∈N
aus F′:

µ′

(⋃
i∈N

A′i

)
= µ

(
T−1

(⋃
i∈N

A′i

))

= µ

(⋃
i∈N

T−1(A′i)

)
(aufgrund von Satz 8.2 (iii))

=
∑
i∈N

µ(T−1(A′i)) (µ ist σ–additiv)

=
∑
i∈N

µ′(A′i),

d.h. auch µ′ ist σ-additiv.

zu b) µ′(Ω′) = µ(T−1(Ω′)) = µ(Ω) = 1 (Satz 8.2).
�

Mit Hilfe dieser Vorüberlegung kann der Begriff der Zufallsvariablen im allgemeinen Fall
eingeführt werden.

8.7 Definition ((reelle) Zufallsvariable, Zufallsgröße, Zufallsvektor):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Ω′,F′) ein Messraum, dann heißt jede
F–F′–messbare Abbildung X : (Ω,F) → (Ω′,F′) Zufallsvariable.
Ist speziell (Ω′,F′) := (R,B) bzw. := (Rn,Bn), n > 1, so heißt X eine reelle Zufallsvariable
(Zufallsgröße) bzw. ein reeller n-dimensionaler Zufallsvektor.
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8.8 Bemerkung:
Es seien X eine reelle Zufallsvariable und PX das Bildmaß von P unter X. Die Verteilungs-
funktion von PX sei FX . Für P ({ω ∈ Ω | X(ω) ≤ x}) wird auch P (X ≤ x) geschrieben.
Aufgrund des Zusammenhangs von X und PX gilt:

FX(x) = PX((−∞, x]) = P (X−1((−∞, x])) = P ({ω ∈ Ω | X(ω) ≤ x}) = P (X ≤ x),

d.h. es ist FX(x) = P (X ≤ x). In diesem Fall sagt man, dass X nach FX verteilt ist bzw.
dass X die Verteilungsfunktion FX besitzt. Ist F die Verteilungsfunktion von X, so wird auch
X

d= F (,,d” von englisch ,,distribution”) geschrieben, wobei für F in der Regel das spezifische
Verteilungssymbol verwendet wird, z.B. X d= Exp(λ).

8.2 Kriterien für Messbarkeit

Für Anwendungen ist es wichtig, über einfache Kriterien für die Messbarkeit von Abbildungen
zu verfügen. Solche Kriterien können aus dem folgenden Satz abgeleitet werden.

8.9 Satz:
Es seien (Ω,F) und (Ω′,F′) zwei Meßräume und E′ ein Erzeugendensystem von F′, d.h. F′ =
σ(E′). Die Abbildung T : (Ω,F) → (Ω′,F′) ist genau dann messbar, wenn gilt:

T−1(E′) ⊆ F.

Beweis:
Ist T messbar, so gilt T−1(A′) ∈ F für alle A′ ∈ F′, also auch

T−1(E′) = {T−1(A′) | A′ ∈ E′} ⊆ F.

Für die umgekehrte Richtung wird das System S′ := {A′ ⊆ Ω′ | T−1(A′) ∈ F} betrachtet. Zu
zeigen ist: S′ ⊇ F′. Nach Satz 8.3 b) ist S′ eine σ–Algebra über Ω′. Aufgrund der Voraussetzung
gilt E′ ⊆ S′. Hieraus folgt σ(E′) = F′ ⊆ S′, da F′ die kleinste σ-Algebra ist, die E′ enthält,
d.h. T−1(A′) ∈ F für alle A′ ∈ F′. �

8.10 Bemerkung:
Es sei (Ω,F, µ) ein Maßraum. Im Folgenden werden lediglich Abbildungen f : Ω → R un-
tersucht, deren Werte in den erweiterten reellen Zahlen R := R ∪ {−∞,+∞} liegen. Zu R
gehört die erweiterte σ–Algebra der Borelschen Mengen

B := {B0, B0 ∪ {−∞}, B0 ∪ {+∞}, B0 ∪ {−∞,+∞} | B0 ∈ B}.

Man nennt F–B–messbare Abbildungen auch F–messbare numerische Funktionen.

Die nachstehenden Sätze vereinfachen die Analyse der Messbarkeit von Abbildungen.

8.11 Satz:
Eine numerische Funktion f : Ω → R ist genau dann F–B–messbar, wenn für alle c ∈ R gilt:

a) {ω | f(ω) < c} ∈ F
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bzw. äquivalent dazu

b) {ω | f(ω) ≤ c} ∈ F,

c) {ω | f(ω) > c} ∈ F,

d) {ω | f(ω) ≥ c} ∈ F.

Beweis:
a) Überträgt man die Messbarkeitsanforderung aus Satz 8.9 auf die Mengensysteme F := B

und F
′
:= B, so muss für den Nachweis von a) gezeigt werden, dass die Intervalle [−∞, c)

die σ–Algebra B erzeugen. Aus [c−n, c) ∈ B ∀ n ∈ N folgt (−∞, c) =
∞⋃

n=1
[c−n, c) ∈ B.

Wegen B ⊂ B und wegen {−∞} ∈ B ist deshalb auch [−∞, c) ∈ B. Sei nun B̃ die
von den Intervallen [−∞, c), c ∈ R, erzeugte σ–Algebra. Aufgrund der Vorbemerkung
gilt B̃ ⊂ B. Um B ⊂ B̃ zu zeigen, betrachten wir die Intervalle [a, b). Wegen [a, b) =

[−∞, b) \ [−∞, a), a ≤ b gilt [a, b) ∈ B̃ bzw. I1 ⊂ B̃. Wegen [a, b] =
∞⋂

n=1

[
a, b+ 1

n

)
∈ B̃

und damit [−∞, b] ∈ B̃ für alle b ∈ R sind auch {−∞} =
∞⋂

n=1
[−∞,−n) ∈ B̃ und

{+∞} =
∞⋂

n=1
[−∞, n] ∈ B̃, womit B ⊂ B̃ gezeigt ist. Insgesamt ergibt sich B̃ = B.

Und wir schließen weiter:

b) {ω | f(ω) ≤ c} =
∞⋂

n=1

{
ω | f(ω) < c+ 1

n

}
∈ F,

c) {ω | f(ω) > c} = {ω | f(ω) ≤ c} ∈ F,

d) {ω | f(ω) ≥ c} = {ω | f(ω) < c} ∈ F. �

8.12 Satz:
Die beiden Funktionen f : Ω → R und g : Ω → R seien F–B–messbar, dann gilt:

a) {ω | f(ω) < g(ω)} ∈ F,

b) {ω | f(ω) ≤ g(ω)} ∈ F,

c) {ω | f(ω) = g(ω)} ∈ F.

Beweis: Übung.

8.13 Satz:
Es seien f , g und fn, n ∈ N, F–B–messbare Abbildungen von Ω nach R und c ∈ R. Dann
sind auch folgende Abbildungen F–B–messbar:

a) f + g (wobei die Summe überall definiert sein muss),

b) c · f ,
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c) f · g,

d) 1
g mit 1

g(ω) = +∞ falls g(ω) = 0,

e) sup
n∈N

fn, inf
n∈N

fn,

f) max(f, g), min(f, g), f+ := max(f, 0) und f− := −min(f, 0),

g) lim inf
n→∞

fn, lim sup
n→∞

fn,

h) lim
n→∞

fn, falls {fn(ω)} für alle ω konvergiert.

Beweis:
a) Aufgrund der Messbarkeit von f gilt stets {ω | f(ω) < a} ∈ F für alle a ∈ R. Entspre-

chendes gilt für g, f1, f2, . . . . Aus

{ω | f(ω) + g(ω) < a} =
⋃
r∈Q

({ω | f(ω) < r} ∩ {ω | g(ω) < a− r})

folgt zusammen mit Satz 8.11, dass f + g (und analog auch f − g) messbar sind.

b) Es ist

{ω | cf(ω) < a} =
{ {

ω | f(ω) < a
c

}
, c > 0{

ω | f(ω) > a
c

}
, c < 0.

Ist c = 0, dann ist cf = 0 eine konstante Funktion, die messbar ist.

c) Zunächst wird gezeigt, dass f2 messbar ist:

{ω | f2(ω) < a} =
{

∅ , a ≤ 0
{ω | −

√
a < f(ω) <

√
a} , a > 0

=
{

∅ ∈ F , a ≤ 0
{ω | f(ω) <

√
a} ∩ {ω | f(ω) > −

√
a} ∈ F , a > 0.

Da f · g für reellwertige f und g als

f · g =
1
4
((f + g)2 − (f − g)2)

dargestellt werden kann, ist in diesem Fall auch f · g messbar. Im Falle numerischer
Funktionen f und g sieht man, dass die Mengen A1 := {ω | f(ω) · g(ω) = ∞}, A2 :=
{ω | f(ω) · g(ω) = −∞}, A3 := {ω | f(ω) · g(ω) = 0} und A4 := A1 ∪A2 ∪A3 in F

liegen. Die Restriktionen f∗ und g∗ von f und g auf A4 sind A4 ∩ F−B–messbar und
reellwertig. Das Produkt f∗ ·g∗ ist daher ebenfalls A4∩F−B–messbar. Folglich ist f ·g
B−B–messbar.

d) Es sei g(ω) 6= 0 für alle ω ∈ Ω. Offensichtlich ist für a > 0{
ω | 1

g(ω)
< a

}
=

(
{ω | g(ω) > 0} ∩

{
ω | g(ω) >

1
a

})
∪

∪
(
{ω | g(ω) < 0} ∩

{
ω | g(ω) <

1
a

})
∈ F.
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Damit ist nicht nur 1/g, sondern wegen b) auch f/g = f · (1/g) messbar. Für a < 0
schließt man analog.

e) Es wird f(ω) := supn∈N fn(ω) und g(ω) = infn∈N fn(ω) gesetzt. Damit wird

{ω | f(ω) < a} =
⋂

n∈N
{ω | fn(ω) < a} ∈ F,

{ω | g(ω) > a} =
⋂

n∈N
{ω | fn(ω) > a} ∈ F.

f) Die Behauptungen folgen aus den Zusammenhängen:

{ω | max(f, g)(ω) < a} = {ω | f(ω) < a} ∩ {ω | g(ω) < a},
{ω | min(f, g)(ω) > a} = {ω | f(ω) > a} ∩ {ω | g(ω) > a}.

g) Diese Aussage ist eine unmittelbare Konsequenz aus d) und e), denn es gilt:

lim sup
n→∞

fn(ω) = inf
k∈N

sup
n≥k

fn(ω),

lim inf
n→∞

fn(ω) = sup
k∈N

inf
n≥k

fn(ω).

h) Es gilt:
lim sup

n→∞
fn(ω) = lim inf

n→∞
fn(ω) = lim

n→∞
fn(ω).

�

8.14 Satz:
Für i ∈ {1, 2, 3} seien (Ωi,Fi) Messräume. Die Abbildung f : Ω1 → Ω2 sei F1–F2–messbar und
die Abbildung g : Ω2 → Ω3 sei F2–F3–messbar. Dann ist g ◦ f : Ω1 → Ω3 eine F1–F3–messbare
Abbildung.

Beweis:
Die F1–F3–Messbarkeit von g ◦ f folgt aus der Tatsache, dass (g ◦ f)−1(A)= f−1(g−1(A)) für
alle A ∈ F3 gilt. �

8.15 Satz:
Jede stetige Abbildung T : Rn → Rm, n,m ∈ N, ist Bn–Bm–messbar.

Beweis:
Es wird Satz 8.9 angewandt: Bekanntlich bilden die offenen Mengen des Rn ein Erzeugen-
densystem von Bn (Übung). Bei einer stetigen Abbildung ist das Urbild einer offenen Menge
wieder eine offene Menge. Die offenen Mengen liegen aber in Bm. �
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Kapitel 9

Integration

In diesem Kapitel wird der aus der Analysis bekannte Begriff des Lebesgue-Integrals verall-
gemeinert und für die Definition des Erwartungswertes allgemeiner Zufallsvariablen herange-
zogen.

Schlüsselwörter: messbare numerische Funktion, Elementarfunktion, µ–Integral,
Positiv– und Negativteil einer messbaren numerischen Funktion, Erwartungswert
und Varianz einer reellen Zufallsvariable, Transformationssatz für Erwartungswerte,
k–tes Moment, k–tes zentrales Moment, Variationskoeffizient.

135



Kapitel 9. Integration

9.1 Vorbemerkungen

In Analogie zum Begriff des Erwartungswertes für diskrete Zufallsvariablen würde es nahelie-
gen, für eine reellwertige Zufallsvariable X mit Dichte f zu definieren:

E[X] :=
∫
R

x · f(x) dx,

sofern ∫
R

|x| · f(x) dx <∞.

Für eine mit dem Parameter λ exponentiell verteilte Zufallsvariable würde sich auf diese Weise
z.B.

E[X] =
∫
R

x · f(x) dx

=
∫
R+

x · λ · e−λx dx

und nach partieller Integration:

=
(
λx ·

(
− 1
λ

)
e−λx

)∣∣∣∣∞
0

− λ

∞∫
0

(
− 1
λ

)
e−λx dx

= −xe−λx
∣∣∣∞
0
− 1
λ
e−λx

∣∣∣∣∞
0

= 0−
(

0− 1
λ

)
=

1
λ

ergeben. Allerdings führen schon einfache praktische Fragestellungen auf Zufallsvariablen, die
weder diskret noch stetig sind. Als Beispiel betrachten wir die Wartezeitverteilung an einem
Fahrkartenschalter. Aus eigener Beobachtung weiß man, dass das System selbst bei hoher
Auslastung des Bedieners immer wieder einmal in einen leeren Zustand zurückkehrt, so dass
ein neu ankommender Kunde überhaupt nicht warten muss. Folglich besitzt die Wartezeitver-
teilung F (w), die angibt wie groß die Wahrscheinlichkeit ist, eine Zeit kleiner als w zu warten,
an der Stelle w = 0 einen Sprung der Höhe p. Dabei bedeutet p die Wahrscheinlichkeit, dass
der Bediener frei ist. Da p > 0 ist, besitzt F (w) keine Dichte. Deswegen ist es notwendig,
einen allgemeineren Integralbegriff einzuführen.

Vorgehensweise in den nächsten Abschnitten:
Ziel des Kapitels ist es, den Begriff des Erwartungswertes aus dem maßtheoretischen Begriff
des µ–Integrals für messbare numerische Funktionen zu entwickeln.
Dies geschieht in drei Schritten:

1. Definiere das µ–Integral für Elementarfunktionen (Kapitel 9.2).

2. Erweitere den Begriff des µ–Integrals für Elementarfunktionen durch Grenzübergang
auf den Begriff des µ–Integrals für nichtnegative messbare Funktionen (Kapitel 9.3).
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3. Erweitere den Begriff des µ–Integrals auf messbare numerische Funktionen durch Be-
trachtung ihrer Positiv– und Negativ–Teile (Kapitel 9.4).

Damit lässt sich in Kapitel 9.5 der Begriff des Erwartungswerts definieren.

9.2 Das µ–Integral von Elementarfunktionen

9.1 Definition (Elementarfunktion):
Es sei (Ω,F) ein Meßraum. Eine reellwertige Funktion e : Ω → R heißt Elementarfunktion,
wenn sie F–B–messbar ist und nur endlich viele Werte annimmt.

9.2 Satz:
Ist e(ω) eine Elementarfunktion, dann existieren eine Partition (Ai)n

i=1 von Ω und reelle
Zahlen αi ∈ R, i = 1, . . . , n, so dass mit den Indikatorvariablen IAi, i = 1, . . . , n, gilt:

e(ω) =
n∑

i=1

αiIAi(ω). (9.1)

Beweis:
Besitzt e(ω) die n verschiedenen Werte xi, so setzen wir αi := xi, i = 1, . . . , n. Die Träger
(Urbilder) der Werte αi

Ai := e−1(αi) = {ω ∈ Ω | e(ω) = αi}, i = 1, . . . , n

bilden ein disjunktes System von Teilmengen aus Ω. Es ist Ai ∈ F, da die Mengen {αi} ∈ B

sind und e(ω) messbar ist. Es ist e(ω) = αi, falls ω ∈ Ai. Da die Ai disjunkt sind, kann man
dafür auch

e(ω) =
n∑

i=1

αiIAi(ω) =


α1 , ω ∈ A1

α2 , ω ∈ A2
...

αn , ω ∈ An

schreiben. �

Die unter (9.1) angegebene Darstellung von e heißt eine Normaldarstellung von e.

9.3 Satz:
Summe, Differenz und Produkt von Elementarfunktionen sind wieder Elementarfunktionen.
Ist e elementar und λ ∈ R, dann ist auch λe elementar.

Beweis:
Die Messbarkeit der zusammengesetzten Funktionen folgt aus Satz 8.13. Offensichtlich bleibt
bei den genannten Operationen auch die Endlichkeit der Wertebereiche erhalten. �

9.4 Definition (integrierbar, integrabel):
Es sei (Ω,F, µ) ein Maßraum. Eine Elementarfunktion e(ω) :=

∑n
i=1 αiIAi(ω) heißt integrabel

oder integrierbar, wenn µ(Ai) <∞ für alle i = 1, . . . , n mit αi 6= 0 gilt.
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9.5 Definition (bestimmtes Integral, µ-Integral):
Es sei (Ω,F, µ) ein Maßraum. Weiter sei e : Ω −→ R eine nichtnegative Elementarfunktion
mit einer Normaldarstellung e(ω) :=

∑n
i=1 αiIAi(ω). Dann heißt∫

Ω

e(ω) dµ(ω) :=
∫
e dµ :=

n∑
i=1

αiµ(Ai)

das bestimmte Integral oder µ–Integral von e über Ω.

9.6 Satz:
Das bestimmte Integral über Ω hängt nicht von der speziellen Wahl der Normaldarstellung ab.

Beweis:
Es seien e(ω) =

∑n
i=1 αiIAi und e(ω) =

∑m
j=1 βjIBj (ω) zwei Normaldarstellungen von e.

Dann ist

Ai = Ai ∩ Ω = Ai ∩
m⋃

j=1

Bj =
m⋃

j=1

(Ai ∩Bj) ,

Bj = Bj ∩ Ω = Bj ∩
n⋃

i=1

Ai =
n⋃

i=1

(Ai ∩Bj) .

Also

IAi(ω) = I⋃m
j=1(Ai∩Bj)(ω) =

m∑
j=1

IAi∩Bj (ω) ,

IBj (ω) = I⋃n
i=1(Ai∩Bj)(ω) =

n∑
i=1

IAi∩Bj (ω) .

Damit wird
n∑

i=1

m∑
j=1

αiIAi∩Bj (ω) =
n∑

i=1

αiIAi(ω) = e(ω) =
m∑

j=1

βjIBj (ω) =
m∑

j=1

n∑
i=1

βjIAi∩Bj (ω),

woraus wegen der Vertauschbarkeit der endlichen Summen αi = βj für alle ω ∈ Ai ∩Bj 6= ∅
folgt. Andererseits ist

∫
e dµ =

∫ n∑
i=1

αiI⋃m
j=1(Ai∩Bj) =

n∑
i=1

αiµ

 m⋃
j=1

Ai ∩Bj

 =
n∑

i=1

m∑
j=1

αiµ(Ai ∩Bj)

und∫
e dµ =

∫ m∑
j=1

βjI⋃n
i=1(Ai∩Bj) =

m∑
j=1

βjµ

(
n⋃

i=1

Ai ∩Bj

)
=

n∑
i=1

m∑
j=1

βjµ(Ai ∩Bj).

Da aber für ω ∈ Ai ∩Bj 6= ∅, αi = βj , gilt, müssen die beiden Summen identisch sein. �
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9.7 Satz (Eigenschaften des Integrals):
Für das Integral nichtnegativer Elementarfunktionen e, e1 und e2 gilt:

a)
∫
IA dµ = µ(A).

b) Für λ ∈ R+ ist
∫
λe dµ = λ

∫
e dµ (Linearität).

c)
∫

(e1 + e2) dµ =
∫
e1 dµ+

∫
e2 dµ (Linearität).

d) Aus e1 ≤ e2 folgt
∫
e1 dµ ≤

∫
e2 dµ (Monotonie).

e)
∫
e1 d(µ+ ν) =

∫
e1 dµ+

∫
e1 dν (Linearität).

Beweis:
a) Ergibt sich unmittelbar aus der Definition der Indikatorfunktion.

b) Aus e(ω) =
n∑

i=1

αiIAi(ω) ergibt sich
n∑

i=1

(λαi)µ(Ai) = λ

n∑
i=1

αiµ(Ai).

c) Aus

e1 =
n∑

i=1

m∑
j=1

αiIAi∩Bj und e2 =
n∑

i=1

m∑
j=1

βjIAi∩Bj

folgt

e1 + e2 =
n∑

i=1

m∑
j=1

(αi + βj)IAi∩Bj =
n∑

i=1

m∑
j=1

αiIAi∩Bj +
n∑

i=1

m∑
j=1

βjIAi∩Bj .

d) Aus e1 ≤ e2 folgt e2 − e1 ≥ 0 und damit
∫

(e2 − e1) dµ ≥ 0. Eine Anwendung von c)
ergibt weiter ∫

e2 dµ =
∫

(e2 − e1) dµ+
∫
e1 dµ ≥

∫
e1 dµ,

was zu zeigen war.

e) Es gilt:∫
e1 d(µ+ ν) =

n∑
i=1

αi(µ(Ai) + ν(Ai)) =
n∑

i=1

αiµ(Ai) +
n∑

i=1

αiν(Ai)

=
∫
e1 dµ+

∫
e1 dν.

�
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9.3 Das µ–Integral nichtnegativer messbarer numerischer
Funktionen

9.8 Satz:
Jede nichtnegative messbare numerische Funktion f : Ω → R+ ist punktweiser Grenzwert
einer monoton nichtfallenden Folge nichtnegativer Elementarfunktionen.

Beweis:
Definiere für alle ω ∈ Ω:

fn(ω) :=


k − 1
2n

,
k − 1
2n

≤ f(ω) <
k

2n

n , f(ω) ≥ n
(k = 1, . . . , n · 2n).

Zu zeigen ist lim
n→∞

fn(ω) = f(ω).
Die Funktionen fn lassen sich wie folgt durch Indikatorfunktionen ausdrücken:

fn =
n·2n∑
k=1

k − 1
2n

· IAn,k
+ n · IBn

mit An,k := f−1

([
k − 1
2n

,
k

2n

))
und Bn := f−1([n,∞)).

Nun kann man wie folgt schließen:

f ist messbar
⇒An,k ∈ F und Bn ∈ F für alle n und k
⇒Die Indikatorfunktionen IAn,k

und IBn sind messbar

⇒fn ist messbar.

Für alle ω ∈ Ω mit f(ω) <∞ und für alle n ∈ N mit f(ω) < n folgt

0 ≤ f(ω)− fn(ω) ≤ 1
2n

→ 0 ( für n→∞).

Für alle ω ∈ Ω mit f(ω) = ∞ gilt fn(ω) = n→∞ für n→∞. �

9.9 Beispiel:
Es sei f : R→ R, f(ω) := ω2. In diesem Fall ist

f1(ω) =


0 , 0 ≤ f(ω) <

1
2

1
2
,

1
2
≤ f(ω) < 1

1 , f(ω) ≥ 1

bzw.

f1(ω) =
2∑

k=1

k − 1
2

IA1,k
(ω) + 1 · IB1(ω)
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mit

A1,1 =
(
− 1√

2
, 0
]
∪
[
0,

1√
2

)
=

(
−
√

1
2
,

√
1
2

)
,

A1,2 =
(
−1,− 1√

2

]
∪
[

1√
2
, 1
)
,

B1 = (−∞,−1] ∪ [1,∞).

Für f2(ω) erhalten wir

f2(ω) =



0 , 0 ≤ f(ω) <
1
4

1
4
,

1
4
≤ f(ω) <

2
4

2
4
,

2
4
≤ f(ω) <

3
4

3
4
,

3
4
≤ f(ω) <

4
4

4
4
,

4
4
≤ f(ω) <

5
4

5
4
,

5
4
≤ f(ω) <

6
4

6
4
,

6
4
≤ f(ω) <

7
4

7
4
,

7
4
≤ f(ω) <

8
4

2 , f(ω) ≥ 2

bzw.

f2(ω) =
8∑

k=1

k − 1
4

IA2,k
(ω) + 2 · IB2(ω)

mit

A2,1 =
(
−1

2
,
1
2

)
A2,2 =

(
−
√

1
2
,
1
2

]
∪

[
1
2
,

√
1
2

)

A2,3 =

(
−
√

3
2
,

√
1
2

]
∪

[√
1
2
,

√
3

2

)

A2,4 =

(
−1,

√
3

2

]
∪

[√
3

2
, 1

)
...

B2 =
(
−∞,

√
2
]
∪
[√

2,∞
)
.
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Abbildung 9.1: Näherung einer nichtnegativen messbaren Funktion durch Elementarfunktio-
nen (dargestellt sind f(ω) := ω2 und f2(ω))

(Siehe auch Mathematica-Notebook zu diesem Beispiel.)

Als nächstes soll das µ–Integral einer nichtnegativen messbaren numerischen Funktion defi-
niert werden. Zur Vorbereitung dienen die Sätze 9.10 und 9.11.

9.10 Satz:
Es sei (fn)n∈N eine monoton nichtfallende Folge von Elementarfunktionen von Ω nach R+.
Dann gilt für jede nichtnegative Elementarfunktion h mit h ≤ supn fn = f :∫

h dµ ≤ sup
n∈N

∫
fn dµ .

Beweis:
Der Fall h = 0 ist trivial. Es sei daher h 6= 0 mit der Darstellung h =

∑m
i=1 αiIAi mit Ai ∈ F

und den Koeffizienten αi ∈ R+. Für n ∈ N und 0 < β < 1 sei

Bn := {ω ∈ Ω | βh(ω) ≤ fn(ω)}.

Da h und fn messbar sind, gilt aufgrund von Satz 8.12 Bn ∈ F und aufgrund der Definition
der Menge Bn, dass βhIBn ≤ fn ist. Wegen Satz 9.7 b) und d) folgt∫

βhIBn dµ = β

∫
hIBn dµ ≤

∫
fn dµ ≤ sup

n

∫
fn dµ . (9.2)

Da die Folge (fn)n∈N monoton nichtfallend ist und h ≤ supn fn gilt, folgt Bn ↗ Ω für n→∞
und damit (Ai ∩ Bn) ↗ Ai für n → ∞. Aufgrund der Stetigkeit von µ (vgl. Satz 7.5) folgt
schließlich µ(Ai ∩Bn) → µ(Ai). Damit wird∫

h dµ =
m∑

i=1

αiµ(Ai) = lim
n→∞

m∑
i=1

αiµ(Ai ∩Bn) = lim
n→∞

∫
hIBn dµ.

Somit ergibt sich

β

∫
h dµ = lim

n→∞
β

∫
hIBn dµ

(9.2)

≤ sup
n

∫
fn dµ.

Da β ∈ (0, 1) beliebig gewählt war, folgt die Behauptung. �
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9.3. Das µ–Integral nichtnegativer messbarer numerischer
Funktionen

9.11 Satz:
Es seien (fn)n∈N und (gn)n∈N zwei monoton nichtfallende Folgen nichtnegativer Elementar-
funktionen. Gilt

sup
n
fn(ω) = sup

n
gn(ω) ∀ ω ∈ Ω,

dann ist
sup

n

∫
fn dµ = sup

n

∫
gn dµ .

Beweis:
Gilt supn fn = supn gn, dann ist für alle m ∈ N

fm ≤ sup
n
gn und gm ≤ sup

n
fn.

Mit Hilfe von Satz 9.10 kann weiter gefolgert werden, dass gilt:∫
fm dµ ≤ sup

n

∫
gn dµ und

∫
gm dµ ≤ sup

n

∫
fn dµ

bzw.
sup
m

∫
fm dµ ≤ sup

n

∫
gn dµ und sup

m

∫
gm dµ ≤ sup

n

∫
fn dµ,

woraus sich die Behauptung unmittelbar ergibt. �

9.12 Definition (bestimmtes Integral):
Es sei f eine nichtnegative messbare numerische Funktion und (fn)n∈N eine monoton nicht-
fallende Folge nichtnegativer Elementarfunktionen mit f = supn fn. Dann heißt die Zahl∫

Ω

f dµ := lim
n→∞

∫
Ω

fn dµ = sup
n

∫
Ω

fn dµ

das bestimmte Integral von f über Ω. Man schreibt auch∫
Ω

f dµ =
∫
f dµ =

∫
Ω

f(ω) dµ(ω) =
∫
Ω

f(ω)µ(dω).

Die Definition 9.12 nutzt Satz 9.11 aus, wonach das Integral nicht von der speziellen Wahl
der Folge (fn)n∈N abhängt.

9.13 Satz (Eigenschaften des Integrals):
Es seien f und g nichtnegative messbare Funktionen. Dann gilt:

a)
∫
αf dµ = α

∫
f dµ ∀ α ∈ R+.

b)
∫

(f + g)dµ =
∫
f dµ+

∫
g dµ.
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c) f ≤ g =⇒
∫
f dµ ≤

∫
g dµ.

d)
∫
f d(µ+ ν) =

∫
f dµ+

∫
f dν.

Beweis:
Es seien (fn)n∈N und (gn)n∈N nichtnegative, monoton nichtfallende Elementarfunktionen mit
sup

n
fn = f und sup

n
gn = g.

a) Es sei α ∈ R+. Dann gilt:∫
αf dµ = sup

n

∫
αfn dµ nach Definition 9.12

= α sup
n

∫
fn dµ nach Satz 9.7 b)

= α

∫
f dµ nach Definition 9.12.

b) ∫
(f + g) dµ = sup

n

∫
(fn + gn) dµ nach Definition 9.12

= sup
n

(∫
fn dµ+

∫
gn dµ

)
nach Satz 9.7 c)

= lim
n→∞

(∫
fn dµ+

∫
gn dµ

)
= lim

n→∞

∫
fn dµ+ lim

n→∞

∫
gn dµ

=
∫
f dµ+

∫
g dµ nach Definition 9.12.

c)
f ≤ g =⇒ fm ≤ sup

n
gn ∀ m ∈ N

=⇒
∫
fm dµ ≤ sup

n

∫
gn dµ ∀ m ∈ N nach Satz 9.10

=⇒
∫
fm dµ ≤

∫
g dµ nach Definition 9.12

=⇒ sup
m

∫
fm dµ ≤

∫
g dµ

=⇒
∫
f dµ ≤

∫
g dµ.

d) ∫
f d(µ+ ν) = sup

n

∫
fn d(µ+ ν) nach Definition 9.12

= lim
n→∞

∫
fn d(µ+ ν)

= lim
n→∞

∫
fn dµ+ lim

n→∞

∫
fn dν nach Satz 9.7 c)

=
∫
f dµ+

∫
f dν nach Definition 9.12.
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�

9.14 Definition (integrierbar, integrabel, µ-integrabel):
Es sei (Ω,F, µ) ein Maßraum und f : Ω −→ R+ ∪ {∞} messbar. Die Funktion f heißt
integrierbar, µ–integrabel oder kurz integrabel, wenn∫

Ω
f dµ <∞

gilt.

9.4 Das µ–Integral allgemeiner messbarer numerischer Funk-
tionen

9.15 Definition (Positiv-Teil, Negativ-Teil):
Es sei f : Ω → R eine numerische Funktion. Der Positiv–Teil f+ bzw. Negativ–Teil f− von
f ist definiert durch:

f+(ω) := max{f(ω), 0} und f−(ω) := −min{f(ω), 0}

für alle ω ∈ Ω.

Folgerung:
a) Es ist f+(ω) = f(ω), wenn f(ω) ≥ 0 ist und f+(ω) = 0, wenn f(ω) ≤ 0 ist.

b) Es ist f−(ω) = −f(ω), wenn f(ω) ≤ 0 ist und f−(ω) = 0, wenn f(ω) ≥ 0 ist.

c) Es gilt f = f+ − f−.

d) Es gilt |f | = f+ + f−.

9.16 Satz:
Eine numerische Funktion f ist genau dann messbar, wenn ihr Positiv– und ihr Negativ–Teil
messbar sind.

Beweis:
Nach Satz 8.13 f) sind mit f auch max(f, 0) und min(f, 0) messbar. Umgekehrt ist mit f+

und f− auch f = f+ − f− messbar. �

9.17 Definition (quasiintegrabel, µ-integrierbar):
Es sei (Ω,F, µ) ein Maßraum und f : Ω → R eine F–B–messbare Funktion.

a) Ist
∫
f+ dµ <∞ oder

∫
f− dµ <∞, so nennt man f (µ–)quasiintegrabel.
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b) Ist f quasiintegrabel, so ist das µ–Integral von f definiert durch∫
f dµ :=

∫
f+ dµ−

∫
f− dµ.

c) f heißt µ–integrierbar, wenn sowohl
∫
f+ dµ <∞ als auch

∫
f− dµ <∞ sind.

9.18 Satz:
Es sei f : Ω → R eine messbare numerische Funktion, dann sind folgende Aussagen äquiva-
lent:

a) f ist µ–integrierbar.

b) f+ und f− sind µ–integrierbar.

c) Es gibt eine µ–integrierbare Funktion g mit |f | ≤ g.

d) |f | ist µ–integrierbar.

Beweis:
Die Äquivalenz zwischen a) und b) folgt unmittelbar aus der Definition 9.17.

b)=⇒ c)
Sind f+ und f− µ–integrierbar, dann sind: f+, f− und g := |f | = f+ + f− messbar
und es ist nach Satz 9.13∫

g dµ =
∫

(f+ + f−) dµ =
∫
f+ dµ+

∫
f− dµ <∞.

Somit ist auch g µ–integrierbar und wegen |f | = g = f+ + f− folgt die Behauptung.

c)=⇒ d)
Existiert eine µ–integrierbare Funktion g mit |f | ≤ g, so gilt aufgrund der Monotonie
des Integrals (Satz 9.13): ∫

|f | dµ ≤
∫
g dµ.

Die Behauptung folgt nun aus der Annahme, dass
∫
g dµ <∞.

d)=⇒ b)
Es sei nun |f | µ–integrierbar. Es gilt: f+ ≤ |f | und f− ≤ |f |. Außerdem sind f+, f−

und |f | messbar und nichtnegativ. Damit wird∫
f+ dµ ≤

∫
|f | dµ <∞ und

∫
f− dµ ≤

∫
|f | dµ <∞.

�
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9.19 Satz (Eigenschaften des Integrals):
Es sei (Ω,F, µ) ein Maßraum und f, g : Ω → R seien messbare numerische und µ– und ν–
integrierbare Funktionen. Dann gilt:

a) Für alle α ∈ R ist αf µ–integrierbar, und es gilt∫
αf dµ = α

∫
f dµ.

b) Falls f + g definiert ist, so ist f + g µ–integrierbar und es gilt:∫
(f + g) dµ =

∫
f dµ+

∫
g dµ.

c) max(f, g) und min(f, g) sind µ–integrierbar.

d) Aus f ≤ g folgt
∫
f dµ ≤

∫
g dµ.

e) Es gilt
∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ.

f) Es gilt
∫
f d(µ+ ν) =

∫
f dµ+

∫
f dν.

Beweis:
a) Es sei α ∈ R. Für α ≥ 0 ist (αf)+ = αf+ und (αf)− = αf−. Für α ≤ 0 ist (αf)+ =

|α| f− und (αf)− = |α| f+. Alle diese Funktionen sind nichtnegativ und messbar. Die
µ–Integrierbarkeit von f ist nach Satz 9.18 gleichwertig mit der µ–Integrierbarkeit von
f+ und f−, woraus auch die µ–Integrierbarkeit von (αf)+ und (αf)− folgt. Damit ist
aber auch αf µ–integrierbar. Weiter ist für α ≥ 0∫

αf dµ =
∫

(αf)+ dµ−
∫

(αf)− dµ =
∫
αf+ dµ−

∫
αf− dµ

= α

∫
f+ dµ− α

∫
f− dµ = α

(∫
f+ dµ−

∫
f− dµ

)
= α

∫
f dµ.

Im Fall α < 0 gilt (αf)+ = |α| · f− und (αf)− = |α| · f+. Aufgrund von Satz 9.13 ist
deshalb ∫

Ω

αf+ dµ = |α|
∫
Ω

f− dµ bzw.
∫
Ω

αf− dµ = |α|
∫
Ω

f+ dµ .

Damit wird

∫
Ω

αf dµ = |α|

∫
Ω

f− dµ−
∫
Ω

f+ dµ

 = α

∫
Ω

f+ dµ−
∫
Ω

f− dµ

 = α

∫
Ω

f dµ .
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b) Nach Satz 9.18 sind |f | und |g| integrierbar. Wegen |f + g| ≤ |f |+ |g| ist deshalb auch
f + g integrierbar. Außerdem ist f + g = (f+ + g+)− (f− + g−), so dass gilt∫

(f + g) dµ =
∫

(f+ + g+) dµ−
∫

(f− + g−) dµ

=
∫
f+ dµ+

∫
g+ dµ−

∫
f− dµ−

∫
g− dµ

=
∫
f+ dµ−

∫
f− dµ+

∫
g+ dµ−

∫
g− dµ

=
∫
f dµ+

∫
g dµ.

c) Mit f und g sind auch |f | und |g| integrierbar (siehe Satz 9.18). Also ist auch |f |+ |g|
µ–integrierbar. Da aber

|max(f, g)| ≤ |f |+ |g| und |min(f, g)| ≤ |f |+ |g|

gilt, folgt die Behauptung jetzt unmittelbar aus Satz 9.18 c).

d) Aus f ≤ g folgen die beiden Ungleichungen f+ ≤ g+ und g− ≤ f−. Damit wird:∫
f+ dµ ≤

∫
g+ dµ und

∫
g− dµ ≤

∫
f− dµ

und weiter∫
f dµ =

∫
f+ dµ−

∫
f− dµ ≤

∫
g+ dµ−

∫
g− dµ =

∫
g dµ.

e) Es gilt: ∣∣∣∣∫ f dµ

∣∣∣∣ =
∣∣∣∣∫ f+ dµ−

∫
f− dµ

∣∣∣∣ ≤
∣∣∣∣∫ f+ dµ

∣∣∣∣+ ∣∣∣∣∫ f− dµ

∣∣∣∣
=

∫
f+ dµ+

∫
f− dµ =

∫
(f+ + f−) dµ =

∫
|f | dµ.

f) ∫
f d(µ+ ν) =

∫
f+ d(µ+ ν) +

∫
f− d(µ+ ν)

=
∫
f+ dµ+

∫
f+ dν +

∫
f− dµ+

∫
f− dν

=
∫
f dµ+

∫
f dν.

�
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9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

9.5 Erwartungswert und Varianz einer reellwertigen Zufalls-
variable

9.20 Definition (Erwartungswert):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine Zufallsvariable. Ist X
P–integrierbar, dann heißt

EP [X] :=
∫
Ω

X(ω) dP (ω) =
∫
X dP

der Erwartungswert der Zufallsvariable X.

9.21 Beispiel:
Im Folgenden soll der Erwartungswert einiger Verteilungen berechnet werden:

• Poisson–Verteilung:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine Zufallsvariable mit
Verteilungsfunktion

F (x) :=


bxc∑
j=0

λj

j!
e−λ für x ≥ 0

0 für x < 0.

Es folgt zunächst

F

(
k

2n
− 0
)
− F

(
k − 1
2n

− 0
)

=
b k

2n−0c∑
j=0

λj

j!
e−λ −

b k−1
2n −0c∑
j=0

λj

j!
e−λ

(∗)
=

b k−1
2n c∑

j=0

λj

j!
e−λ −

b k−2
2n c∑

j=0

λj

j!
e−λ

=


0 für

⌊
k−1
2n

⌋
=
⌊

k−2
2n

⌋
λb

k−1
2n c(⌊

k−1
2n

⌋)
!
e−λ für

⌊
k−1
2n

⌋
>
⌊

k−2
2n

⌋
.

((∗):
⌊
k

2n
− 0
⌋

= lim
x↗ k

2n

bxc =
⌊
k − 1
2n

⌋
für n ∈ N und k ∈ N0.)

Es ist ⌊
k − 1
2n

⌋
>

⌊
k − 2
2n

⌋
⇐⇒ 2n|(k − 1) ⇐⇒ k = j · 2n + 1, j ∈ N0.

Es soll
∫
X(ω) dPF (ω) = lim

n→∞

∫
Xn(ω) dPF (ω) berechnet werden, wobei PF das durch F
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induzierte Maß auf (R,B) und Xn die in Satz 9.8 verwendeten Funktionen bezeichnen.∫
Xn(ω)dPF (ω) =

n·2n∑
k=1

k − 1
2n

PF

([
k − 1
2n

,
k

2n

))
+ n · PF ([n,∞))

=
1
2n

n·2n∑
k=1

(k − 1)
[
F

(
k

2n
− 0
)
− F

(
k − 1
2n

− 0
)]

+n · (1− F (n− 0))

=
1
2n

n·2n∑
k=2

2n|(k−1)

(k − 1)
λ

k−1
2n(

k−1
2n

)
!
e−λ + n · (1− F (n− 0))

=
1
2n

n−1∑
j=1

j · 2nλ
j

j!
e−λ + n · (1− F (n− 0))

= λ

n−1∑
j=1

λj−1

(j − 1)!
e−λ + n ·

1−
bn−0c∑
j=0

λj

j!
e−λ


= λ

n−1∑
j=1

λj−1

(j − 1)!︸ ︷︷ ︸
−−−→

n→∞
eλ

e−λ + n ·

1−
n−1∑
j=0

λj

j!
e−λ


︸ ︷︷ ︸

−−−→
n→∞

0

−−−→
n→∞

λ.

• Exponentialverteilung:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine Zufallsvariable mit
Verteilungsfunktion

F (x) :=

{
1− e−λx, x ≥ 0
0, x < 0.

Es soll
∫
X(ω) dPF (ω) = lim

n→∞

∫
Xn(ω) dPF (ω) berechnet werden, wobei PF das durch F

induzierte Maß auf (R,B) und Xn die in Satz 9.8 verwendeten Funktionen bezeichnen.∫
Xn(ω)dPF (ω) =

n·2n∑
k=1

k − 1
2n

PF

([
k − 1
2n

,
k

2n

))
+ n · PF ([n,∞))

=
1
2n

n·2n∑
k=1

(k − 1)
[
F

(
k

2n
− 0
)
− F

(
k − 1
2n

− 0
)]

+n · (1− F (n− 0))

=
1
2n

[
1 ·
(
F

(
2
2n

)
− F

(
1
2n

))
+ 2 ·

(
F

(
3
2n

)
− F

(
2
2n

))
+

+3 ·
(
F

(
4
2n

)
− F

(
3
2n

))
+ . . .

+(n2n − 2) ·
(
F

(
n2n − 1

2n

)
− F

(
n2n − 2

2n

))
+(n2n − 1) ·

(
F

(
n2n

2n

)
− F

(
n2n − 1

2n

))]
+ n · (1− F (n))
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=
1
2n

[
−F

(
1
2n

)
− F

(
2
2n

)
− · · · − F

(
n2n − 1

2n

)
+

+ (n2n − 1) · F
(
n2n

2n

)]
+ n · (1− F (n))

= − 1
2n

n·2n−1∑
k=1

F

(
k

2n

)
+
(
n− 1

2n

)
· F
(
n2n

2n

)
+ n · (1− F (n))

= − 1
2n

n·2n−1∑
k=1

(
1− e−λk/2n

)
+
(
n− 1

2n

)
·
(
1− e−λn

)
+ n · e−λn

= −n2n − 1
2n

+
1
2n

n·2n−1∑
k=1

(
e−λ/2n

)k
+
(
n− 1

2n

)
−
(
n− 1

2n

)
e−λn + n · e−λn

=
1
2n
·

n2n−1∑
k=1

(
e−λ/2n

)k
+

1
2n
· e−λn

=
1
2n
· 1− (e−λ/2n

)n2n

1− e−λ/2n − 1
2n

+
1
2n
· e−λn.

Folglich gilt:∫
X(ω) dPF (ω) = lim

n→∞

∫
Xn(ω)dPF (ω) = lim

n→∞

1
2n
· 1− e−λn

1− e−λ/2n −
1
2n

+
1
2n
· e−λn

= lim
n→∞

1
2n
· 1− e−λn

1− e−λ/2n .

Aus
lim
x→0

ex − 1
x

= 1

folgt

lim
n→∞

1− e−λ/2n

λ/2n
= 1 bzw. lim

n→∞
2n · (1− e−λ/2n

) = λ .

Damit wird

EP [X] =
∫
X dPF = lim

n→∞

∫
XndPF = lim

n→∞

1
2n · (1− e−λ/2n)

· (1− e−λn) =
1
λ
.

• Rechteckverteilung auf [−1, 1]:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine Zufallsvariable mit
Verteilungsfunktion

F (x) :=


0, x ≤ −1
x+1

2 , −1 ≤ x ≤ 1
1, x > 1.

Die Darstellung∫
X(ω) dPF (ω) =

∫
X+(ω) dPF (ω)−

∫
X−(ω) dPF (ω)
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legt nahe, Positiv– und Negativteil separat zu betrachten. X+ und X− werden dabei
durch die Funktionen X+

n und X−
n wie in Satz 9.8 approximiert:

X±
n :=

n·2n∑
k=1

k − 1
2n

IAn,k
+ n · IBn

mit

An,k :=
(
X±)−1

([
k − 1
2n

,
k

2n

))
und Bn :=

(
X±)−1 ([n,∞)).

1.) Positivteil: Für X+ ergeben sich:

An,k :=
[
k − 1
2n

,
k

2n

)
und Bn := [n,∞).

Damit gilt:

∫
X+

n (ω) dPF (ω) =
n·2n∑
k=1

k − 1
2n

PF

([
k − 1
2n

,
k

2n

))
+ nPF ([n,∞))︸ ︷︷ ︸

=0 für n≥1

=
n·2n∑
k=1
k≤2n

k − 1
2n

PF

([
k − 1
2n

,
k

2n

))

+
n·2n∑
k=1
k>2n

k − 1
2n

PF

([
k − 1
2n

,
k

2n

))
︸ ︷︷ ︸

=F( k
2n−0)−F( k−1

2n −0)=1−1=0

=
1
2n

2n∑
k=1

(k − 1)
(
F

(
k

2n
− 0
)
− F

(
k − 1
2n

− 0
))

=
1
2n

2n∑
k=1

(k − 1)
(

1
2

(
k

2n
+ 1
)
− 1

2

(
k − 1
2n

+ 1
))

︸ ︷︷ ︸
= 1

2n+1

=
1

22n+1

2n∑
k=1

(k − 1) =
1

22n+1
· 2n(2n − 1)

2

=
1
4
− 1

2n+2
−−−→
n→∞

1
4
.

2.) Negativteil: Für X− ergeben sich:

An,k :=
(
− k

2n
,−k − 1

2n

]
und Bn := (−∞,−n].
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Damit gilt:∫
X−

n (ω) dPF (ω) =
n·2n∑
k=1

k − 1
2n

PF

([
− k

2n
,−k − 1

2n

))
+ nPF ((−∞,−n])︸ ︷︷ ︸

=0 für n<−1

=
n·2n∑
k=1
k≤2n

k − 1
2n

PF

([
− k

2n
,−k − 1

2n

))

+
n·2n∑
k=1
k>2n

k − 1
2n

PF

([
− k

2n
,−k − 1

2n

))
︸ ︷︷ ︸

=F(− k−1
2n −0)−F(− k

2n−0)=0−0=0

=
1
2n

2n∑
k=1

(k − 1)
(
F

(
−k − 1

2n
− 0
)
− F

(
− k

2n
− 0
))

=
1
2n

2n∑
k=1

(k − 1)
(

1
2

(
−k − 1

2n
+ 1
)
− 1

2

(
− k

2n
+ 1
))

︸ ︷︷ ︸
= 1

2n+1

=
1

22n+1

2n∑
k=1

(k − 1) =
1

22n+1
· 2n(2n − 1)

2

=
1
4
− 1

2n+2
−−−→
n→∞

1
4
.

Damit ergibt sich insgesamt:

EP [X] =
∫
X(ω) dPF (ω) =

∫
X+(ω) dPF (ω)−

∫
X−(ω) dPF (ω) =

1
4
− 1

4
= 0.

Für die Praxis ist es wichtig, einfacher zu handhabende Verfahren zur Berechnung des Er-
wartungswertes einer reellwertigen Zufallsvariable zu haben. Der nachfolgende Satz zeigt,
dass sich der Erwartungswert einer reellwertigen Zufallsvariable als uneigentliches Riemann–
Integral aus der zugehörigen Verteilungsfunktion berechnen lässt. Aus dieser Darstellung folgt
insbesondere, dass der Erwartungswert nicht von der speziellen Gestalt der Zufallsvariable,
sondern nur von der speziellen Gestalt der Verteilungsfunktion abhängt.

9.22 Satz:
Es bezeichne F die Verteilungsfunktion von X bezüglich P . Ist X bezüglich P integrierbar, so
gilt:

EP [X] =

∞∫
0

(1− F (x)) dx−
0∫

−∞

F (x) dx.

Existiert umgekehrt jedes der beiden letzteren Integrale, so ist X P–integrierbar, wobei der
Erwartungswert wiederum durch diese Beziehung gegeben ist.
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Beweis:
Idee: Betrachte den Positiv– und Negativteil des Erwartungswertes∫

X dP =
∫
X+ dP −

∫
X− dP

und zeige

1.
∫
X−dP =

0∫
−∞

F (x)dx und

2.
∫
X+ dP =

∞∫
0

(1− F (x)) dx.

Zu 1.: Wir berechnen zunächst die im Beweis von Satz 9.8 definierte Folge {X−
n } von nichtne-

gativen Elementarfunktionen mit X−
n ↗ X−. Aufgrund von Satz 9.8 und der Beziehung

X−(ω) := −X(ω) für X(ω) ≤ 0

kann

X−
n (ω) :=

n2n∑
k=1

k − 1
2n

· IAn,k
(ω) + n · IBn(ω) (n = 1, 2, . . . )

gewählt werden, wobei

An,k :=
{
ω | k − 1

2n
≤ X−(ω) <

k

2n

}
=
{
ω | k − 1

2n
≤ −X(ω) <

k

2n

}
=

{
ω | − k

2n
< X(ω) ≤ −k − 1

2n

}
und

Bn := {ω | n ≤ X−(ω) <∞} = {ω | n ≤ −X(ω) <∞}
= {ω | −∞ < X(ω) ≤ −n}

ist. Damit wird∫
X−

n dP =
n2n∑
k=1

k − 1
2n

· P
(
− k

2n
< X ≤ −k − 1

2n

)
+ n · P (−∞ < X ≤ −n)

=
n2n∑
k=1

k − 1
2n

· PF

((
− k

2n
,−k − 1

2n

])
+ n · PF ((−∞,−n])

=
n2n∑
k=1

k − 1
2n

·
(
F

(
−k − 1

2n

)
− F

(
− k

2n

))
+ n · F (−n)

=
1
2n
·
(
F

(
− 1

2n

)
− F

(
− 2

2n

))
+

2
2n
·
(
F

(
− 2

2n

)
− F

(
− 3

2n

))
+ . . .
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+
n · 2n − 1

2n
·
(
F

(
−n · 2

n − 1
2n

)
− F

(
−n · 2

n

2n

))
+ n · F (−n)

=
1
2n

(
F

(
− 1

2n

)
+ F

(
− 2

2n

)
+ . . .

+F
(
−n · 2

n − 1
2n

)
+ F

(
−n · 2

n

2n

))
=

1
2n

n2n∑
k=1

F

(
− k

2n

)
.

Da F monoton nichtfallend ist, gilt außerdem

0∫
−n

F (x) dx ≥ 1
2n

n·2n∑
k=1

F

(
− k

2n

)
≥

− 1
2n∫

−n− 1
2n

F (x) dx.

Durch Grenzübergang n→∞, erhält man

∫
X− dP = lim

n→∞

∫
X−

n dP = lim
n→∞

1
2n

n2n∑
k=1

F

(
− k

2n

)
=

0∫
−∞

F (x) dx. (9.3)

Zu 2.: Wir betrachten eine Folge {X+
n } von nichtnegativen Elementarfunktionen mit X+

n ↗
X+ und wie im Beweis von Satz 9.8 setzen wir:

X+
n (ω) :=

n2n∑
k=1

k − 1
2n

· IAn,k
(ω) + n · IBn(ω) (n = 1, 2, . . . ),

wobei

An,k :=
{
ω | k − 1

2n
≤ X+(ω) <

k

2n

}
und Bn := {ω | n ≤ X+(ω) <∞}

sind. Damit wird∫
X+

n dP =
n2n∑
k=1

k − 1
2n

· PF

([
k − 1
2n

,
k

2n

))
+ n · PF ([n,∞))

=
n2n∑
k=1

k − 1
2n

[
F

(
k

2n
− 0
)
− F

(
k − 1
2n

− 0
)]

+ n · (1− F (n− 0))

= −
n2n∑
k=1

k − 1
2n

(
1−F

(
k

2n
− 0
))

+
n2n∑
k=1

k − 1
2n

(
1−F

(
k − 1
2n

− 0
))

+ n · (1−F (n− 0))

=
1
2n

n2n∑
k=1

(
1− F

(
k

2n
− 0
))

.
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Da 1− F (x) monoton nichtwachsend ist, gilt weiter

n∫
0

(1− F (x)) dx ≥ 1
2n

n2n∑
k=1

(
1− F

(
k

2n
− 0
))

=
∫
X+

n dP ≥
n+1/2n∫
1/2n

(1− F (x)) dx.

Durch den Grenzübergang n→∞ erhält man

∫
X+ dP = lim

n→∞

∫
X+

n dP = lim
n→∞

1
2n

n2n∑
k=1

(
1− F

(
k

2n
− 0
))

=

∞∫
0

(1− F (x)) dx.

(9.4)

Abbildung 9.2: Approximation der Verteilungsfunktion der Standardnormalverteilung (dicke
Linie) durch Treppenfunktionen; hier ist Xn für n = 4 dargestellt.

(Siehe auch Mathematica-Notebook zu dieser Approximation.)

Die Umkehrung ist eine unmittelbare Konsequenz der Beziehungen (9.3) und (9.4). �

9.23 Beispiel:
Im Folgenden soll der Erwartungswert einiger Verteilungen nach dem Verfahren aus 9.22
berechnet werden:

• Poisson–Verteilung:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine Zufallsvariable mit
Verteilungsfunktion

F (x) :=


bxc∑
j=0

λj

j!
e−λ für x ≥ 0

0 für x < 0.
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Dann gilt:

EP [X] =
∫ ∞

0
(1− F (x)) dx−

∫ 0

−∞
F (x) dx︸ ︷︷ ︸
=0

=
∫ ∞

0
1−

bxc∑
j=0

λj

j!
e−λ dx

=
∞∑

n=0

1−
n∑

j=0

λj

j!
e−λ

 · PF ([n, n+ 1)]︸ ︷︷ ︸
=1

.

Betrachte zunächst die endliche Summe:

N∑
n=0

1−
n∑

j=0

λj

j!
e−λ

 = 1−
0∑

j=0

λj

j!
e−λ + 1−

1∑
j=0

λj

j!
e−λ + . . .+ 1−

N∑
j=0

λj

j!
e−λ

= N + 1−
N∑

j=0

(N + 1− j)
λj

j!
e−λ

= (N + 1)

1−
N∑

j=0

λj

j!
e−λ

+
N∑

j=0

λj

(j − 1)!
e−λ

=
N + 1
eλ

eλ − N∑
j=0

λj

j!

+ λ
N−1∑
j=0

λj

j!
e−λ −−−−→

N→∞
0 + λ · 1 = λ.

• Exponentialverteilung:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine Zufallsvariable mit
Verteilungsfunktion

F (x) :=

{
1− e−λx für x ≥ 0
0 für x < 0.

Dann gilt:

EP [X] =
∫ ∞

0
(1− F (x)) dx−

∫ 0

−∞
F (x) dx︸ ︷︷ ︸
=0

=
∫ ∞

0
e−λx dx =

[
− 1
λ
e−λx

]∞
0

=
1
λ
.

• Rechteckverteilung auf [−1, 1]:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine Zufallsvariable mit
Verteilungsfunktion

F (x) :=


0, x ≤ −1
x+1

2 , −1 ≤ x ≤ 1
1, x > 1.
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Dann folgt:

EP [X] =
∫ ∞

0
(1− F (x)) dx−

∫ 0

−∞
F (x) dx

=
∫ 1

0
(1− F (x)) dx+

∫ ∞

1
(1− F (x)︸ ︷︷ ︸

=1

) dx−
∫ 0

−1
F (x) dx

=
∫ 1

0

(
1− 1

2
(x+ 1)

)
dx−

∫ 0

−1

1
2
(x+ 1) dx

=
[
1
2
x− 1

4
x2

]1

0

− 1
2

[
1
2
x2 + x

]0

−1

=
1
2
− 1

4
− 1

2

(
−1

2
+ 1
)

= 0.

In allen Fällen erkennt man die Übereinstimmung mit den Ergebnissen aus Beispiel 9.21 und
die Effizienz der alternativen Vorgehensweise.
Bereits in der Vorbemerkung zu Kapitel 9 wurde nahegelegt, den Erwartungswert einer Zu-
fallsvariable X mit einer Dichte f(x) als

E[X] =
∫
xf(x) dx

festzulegen. Für den speziellen Fall der Exponentialverteilung wurde die Kompatibilität dieses
Ansatzes mit der allgemeinen Definition des Erwartungswertes aus Satz 9.20 bereits überprüft.
Offensichtlich handelt es sich hier um ein allgemeingültiges Resultat, wie der nachfolgende
Satz bestätigt.

9.24 Satz:
Wenn in der Situation von Satz 9.22 die Verteilungsfunktion F stetig ist und eine Dichte f
hat, so ist X genau dann P–integrierbar, wenn

+∞∫
−∞

|x| f(x) dx <∞

gilt. In diesem Fall ist

EP [X] =

+∞∫
−∞

xf(x) dx.

Beweis:
Für den Beweis wird wieder die Beziehung

EP [X] =
∫
X+ dP −

∫
X− dP
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ausgenutzt. Zunächst wird der Positivteil bearbeitet, d.h. es wird
∫
X+ dP =

+∞∫
0

xf(x) dx

gezeigt.

Für X+
n , n = 1, 2, . . . wie im Beweis von Satz 9.22 werden dazu

1.
∫
X+

n dP ≤
+∞∫
0

xf(x) dx und

2.
∫
X+

n dP ≥
+∞∫
0

xf(x) dx− 1
2n

gezeigt. Damit wird
∫
X+

n dP von oben und unten eingeschlossen und es ergibt sich

∫
X+ dP = lim

n→∞

∫
X+

n dP =

+∞∫
0

xf(x) dx.

Zu 1.: Es gilt für n = 1, 2, . . .:∫
X+

n dP =
n2n∑
k=1

k − 1
2n

PF

([
k − 1
2n

,
k

2n

))
+ n · PF ([n,∞))

=
n2n∑
k=1

k − 1
2n

k/2n∫
(k−1)/2n

f(x) dx+ n

∞∫
n

f(x) dx

=
n2n∑
k=1

k/2n∫
(k−1)/2n

k − 1
2n

f(x) dx+

∞∫
n

nf(x) dx

≤
n2n∑
k=1

k/2n∫
(k−1)/2n

xf(x) dx+

∞∫
n

xf(x) dx

=

∞∫
0

xf(x) dx.

Zu 2.: Andererseits ist für n = 1, 2, . . .:

∫
X+

n dP =
n2n∑
k=1

k/2n∫
(k−1)/2n

k − 1
2n

f(x) dx+ n

∫ ∞

n
f(x) dx

=
n2n∑
k=1

k/2n∫
(k−1)/2n

xf(x) dx−
n2n∑
k=1

k/2n∫
(k−1)/2n

(
x− k − 1

2n

)
f(x) dx
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+n

∞∫
n

f(x) dx

︸ ︷︷ ︸
≥0

≥
∫ n

0
xf(x) dx−

n2n∑
k=1

∫ k/2n

(k−1)/2n

(
x− k − 1

2n

)
f(x) dx.

Da aber für x ∈
[

k−1
2n ,

k
2n

]
und für alle n und alle k gilt: x − (k − 1)/2n ≤ 1/2n, kann

gefolgert werden

∫
X+

n dP ≥
n∫

0

xf(x) dx− 1
2n

n2n∑
k=1

k/2n∫
(k−1)/2n

f(x) dx

=

n∫
0

xf(x) dx− 1
2n

n∫
0

f(x) dx

︸ ︷︷ ︸
≤1

≥
n∫

0

xf(x) dx− 1
2n
· 1 (n = 1, 2, . . . ) .

Entsprechend wird nun der Negativteil bearbeitet, d.h. es wird
∫
X− dP =

0∫
−∞

xf(x) dx

gezeigt. Es ist

∫
X−

n dP =
n2n∑
k=1

k − 1
2n

PF

((
k − 1
2n

,
k

2n

])
+ n · PF ((−∞,−n])

=
n2n∑
k=1

k − 1
2n

−(k−1)/2n∫
−k/2n

f(x) dx+ n

−n∫
−∞

f(x) dx

=
n2n∑
k=1

−(k−1)/2n∫
−k/2n

k − 1
2n

f(x) dx+

−n∫
−∞

nf(x) dx

≤
n2n∑
k=1

−(k−1)/2n∫
−k/2n

|x| f(x) dx+

−n∫
−∞

|x| f(x) dx

=

0∫
−∞

|x| f(x) dx = −
0∫

−∞

xf(x) dx (n = 1, 2, . . . )
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und andererseits

∫
X−

n dP =
n2n∑
k=1

−(k−1)/2n∫
−k/2n

k − 1
2n

f(x) dx−
∫ −n

−∞
nf(x) dx

=
n2n∑
k=1

−(k−1)/2n∫
−k/2n

|x| f(x) dx−
n2n∑
k=1

−(k−1)/2n∫
−k/2n

(
|x| − k − 1

2n

)
f(x) dx

+n

−n∫
−∞

f(x) dx

︸ ︷︷ ︸
≥0

≥
n2n∑
k=1

−(k−1)/2n∫
−k/2n

|x| f(x) dx− 1
2n

n2n∑
k=1

−(k−1)/2n∫
−k/2n

f(x) dx

≥
0∫

−n

|x| f(x) dx− 1
2n
· 1 = −

0∫
−n

xf(x) dx− 1
2n

(n = 1, 2, . . .),

also folgt ∫
X− dP = lim

n→∞

∫
X−

n dP = −
0∫

−∞

xf(x) dx.

�

9.25 Satz (Transformationssatz für Erwartungswerte):
Es sei X eine reelle Zufallsvariable über (Ω,F, P ) mit Werten in (X,B) = (R,B) und
g : (X,B) → (R,B) eine messbare Abbildung, derart dass g ≥ 0 oder g(X) als Funktion
von ω P–integrierbar ist. Dann gilt:

E[g(X)] =
∫

Ω
g(X(ω))dP (ω) =

∫
R

g(x)dPX(x) kurz E[g(X)] =
∫
g(X) dP =

∫
g dPX ,

wobei PX das Bildmaß von P bzgl. X sei.

Beweis:
Der Beweis folgt dem Prinzip der ,,Algebraischen Induktion”, indem die Aussage sukzessive
für Indikatorfunktionen (1), Elementarfunktionen (2), nichtnegative messbare Funktionen (3)
und schließlich für allgemeine messbare Funktionen (4) bewiesen wird, so wie wir auch bei
der Einführung des µ-Integrals vorgegangen sind.

(1): Für die Aussage von Satz 9.25 heißt dies konkret:
Betrachte Abbildungen g der Form g = IA mit A ∈ B. Offensichtlich gilt:

g(X(ω)) = IA(X(ω)) =
{

1 , X(ω) ∈ A
0 , X(ω) /∈ A =

{
1 , ω ∈ X−1(A)
0 , ω /∈ X−1(A)

= IX−1(A)(ω).
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Mit Hilfe von Satz 9.7 folgt deshalb:

EP [g(X)] = EP [IX−1(A)] = P (X−1(A)) = PX(A) = EPX
[IA] = EPX

[g].

(2): Es sei nun g eine Elementarfunktion mit den endlich vielen Werten α1, . . . , αn, n ∈ N.
Aufgrund von Satz 9.2 besitzt g eine Normaldarstellung der Form

g =
n∑

i=1

αiIAi ,

mit Ai ∈ B für i = 1, . . . , n. Deshalb lässt sich schreiben

EP [g(X)] = EP

[
n∑

i=1

αiIX−1(Ai)

]
=

n∑
i=1

αiEP [IX−1(Ai)] =
n∑

i=1

αiEPX
[IAi ]

= EPX

[
n∑

i=1

αiIAi

]
= EPX

[g].

(3): Für g ≥ 0 existiert aufgrund von Satz 9.8 eine monoton nichtfallende Folge gn von
nichtnegativen Elementarfunktionen mit g = sup

n
gn.

EP [g(X)] = EP [sup
n
gn(X)] Satz 9.10= sup

n
EP [gn(X)] = sup

n
EPX

[gn]

= EPX
[sup

n
gn] = EPX

[g].

(4): Allgemeine integrierbare messbare Funktionen behandelt man, indem man wieder ihren
Positiv– und Negativteil betrachtet:

g = g+ − g− ⇒ (g ◦X)+ = g+ ◦X und (g ◦X)− = g− ◦X.

Folglich gilt:

EP [g(X)] =
∫

Ω
(g(X))+ dP −

∫
Ω
(g(X))− dP =

∫
Ω
g+(X) dP −

∫
Ω
g−(X) dP

=
∫
R

g+ dPX −
∫
R

g− dPX =
∫
R

g dPX .

�

9.26 Bemerkung:
Indem man für g die identische Abbildung g : x→ x betrachtet, lässt sich allgemein schreiben:

EP [X] =
∫
Ω

X(ω) dP (ω) =
∫
R

x dPX(x) =:
∫
R

x dFX(x) .
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9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

9.27 Satz (Erwartungswert und Riemann–Integral):
Es sei X eine stetige Zufallsvariable über (Ω,F, P ) mit der Dichte f und es sei g : (R,B) →
(R,B) eine messbare Abbildung mit der Eigenschaft, dass |g| · f Lebesgue–integrierbar ist.
Dann ist g(X) P–integrierbar mit

E[g(X)] =

+∞∫
−∞

g(x)f(x) dx.

(Siehe auch Lebensdaten von Lebesgue und Riemann im Anhang D.)

Beweis:
Übung. �

Aufgrund der Sätze 9.22, 9.24 und 9.25 stehen unterschiedliche Methoden zur Berechnung
des Erwartungswertes einer Zufallsgröße zur Auswahl. Diese Möglichkeiten sollen an einem
Beispiel veranschaulicht werden.

9.28 Beispiel:
Es sei X d= R(0, 2) und g(x) := x2. Gesucht ist EP [X2] = EP [g(X)]. Die Rechteckverteilung
besitzt die Dichte

f(x) =
{

1/2 , x ∈ (0, 2)
0 , x /∈ (0, 2)

und die Verteilungsfunktion

F (x) =


0 , x ≤ 0
x/2 , 0 < x < 2
1 , x ≥ 2

.

1. Möglichkeit: Aufgrund von Satz 9.27 gilt:

EP

[
X2
]

=

+∞∫
−∞

x2f(x) dx =

2∫
0

x2 · 1
2
dx =

1
2
· 1
3
x3

∣∣∣∣2
0

=
1
2
· 8
3

=
4
3
.

2. Möglichkeit: Wir setzen Y = X2. Es gilt

F̃ (y) = P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √
y) =

1
2
√
y, 0 ≤ y ≤ 4.

Die Anwendung von Satz 9.22 liefert dann

EP

[
X2
]

=

∞∫
0

(1− F̃ (y)) dy =

4∫
0

(
1− 1

2
√
y

)
dy = 4− 1

2
· y

3/2

3/2

∣∣∣∣∣
4

0

= 4− 1
2
· 641/2

3/2
= 4− 1

3
· 8 =

4
3
.
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3. Möglichkeit: Die Dichte von Y lautet:

f̃(y) =


1

4
√
y

, 0 < y < 4

0 , sonst
.

Damit wird

EP [X2] =

∞∫
0

yf̃(y) dy =

4∫
0

y
1

4
√
y
dy =

4∫
0

1
4
√
y dy =

1
4
· 2
3

√
y3

∣∣∣∣4
0

=
4
3
.

9.29 Definition (Varianz):
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω −→ R eine Zufallsgröße, für die
sowohl EP [X] als auch EP

[
(X − E[X])2

]
existiert. Dann heißt

Var[X] := EP

[
(X − E[X])2

]
die Varianz von X.

Wie im diskreten Fall beweist man
9.30 Satz:
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω −→ R eine Zufallsgröße, für die
EP

[
X2
]

existiert. Dann existiert auch EP [X] und es gilt:

a) Var[X] = EP

[
X2
]
− (EP [X])2 (Verschiebungssatz).

b) Var[aX + b] = a2 ·Var[X].

Beweis:
Die Existenz von EP [X] folgt aus der Abschätzung |X| ≤ max(1, X2) und Satz 9.18c. Die
weiteren Schritte sind identisch mit dem Beweis von Satz 2.25. �

9.31 Beispiel:
Es sei X d= Exp(λ), dann gilt:

EP [X] =

∞∫
0

xf(x) dx =

∞∫
0

xλe−λx dx =
1
λ
.

EP

[
X2
]

=

∞∫
0

P (X2 > x) dx =

∞∫
0

P (X >
√
x) dx =

∞∫
0

(1− F (
√
x)) dx

=

∞∫
0

e−λ
√

x dx = 2

∞∫
0

e−λtt dt =
2
λ2
.

Damit ergibt sich:

Var[X] = E
[
X2
]
− (E[X])2 =

2
λ2
− 1
λ2

=
1
λ2
.
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9.32 Bemerkung:
Neben dem Erwartungswert und der Varianz einer Zufallsvariablen werden manchmal noch
weitere Kennzahlen zur Charakterisierung einer Verteilungsfunktion herangezogen:
Die Größe

σ :=
√

Var[X],

heißt Standardabweichung oder Streuung von X. Im Falle EP [X] 6= 0 nennt man den Quo-
tienten √

Var[X]
EP [X]

den Variationskoeffizienten von X. Beide Kennzahlen charakterisieren — ebenso wie die Va-
rianz — die mittlere Abweichung der Zufallsgröße von ihrem Erwartungswert.
Andere Eigenschaften des Verteilungsgesetzes kann man mit Hilfe der sogenannten
höheren Momente beschreiben:

EP

[
Xk
]
, EP

[
|X|k

]
, EP

[
(X − E[X])k

]
, EP

[
|X − E[X]|k

]
(k ∈ N).

Sie heißen der obigen Reihenfolge nach das k–te Moment, das k–te absolute Moment, das
k–te zentrale Moment und das k–te zentrale absolute Moment von X. Das zweite zentrale
Moment entspricht der Varianz. Den Quotienten

EP

[
(X − E[X])3

]
Var[X]

3
2

bezeichnet man als die Schiefe von X.

t t

f(t)f(t)

linksschief rechtsschief

Diese Kennzahl charakterisiert Abweichungen von der Symmetrie des Verteilungsgesetzes von
X. Ist X symmetrisch verteilt zu einem Punkt x ∈ R, wie zum Beispiel jede normalverteilte
Zufallsvariable, so ist die Schiefe gleich Null, während Zufallsvariablen X mit Dichtefunktio-
nen der Form wie in der obenstehenden Abbildung eine positive bzw. eine negative Schiefe
besitzen.

9.33 Bemerkung:
Sofern keine Verwechslungen möglich sind, wird auch anstelle von EP [X] kurz E[X] geschrie-
ben.

9.6 Tabelle mit Kenngrößen verschiedener Verteilungen

Zum Abschluss dieses Kapitels soll noch eine tabellarische Übrsicht über die Kenngrößen der
bisher behandelten kontinuerilichen Verteilungen gegeben werden.
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Rechteckverteilung (R(a, b), a < b)

Dichte f(x) :=
{

1
b−a , x ∈ [a, b],
0 , x 6∈ [a, b]

Verteilung F (x) :=


0 , x < a,

x−a
b−a , a ≤ x ≤ b,

1 , x > b.

Erwartungswert E[X] = a+b
2

Varianz Var[X] = (b−a)2

12

Exponentialverteilung (Exp(λ), λ > 0)

Dichte f(x) :=
{
λe−λx , x ≥ 0,

0 , x < 0.

Verteilung F (x) :=
{

1− e−λx , x ≥ 0,
0 , x < 0

Erwartungswert E[X] = 1
λ

Varianz Var[X] = 1
λ2

Weibull–Verteilung (λ, β > 0)

Dichte f(x) :=
{
λ · β · xβ−1 · e−λxβ

, x ≥ 0
0 , x < 0

Verteilung F (x) :=
{

1− e−λxβ
, x ≥ 0

0 , x < 0

Erwartungswert E[X] = λ−1/β

β Γ
(

1
β

)
Varianz Var[X] = λ−2/β

β

(
2Γ
(

2
β

)
− 1

β

(
Γ
(

1
β

))2
)

Standardnormalverteilung (N (0, 1))

Dichte f(x) := 1√
2π
e−

x2

2

Verteilung F (x) :=
x∫

−∞

1√
2π
e−

t2

2 dt

Erwartungswert E[X] = 0
Varianz Var[X] = 1

Normalverteilung (N (µ, σ), µ ∈ R, σ > 0)

Dichte f(x) := 1
σ
√

2π
e−

1
2(

x−µ
σ )2

Verteilung F (x) :=
x∫

−∞

1
σ
√

2π
e−

1
2(

t−µ
σ )2

dt = Φ
(x−µ

σ

)
Erwartungswert E[X] = µ

Varianz Var[X] = σ2

Logarithmische Normalverteilung (µ ∈ R, σ > 0)

Dichte f(x) :=

{
1

σx
√

2π
e−(log(x)−µ)2/2σ2

, x > 0
0 , x ≤ 0

Verteilung F (x) := Φ
(

log(x)−µ
σ

)
Erwartungswert E[X] = eµ+σ2/2

Varianz Var[X] = e2µ+2σ2 − e2µ+σ2
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Cauchy–Verteilung (λ > 0, µ ∈ R)
Dichte f(x) := 1

π ·
λ

λ2+(x−µ)2

Verteilung F (x) :=
∫ x
−∞ f(t) dt

Erwartungswert E[X] = µ

Varianz existiert nicht
Gammaverteilung (Gamma(b, p), b, p ∈ R+)

Dichte f(x) :=

{
bp

Γ(p)x
p−1e−bx , x ≥ 0
0 , x < 0

Verteilung F (x) :=
∫ x
−∞ f(t) dt

Erwartungswert E[X] = p
b

Varianz Var[X] = p
b2

Die χ2–Verteilung (Gamma(1
2 ,

n
2 ), n ∈ N)

Dichte f(x) :=

{
1

2
n
2 Γ(n

2 )
x

n
2
−1e−

x
2 , x ≥ 0

0 , x < 0
Verteilung F (x) :=

∫ x
−∞ f(t) dt

Erwartungswert E[X] = n

Varianz Var[X] = 2n
Erlang–Verteilung (Gamma(b, n), n ∈ N, b ∈ R+)

Dichte f(x) :=

{
bn

(n−1)!x
n−1e−bx , x ≥ 0,
0 , x < 0

Verteilung F (x) :=

 1− e−bx ·
n−1∑
k=0

(bx)k

k!
, x ≥ 0,

0 , x < 0.
Erwartungswert E[X] = n

b

Varianz Var[X] = n
b2

Betaverteilung (Beta(p, q))

Dichte f(x) :=

{
(b−a)1−p−q

B(p,q) (x− a)p−1(b− x)q−1 , x ∈ (a, b)
0 , x 6∈ (a, b)

Verteilung F (x) :=
∫ x
−∞ f(t) dt

Erwartungswert E[X] = bp+aq
p+q

Varianz Var[X] = (a−b)2pq
(p+q)2(1+p+q)

(Siehe auch Mathematica-Notebook zu den Verteilungen.)

Eine umfangreiche Sammlung von Informationen zu den Verteilungen aus diesem Abschnitt
und vielen weiteren Verteilungen findet sich unter www.xycoon.com.

9.7 Weitere Hilfsmittel aus der Maß– und Integrationstheorie

In diesem Abschnitt geht es zunächst um fast überall bestehende Eigenschaften.

9.34 Definition (µ–Nullmenge):
Es sei (Ω,F, µ) ein Maßraum. Eine Teilmenge N ⊆ Ω heißt µ–Nullmenge, wenn N ∈ F und
µ(N) = 0 ist.
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9.35 Definition (µ–fast–überall):
Man sagt, die Aussage P über Elemente von Ω ist µ–fast–überall (auf Ω) wahr, wenn es eine
µ–Nullmenge N ⊆ Ω gibt, so dass P für alle ω ∈ N = Ω\N wahr ist.

9.36 Satz:
Es sei (Ω,F, µ) ein Maßraum und f : Ω → R+ sei integrierbar. Es ist genau dann

∫
Ω f dµ = 0,

wenn f = 0 f.ü. .

Beweis:
1. Es sei

∫
fdµ = 0: Wegen der Messbarkeit von f ist T (f) = {ω | f(ω) > 0} ∈ F und für

n = 1, 2, 3, . . . sei An :=
{
ω | f(ω) ≥ 1

n

}
∈ F. Es gilt An ↗ T (f). Nun gilt f ≥ 1

n · IAn

und nach Voraussetzung 0 =
∫
fdµ ≥

∫
1
nIAndµ = 1

nµ(An) für alle n. Damit ist auch

µ

( ∞⋃
n=1

An

)
= µ(T (f)) = 0, d.h. es ist f = 0 f.ü..

2. Es sei jetzt f = 0 f.ü.: Für die Folge von Elementarfunktionen fn = nIT (f)(ω) gilt∫
fndµ = 0 für alle n ∈ N. Der Grenzwert f̂ := lim

n→∞
fn ist eine nichtnegative messbare

Funktion, für die f ≤ f̂ gilt. Dann ist nach der Definition und wegen der Monotonie
des Integrals

∫
fdµ ≤

∫
f̂dµ = 0.

�

9.37 Satz:
Es sei (Ω,F, µ) ein Maßraum und f, g : Ω → R seien messbar. Ist f µ–integrierbar und f = g
f.ü., dann ist auch g µ–integrierbar und es gilt∫

Ω

f dµ =
∫
Ω

g dµ.

Beweis:
Wir setzen h := f − g, dann ist h messbar und h = 0 f.ü. Damit ist auch h+ = h− = 0 f.ü.
Somit ist dann

∫
h+dµ =

∫
h−dµ = 0, also

∫
f+dµ =

∫
g+dµ und

∫
f−dµ =

∫
g−dµ. Daher

ist g integrabel und
∫
fdµ =

∫
gdµ. �

9.38 Definition (Integral):
Es sei (Ω,F, µ) ein Maßraum und f : Ω → R quasiintegrabel. Für A ∈ F nennt man∫

A

f dµ :=
∫
Ω

f · IA dµ

das Integral von f über A.

Im Folgenden sollen einige Eigenschaften des Integrals genauer betrachtet werden.

9.39 Satz:
Es sei (Ω,F, µ) ein Maßraum und f : Ω → R integrabel. Ist f > 0 f.ü. auf A ∈ F, dann gilt:∫

A

fdµ = 0 ⇔ µ(A) = 0.
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Beweis:
Es ist f.ü. IA·f ≥ 0 und es sei

∫
Ω IAf dµ = 0 und aufgrund von Satz 9.36 ist daher IAf = 0 f.ü. .

Folglich ist IA = 0 f.ü. und mithin ist A eine µ–Nullmenge. Umgekehrt folgt aus µ(A) = 0,
dass f · IA = 0 f.ü. . Für diesen Fall besagt Satz 9.36, dass

∫
Ω fIA dµ =

∫
A f dµ = 0 . �

Selbstverständlich gilt 9.39 auch für f < 0 f.ü. . Der Beweis verläuft analog.

9.40 Satz:
Es sei (Ω,F, µ) ein Maßraum und f : Ω → R eine integrierbare Funktion mit

∫
A f dµ = 0 für

alle A ∈ F, dann ist f = 0 f.ü. .

Beweis:
Es seien P := {ω | f(ω) > 0} und N := {ω | f(ω) < 0}. Wegen

∫
f dµ = 0 und f(ω) > 0 f.ü.

auf P folgt aus 9.39, dass µ(P ) = 0 gilt. Analog schließt man auf µ(N) = 0. Daher ist der
Träger von f : {ω | f(ω) 6= 0} = P ∪N eine Nullmenge, also f = 0 f.ü., was zu zeigen war.�

9.41 Satz:
Es sei (Ω,F, µ) ein Maßraum und f, g : Ω → R seien integrierbare Funktionen. Gilt für alle
A ∈ F ∫

A

fdµ =
∫
A

gdµ,

so ist f = g f.ü.

Beweis:
Nach Satz 9.40 folgt aus

∫
A

(f − g)dµ = 0 ∀ A ∈ F : f − g = 0 f.ü., womit alles gezeigt ist. �

9.42 Satz (Satz von der monotonen Konvergenz):
Es sei (Ω,F, µ) ein Maßraum und (fn)n∈N eine Folge messbarer Funktionen fn : Ω → R+ mit
fn ≤ fn+1 für alle n ∈ N. Dann gilt:

(i)
∫

Ω
lim

n→∞
fndµ =

∫
Ω

sup
n∈N

fndµ = sup
n∈N

∫
Ω
fndµ = lim

n→∞

∫
Ω
fndµ

(ii) f := sup
n∈N

fn ist integrierbar oder sup
n∈N

∫
Ω
fn dµ <∞.

Beweis:
Wegen der Monotonie von (fn)n∈N und (

∫
fn)n∈N sind die Suprema gleich den Limiten. Es

sei f := supn∈N fn. Dann zeigt fn ≤ f sofort
∫
fn dµ ≤

∫
f dµ und somit

sup
n∈N

∫
fn dµ ≤

∫
f dµ.

Ist umgekehrt (hn,m)m∈N eine monoton nichtfallende Folge von Elementarfunktionen mit
hn,m → fn, so gilt aufgrund von Satz 9.10∫

hn,m dµ ≤ sup
n∈N

∫
fn dµ .

Alles weitere folgt mit Satz 9.11. �
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Aus Satz 9.42 ergibt sich

9.43 Satz:
Es sei (Ω,F, µ) ein Wahrscheinlichkeitsraum und (gn)n∈N eine Folge messbarer Funktionen
gn : Ω → R+. Dann gilt: ∫

Ω

∞∑
n=1

gn dµ =
∞∑

n=1

∫
Ω

gn dµ .

Beweis:
Man wende Satz 9.42 an mit fn :=

∑n
k=1 gk für alle n ∈ N und f := supk gk. �

9.44 Satz (Lemma von Fatou):
Es sei (Ω,F, µ) ein Maßraum und (fn)n∈N eine Folge messbarer Funktionen fn : Ω → R+.
Dann gilt ∫

Ω

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
Ω

fn dµ .

Beweis:
Für jedes ω ∈ Ω sei gn(ω) := inf

k≥n
fk(ω). Dann ist gn ≥ 0, messbar und die Folge (gn)n∈N ist

monoton nichtfallend mit

lim
n→∞

gn(ω) = sup
n∈N

gn(ω) = lim inf
n→∞

fn(ω) .

Da für alle n gilt: fn ≥ gn, lässt sich mit Hilfe von Satz 9.42 folgern, dass

lim inf
n→∞

∫
fn dµ ≥ lim

n→∞

∫
gn dµ =

∫
lim

n→∞
gn dµ =

∫
lim inf
n→∞

fn dµ .

�

9.45 Satz (Satz von der majorisierten Konvergenz):
Es sei (Ω,F, µ) ein Maßraum und (fn)n∈N eine Folge integrierbarer Funktionen fn : Ω → R,
die f.ü. gegen eine messbare Funktion f : Ω → R konvergiert. Existiert eine integrierbare
Funktion g : Ω → R mit |fn| ≤ g f.ü. für alle n ∈ N, dann ist auch f integrierbar und es gilt:∫

f dµ = lim
n→∞

∫
fn dµ .

Beweis:
O.B.d.A. kann angenommen werden, dass fn ≥ 0, ∀ n ∈ N und f ≥ 0. Es sei jetzt N ∈ F eine
Nullmenge mit

lim
n→∞

fn(ω) = f(ω) ∀ ω ∈ Ω\N ,

|fn(ω)| ≤ g(ω) ∀ ω ∈ Ω\N .

Ersetzt man nun fn durch fn · (1 − IN ) und f durch f · (1 − IN ), lässt sich deshalb N = ∅
annehmen. Mit dem Lemma von Fatou (Satz 9.44) folgt dann, dass∫

f dµ ≤ lim inf
n→∞

∫
fn dµ ≤

∫
g dµ
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und ∫
g dµ−

∫
f dµ =

∫
(g − f) dµ ≤ lim inf

n→∞

∫
(g − fn) dµ =

∫
g dµ− lim sup

n→∞

∫
fn dµ .

Folglich gilt

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ ≤ lim inf

n→∞

∫
fn dµ ≤ lim sup

n→∞

∫
fn dµ ,

was zu zeigen war. �
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Kapitel 10

Zuverlässigkeit

Die Zuverlässigkeitstheorie stellt eine Anwendung der Wahrscheinlichkeitstheorie dar. Gegen-
stand der Zuverlässigkeitstheorie ist die Zuverlässigkeit technischer Systeme, die gemessen,
analysiert und optimiert werden soll. Analyse und Optimierung werden anhand bestimmter
Kenngrößen wie Lebensdauerverteilung und Ausfallrate vorgenommen.

Schlüsselwörter: Lebensdauerverteilung, Zuverlässigkeitsfunktion, Ausfallrate, Se-
rienschaltung, Parallelschaltung, Brückenschaltung, Operationspfade, dynamische
Optimierung, Zustand, Entscheidungsfolge, Bellmansches Optimalitätsprinzip, Bell-
mansche Funktionalgleichung, Aufteilungsproblem
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10.1 Einführung und Grundbegriffe

In der Zuverlässigkeitstheorie werden folgende Aufgabenstellungen betrachtet:

• Modellierung des Ausfallverhaltens und der Abnutzung von Systemen mit Hilfe stocha-
stischer Modelle. (Stichwörter: Lebensdauerverteilungen, Zuverlässigkeit)

• Untersuchung des Zusammenhangs zwischen Zuverlässigkeitskenngrößen eines Systems
und seiner Subsysteme. (Stichwörter: Systemfunktionen, monotone Systeme)

• Untersuchung und Optimierung von Maßnahmen zur Erhaltung bzw. Wiederherstel-
lung der Arbeitsfähigkeit von Systemen, einschließlich der Interdependenzen zwischen
Mensch und Maschine. (Stichwörter: Instandsetzungs– bzw. Instandhaltungsstrategien,
repair–men–problem)

• Schätzung und Prüfung der Zuverlässigkeitskenngrößen durch Anwendung mathema-
tisch–statistischer Verfahren sowie Entwicklung spezifischer Schätz– und Prüfverfahren.
(Stichwort: Lebensdaueranalyse)

In dieser Vorlesung soll lediglich ein Einblick in die Zuverlässigkeitstheorie gegeben werden.
Daher beschränkt sich dieses Kapitel auf den ersten der oben genannten Bereiche.

10.1 Definition (Lebensdauer-, Überlebens- und Zuverlässigkeitsfunktion):
Als Lebensdauer einer Maschine oder Komponente wird die Zeit zwischen Inbetriebnahme und
Ausfall bezeichnet. Sie wird durch eine nichtnegative Zufallsgröße T beschrieben.
Die Lebensdauerfunktion sei die Verteilungsfunktion der Lebensdauer T , d.h.

F (t) := P (T ≤ t), t ∈ R+.

Mit Hilfe der Lebensdauerfunktion lässt sich die Überlebens- bzw. Zuverlässigkeitsfunktion
F (t) der Komponente als

F (t) := 1− F (t) = P (T > t), t ∈ R+,

definieren.

Im Weiteren sei F eine stetige Verteilungsfunktion und f die dazugehörige Dichte.

10.2 Bemerkung (mittlere Lebensdauer, Varianz der Lebensdauer):
Typische Kenngrößen der Lebensdauerfunktion sind die mittlere Lebensdauer E[T ] und die
Varianz der Lebensdauer Var[T ].

10.3 Definition (Ausfallrate):
Es sei F eine stetige Verteilungsfunktion. Dann heißt

a(t) := lim
h→0+

1
h
P (t < T ≤ t+ h | T > t)

die Ausfallrate eines Bauteils mit der Lebensdauer T .
∆h · a(t) ist die Wahrscheinlichkeit dafür, dass eine Komponente nach Erreichen des Le-
bensalters t innerhalb der Zeitspanne ∆h ausfällt.
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10.4 Satz:
Es sei a(t) die Ausfallrate eines Bauteils mit stetiger Lebensdauerverteilung. Dann gilt für die
Zuverlässigkeitsfunktion:

F (t) = exp

− t∫
0

a(u) du

 , t ∈ R+.

Beweis:
Es gilt:

P (t < T ≤ t+ h | T > t) =
P (t < T ≤ t+ h)

P (T > t)
=
F (t+ h)− F (t)

1− F (t)
.

Somit folgt:

a(t) = lim
h→0

1
h
· F (t+ h)− F (t)

1− F (t)
= lim

h→0

F (t+ h)− F (t)
h

· 1
1− F (t)

=
d

dt
F (t) · 1

1− F (t)
=

f(t)
1− F (t)

, t ∈ R+,

bzw.
a(t) =

f(t)
1− F (t)

= − d

dt
ln(1− F (t)), t ∈ R+.

Diese Differentialgleichung lässt sich durch Integration lösen:

ln(1− F (u))
∣∣∣t
0

= −
∫ t

0
a(u) du+ c,

was gleichbedeutend ist mit

1− F (t) = c′ · exp
(
−
∫ t

0
a(u) du

)
, t ∈ R+.

Die Bestimmung der Konstanten c′ erfolgt mit Hilfe der Anfangsbedingung F (0) := 0, die
c′ = 1 und damit insgesamt

F (t) = 1− F (t) = exp

− t∫
0

a(u) du

 , t ∈ R+,

ergibt. �

Neben der Ausfallrate ist die bedingte Restlebensdauer, d.h. die Lebensdauerverteilung unter
der Bedingung, dass das Bauteil bereits bis zum Zeitpunkt t0 überlebt hat, von Interesse.

10.5 Definition (Bedingte Überlebenswahrscheinlichkeit, bedingte Restlebensdauer):
Es sei

F t0(t) := P (T > t+ t0|T > t0) =
F (t+ t0)
F (t0)

=
1− F (t+ t0)

1− F (t0)
, t ∈ R+,

die bedingte Überlebenswahrscheinlichkeit ab dem Zeitpunkt t0 ∈ R+. Entsprechend wird die
bedingte Restlebensdauer ab dem Zeitpunkt t0 ∈ R+, d.h. die Verteilung der Restlebensdauer
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unter der Annahme, dass das Bauteil bereits bis zum Zeitpunkt t0 ∈ R+ überlebt hat, definiert
als

Ft0(t) := 1− F t0(t) = P (T ≤ t+ t0|T > t0) =
F (t+ t0)
F (t0)

, t ∈ R+.

Die bedingte Überlebenswahrscheinlichkeit F t0(t) lässt sich ebenfalls durch die Ausfallrate
a(t) ausdrücken:

F t0(t) = exp

− t∫
0

a(u+ t0)du

 , t ∈ R+.

Damit lassen sich folgende Eigenschaften formulieren:

• Die Ausfallrate a(t) ist genau dann eine monoton wachsende Funktion, wenn für je-
des feste t die bedingte Überlebenswahrscheinlichkeit F t0(t) eine fallende Funktion des
erreichten Lebensalters ist.

• Die Ausfallrate a(t) ist genau dann eine monoton fallende Funktion, wenn für jedes
feste t die bedingte Überlebenswahrscheinlichkeit F t0(t) eine wachsende Funktion des
erreichten Lebensalters ist.

Klassen von Lebensdauerverteilungen

Parametrische Klassen

Im günstigsten Fall kann die Lebensdauer mit einer bekannten Verteilung beschrieben werden.
In Kapitel 7.3 wurden bereits die Exponentialverteilung, ihre Verallgemeinerung, die Weibull-
verteilung, sowie die logarithmische Normalverteilung als Kandidaten zur Modellierung von
Lebensdauern genannt. Nachstehende Tabelle stellt die im vorigen Abschnitt definierten Be-
griffe für diese Verteilungen zusammen:

Es gilt jeweils für alle t ∈ R+:

Exponentialverteilung Weibull–Verteilung Log-Normalverteilung

Verteilungsfunktion F (t) =

1− e−αt, α > 0 1− e−αtβ , α, β > 0 Φ
(

log(t)−µ
σ

)
Dichte f(t) =

αe−αt αβtβ−1e−αtβ 1
σt
√

2π
e−(log(t)−µ)2/2σ2

Zuverlässigkeitsfunktion F (t) = 1− F (t) =

e−αt e−αtβ 1− Φ
(

log(t)−µ
σ

)
Mittlere Lebensdauer E[T ] =

1
α

Γ(1/β+1)

α1/β eµ+σ2/2
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Exponentialverteilung Weibull–Verteilung Log-Normalverteilung

Varianz der Lebensdauer Var[T ] =
1

α2
Γ(2/β+1)−(Γ(1/β+1))2

(α1/β)2
e2µ+2σ2 − e2µ+σ2

Ausfallrate a(t) = f(t)
1−F (t) =

α·e−αt

e−αt = α αβtβ−1
1

σt
√

2π
e−(log(t)−µ)2/2σ2

1−Φ
(

log(t)−µ
σ

)
Bedingte Überlebenswahrscheinlichkeit F t0(t) =

1−(1−e−α(t+t0))
1−(1−e−αt0 )

= e−αt e−α(t0+t)β+αtβ0
1−Φ

(
log(t+t0)−µ

σ

)
1−Φ

(
log(t0)−µ

σ

)
Besonders hervorzuheben ist hier die bedingte Restwahrscheinlichkeit der Exponentialvertei-
lung, die, unabhängig vom Beobachtungszeitpunkt, wieder exponentiell verteilt ist.

Nichtparametrische Klassen

Die vorgestellten Lebensdauerverteilungen der parametrischen Klasse sind durch ihre Ver-
teilungsfunktionen bzw. deren Parameter charakterisiert. Durch die Wahl dieser Parameter
bedingt, können sowohl fallende, als auch steigende Ausfallraten auftreten. Unter Umständen
ist es jedoch schwierig, einer gegebenen Ausfallrate eine entsprechende Verteilungsfunktion
anzupassen. In diesen Fällen wird die Verteilungsfunktion oft anhand der Eigenschaften der
Ausfallrate klassifiziert.

10.6 Definition (Increasing Failure Rate, Decreasing Failure Rate):
Eine Verteilungsfunktion F (t) ist eine Increasing- (IFR) oder eine Decreasing Failure Rate
(DFR) Verteilung, wenn die bedingte Überlebenswahrscheinlichkeit F t0(t) bei beliebigem, aber
festem t > 0 monoton fällt bzw. wächst in t0.

10.7 Beispiel:
Die Weibull–Verteilung für β > 1 und die Erlangverteilung sind IFR–Verteilungen. Für β < 1
ist die Weibull–Verteilung eine DFR–Verteilung. Die Exponentialverteilung ist sowohl eine
IFR-, als auch eine DFR-Verteilung. Die logarithmische Normalverteilung hingegen stellt
keinen der beiden Typen dar.

10.8 Satz:
Eine Verteilungsfunktion F (t) ist genau dann vom Typ IFR bzw. DFR, wenn die Funktion
lnF (t) konkav bzw. konvex ist.

Beweis:
Eine Funktion heißt konvex, wenn die Sekante durch zwei Punkte des Graphen stets ober-
halb des Graphen liegt. Liegt die Sekante stets unterhalb des graphen, so heißt die Funktion
konkav. Es gelten folgende Kriterien:

• Eine Funktion f ist konvex (konkav) genau dann, wenn f ′ monoton wachsend (fallend)
ist.

• Eine Funktion f ist konvex (konkav) genau dann, wenn f ′′ ≥ 0 (f ′′ ≤ 0).
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Zu zeigen ist somit:

• F (t) ist vom Typ DFR ⇐⇒ d
dt lnF (t) ist monoton wachsend.

• F (t) ist vom Typ IFR ⇐⇒ d
dt lnF (t) ist monoton fallend.

Es wird hier nur der Typ DFR betrachtet. Für den Typ IFR gilt die entsprechende Argumen-
tation.
Es sei F (t) vom Typ DFR, d.h. für alle beliebig fest gewählten t ∈ R+ ist F t0 := F (t+t0)

F (t0)

monoton wachsend in t0. Dies ist äquvialent zu

ln
F (t+ t0)
F (t0)

= lnF (t+ t0)− lnF (t0) ist monoton wachsend in t0 ∀ t ∈ R+

⇐⇒ lnF (t+ t0)− lnF (t0)
t

ist monoton wachsend in t0 ∀ t ∈ R+

⇐⇒ d

dt0
lnF (t0) ist monoton wachsend in t0

Die Richtung ,,=⇒” in der letzten Äquivalenz folgt durch Grenzübergang und die Richung
,,⇐=” ergibt sich, da d

dt0
lnF (t0) für alle t0 ∈ R+ monoton wachsend ist. �

Zusammengesetzte Lebensdauerverteilungen

Die typische Form einer Ausfallrate ist die sogenannte Badewannenkurve. Die Kurve besteht
aus drei Bereichen: Am Anfang steht ein hoher, schnell abklingender Bereich. Dies ist die Zeit
der Kinderkrankheiten. Der mittlere Bereich hat eine fast konstante Ausfallrate, während
zum Schluss die Ausfallrate durch Alterserscheinungen wieder ansteigt.

t

a�t�

Abbildung 10.1: typischer Ausfallratenverlauf; sogenannte Badenwannenkurve

Bei der Betrachtung der Ausfallraten der bisherigen Verteilungsfunktionen lässt sich fest-
stellen, dass keine dieser Funktionen einer Badewannenkurve ähnlich ist. Um ein solches
Ausfallverhalten nachbilden zu können, müssen mehrere Lebensdauerverteilungen kombiniert
werden.
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Eine zusammengesetzte Verteilungsfunktion lässt sich wie folgt definieren:

Es seien f1, . . . , fk Dichten von Verteilungsfunktionen, pi ≥ 0 für i = 1, . . . , k. Ist die Summe
aller pi gleich eins, so definiert

f(t) :=
k∑

i=1

pi · fi(t)

die zusammengesetzte Dichte. Die zugehörige Verteilungsfunktion lautet

F (t) :=
k∑

i=1

pi · Fi(t).

10.2 Zuverlässigkeit von zusammengesetzten Systemen

Dieser Abschnitt behandelt die Zuverlässigkeit zusammengesetzter Systeme. Als Grundmu-
ster fungieren Serien– und die Parallelschaltungen. Mit Hilfe dieser Grundmuster lassen sich
anschließend komplexere Systeme bilden und analysieren.

Zuverlässigkeit von Seriensystemen

Das einfachste zusammengesetzte System ist die Serienschaltung.

Die angegebene Serienschaltung habe die Länge n. Das System ist intakt, wenn alle Kompo-
nenten intakt sind. Es sei Xi für i = 1, . . . , n die Lebensdauer der Komponente i. Y bezeichne
die Lebensdauer des Gesamtsystems. Außerdem wird angenommen, dass die Xi stochastisch
unabhängig seien. Es gilt dann:

Y = min(X1, . . . , Xn).

Die Lebensdauerverteilung des Seriensystems berechnet sich damit wie folgt:

FY (t) = P (Y ≤ t) = 1− P (Y > t) = 1− P (min(X1, . . . , Xn) > t)
= 1− P (X1 > t, . . . ,Xn > t) = 1− [P (X1 > t) · · · · · P (Xn > t)]

= 1− [(1− FX1(t)) · · · · · (1− FXn(t))] = 1−
n∏

i=1

F̄i(t), t ∈ R+.

Die Zuverlässigkeitsfunktion des Gesamtsystems lautet:

F (t) = 1− FY (t) =
n∏

i=1

F̄i(t), t ∈ R+.

10.9 Bemerkung:
Aus F (t) = F̄1(t) · · · · · F̄n(t) folgt

exp

− t∫
0

aY (u)du

 = exp

−
 t∫

0

a1(u)du+ · · ·+
t∫

0

an(u)du


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und somit aY (t) = a1(t) + · · · + an(t), d.h. im Fall eines Seriensystems addieren sich die
Ausfallraten.

Zuverlässigkeit von Parallelsystemen

Ein anderes einfaches zusammengesetztes System ist die Parallelschaltung.

Wiederum bestehe die Schaltung aus n Komponenten und die Lebensdauern seien gegeben
durch die Zufallsgrößen Xi, i = 1, . . . , n. Die Lebensdauer des Gesamtsystems sei Z und die
Xi seien wieder stochastisch unabhängig. Die Parallelschaltung ist solange intakt, bis auch
die letzte Komponente ausgefallen ist, d.h. es gilt

Z = max(X1, . . . , Xn).

Die Lebensdauerverteilung ergibt sich damit zu

FZ(t) = P (Z ≤ t) = P (max(X1, . . . , Xn) ≤ t) = P (X1 ≤ t, . . . ,Xn ≤ t)
= P (X1 ≤ t) · · · · · P (Xn ≤ t) = FX1(t) · · · · · FXn(t), t ∈ R+.

Die Zuverlässigkeitsfunktion des Gesamtsystems lässt sich also berechnen durch

F (t) = 1− FZ(t) = 1−
n∏

i=1

(1− F̄i(t)), t ∈ R+.

Allgemeine Schaltbilder

Teilsysteme

Allgemeine Schaltbilder, etwa von der nachstehenden Form, können durch eine Zerlegung in
Teilsysteme gelöst werden.

In diesem Fall ist eine Dekomposition in die Teilsysteme A′ und C naheliegend:
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Die Zuverlässigkeitsfunktion berechnet sich nun primär nach dem Gesetz für eine Serienschal-
tung. In Kurzform ergibt sich

F (t) = F̄A′(t) · F̄C(t), t ∈ R+,

wobei sich F̄A′(t) aus der Parallelschaltung von A und B errechnet:

F̄A′(t) = 1− [(1− F̄A(t))(1− F̄B(t))] = F̄A(t) + F̄B(t)− F̄A(t) · F̄B(t), t ∈ R+.

Daraus resultiert:

F (t) = (F̄A(t) + F̄B(t)− F̄A(t) · F̄B(t)) · F̄C(t)
= F̄A(t) · F̄C(t) + F̄B(t) · F̄C(t)− F̄A(t) · F̄B(t) · F̄C(t), t ∈ R+.

Abbildung 10.2: Überlebensfunktion F mit FA(t) := exp(−t2), FB(t) := exp(−t) und
FC(t) :=

(
1− t2

4

)
· I[0,2](t), t ∈ R+.

10.10 Bemerkung:
Die Argumentation lässt sich auch umkehren. So kann man die Ausgangsschaltung auch als
Erweiterung einer einfachen Serienschaltung verstehen, in der ein Element durch eine Par-
allelschaltung mehrerer Elemente ersetzt wird. Wie obige Rechnung zeigt, wird dadurch die
Zuverlässigkeit der Serienschaltung vergrößert. Dies führt zu einem wesentlichen Ergebnis der
Zuverlässigkeitstheorie:
Die Zuverlässigkeit eines Systems lässt sich durch die Erhöhung der Zuverlässigkeit seiner
Teilsysteme vergrößern.

Operationspfade

Eine weitere Möglichkeit zur Berechnung der Zuverlässigkeitsfunktion allgemeiner Schaltbil-
der stellen die sogenannten Operationspfade dar. Ein Operationspfad ist eine Serienschaltung
von Bauelementen, die, wenn sie alle intakt sind, auch das System intakt halten. In dem
obigen Beispiel gibt es zwei mögliche Operationspfade: X := AC und Y := BC. Damit funk-
tioniert das Gesamtsystem noch, falls Operationspfad X intakt ist, die Bauelemente A und
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C also funktionieren. Entsprechendes gilt für Y . Das System ist also intakt, wenn entweder
X intakt oder Y intakt, oder sowohl X, als auch Y intakt sind.
Die Zuverlässigkeit des Gesamtsystems ist somit

P ({,,X intakt”} ∪ {,,Y intakt”}).

Diese Wahrscheinlichkeit soll kurz mit P (X ∪ Y ) bezeichnt werden. Es gilt:

P (X ∪ Y ) = P (X) + P (Y )− P (X ∩ Y )
= P (AC) + P (BC)− P (AC ∩BC)
= P (A) · P (C) + P (B) · P (C)− P (A) · P (B) · P (C),

Womit sich dasselbe Gesamtergebnis wie in Abschnitt ,,Teilsysteme” ergibt:

F (t) = F̄A(t) · F̄C(t) + F̄B(t) · F̄C(t)− F̄A(t) · F̄B(t) · F̄C(t).

Brückenschaltung

In einer Brückenschaltung

gibt es drei Operationspfade: X := AB, Y := AD und Z := CD. Die Intaktwahrscheinlichkeit
bzw. die Zuverlässigkeit lässt sich nach dem oben beschriebenen Verfahren wie folgt berechnen:

P (X ∪ Y ∪ Z) = P (X) + P (Y ) + P (Z)− P (X ∩ Y )− P (X ∩ Z)− P (Y ∩ Z)
+ P (X ∩ Y ∩ Z)

= P (AB) + P (AD) + P (CD)− P (AB ∩AD)− P (AB ∩ CD)
− P (AD ∩ CD) + P (AB ∩AD ∩ CD)

= P (A) · P (B) + P (A) · P (D) + P (C) · P (D)− P (A) · P (B) · P (D)
− P (A) · P (B) · P (C) · P (D)− P (A) · P (C) · P (D)
+ P (A) · P (B) · P (C) · P (D)

= P (A) · P (B) + P (A) · P (D) + P (C) · P (D)− P (A) · P (B) · P (D)
− P (A) · P (C) · P (D).

Zusammenfassend ergibt sich:

F (t) = F̄A(t) · F̄B(t) + F̄A(t) · F̄D(t) + F̄C(t) · F̄D(t)
−F̄A(t) · F̄B(t) · F̄D(t)
−F̄A(t) · F̄C(t) · F̄D(t), t ∈ R+.

(Siehe auch PowerPoint-Präsentation zur Brückenschaltung.)
Die Berechnung lässt sich mit Hilfe des folgenden Schemas vereinfachen:

(i) Erstelle eine Tabelle mit jeweils einer Spalte pro Operationspfad und Systemkomponen-
te, sowie eine Spalte für das Vorzeichen.
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(ii) Trage alle möglichen Kombinationen der Operationspfade mit den daran beteiligten
Komponenten ein.

(iii) Bewerte eine ungerade Anzahl Operationen mit dem Vorzeichen Plus, eine gerade An-
zahl mit Minus.

Pfade Einheiten Vorzeichen
X Y Z A B C D

X A B +
Y A D +

Z C D +
X Y A B D −
X Z A B C D

√
−

Y Z A C D −
X Y Z A B C D

√
+

Die mit einem Haken versehenen Zeilen bestehen aus denselben beteiligten Komponenten mit
jeweils unterschiedlichen Vorzeichen. Diese werden im Folgenden nicht mehr berücksichtigt.
Die verbleibenden Zeilen enthalten nach Aufsummieren mit dem angegebenen Vorzeichen die
Formel für die Intaktwahrscheinlichkeit.

Literatur zu Kapitel 10
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Zuverlässigkeit — Mathematische Modelle,
Hanser, München, 1977.
ISBN: 3446123709
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Kapitel 11

Produkträume und
mehrdimensionale Zufallsvariable

Mehrdimensionale Zufallsvariablen dienen zur Erfassung von Zufallsexperimenten, bei denen
mehrere Größen gleichzeitig beobachtet werden. In diesem Kapitel geht es im Wesentlichen
darum, die für eindimensionale Zufallsvariablen eingeführten Begriffe auf mehrdimensionale
Zufallsvariablen zu übertragen. Bei der gleichzeitigen Beobachtung verschiedener Zufallsva-
riablen spielt außerdem der Begriff der stochastischen Unabhängigkeit eine wichtige Rolle.

Schlüsselwörter: Produkt–σ–Algebra, mehrdimensionale Verteilungsfunktion,
Randverteilungen, Produktmaß, Unabhängigkeit von Zufallsgrößen, Transformati-
on von Zufallsvariablen, Transformationssatz für Dichten, Faltung, Satz von Fubini,
Kovarianz.
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11.1 Zufällige Vektoren

Zusammengesetzte Stichprobenräume, bzw. sogenannte Produkträume Ω := Ω1×· · ·×Ωn er-
geben sich, wenn aufeinanderfolgende oder parallele Beobachtungen eines Zufallsexperiments
vorliegen. Einige solcher Situationen wurden bereits betrachtet:

1. n–maliges Werfen mit einem Würfel. In diesem Fall ist Ωi := {1, 2, 3, 4, 5, 6} für i =
1, . . . , n und Ω := Ω1 × · · · × Ωn = {1, 2, . . . , 6}n

2. Gruppierte Daten aus einer Vorsorgeuntersuchung
(Gewicht, Körpergröße, Blutdruck, Cholesterin–Spiegel, . . . )

3. Belegungszustand eines Produktionssystems
(Pufferbelegung an Arbeitsstation 1, Pufferbelegung an Arbeitsstation 2, . . . )

4. Räuber–Beute–Modell
(Anzahl der Räuber und Anzahl der Beutetiere jeweils zu einem bestimmten Zeitpunkt)

Um die genannten Fälle behandeln zu können, wird zunächst eine zum kartesischen Produkt
Ω := Ω1 × · · · × Ωn passende σ–Algebra benötigt. Dazu werden Messräume (Ωi,Fi), i =
1, . . . , n, betrachtet. Angesichts der Darstellung

Ω :=
n

��@@
i=1

Ωi

könnte man versucht sein,

F :=
n

��@@
i=1

Fi

als σ–Algebra über Ω zu verwenden. Doch im Allgemeinen führt das kartesische Produkt von
σ–Algebren nicht wieder zu einer σ–Algebra, wie das folgende Beispiel zeigt:

Es werden n := 2, A := [−1, 0]× [−1, 0] und B := [0, 1]× [0, 1] gewählt. Wie man sich anhand
von Abbildung 11.1 schnell überzeugt, ist A∪B kein kartesisches Produkt zweier Teilmengen
von R.

Abbildung 11.1: A ∪B ist kein kartesisches Produkt.

Deswegen benutzt man die folgende Begriffsbildung:
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11.1 Definition (Produkt–σ–Algebra):
Es seien (Ωi,Fi), i = 1, . . . , n, Messräume und

En :=

{
n

��@@
i=1

Ai | Ai ∈ Fi, i = 1, . . . , n

}
das System aller kartesischen Produkte aus den Mengen der gegebenen σ–Algebren. Dann
heißt die durch

n⊗
i=1

Fi := σ(En)

definierte σ–Algebra über Ω :=
n

��@@
i=1

Ωi die Produkt–σ–Algebra der σ–Algebren F1, . . . ,Fn.

Der Spezialfall Ωi := R1, Fi := B1, i = 1, . . . , n, führt auf die σ–Algebra der Borelschen
Mengen des Rn.

11.2 Satz (Rechenregeln für Rechteckmengen):
Es seien A1, A1i ∈ Ω1, i ∈ I1 und A2, A2i ∈ Ω2, i ∈ I2. Dann gilt:

a)
∞⋂

j=1
(A1j ×A2j) =

(
∞⋂

j=1
A1j

)
×

(
∞⋂

j=1
A2j

)
,

b) (A1 ×A2) = (A1 × Ω2) ∪ (A1 ×A2) = (Ω1 ×A2) ∪ (A1 ×A2),

c)
∞⋃

j=1
(A1j ×A2) =

(
∞⋃

j=1
A1j

)
×A2,

∞⋃
j=1

(A1 ×A2j) = A1 ×

(
∞⋃

j=1
A2j

)
,

d)
∞⋃

j=1
(A1j ×A2j) ⊂

(
∞⋃

j=1
A1j

)
×

(
∞⋃

j=1
A2j

)
,

e) A1 ×A2 = ∅ ⇔ wenn A1 = ∅ oder A2 = ∅,

f) A1 ×A2 ⊂ B1 ×B2 ⇔ A1 ⊂ B1 und A2 ⊂ B2 (A1, A2 6= ∅),

Beweis:
a)

(ω1, ω2) ∈
∞⋂

j=1

(A1j ×A2j)

⇔ (ω1, ω2) ∈ (A1j ×A2j) ∀ j ∈ N
⇔ ω1 ∈ A1j , ω2 ∈ A2j ∀ j ∈ N

⇔ ω1 ∈
∞⋂

j=1

A1j ∧ ω2 ∈
∞⋂

j=1

A2j

⇔ (ω1, ω2) ∈

 ∞⋂
j=1

A1j

×

 ∞⋂
j=1

A2j

 .
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b) Es gilt

(ω1, ω2) ∈ A1 ×A2 ⇔ (ω1, ω2) 6∈ (A1 ×A2)
⇔ ω1 ∈ A1 ∧ ω2 6∈ A2 oder ω1 6∈ A1 ∧ ω2 ∈ Ω2

⇔ (ω1, ω2) ∈ (A1 ×A2) oder (ω1, ω2) ∈ (A1 × Ω2)

⇔ (ω1, ω2) ∈ (A1 ×A2) ∪ (A2 × Ω2).

Entsprechend c)-f) (Übung!). �

Konstruktion einer Produkt–σ–Algebra

Betrachte den zweidimensionalen Fall mit den beiden Messräumen (Ω1,F1) und (Ω2,F2).
Konstruiere eine geeignete σ–Algebra F1 ⊗ F2 zum Produktraum Ω1 × Ω2:
Betrachte die sogenannten Zylindermengen

F(1) := {A1 × Ω2 | A1 ∈ F1} und F(2) := {Ω1 ×A2 | A2 ∈ F2}.

Mit Hilfe von Satz 11.2 lässt sich schnell nachprüfen, dass F(1) und F(2) σ-Algebren über
Ω1 × Ω2 darstellen. Zu zeigen ist: F1 ⊗ F2 = σ({F(1) ∪ F(2)}).

• Weil die Zylindermengen spezielle Mengen von F1 ⊗ F2 sind, gilt

σ({F(1) ∪ F(2)}) ⊆ F1 ⊗ F2.

• Da sich andererseits aber jede Rechteckmenge A1 × A2 als Durchschnitt zweier Zylin-
dermengen darstellen lässt, nämlich in der Form

(A1 ×A2) = (A1 × Ω2) ∩ (Ω1 ×A2),

gilt
{A1 ×A2 | Ai ∈ Fi, i = 1, 2} ⊆ σ({F(1) ∪ F(2)})

und damit

σ({A1 ×A2 | Ai ∈ Fi, i = 1, 2}) = F1 ⊗ F2 ⊆ σ({F(1) ∪ F(2)}).

Wie im eindimensionalen Fall werden Wahrscheinlichkeitsmaße auf der Borelschen σ–Algebra
Bn durch sogenannte n–dimensionale Verteilungsfunktionen erzeugt.

11.3 Definition (n–dimensionale Verteilungsfunktion):
Es sei P ein Wahrscheinlichkeitsmaß auf der σ–Algebra Bn. Die durch

FP (x1, . . . , xn) := P

(
n

��@@
i=1

(−∞, xi]

)
, (x1, . . . , xn) ∈ Rn,

definierte Funktion heißt die zu P gehörende n–dimensionale Verteilungsfunktion.
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Die Funktion FP ist durch eine Reihe von Eigenschaften, die im Folgenden betrachtet werden
sollen, ausgezeichnet.

11.4 Satz:
Es sei F := FP eine Verteilungsfunktion über (Rn,Bn). Dann gilt:

a) ∆-Monotonie:
Für alle a := (a1, . . . , an) und b := (b1, . . . , bn) ∈ Rn mit a ≤ b (d.h. ai ≤ bi, 1 ≤ i ≤ n)
gilt:

∆a,b
n F :=

∑
(θ1,...,θn)∈{0,1}n

(−1)
∑n

i=1 θiF (θ1a1 + (1− θ1)b1, . . . , θnan + (1− θn)bn) ≥ 0.

b) F ist in jeder Variable rechtsseitig stetig, d.h. es gilt:

lim
x1→y1+0,...,xn→yn+0

F (x1, . . . , xn) = F (y1, . . . , yn) ∀ (y1, . . . , yn) ∈ Rn.

c) F ist normiert, d.h. es gilt:

lim
x1→+∞,...,xn→+∞

F (x1, . . . xn) = 1

und für (x1, . . . , xn) ∈ Rn und jedes i ∈ {1, . . . , n} gilt:

lim
xi→−∞

F (x1, . . . , xn) = 0 .

Beweis:
Für n := 1 reduziert sich die Aussage a) auf den bereits bekannten Fall (vgl. Satz 7.2) und es
ist

∆a,b
1 F = F (b)− F (a) ≥ 0 für b ≥ a.

Für n := 2 erhält man

∆a,b
2 F = F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2). (11.1)

Es wird gezeigt, dass ∆a,b
2 F mit P ((a, b](2)) zusammenfällt. Dafür wird die Abbildung 11.2

benutzt. Offensichtlich gilt:

((a1, a2), (b1, b2)] = {((−∞,−∞), (b1, b2)]\((−∞,−∞), (a1, b2)]}
\{((−∞,−∞), (b1, a2)]\((−∞,−∞), (a1, a2)]} .

P ((a, b](2)) = P (((a1, a2), (b1, b2)])

= P (((a1,−∞), (b1, b2)])− P (((a1,−∞), (b1, a2)])
= P (((−∞,−∞), (b1, b2)])− P (((−∞,−∞), (a1, b2)])
− P (((−∞,−∞), (b1, a2)]) + P (((−∞,−∞), (a1, a2)])
= F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2)

= ∆a,b
2 F
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(a ,a )1 2 (b ,a )1 2

(a ,b )1 2
(b ,b )1 2

a1 b1

a2

b2

Abbildung 11.2: Zur Berechnung von P ((a, b](2)).

in Übereinstimmung mit (11.1). Für n ≥ 3 verlaufen die Beweise analog, sie werden jedoch
mit wachsendem n formal aufwendiger.

b) folgt aus der Beziehung

lim
k1→∞,...,

kn→∞

F

(
x1 +

1
k1
, . . . , xn +

1
kn

)

= lim
k1→∞,...,

kn→∞

P

((
(−∞, . . . ,−∞),

(
x1 +

1
k1
, . . . , xn +

1
kn

)])

= P

 ∞⋂
k1=1,...,

kn=1

(
(−∞, . . . ,−∞),

(
x1 +

1
k1
, . . . , xn +

1
kn

)]
= P (((−∞, . . . ,−∞), (x1, . . . , xn)]) = F (x1, . . . , xn) .

Die unter c) beschriebenen Beziehungen ergeben

lim
x1→∞,...,xn→∞

F (x1, . . . , xn) = lim
x1→∞,...,xn→∞

P (((−∞, . . . ,−∞), (x1, . . . , xn)])

= P

 ∞⋃
x1=1,...,xn=1

((−∞, . . . ,−∞), (x1, . . . , xn)]


= P (Rn) = 1 ,

lim
xi→−∞

F (x1, . . . , xi, . . . , xn) = lim
k→∞

F (x1, . . . ,−k, . . . , xn)

= lim
k→∞

P (((−∞, . . . ,−∞), (x1, . . . ,−k, . . . , xn)])

= P

( ∞⋂
k=1

((−∞, . . . ,−∞), (x1, . . . ,−k, . . . , xn)]

)
= P (∅) = 0 . �
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11.5 Definition (maßdefinierende Funktion, Verteilungsfunktion):
Eine messbare Funktion F : Rn → R heißt maßdefinierende Funktion über Rn, falls sie ∆-
monoton und rechtsseitig stetig ist. Sie heißt Verteilungsfunktion über Rn, falls sie außerdem
normiert ist.

11.6 Satz:
Zu jeder maßdefinierenden Funktion F über Rn gibt es genau ein Maß µF auf (Rn,Bn) mit

µF ((a, b](n)) = ∆a,b
n F ∀ a, b ∈ Rn mit a ≤ b.

Ist F eine Verteilungsfunktion über Rn, so ist µF ein Wahrscheinlichkeitsmaß über (Rn,Bn),
das mit PF bezeichnet wird.

Beweis:
Zu zeigen sind:

1. Existenz von µF .

2. Ist F Verteilungsfunktion, so ist µF Wahrscheinlichkeitsmaß.

Der Beweis folgt dabei der Argumentation wie im eindimensionalen Fall (vgl. Satz 7.2).

Zu 1.: Die ∆-Monotonie von F bedingt zunächst, dass µF auf dem Semiring In der links offenen
und rechts abgeschlossenen Intervalle des Rn einen Inhalt definiert.

(a) Ist µF σ–additiv und somit ein Prämaß, kann µF aufgrund des ersten Maßfort-
setzungssatzes eindeutig zu einem Prämaß auf dem von In erzeugten Ring R(In)
fortgesetzt werden.
Die σ–Additivität folgt aus der rechtsseitigen Stetigkeit von F .

(b) Ist µF σ–endlich, so existiert nach Aussage des zweiten Fortsetzungssatzes für Maße
eine eindeutige Fortsetzung zu einem Maß auf der von In erzeugten σ–Algebra
σ(In) = Bn.
Die σ–Endlichkeit folgt wegen

Rn =
∞⋃

k=1

(−k, k]× . . .× (−k, k]︸ ︷︷ ︸
n-mal

und
P ((−k, k]× . . .× (−k, k]︸ ︷︷ ︸

n-mal

) = ∆−k,k
n F <∞ ∀ k ∈ N.

Zu 2.: Der Beweis verläuft analog zur entsprechenden Aussage von vgl. Satz 7.2. �

Offensichtlich kann aus einer Verteilungsfunktion F über Rn durch Einschränkung auf eine
Komponente i ∈ {1, . . . , n} vermöge

Fi(x) := PF (Ri−1 × (−∞, x]×Rn−i)
= lim

xk→∞
k 6=i

F (x1, . . . , xi−1, x, xi+1, . . . , xn), x ∈ R,
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eine Verteilungsfunktion Fi über R erzeugt werden, denn wegen Satz 11.4 c) gelten

lim
x→∞

Fi(x) = 1 und lim
x→−∞

Fi(x) = 0.

Die übrigen Eigenschaften einer Verteilungsfunktion folgen aus der ∆-Monotonie und der
rechtsseitigen Stetigkeit von F .

11.7 Definition (Randverteilungsfunktion, Randverteilung):
Gegeben sei ein Wahrscheinlichkeitsmaß P über (Rn,Bn). Die zugehörige n-dimensionale
Verteilungsfunktion sei F . Für i ∈ {1, . . . , n} wird

Fi(x) := PF (Ri−1 × (−∞, x]×Rn−i)
= lim

xk→∞
k 6=i

F (x1, . . . , xi−1, x, xi+1, . . . , xn), x ∈ R,

die i−te Randverteilungsfunktion von F bzw. P genannt. Das zugehörige Wahrscheinlichkeits-
maß über (R,B) heißt i-te Randverteilung von P .

Aus der gemeinsamen Verteilung kann eindeutig auf ihre Randverteilungen geschlossen wer-
den. Die Umkehrung gilt jedoch nicht, wie das nachfolgende Beispiel zeigt.

11.8 Beispiel:
Es wird die zweidimensionale Verteilungsfunktion

F (x, y) :=


(1− e−x)(1− e−y + e−x) , 0 < x ≤ y

1− e−y , 0 < y < x
0 , x ≤ 0 ∨ y ≤ 0

betrachtet.

Abbildung 11.3: Verteilungfunktion F (x, y) für x = 0, . . . , 5 und y = 0, . . . , 5.
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Abbildung 11.4: Randverteilung F1(x) für x = 0, . . . , 5.

Die zugehörigen Randverteilungsfunktionen lauten:

F1(x) := lim
y→∞

F (x, y) =
{

1− e−2x , x > 0
0 , x ≤ 0

und

F2(y) := lim
x→∞

F (x, y) =
{

1− e−y , y > 0
0 , y ≤ 0.

Abbildung 11.5: Randverteilung F2(y) für y = 0, . . . , 5.

Wie sich sofort nachprüfen lässt, besitzt die Verteilungsfunktion

F̃ (x, y) :=
{

(1− e−2x)(1− e−y) , x > 0 ∧ y > 0
0 , sonst

dieselben Randverteilungsfunktionen. Doch es ist F̃ 6= F .

Genauso wie im eindimensionalen Fall lassen sich auch im mehrdimensionalen Fall Vertei-
lungsfunktionen durch sogenannte Dichten erzeugen.

11.9 Definition (Dichte):
Eine integrierbare Funktion f : Rn → R (bzgl. des Lebesgue-Maßes λ) heißt eine Dichte, wenn
gilt:

a) f(x) ≥ 0 ∀ x ∈ Rn,

b)
∫
Rn

f dλ = 1.
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Abbildung 11.6: Verteilungfunktion F̃ (x, y) für x = 0, . . . , 5 und y = 0, . . . , 5.

11.10 Satz:
Es sei f : Rn → R eine Dichte, dann definiert

F (x) :=
∫

×n
i=1(−∞,xi]

f dλ (11.2)

eine stetige Verteilungsfunktion F : Rn → R.

Beweis:
Es wird νf (A) :=

∫
A f dλ gesetzt und behauptet, dass νf ein Maß auf Rn definiert.

(i) Wegen der Voraussetzung a) ist νf (A) ≥ 0 ∀ A ∈ Bn .

(ii) νf ist σ–additiv, denn mit Hilfe des Satzes von der monotonen Konvergenz 9.42 folgt:

νf

⋃
j∈N

Aj

 =
∫

⋃
j∈N

Aj

f dλ

=
∫
Rn

f

∑
j∈N

IAj

 dλ

= lim
k→∞

∫
Rn

k∑
j=1

f IAj dλ

= lim
k→∞

k∑
j=1

∫
Rn

f IAj dλ

=
∞∑

j=1

νf (Aj).
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(iii) νf ist normiert, denn wegen der Voraussetzung b) gilt: νf (Rn) =
∫
Rn f dλ

11.9 b)
= 1.

Folglich definiert F (x) = νf

(
n

��@@
i=1

(−∞, xi]

)
eine Verteilungsfunktion.

Die Stetigkeit von F sieht man folgendermaßen: Seien x, xo ∈ Rn, y := max(x, x0) und
z := min(x, x0). Dann gilt unter Zuhilfenahme von Satz 6.7:

|F (x)− F (x0)| ≤ (F (x)− F (z)) + (F (x0)− F (z))

≤
∫

(z,x]
f dλ+

∫
(z,x0]

f dλ

≤ νf ((x0, y]) + νf ((z, x0]) →
x→x0

0,

da (z, x0] und (x0, y] für x→ x0 monoton fallend gegen die leere Menge gehen. �

11.11 Beispiel (Zweidimensionale Normalverteilung):
Es sei

f(x, y) :=
1

2πσ1σ2

√
1 − %2

exp

(
− 1

2(1− %2)

(
(x − µ1)

2

σ2
1

− 2%
(x − µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

))
, (x, y) ∈ R2,

für µ1, µ2 ∈ R, σ1, σ2 ∈ R+ und % ∈ (−1, 1). Wir zeigen, dass f eine Dichte ist. f heißt Dichte
der zweidimensionalen Normalverteilung. In diesem Zusammenhang ist die Beziehung

∞∫
−∞

exp
(
−x

2

2c

)
dx =

√
2πc

von Bedeutung, die sich folgendermaßen beweisen lässt:

∞∫
−∞

exp
(
−x

2

2c

)
dx =

 ∞∫
−∞

exp
(
−x

2

2c

)
dx

2
1
2

=

 ∞∫
−∞

∞∫
−∞

exp
(
−x

2
1 + x2

2

2c

)
dx1dx2

 1
2

=

 2π∫
0

∞∫
0

exp
(
−r

2

2c

)
· r drdϕ


1
2

=
(
2π
[
−c exp

(
−r

2

2c

)]∞
0︸ ︷︷ ︸

=0−(−c)

) 1
2 =

√
2πc.
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Wir integrieren zuerst nach y und dann nach x:

∞∫
−∞

f(x, y)dy

=
1

2πσ1σ2
√

1− %2

∞∫
−∞

exp

(
−

1

2(1− %2)

(
(x− µ1)2

σ2
1

− 2%
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)2

σ2
2

))
dy

=
1

2πσ1σ2
√

1− %2

∞∫
−∞

exp

(
−

1

2(1− %2)

(
(x− µ1)2(1− %2) + (x− µ1)2%2

σ2
1

− 2%
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)2

σ2
2

))
dy

=
1

2πσ1σ2
√

1− %2

∞∫
−∞

exp

(
−

1

2

(x− µ1)2

σ2
1

−
1

2(1− %2)

(
(x− µ1)2%2

σ2
1

− 2%
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)2

σ2
2

))
dy

=
1

2πσ1σ2
√

1− %2

∞∫
−∞

exp

(
−

1

2

(x− µ1)2

σ2
1

)
exp

(
−

1

2(1− %2)σ2
2

(
y − µ2 −

(x− µ1)%σ2

σ1

)2
)

dy

=
1

2πσ1σ2
√

1− %2
exp

(
−

1

2

(x− µ1)2

σ2
1

)
·
∞∫
−∞

exp

(
−

1

2(1− %2)σ2
2

(
y −

(
µ2 +

(x− µ1)%σ2

σ1

))2
)

dy

Mit der Vereinbarung c1 := µ2 − (x−µ1)%σ2

σ1
und der Substitution t = y − c1 wird hieraus

∞∫
−∞

f(x, y)dy

=
1

2πσ1σ2

√
1− %2

exp
(
−1

2
(x− µ1)2

σ2
1

) ∞∫
−∞

exp
(
− 1

2(1− %2)σ2
2

t2
)
dt

︸ ︷︷ ︸
=
√

2π(1−%2)σ2
2 s.o.

=
1

√
2π
√

2πσ1σ2

√
1− %2

exp
(
−1

2
(x− µ1)2

σ2
1

)√
2π(1− %2)σ2

2

=
1√

2πσ1

exp
(
−1

2
(x− µ1)2

σ2
1

)
.

Damit wird

∞∫
−∞

∞∫
−∞

f(x, y)dxdy =

∞∫
−∞

1√
2πσ1

exp
(
−(x− µ1)2

σ2
1

)
dx

t:=x−µ1=
1√

2πσ1

∞∫
−∞

exp
(
− t2

2σ2
1

)
dt

︸ ︷︷ ︸
=
√

2πσ2
1 s.o.

= 1.

11.12 Satz (Erzeugung von Zufallsvektoren):
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum. Sind X1, . . . , Xn reellwertige Zufallsvariablen
über (Ω,F, P ), so ist X := (X1, . . . , Xn) eine Rn-wertige Zufallsvariable bzw. ein n-dimen-
sionaler Zufallsvektor über (Ω,F, P ) und umgekehrt.
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Beweis:
Aufgrund von Satz 8.11 gilt für alle i ∈ {1, . . . , n}:

Xi ist F−B-messbar ⇔ {ω | Xi(ω) ≤ xi} ∈ F ∀ xi ∈ R.

Da die Intervalle (−∞, x](n), x = (x1, . . . , xn) ∈ Rn, ein Erzeugendensystem der σ-Algebra
Bn bilden, kann mit Hilfe von Satz 8.9 geschlossen werden:

X−1({(−∞, x](n), x ∈ Rn}) = {ω | X1(ω) ≤ x1, . . . , Xn(ω) ≤ xn}

=
n⋂

i=1

{ω | Xi(ω) ≤ xi} ∈ F,

so dass X = (X1, . . . , Xn) F−Bn-messbar ist.
Umgekehrt folgt aus der F–Bn–Messbarkeit von X mit Bi ∈ B1 und X−1

i (Bi) = X−1(R ×
. . .×R×Bi ×R× . . .×R) ⊆ F, dass alle Xi messbar sind. �

11.13 Definition (Verteilungsfunktion):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum, X := (X1, . . . , Xn) ein n-dimensionaler re-
ellwertiger Zufallsvektor über (Ω,F, P ) und PX das Bildmaß von P unter X. Dann heißt
FX : Rn → R mit

FX(x) := FX1,...,Xn(x1, . . . , xn) = PX((−∞, x1]× . . .× (−∞, xn])
= P ({ω ∈ Ω | X1(ω) ≤ x1, . . . , Xn(ω) ≤ xn})
= P (X1 ≤ x1, . . . , Xn ≤ xn)

die (n-dimensionale) Verteilungsfunktion von X. Das mit X korrespondierende Bildmaß PX

von P heißt Verteilung von X.

Angesichts Satz 11.12 lässt die i-te Randverteilung von F folgende Interpretation zu:

Fi(y) = P ((X1, . . . , Xn) ∈ Ri−1 × (−∞, y]×Rn−i) = P (Xi ≤ y),

d.h. Fi ist die Verteilungsfunktion der Zufallsvariablen Xi. Falls Fi eine Dichte fi besitzt,
nennt man fi i-te Randverteilungsdichte.

11.14 Beispiel (Dreifacher Münzwurf):
Wir betrachten die Ereignisse ,,Zahl” (Z) und ,,Wappen” (W ) und setzen

Ω := {(Z,Z,Z), (Z,Z,W ), (Z,W,Z), (W,Z,Z), (W,Z,W ), (W,W,Z), (Z,W,W ), (W,W,W )}.

Außerdem definieren wir:

X1 : Ω → Ω1, X1 := Anzahl von ,,Zahl” (Z) bei 3 Würfen, Ω′
1 := {0, 1, 2, 3}, X2 : Ω → Ω2,

X2 := Absolutbetrag der Differenz zwischen der Anzahl von ,,Zahl” (Z) und der Anzahl von
,,Wappen” (W ) bei 3 Würfen, Ω′

2 := {1, 3}.

Wir wollen das gemeinsame Verhalten von X1 und X2 studieren, d.h. wir sind an der (dis-
kreten) Zufallsvariablen (X1, X2) in Ω′

1 × Ω′
2 und ihrer Verteilung P(X1,X2) interessiert.
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(Z,Z,Z) (Z,Z,W) (Z,W,Z) (W,Z,Z) (W,Z,W) (W,W,Z) (Z,W,W) (W,W,W)

(3,3) (3,3) (3,3) (3,3)

Damit erhalten wir für pij := P ((X1, X2) = (i, j)), i = 1, 2, 3, j = 1, 3 die Werte:
X1

X2 0 1 2 3 PX2

1 0 3
8

3
8 0 5

8
3 1

8 0 0 1
8

2
8

PX1
1
8

3
8

3
8

1
8

PX1 und PX2 bezeichnen die zugehörigen Randverteilungen.

11.2 Unabhängigkeit von Zufallsvariablen

Nach Definition 11.7 kann in eindeutiger Weise von der gemeinsamen Verteilung mehrerer
Zufallsvariablen auf die Randverteilungen geschlossen werden. Wie in Beispiel 11.8 gezeigt
wurde, gilt die Umkehrung jedoch nicht immer. In diesem Abschnitt wird u.a. gezeigt, dass
die Umkehrung genau dann gilt, wenn die Zufallsvariablen unabhängig sind.
11.15 Definition (stochastisch unabhängig):
Es bezeichne (Ω,F, P ) einen Wahrscheinlichkeitsraum und es sei I eine nichtleere Indexmen-
ge. Die Familie der Mengensysteme (Mi)i∈I mit Mi ⊆ F heißt (stochastisch) unabhängig bzgl.
P genau dann, wenn für jede nichtleere, endliche Teilmenge J ⊆ I gilt:

P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj) ∀ Aj ∈ Mj und j ∈ J.

11.16 Definition (erzeugte σ-Algebra):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum, (Ω

′
,F

′
) ein Messraum und X : Ω → Ω

′
eine

F−F
′
-messbare Abbildung. Unter der von X erzeugten σ-Algebra versteht man die σ-Algebra

σ(X) := X−1(F′).

11.17 Definition (Unabhängigkeit von Zufallsgrößen):
Die Zufallsvariablen X1, . . . , Xn heißen stochastisch unabhängig, wenn die von ihnen erzeug-
ten σ–Algebren unabhängig sind.

11.18 Satz:
Es seien X1, . . . , Xn Zufallsvariablen über (Ω,F, P ) mit Werten in Messräumen (χi,Ai), i =
1, . . . , n. Ferner seien E1, . . . , En durchschnittsstabile Erzeugendensysteme der σ–Algebren
A1, . . . , An mit χi ∈ Ei, i = 1, . . . , n. Dann gilt:
Die Zufallsvariablen X1, . . . , Xn sind genau dann stochastisch unabhängig, wenn die Mengen-
systeme Ê1, . . . , Ên mit

Êi := {X−1
i (Ai) | Ai ∈ Ei}, i = 1, . . . , n,

unabhängig sind.
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Beweis:
Da die Abbildung Xi messbar ist, liegt das Mengensystem Êi in σ(Xi) und bildet somit ein
Erzeugendensystem von σ(Xi). Es soll gezeigt werden:

Mengensysteme Ê1, . . . , Ên unabhängig ⇔ Mengensysteme σ(Ê1), . . . , σ(Ên) unabhängig.

Dazu wird zunächst gezeigt:

Mengensysteme Ê1, . . . , Ên unabhängig ⇔ Mengensysteme σ(Ê1), Ê2 . . . , Ên) unabhängig.

Dafür wird
D1 := {A ∈ σ(Ê1) | {A}, Ê2, . . . , Ên unabhängig }

betrachtet und gezeigt, dass D1 ein Dynkin–System ist. Damit gilt dann mit Ê1 ∈ D1 auch
D(Ê1) ⊆ D1, wobei D(Ê1) das von Ê1 erzeugte Dynkin–System ist.
Da Ê1 als durchschnittsstabil vorausgesetzt ist, folgt mit Hilfe von Satz 5.12, dass D(Ê1) =
σ(Ê1) und damit σ(Ê1) ⊆ D1 ist. Damit ist gezeigt, dass die Mengensysteme σ(Ê1), Ê2, . . .,
Ên unabhängig sind. Analog kann geschlossen werden, dass Ê1, . . . , Êi−1, σ(Êi), Êi+1, . . . , Ên

für i = 2, . . . , n und damit auch σ(Ê1), σ(Ê2), . . . , σ(Ên) unabhängig sind.
Um zu zeigen, dass D1 ein Dynkin–System ist, müssen folgende Punkte nachgewiesen werden:

(i) Ω ∈ D1,

(ii) für A,B ∈ D1 mit A ⊆ B gilt B \A ∈ D1,

(iii) für jede Folge (An)n∈N paarweise disjunkter Mengen aus D1 ist auch
⋃

n∈N
An ∈ D1.

Zu (i): Da χi ∈ E1 ist, ist Ω ∈ Ê1. Für beliebige Ai ∈ Êi, i = 2, . . . , n, gilt dann:

P

(
Ω ∩

n⋂
i=2

Ai

)
= P (Ω) · P

(
n⋂

i=2

Ai

)
= P (Ω) ·

n∏
i=2

P (Ai),

d.h. Ω ∈ D1.

Zu (ii): Für Mengen A,B ∈ D1 mit A ⊂ B

P

(
A ∩

n⋂
i=2

Ai

)
= P (A) ·

n∏
i=2

P (Ai)

und

P

(
B ∩

n⋂
i=2

Ai

)
= P (B) ·

n∏
i=2

P (Ai).

Daraus ergibt sich

P

(
(B \A) ∩

n⋂
i=2

Ai

)
= P

(
B ∩

n⋂
i=2

Ai \A ∩
n⋂

i=2

Ai

)

= P

(
B ∩

n⋂
i=2

Ai

)
− P

(
A ∩

n⋂
i=2

Ai

)

= P (B) ·
n∏

i=2

P (Ai)− P (A) ·
n∏

i=2

P (Ai)

= (P (B)− P (A)) ·
n∏

i=2

P (Ai) = P (B \A) ·
n∏

i=2

(Ai).
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Kapitel 11. Produkträume und mehrdimensionale Zufallsvariable

Folglich ist auch B \A ∈ D1.

Zu (iii): Für eine Folge (Bn)n∈N paarweise fremder Mengen aus D1 gilt weiter

P

(( ⋃
m∈N

Bm

)
∩A2 ∩ . . . ∩An

)
= P

( ⋃
m∈N

(Bm ∩A2 ∩ . . . ∩An)

)
=

∑
m∈N

P (Bm ∩A2 ∩ . . . ∩An)

=
∑
m∈N

(
P (Bm) ·

n∏
i=2

P (Ai)

)

=

(∑
m∈N

P (Bm)

)
·

n∏
i=2

P (Ai)

= P

( ⋃
m∈N

Bm

)
·

n∏
i=2

P (Ai).

Folglich gilt
⋃

m∈N
Bm ∈ D1. �

11.19 Satz:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Ωi,Fi), i = 1, . . . , n, Messräume. Die

Abbilundgen Xi : Ω → Ωi sei F − Fi-messbar. Y : Ω →
n

��@@
i=1

Ωi sei definiert durch Y (ω) :=

(X1(ω), . . . , Xn(ω)) ∀ ω ∈ Ω. Dann gilt: Die Zufallsvariablen X1, . . . Xn sind genau dann
stochastisch unabhängig, wenn

PY (A1 × . . .×An) =
n∏

i=1

PXi(Ai) ∀ Ai ∈ Fi, i = 1, . . . , n (11.3)

gilt.

Beweis:
(i) Es wird die Gültigkeit von (11.3) angenommen. Dann gilt für alle Ai ∈ Fi:

PY (A1 × . . .×An) = P (Y −1(A1 × . . .×An))

= P

(
n⋂

i=1

X−1
i (Ai)

)
.

Da aber {X−1
i (Ai) | Ai ∈ Fi} die von Xi erzeugte σ-Algebra darstellt, entspricht die

Beziehung

P

(
n⋂

i=1

X−1
i (Ai)

)
=

n∏
i=1

P (X−1
i (Ai))

der Unabhängigkeit der Zufallsvariablen X1, . . . , Xn.
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(ii) Sind die Zufallsvariablen X1, . . . , Xn stochastisch unabhängig, so gilt aufgrund der De-
finition 11.17 zunächst

P

(
n⋂

i=1

X−1
i (Ai)

)
=

n∏
i=1

P (X−1
i (Ai)) ∀ Ai ∈ Fi, i = 1, . . . , n.

Mit

P

(
n⋂

i=1

X−1
i (Ai)

)
= P (Y −1(A1 × . . .×An)) = PY (A1 × . . .×An)

und
n∏

i=1

P (X−1
i (Ai)) =

n∏
i=1

PXi(Ai)

folgt

PY (A1 × . . .×An) =
n∏

i=1

PXi(Ai) ∀ Ai ∈ Fi, i = 1, . . . , n

in Übereinstimmung mit 11.3.
�

11.20 Satz:
Setzt man in Satz 11.19 (Ωi,Fi) := (R,B) für i = 1, . . . , n, dann ist die Aussage aus Defini-
tion 11.3 äquivalent zu

FX(x1, . . . , xn) =
n∏

i=1

FXi(xi) ∀ x = (x1, . . . , xn) ∈ Rn,

wobei FX und FXi die Verteilungsfunktionen der Zufallsvariablen X und Xi bezeichnen.

Beweis:
Übung. �

11.21 Satz:
a) Es seien X1, . . . , Xn Zufallsvariablen über (Ω,F, P ) mit Werten in (R,B). Sind die

Zufallsvariablen X1, . . . , Xn stochastisch unabhängig und stetig verteilt mit den Dichten
fXi , i = 1, . . . , n, so besitzt auch X := (X1, . . . , Xn) eine Dichte und es gilt

fX(x1, . . . , xn) =
n∏

i=1

fXi(xi) ∀ x = (x1, . . . , xn) ∈ Rn.

b) Ist umgekehrt X := (X1, . . . , Xn) stetig verteilt mit einer Dichte fX von der Form

fX(x1, . . . , xn) =
n∏

i=1

gi(xi) ∀ x := (x1, . . . , xn) ∈ Rn,

wobei gi(xi) ≥ 0 und
∫
R gi(xi) dxi = 1 für i = 1, . . . , n gilt, dann sind die Zufallsvaria-

blen X1, . . . , Xn stochastisch unabhängig und gi ist eine Dichte von Xi, i = 1, . . . , n.
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Beweis:
a) Satz 11.20 impliziert

FX(x1, . . . , xn) =
n∏

i=1

FXi(xi) =
n∏

i=1

xi∫
−∞

fXi(yi)dyi

=

xn∫
−∞

. . .

x1∫
−∞

fX1(y1) · . . . · fXn(yn)dy1 . . . dyn

=
∫

×n
i=1(−∞,xi]

fX(y) dy .

Da die unter dem Integral stehende Funktion das Produkt von Dichten ist, ist sie somit
Dichte von X := (X1, . . . , Xn).

b) Da die Funktionen gi Dichten sind, sind die Funktionen Gi(xi) =
∫ xi

−∞ gi(yi)dyi, i =
1, . . . , n, stetige Verteilungsfunktionen und es gilt:

FX(x1, . . . , xn) =
∫

×n
i=1(−∞,xi]

fX(y) dy

=
∫

×n
i=1(−∞,xi]

n∏
i=1

gi(yi) dy

=

xn∫
−∞

· · ·
x1∫

−∞

g1(y1) · . . . · gn(yn) dy1 · · · dyn

=
n∏

i=1

xi∫
−∞

gi(yi) dyi

=
n∏

i=1

Gi(xi) .

Andererseits ist
FXi(xi) = lim

xk→∞
k 6=i

FX(x1, . . . , xn) = Gi(xi) .

Also gilt

FX(x1, . . . , xn) =
n∏

i=1

FXi(xi) ,

weshalb die Zufallsvariablen stochastisch unabhängig sind (vergleiche Satz 11.20). �

11.22 Beispiel (Fortführung Beispiel 11.11):
(X,Y ) sei eine R2-wertige Zufallsvariable mit Dichte

f(X,Y )(x, y) :=
1

2πσ1σ2

√
1− %2

exp

(
−

1

2(1− %2)

(
(x− µ1)2

σ2
1

− 2%
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)2

σ2
2

))
, (x, y) ∈ R2,

202



11.2. Unabhängigkeit von Zufallsvariablen

wobei µ1, µ2 ∈ R, σ1, σ2 ∈ R+ und % ∈ (−1, 1) (Dichte der zweidimensionalen Normalvertei-
lung). Wir zeigen, dass X und Y stochastisch unabhängig sind, wenn % = 0 gilt.
Für die Randverteilungsdichte gilt aufgrund von Beispiel 11.12

fX(x) =
1√

2πσ1

exp
(
−1

2
(x− µ1)2

σ2
1

)
, x ∈ R,

und entsprechend

fY (y) =
1√

2πσ2

exp
(
−1

2
(y − µ1)2

σ2
2

)
, y ∈ R.

Zu zeigen ist deshalb die Gleichung

f(X,Y )(x, y) =
1

2πσ1σ2

√
1− %2︸ ︷︷ ︸

!
=1

·

exp
(
− 1

2
√

1− %2︸ ︷︷ ︸
!
= 1

((x− µ1)2

σ2
1

− 2 %︸︷︷︸
!
=0

(x− µ1)(y − µ2)
σ1σ2

+
(y − µ2)2

σ2
2

))

=
1

2πσ1σ2
exp

(
−1

2

(
(x− µ1)2

σ2
1

+
(y − µ2)2

σ2
2

))
= fX(x) · fY (y),

die offensichtlich aber nur für % = 0 zu erfüllen ist.

11.23 Satz:
Es seien (Ωi,Fi, Pi), i = 1, . . . , n, Wahrscheinlichkeitsräume. Dann existiert genau ein Wahr-
scheinlichkeitsmaß P auf ⊗n

i=1Fi mit

P (A1 × . . .×An) =
n∏

i=1

Pi(Ai) ∀ Ai ∈ Fi, i = 1, . . . , n.

Beweis:
Zunächst wird der Fall n := 2 betrachtet. Die Menge der kartesischen Produkte

K := {A1 ×A2 | A1 ∈ F1, A2 ∈ F2}

bildet einen Semiring, wobei der Beweis analog zum Fall I2 (vgl. Kapitel 5.1) geführt werden
kann (Übung!). Betrachte

P̃ (A1 ×A2) := P1(A1) · P2(A2) ∀ A1 ×A2 ∈ K.

Wenn P̃ ein Prämaß und σ–endlich ist, so kann mithilfe der Maßfortsetzungssätze 6.9 und 6.18
die Existenz einer eindeutigen Erweiterung von P̃ zu einem Maß P auf der von K erzeugten
σ–Algebra gefolgert werden.
Der allgemeine Fall ergibt sich durch vollständige Induktion nach n mit dem Schritt

P (n+1)(A1 × . . .×An+1) = P (n)(A1 × . . .×An) · Pn+1(An+1).

Zu zeigen sind:
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(i) P̃ ist nichtnegativ.

(ii) P̃ ist σ–additiv.

(iii) P̃ ist σ–endlich.

Zu (i): (Nichtnegativität)
Es ist P (A1 × A2) ≥ 0 ∀ A1 × A2 ∈ K und außerdem P (∅) = 0, da für A1 × A2 = ∅
entweder A1 = ∅ oder A2 = ∅ ist (vgl. Satz 11.2).

Zu (ii): (σ–Additivität)
Betrachte eine Folge (A1,m×A2,m)m∈N paarweise fremder Mengen A1,m×A2,m ∈ K,m ∈

N, mit
∞⋃

m=1
A1,m ×A2,m = A1 ×A2 ∈ K. Es gilt:

IA1(ω1) · IA2(ω2) = IA1×A2(ω1, ω2) =
∞∑

m=1

IA1,m×A2,m(ω1, ω2)

=
∞∑

m=1

IA1,m(ω1) · IA2,m(ω2) ∀ ω1 ∈ Ω1, ω2 ∈ Ω2.

Für jedes ω1 ∈ Ω1 werden durch f : Ω2 → R mit f(ω2) := IA1(ω1) · IA2(ω2) und
fk : Ω2 → R mit

fk(ω2) :=
k∑

m=1

IA1,m(ω1) · IA2,m(ω2), k ∈ N,

nichtnegative F2–B–messbare Elementarfunktionen definiert.
(fk)k∈N ist monoton nichtfallend mit lim

k→∞
fk = f . Mithilfe des Satzes von der monoto-

nen Konvergenz (9.42) gilt:

g(ω1) := IA1(ω1) · P2(A2) =
∫
fdP2 = lim

k→∞

∫
fkdP2

= lim
k→∞

gk(ω1).

Dabei ist gk(ω1) =
k∑

m=1
IA1,m(ω1) · P2(A2,m), k ∈ N.

Für k ∈ N sind g und gk nichtnegative F1–B–messbare Elementarfunktionen. (gk)k∈N
ist monoton nichtfallend mit lim

k→∞
gk = g. Wie oben wird gefolgert:

P̃ (A1 ×A2) = P1(A1) · P2(A2) =
∫
gdP1 = lim

k→∞

∫
gkdP1

= lim
k→∞

k∑
m=1

P1(A1,m) · P2(A2,m) =
∞∑

m=1

P (A1,m ×A2,m).

Zu (iii): (σ–Endlichkeit)
Seien (B1,m)m∈N und (B2,m)m∈N (disjunkte) Zerlegungen von Ω1 bzw. Ω2, so gilt für
die Mengen B1,m ×B2,n,m, n ∈ N

∞⋃
m=1

∞⋃
n=1

(B1,m ×B2,n) =
∞⋃

m=1

(B1,m × Ω2) = Ω1 × Ω2
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und
P̃ (B1,m ×B2,n) = P1(B1,m) · P2(B2,n) <∞.

�

Satz 11.23 gilt in entsprechender Form auch für Maßräume und σ–endliche Maße (siehe Bauer,
Kapitel 8).

11.24 Satz:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Ωi,Fi), i = 1, . . . , n, Messräume. Sind
die Zufallsvariablen Xi : Ω → Ωi stochastisch unabhängig, so sind auch die Zufallsvektoren
(X1, . . . , Xr1), (Xr1+1, . . . , Xr2), . . . , (Xrm−1+1, . . . , Xrm), 1 ≤ r1 < r2 < . . . < rm ≤ n,
stochastisch unabhängig.

Beweis:
O.B.d.A. genügt es zu zeigen, dass Y := (X1, . . . , Xr) und Z := (Xr+1, . . . , Xs), 1 ≤ r < s ≤ n
stochastisch unabhängig sind. Aufgrund der Voraussetzung und aufgrund von Definition 11.17
sind die ZufallsvariablenX1, . . . , Xr sowieXr+1, . . . , Xs stochastisch unabhängig. Es wird Satz
11.19 angewandt mit dem sich für alle A := C1 × . . . × Cr und B := Cr+1 × . . . × Cs mit
Ci ∈ Fi, i = 1, 2, . . . , s folgendes ergibt:

PY (A) =
r∏

i=1

PXi(Ci) und PZ(B) =
s∏

i=r+1

PXi(Ci),

woraus

PY (A) · PZ(B) =
r∏

i=1

PXi(Ci) ·
s∏

i=r+1

PXi(Ci)

= P(X1,...,Xn)(C1 × . . .× Cs × Ωs+1 × . . .× Ωn)
= P(X1,...,Xs)(C1 × . . .× Cs) = P(Y,Z)(A×B)

folgt, weshalb Y −1(E1) und Z−1(E2) mit E1 := {A = C1 × . . . × Cr | Ci ∈ Fi, i = 1, . . . , r}
und E2 := {B = Cr+1 × . . .× Cs | Ci ∈ F, i = r + 1, . . . , s} stochastisch unabhängig sind. Da
E1 und E2 durchschnittsstabil sind, folgt die Behauptung mit Satz 11.18. �

11.25 Satz:
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Ωi,Fi) sowie (Ω

′
i,F

′
i), i = 1, . . . , n, seien

Messräume. Die Abbildung Xi : Ω → Ωi sei F − Fi-messbar und gi : Ωi → Ω′
i sei Fi − F′i-

messbar. In diesem Fall folgt aus der Unabhängigkeit der Zufallsvariablen X1, . . . , Xn die
Unabhängigkeit der Zufallsvariablen g(X1), . . . , g(Xn).

Beweis:
Aufgrund der Voraussetzungen sind die σ-Algebren X−1

i (Fi), i = 1, . . . , n, unabhängig. Wegen
der Messbarkeit der gi gilt g−1

i (F′i) ⊆ Fi und weiter

X−1
i (g−1

i (F′i)) = (gi ◦Xi)−1(F′i) ⊆ X−1
i (Fi), i = 1, . . . , n,

weswegen auch die σ-Algebren (gi ◦Xi)−1(F′i) unabhängig sind. �
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Führt man die Sätze 11.23 und 11.24 zusammen, erhält man den folgenden Satz:

11.26 Satz:
Es sei (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Ωi,Fi), 1 ≤ i ≤ n, sowie (χj ,Aj), 1 ≤

j ≤ m, seien Messräume. Xi : Ω → Ωi sei F − Fi-messbar und gj :
rj⊗

i=rj−1+1
Ωi →

rj⊗
i=rj−1+1

χi

sei Fi − Ai−messbar für 1 ≤ j ≤ m. Dann gilt: Sind Xi, . . . , Xn stochastisch unabhängig,
dann sind auch g1(X1, . . . , Xr1), g2(Xr1+1, . . . Xr2), . . . , gm(Xrm−1+1, . . . , Xrm) stochastisch
unabhängig (1 ≤ r1 < r2 < . . . < rm ≤ n).

11.27 Definition (Produktverteilung):
Es seien P1, . . . , Pn, n ∈ N, Wahrscheinlichkeitsmaße auf B1, der σ–Algebra der Borelschen
Mengen über R. Dann heißt das gemäß Satz 11.23 eindeutig bestimmte Wahrscheinlichkeits-
maß P auf Bn das Produktmaß der Wahrscheinlichkeitsmaße P1, . . . , Pn.

Schreibweise: P :=
n⊗

i=1

Pi = P1 ⊗ . . .⊗ Pn.

Es seien P, P1, . . . , Pn wie in Definition 11.27 gewählt und F, F1, . . . , Fn die zugehörigen Ver-
teilungsfunktionen, dann gilt:

P

(
n

��@@
i=1

(−∞, xi]

)
=

n∏
i=1

Pi((−∞, xi]) =
n∏

i=1

Fi(xi) ,

d.h.

F (x1, . . . , xn) =
n∏

i=1

Fi(xi), (x1, . . . , xn) ∈ Rn .

11.3 Transformation von Zufallsvariablen (von stetigen Ver-
teilungen)

Zunächst soll folgendes einführendes Beispiel betrachtet werden:

11.28 Beispiel (Transformation einer Dichte, I):
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und X : Ω → R eine Zufallsvariable mit Dichte

fX(x) :=


x, 0 ≤ x ≤ 1
2− x, 1 ≤ x ≤ 2
0, sonst.

Es soll die Dichte der Zufallsvariablen Y := −2X + 1 berechnet werden.
1. Schritt: Bestimmung der Verteilungsfunktion von X:

FX(x) =

x∫
−∞

fX(t) dt =


0, x < 0
1
2x

2, 0 ≤ x ≤ 1
−1

2x
2 + 2x− 1, 1 ≤ x ≤ 2

1, x > 2.
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2. Schritt: Bestimmung der Verteilungsfunktion von Y :

FY (y) = P (Y ≤ y) = P (−2X + 1 ≤ y) = P

(
X ≥ 1

2
(1− y)

)
= 1− P

(
X <

1
2
(1− y)

)
= 1− FX

(
1
2
(1− y)− 0

)

= 1− FX

(
1
2
(1− y)

)
=


0, y < −3
1
8(y + 3)2, −3 ≤ y ≤ −1
1
8(−y2 + 2y + 7), −1 ≤ y ≤ 1
1, y > 1.

3. Schritt: Bestimmung der Dichte von Y :
Aus Fy(y) folgt durch Differentiation

fY (y) =


1
4(y + 3), −3 ≤ y ≤ −1
−1

4y + 1
4 = 1

4(1− y), −1 ≤ y ≤ 1
0, sonst.

Transformationen von Zufallsvariablen kommen nicht nur innermathematisch sondern auch
in vielen praktischen Anwendungen vor.

11.29 Satz (Transformationssatz für Dichten):
Es seien X := (X1, . . . , Xm), m ∈ N, ein m–dimensionaler Zufallsvektor mit der Dichte fX

und G : Rm → Rm,

G : (x1, . . . , xm) → (G1(x1, . . . , xm), . . . , Gm(x1, . . . , xm))

eine Abbildung mit folgenden Eigenschaften:

(i) G ist injektiv und stetig differenzierbar auf Rm,

(ii) die Funktionaldeterminante

det
(
∂Gi

∂xj

)
1≤i,j≤m

=

∣∣∣∣∣∣∣∣∣∣

∂G1(x1, . . . , xm)
∂x1

. . .
∂G1(x1, . . . , xm)

∂xm
...

...
∂Gm(x1, . . . , xm)

∂x1
. . .

∂Gm(x1, . . . , xm)
∂xm

∣∣∣∣∣∣∣∣∣∣
ist entweder positiv oder negativ auf Rm.
Dann gilt:

fY (y1, . . . , ym) =


fX(G−1((y1, . . . , ym)))∣∣∣det
(

∂Gi
∂xj

(G−1(y1, . . . , ym))
)∣∣∣ für (y1, . . . , ym) ∈ G(Rm)

0 sonst

ist die Dichte des Zufallsvektors Y := G(X).
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Beweis: Heuser, ,,Substitutionsregel für das Riemann-Integral”, Kapitel 205.2.

11.30 Beispiel (Transformation einer Dichte, II):
Die Zufallsgröße X habe die Dichte

fX(x) :=


x, 0 ≤ x ≤ 1
2− x, 1 ≤ x ≤ 2
0, sonst.

Zu berechnen ist die Dichte von Y := −2X + 1 (vgl. Beispiel 11.28). Hier ist m = 1 und
G : R → R mit G(X) := −2X + 1. G ist offensichtlich injektiv, messbar und stetig differen-
zierbar mit G′(x) = −2 < 0 ∀ x.

G(x) = −2x+ 1 := y ⇐⇒ x =
1
2
(1− y) = G−1(y),

∣∣G′(G−1(y))
∣∣ = |−2| = 2.

Folglich gilt nach obigem Satz:

fY (y) =
fX(G−1(y))

|−2|
=

1
2
fX

(
1
2
(1− y)

)
=


1
2 ·

1
2(1− y), 0 ≤ 1

2(1− y) ≤ 1
1
2(2− 1

2(1− y)), 1 ≤ 1
2(1− y) ≤ 2

0, sonst

=


1
4(1− y), −1 ≤ y ≤ 1
1
4(y + 3), −3 ≤ y ≤ −1
0, sonst.

11.31 Satz (Summe stetig verteilter Zufallsvektoren, Faltungssatz):
Es sei X := (X1, X2) ein stetig verteilter Zufallsvektor mit Dichte fX . Dann besitzt die
Zufallsvariable Y := X1 +X2 eine Dichte der Form

fY (y) =

∞∫
−∞

fX(x, y − x) dx =

∞∫
−∞

fX(x− y, y) dy, y ∈ R.

Sind speziell X1, X2 unabhängig, so ist

fY (y) =

∞∫
−∞

fX1(x) · fX2(y − x) dx, y ∈ R.

Beweis:
Es wird G(x1, x2) := (x1, x1 + x2), x1, x2 ∈ R gesetzt. G ist injektiv, messbar und auf R2

stetig differenzierbar mit

det


∂G1

∂x1

∂G1

∂x2

∂G2

∂x1

∂G2

∂x2

 = det
(

1 0
1 1

)
= 1.
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(y1, y2) = G(x1, x2) = (x1, x1 + x2)
⇐⇒ (x1, x2) = (y1, y2 − y1) = G−1(y1, y2), y1, y2 ∈ R.

Nach dem Transformationssatz hat der Zufallsvektor Z := G(X) = (X1, X1 +X2) eine Dichte
der Form

fZ(y1, y2) = fX(y1, y2 − y1), y1, y2 ∈ R.

Die Verteilung vonX1+X2 ist nun die zweite Randverteilung von Z, die sich durch Integration
von fZ nach y1 ergibt. Damit erhält man die erste Aussage des Satzes. Die zweite Aussage
folgt mit Satz 11.21 a). �

11.32 Beispiel:
Es seien X1, X2 beide N (0, 1)–verteilt, d.h.

fX1(x1) :=
1√
2π

· e−
1
2
x2
1 , x1 ∈ R,

fX2(x2) :=
1√
2π

· e−
1
2
x2
2 , x2 ∈ R.

Sind X1 und X2 stochastisch unabhängig, so gilt für ihre gemeinsame Wahrscheinlichkeits-
dichte fX :

fX(x1, x2) = fX1(x1) · fX2(x2), (x1, x2) ∈ R2.

Y := X1 +X2 hat demnach die Dichte

fY (y) =

∞∫
−∞

fX(x, y − x) dx =

∞∫
−∞

fX1(x) · fX2(y − x) dx

=

∞∫
−∞

1√
2π

· e−
1
2
x2 · 1√

2π
· e−

1
2
(y−x)2 dx

=
1√
2π

· 1√
2
· e−

1
2
· y

2

2 ·
∞∫

−∞

1√
π
· e−

1
2
( y2

2
−2xy+2x2) dx

=
1√
2π

· 1√
2
· e−

1
2
· y

2

2 ·
∞∫

−∞

1√
π
· e−

1
2
·2( y2

4
−xy+x2) dx

=
1√
2π

· 1√
2
· e−

1
2
· y

2

2 ·
∞∫

−∞

1√
π
· e−

1
2
· (x−y/ 2)2

1/ 2 dx, y ∈ R.

Mit
1√
π

∞∫
−∞

e−(x− y
2
)2 dx

(∗)
=

1√
π

∞∫
−∞

e−t2 dt

︸ ︷︷ ︸
√

π

= 1
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((∗) Substitution: t = x− y
2 , dx = dt) folgt

fY (y) =
1√
2π

· 1√
2
· e−

1
2

y2

2 , y ∈ R,

also ist Y N
(
0,
√

2
)
–verteilt.

Anwendungen

11.33 Beispiel:
Zwei verschieden starke Bleche werden aufeinander geschweißt. Es mögen X1 ≥ 0 und X2 ≥
0 die Dickenabweichungen der beiden Bleche vom Sollwert bezeichnen. Damit weicht die
Gesamtdicke um (maximal) X1 + X2 vom Sollwert ab. Es seien X1 und X2 stochastisch
unabhängig und N (0, 1)–verteilt. Dann ist Y := X1 + X2 nach Beispiel 11.32 N

(
0,
√

2
)

verteilt.

11.34 Beispiel (Wartezeit an einem Postschalter):
Die aufeinanderfolgenden Bedienzeiten seien stochastisch unabhängig und exponentiell ver-
teilt mit dem Parameter λ > 0. Zum Zeitpunkt der Ankunft befinden sich genau n Kunden
im System.

Wie ist die Wartezeit des gerade ankommenden Kunden verteilt?

Zunächst wird festgestellt, dass die Restbedienzeit des gerade im Bediener befindlichen Kun-
den aufgrund der Gedächtnislosigkeit der Exponentialverteilung ebenfalls exponentiell verteilt
ist. Denn es gilt:

P (X1 > t+ x | X1 > t) =
P (X1 > t+ x,X1 > t)

P (X1 > t)
=
P (X1 > t+ x)
P (X1 > t)

=
e−λ(t+x)

e−λt
= e−λx = P (X1 > x), t > 0, x > 0.

Zur Bestimmung der Verteilung der Wartezeit eines ankommenden Kunden wird der folgende
Satz betrachtet:

11.35 Satz:
Es seien X1, . . . , Xn stochastisch unabhängige Zufallsvariablen mit Xi

d= Exp(λ), i = 1, . . . , n.
Dann ist Y = X1 + · · ·+Xn Erlang(n, λ)–verteilt, d.h. es ist

fY (y) =


λnyn−1e−λy

(n− 1)!
, y ≥ 0

0, y < 0.
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Beweis (mit vollständiger Induktion):
Für n := 1 ist die Behauptung evident. Es wird von n− 1 auf n geschlossen:

fn(y) =

y∫
0

f1(y − x)fn−1(x) dx

=
1

(n− 2)!

y∫
0

λe−λ(y−x)λn−1xn−2e−λx dx

=
λne−λy

(n− 2)!

y∫
0

xn−2 dx =
λne−λyyn−1

(n− 1)!
, y ≥ 0.

�

Zusammenfassend ergibt sich für Beispiel 11.34 das Ergebnis, dass die Wartezeit (inklusive
Bedienung) Erlang(n, λ)–verteilt ist, wenn bei der Ankunft n Kunden im System verweilen.

11.4 Der Satz von Fubini und seine Anwendungen

Nicht immer ist man bei der Transformation von Zufallsvariablen an der Verteilung von
G(x) interessiert. Häufig genügt die Kenntnis einer gewissen Kenngröße von G(x) wie dem
Erwartungswert oder der Varianz. Eine besondere Bedeutung haben dabei Produkte und
Summen von Zufallsvariablen.
Im Falle diskreter und stochastisch unabhängiger Zufallsvariablen X, Y ergibt sich mit den
Vereinbarungen Pij := P ((X,Y ) = (xi, yj)) sowie Pi· := P (X = xi) und P·j := P (Y = yj)

E[X · Y ] =
∑
i,j

xiyjPij =
∑
i,j

xiyj · Pi· · P·j

=
∑

i

xiPi· ·
∑

j

yjP·j = E[X] · E[Y ] .

Im Falle stetiger Zufallsvariablen lässt sich analog schließen:

E[X · Y ] =

+∞∫
−∞

+∞∫
−∞

x · y · fX(x) · fY (y) dx dy

=

+∞∫
−∞

x · fX(x) dx ·
+∞∫
−∞

y · fY (y) dy = E[X] · E[Y ] .

Der allgemeine Fall kann mit Hilfe des Satzes von Fubini gelöst werden. Er beinhaltet hinrei-
chende Bedingungen für die Vertauschbarkeit zweier Integrationen. Zunächst müssen dafür
ein paar Vorbereitungen getroffen werden:

Es seien (Ωi,Fi, µi), i = 1, 2, zwei Maßräume, µ := µ1
⊗
µ2 das Produktmaß von µ1 und µ2,

und X : Ω1 ×Ω2 −→ R eine F1
⊗

F2–B–messbare numerische Funktion. In diesem Fall stellt
sich die Frage, inwieweit man das Integral

∫
Xd(µ1

⊗
µ2) auch in der iterierten Form∫ [

X(ω1, ω2)dµ2

]
dµ1
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darstellen kann. Damit dies überhaupt eine sinnvolle Vorgehensweise wird, muss X(ω1, ω2) bei
festgehaltenem ω1 als Funktion von ω2 F2–B–messbar und das µ–Integral

∫
X(ω1, ω2)dµ2, als

Funktion von ω1, F1–B–messbar sein. Die Beantwortung dieser Frage erfordert den Begriff
der Schnittbildung bei Mengen und Funktionen.

11.36 Definition (Schnitt von Mengen):
Ist A ⊆ Ω1 × Ω2 eine beliebige Menge, so nennt man Aω1 := {ω2 ∈ Ω2 | (ω1, ω2) ∈ A},
ω1 ∈ Ω1, den Schnitt von A an der Stelle ω1. Entsprechend wird Aω2 definiert.

Abbildung 11.7: Veranschaulichung der Definition des Schnittes von Mengen

Die Schnittbildung von Mengen ist operationstreu in folgendem Sinn:

(A)ω1 = (Aω1),

( ∞⋃
i=1

Ai

)
ω1

=
∞⋃
i=1

(Ai)ω1 ,

( ∞⋂
i=1

Ai

)
ω1

=
∞⋂
i=1

(Ai)ω1

Ist A := A1 ×A2, Ai ⊂ Ωi, i = 1, 2, so gilt:

(∗) (A)ω1 = (A1 ×A2)ω1 =
{
A2 , falls ω1 ∈ A1

∅ , sonst.

11.37 Satz:
Für A ∈ F1 ⊗ F2 gilt Aω1 ∈ F2.

Beweis:
Das Mengensystem F := {A ⊆ Ω1 × Ω2 | Aω1 ∈ F2} definiert eine σ–Algebra. Wegen (∗)
umfaßt F die Rechteckmengen A1 × A2 mit Ai ∈ Fi, i = 1, 2, und somit auch die von diesen
Mengen erzeugte σ–Algebra F1 ⊗ F2. �

11.38 Definition (Schnitt von Funktionen):
Ist X eine Abbildung X : Ω1×Ω2 −→ R, so nennt man die Funktion Xω1 : Ω2 −→ R, ω1 ∈ Ω1,
mit Xω1(ω2) := X(ω1, ω2) den Schnitt von X an der Stelle ω1 ∈ Ω1. Entsprechend definiert
man wieder Xω2.
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Die Schnittbildung von Funktionen ist linear und monoton. Insbesondere gilt:(
n∑

i=1

αiXi

)
ω1

=
n∑

i=1

αi(Xi)ω1 .

Aus Xn ↗ X folgt (Xn)ω1 ↗ Xω1 .

11.39 Satz:
Ist X F1 ⊗ F2–B–messbar, so ist Xω1 F2–B–messbar.

Beweis:
Wegen X−1(B) ∈ F1 ⊗ F2 für alle B ∈ B gilt:

(Xω1)
−1(B) ={ω2 ∈ Ω2 | Xω1(ω2) ∈ B}

={ω2 ∈ Ω2 | X(ω1, ω2) ∈ B} = (X−1(B))ω1 ∈ F2 . �

Der Zusammenhang zwischen Schnittbildung und Funktionen ist gegeben durch:

(IA)ω1 = I(Aω1 ) für A ⊆ Ω1 × Ω2.

11.40 Satz (Produktmaßsatz):
Es seien (Ωi,Fi, µi), i = 1, 2, zwei Maßräume, µi, i = 1, 2, σ–endlich und A ∈ F := F1 ⊗ F2.
Dann ist µ2(Aω1) als Funktion von ω1 F1–B–messbar und es gilt

(µ1 ⊗ µ2)(A) =
∫
µ2(Aω1)dµ1.

Beweis:
Wir zeigen der Reihe nach:

(1) µ2(Aω1) ist F1–B–messbar,
wobei wir zunächst µ2 als endlich (1. Fall) und dann als σ-endlich (2. Fall) voraussetzen,

(2) (µ1 ⊗ µ2)(A) =
∫
µ2(Aω1)dµ1.

Zu 1.: 1. Fall: µ2(Ω2) <∞.
Setze XA(ω1) := µ2(Aω1) für A ∈ F. Betrachte

F
′
:= {A ∈ F | XA ist F1–B–messbar} ⊆ F

und weise dieses als Dynkin-System nach. Setze anschließend E := {A1 × A2 | A1 ∈
F1 und A2 ∈ F2}. Wegen XA1×A2 = µ2(A2)IA1 für A1 × A2 ∈ E ist XA1×A2 F1–B–
messbar und es gilt E ⊆ F

′ ⊆ F. Da E durchschnittsstabil ist, folgt mit Satz 5.12, dass
das von E erzeugte Dynkin–System mit der von E erzeugten σ–Algebra zusammenfällt,
d.h. D(E) = σ(E). Damit ist für jedes endliche µ2 die F1–B–Messbarkeit von XA(ω1) =
µ2(Aω1) nachgewiesen.
Es bleibt zu zeigen, dass F

′
ein Dynkin-System ist. Dazu

(a) Ω ∈ F
′
:

Da XΩ = µ2(Ω2) F1–B–messbar ist, gilt Ω ∈ F′.
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(b) Für A,B ∈ F
′
mit A ⊆ B gilt: B \A ∈ F

′
.

Für jedes ω1 ∈ Ω1 gilt:

XB\A(ω1) = µ2((B \A)ω1) = µ2(Bω1 \Aω1).

Da µ2 als endlich vorausgesetzt ist, gilt

XB\A(ω1) = µ2(Bω1)− µ2(Aω1)

und damit XB\A = XB −XA, also B \A ∈ F
′
.

(c) Für jede Folge (An)n∈N paarweise disjunkter Mengen aus F
′
ist auch

⋃
n∈N

An ∈ F
′
:

Für alle n ∈ N stellen deshalb die XAn F1–B–messbare Funktionen dar. Dann ist
nach Satz 8.13 auch

∑
n∈N

XAn F1–B–messbar. Wegen X ⋃
n∈N

An
=
∑

n∈N
XAn folgt⋃

n∈N
An ∈ F

′
.

Damit ist F
′

als Dynkin–System nachgewiesen und folglich ist XA(ω1) = µ2(Aω1) F1–
B–messbar für jedes endliche µ2.

2. Fall: µ2 σ–endlich.
Dieser Fall kann auf den ersten Fall zurückgeführt werden:
Es seien (Cn)n∈N eine Folge von Elementen aus F2 mit C1 ⊆ C2 ⊆ C3 ⊆ . . .,

⋃
n∈N

Cn = Ω2

und µ2(Cn) < ∞ ∀ n ∈ N. Für n ∈ N sei νn : F2 −→ R definiert durch νn(A2) :=
µ2(A2 ∩ Cn) für A2 ∈ F2. Dann ist νn ein endliches Maß auf F2. Für beliebiges A ∈ F

wird XA,n : Ω1 −→ R mit XA,n(ω1) := νn(Aω1), ω1 ∈ Ω1 definiert. Nach dem 1. Fall
sind die Funktionen XA,n F1–B–messbar, weshalb auch sup

n∈N
XA,n F1–B–messbar ist.

Unter Ausnutzung der Monotonie erhält man:

sup
n∈N

XA,n(ω1) = sup
n∈N

νn(Aω1) = sup
n∈N

µ2(Aω1 ∩ Cn) = µ2(Aω1).

Damit ist XA F1–B–messbar.

Zu 2.: µ(A) = (µ1 ⊗ µ2)(A) =
∫
µ2(Aω1)dµ1

Definiere µ′ : F −→ R mit µ
′
(A) :=

∫
XAdµ1 ∀ A ∈ F und zeige, dass µ

′
ein Maß auf F

ist. Betrachte anschließend die Menge der kartesischen Produkte E := {A1 × A2 | A1 ∈
F1 und A2 ∈ F2}. Nach Satz 11.23 ist das Produktmaß µ = µ1 ⊗ µ2 durch seine Werte
auf E bereits eindeutig festgelegt und es gilt für alle A1 ×A2 ∈ E :

µ′(A1 ×A2) =
∫
XA1×A2dµ1 =

∫
µ2(A2)IA1 dµ1 = µ2(A2) · µ1(A1).

Daher ist µ = µ
′
.

Es bleibt zu zeigen: µ
′
ist Maß auf F.

(a) µ
′
ist nichtnegativ:

Gilt nach Definition.
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(b) µ
′
ist σ–additiv:

Für eine Folge (An)n∈N paarweise fremder Mengen aus F gilt aufgrund von Satz
9.43:

µ
′

(⋃
n∈N

An

)
=
∫
X ⋃

n∈N
An
dµ1 =

∫ (∑
n∈N

XAn

)
dµ1 =

∑
n∈N

∫
XAndµ1 =

∑
n∈N

µ
′
(An).

�

11.41 Satz (Satz von Fubini):
Es seien (Ωi, Fi, µi), i = 1, 2, zwei Maßräume, µi, i = 1, 2, σ–endlich und X : Ω1 ×Ω2 −→ R

F1 ⊗ F2–B–messbar. Gilt

a) X ≥ 0 oder

b)
∫
|X| d(µ1 ⊗ µ2) <∞,

dann ist ∫
X d(µ1 ⊗ µ2) =

∫ [∫
Xω1dµ2

]
dµ1.

(Siehe auch Lebensdaten von Fubini im Anhang D.)

Beweis:
Der Beweis folgt wieder dem Prinzip der sogenannten algebraischen Induktion:

(i) Zeige die Behauptung für Indikatorvariablen X = IA, A ∈ F1 ⊗ F2.

(ii) Zeige die Behauptung für Elementarfunktionen X =
n∑

k=1

αkIAk
.

(iii) Zeige die Behauptung für nichtnegative, messbare numerische Funktionen X.

(iv) Zeige die Behauptung für allgemeine meßbare numerische Funktionen.

Zu (i): Die Behauptung folgt unmittelbar aus Satz 11.40.

Zu (ii): Folgt aus (i) und der Linearität des Integrals.

Zu (iii): Folgt aus dem Satz von der monotonen Konvergenz (Satz 9.42).

Zu (iv): Im allgemeinen Fall sei wieder X = X+ −X−. Aufgrund von Voraussetzung b) gelten∫
X+d(µ1 ⊗ µ2) <∞ und

∫
X−d(µ1 ⊗ µ2) <∞.

Damit folgen ∫ [∫
X+

ω1
dµ2

]
dµ1 <∞ und

∫ [∫
X−

ω1
dµ2

]
dµ1 <∞.
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Insgesamt ergibt sich also∫
X d(µ1 ⊗ µ2) =

∫
X+d(µ1 ⊗ µ2)−

∫
X−d(µ1 ⊗ µ2)

=
∫ ∫

X+
ω1
dµ2 dµ1 −

∫ ∫
X−

ω1
dµ2 dµ1

=
∫ ∫

Xω1dµ2 dµ1.

�

Als eine Anwendung des Satzes von Fubini wird der Multiplikationssatz für Erwartungswerte
betrachtet:

11.42 Satz (Multiplikationssatz für Erwartungswerte):
Es seien X und Y zwei stochastisch unabhängige Zufallsgrößen, die eine der beiden Bedin-
gungen

a) (X ≥ 0 und Y ≥ 0) oder

b) E[|X|] <∞ und E[|Y |] <∞

erfüllen. Dann gilt: E[X · Y ] = E[X] · E[Y ].

Beweis:
Ist a) erfüllt, so gilt aufgrund der stochastischen Unabhängigkeit von X und Y und dem Satz
von Fubini:

E[X · Y ] =
∫
xy d(PX ⊗ PY )

=
∫
x

(∫
y dPY

)
dPX =

∫
x dPX ·

∫
y dPY = E[X] · E[Y ] .

Ist b) erfüllt, dann muss man auch noch E[|X · Y |] <∞ nachweisen, um den Satz von Fubini
anwenden zu können. Da aber wegen |X| ≥ 0 und |Y | ≥ 0 gilt: E[|X| · |Y |] = E[|X|] · E[|Y |]
folgt aus Voraussetzung b) E[|X · Y |] = E[|X|] · E[|Y |] <∞. �

11.43 Definition (Kovarianz, unkorreliert):
Es sei (X,Y ) ein Zufallsvektor. Falls X und Y endliche Momente zweiter Ordnung besitzen,
bezeichnet man

COV[X,Y ] := E[(X − E[X])(Y − E[Y ])] = E[X · Y ]− E[X] · E[Y ]

als Kovarianz von X und Y .
Ist COV[X,Y ] = 0 bezeichnet man X und Y als unkorreliert. Für unabhängige Zufallsva-
riablen X und Y ist stets COV[X,Y ] = 0. Aus COV[X,Y ] = 0 folgt im Allgemeinen jedoch
nicht, dass X und Y unabhängig sind.
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11.44 Beispiel:
E[X · Y ] = E[X] ·E[Y ] impliziert nicht, dass X und Y unabhängig sind. Es seien Z d=U[−π

2
, π
2 ],

X := sin(Z) und Y := cos(Z). Hieraus folgt:

X · Y = sin(Z) · cos(Z) =
1
2

sin(2Z).

Hieraus folgen

E[X] =
1
π

∫ π
2

−π
2

sin(t)dt = 0, E[Y ] =
1
π

∫ π
2

−π
2

cos(t)dt =
2
π
,

E[X · Y ] =
1
2π

∫ π
2

−π
2

sin(2t)dt = 0, also E[X · Y ] = E[X] · E[Y ] = 0.
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Kapitel 12

Schwaches und starkes Gesetz der
großen Zahlen

Oftmals interessiert man sich für die Eigenschaften geeignet normierter Summen von Zufalls-
variablen. Beim Würfelspiel zum Beispiel werden die für ein bestimmtes Ereignis günstigen
Versuchsausgänge zusammengezählt und anschließend durch die Anzahl der Versuche divi-
diert, um zu einer Schätzung für die entsprechende Wahrscheinlichkeit zu gelangen. In diesem
Fall stellt sich die Frage, unter welchen Bedingungen und mit welcher Konvergenzgeschwin-
digkeit sich Ausdrücke dieser Form stabilisieren. Eine Antwort darauf geben das schwache
und starke Gesetz der großen Zahlen.

Schlüsselwörter: Markovsche Ungleichung, Tschebyscheffsche Ungleichung, Sto-
chastische Konvergenz, i.i.d. Folge, Schwaches Gesetz der großen Zahlen, Satz von
Bernoulli, fast sichere Konvergenz, Kolmogorovsche Ungleichung, Starkes Gesetz der
großen Zahlen.
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12.1 Das schwache Gesetz der großen Zahlen

Beim axiomatischen Aufbau der Wahrscheinlichkeitstheorie haben wir uns an den Eigenschaf-
ten der relativen Häufigkeiten orientiert. Von besonderer Bedeutung war dabei die Beobach-
tung gewesen, dass sich die relativen Häufigkeiten für große Stichprobenumfänge stabilisieren.
Wir werden nun umgekehrt vorgehen, in dem wir den abstrakten Wahrscheinlichkeitsbegriff
von A. N. Kolmogorov zugrundelegen und zeigen, dass sich die relativen Häufigkeiten hn(A)
eines Ereignisses A, die wir als spezielle Zufallsvariablen auffassen, für n→∞ konvergieren.
Dabei können verschiedene Konvergenzbegriffe zugrundegelegt werden. Wir beginnen mit dem
Begriff der stochastischen Konvergenz.

12.1 Definition (stochastische Konvergenz):
Es seien X,X1, X2, . . . reellwertige Zufallsvariablen jeweils über demselben Wahrscheinlich-
keitsraum (Ω,F, P ). Man sagt, dass die Folge (Xn)∞n=1 stochastisch gegen X konvergiert, kurz

Xn
P−→ X, falls für alle ε > 0 gilt:

P (|Xn −X| ≥ ε) → 0.

12.2 Beispiel:
Es seien (Ω,F, P ) ein Wahrscheinlichkeitsraum und (Xn)∞n=1 eine Folge von reellwertigen
Zufallsvariablen über (Ω,F, P ) mit P (Xn = 1) := 1

n und P (Xn = 0) := 1− 1
n für n = 1, 2, . . . .

Dann gilt

P (|Xn| ≥ ε) =
{
P (Xn = 1) = 1

n , 0 < ε ≤ 1
0 , ε > 1.

Als Grenzwert ergibt sich
lim

n→∞
P (|Xn| ≥ ε) = 0,

also Xn
P−→ 0.

In der Regel kann die stochastische Konvergenz mit Hilfe der Ungleichungen von Markov und
Tschebyscheff nachgewiesen werden.

12.3 Satz (Markovsche Ungleichung):
Es sei X eine reellwertige Zufallsvariable über (Ω,F, P ) mit E[|X|r] < ∞ für r > 0. Dann
gilt für alle ε > 0:

P (|X| ≥ ε) ≤ 1
εr

E[|X|r] .

(Siehe auch Lebensdaten von Markov im Anhang D.)

Beweis:
Es gilt

E[| X |r] =
∫
Ω

| X |r dP =
∫
Ω

| X |r I{|X|<ε}dP +
∫
Ω

| X |r I{|X|≥ε}dP

≥
∫
Ω

| X |r I{|X|≥ε}dP ≥ εr
∫
Ω

I{|X|≥ε}dP = εrP (|X| ≥ ε).

�
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12.4 Satz (Tschebyscheffsche Ungleichung):
Es sei Y eine reellwertige Zufallsvariable mit Var[Y ] <∞. Dann gilt für alle ε > 0:

P (|Y − E[Y ]| ≥ ε) ≤ Var[Y ]
ε2

.

(Siehe auch Lebensdaten von Tschebyscheff im Anhang D.)

Beweis:
Die Aussage folgt mit Satz 12.3 mit X := Y − E[Y ] und r := 2. �

Die nachfolgenden Beispiele zeigen, dass die Markovsche Ungleichung für numerische Zwecke
ungeeignet ist.

12.5 Beispiel:
1. Es sei X d= Exp(λ). Damit ergibt sich: P (|X| ≥ ε) ≤ 1

εE[|X|] = 1
ε·λ .

Für λ := 1 und ε := 2 erhält man damit P (|X| ≥ 2) ≤ 1
2 .

Andererseits gilt aber P (|X| ≥ 2) = P (X ≥ 2) = 1− FX(2) = e−2 ≈ 0.14.

2. Es sei X d= N(0, σ) und ε := 3σ gewählt. Bei Anwendung der Tschebyscheffschen
Ungleichung ergibt sich:

P (|X| ≥ 3σ) ≤ 1
(3σ)2

Var[X] =
1
9
≈ 0.11.

Den Tafeln der Normalverteilung entnimmt man jedoch:

P (|X| ≥ 3σ) ≤ 0.01.

12.6 Definition (identisch verteilt, i.i.d. Folge):
a) Die Zufallsvariablen X1, X2, . . . heißen identisch verteilt, wenn Xi

d= Xj für alle i, j ∈
N gilt.

b) Eine Folge (Xn)∞n=1 von Zufallsvariablen, die stochastisch unabhängig und identisch
verteilt sind, heißt eine i.i.d. Folge (i.i.d. ≡ independent and identically distributed).

Mit diesen Vorbetrachtungen lassen sich die verschiedenen Versionen des schwaches der Ge-
setzes der großen Zahlen formulieren und beweisen.

12.7 Satz (Schwaches Gesetz der großen Zahlen):
Es sei (Xi)i∈N eine Folge von identisch verteilten reellwertigen Zufallsvariablen, die paarweise
unkorreliert sind d.h. E[XiXj ] = E[Xi] ·E[Xj ] ∀ i, j ∈ N mit i 6= j. Außerdem sei Var[X1] <
∞. Dann gilt für alle ε > 0:

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − E[X1]

∣∣∣∣∣ ≥ ε

)
≤ 1
nε2

Var[X1] .

Insbesondere gilt

lim
n→∞

(
1
n

n∑
i=1

Xi

)
P−→ E[X1] .
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Beweis:
Der Satz ist eine unmittelbare Konsequenz aus der Tschebyscheffschen Ungleichung und den
folgenden Beziehungen:

E

[
1
n

n∑
i=1

Xi

]
=

1
n

n∑
i=1

E[Xi] =
1
n

(n · E[X1]) = E[X1] ,

Var

[
1
n

n∑
i=1

Xi

]
=

1
n2

n∑
i=1

Var[Xi] =
1
n2

(n ·Var[X1]) =
Var[X1]

n
.

�

Anwendung: Bernoulli–Folgen
Es sei (Xi)i∈N eine Folge von stochastisch unabhängigen und B(1, p)–verteilten Zufallsva-
riablen über (Ω,F, P ), d.h. P (Xi = 1) := p und P (Xi = 0) := 1 − p für alle i ∈ N. Für

n ∈ N wird Hn :=
n∑

i=1
Xi gesetzt. Die Zufallsvariable Hn entspricht der absoluten Häufigkeit

des Ereignisses A := {Xi = 1} in einer Versuchsreihe der Länge n. Entsprechend definiert
hn := 1

nHn die relative Häufigkeit von A.

12.8 Satz (Satz von Bernoulli):
Es sei (Xi)i∈N eine i.i.d. Folge mit P (Xi = 1) := p und P (Xi = 0) := 1 − p. Dann gilt für
alle ε > 0:

P

(∣∣∣∣Hn

n
− p

∣∣∣∣ ≥ ε

)
≤ p · (1− p)

n · ε2
bzw.

Hn

n

P→ p.

(Siehe auch Lebensdaten von Bernoulli im Anhang D.)

Beweis:
Der Satz ergibt sich durch Anwendung des schwachen Gesetzes der großen Zahlen 12.7 mit
Hn :=

∑n
i=1Xi, E[X1] := p und Var[X1] = E[(X1)2]− (E[X1])2 := p− p2 = p(1− p). �

Die Tschebyscheffsche Ungleichung lässt genügend Spielraum für geeignete Modifikationen
des schwachen Gesetzes der großen Zahlen:

12.9 Satz (Schwaches Gesetz der großen Zahlen, verallgemeinerte Version):
Es bezeichne (Xi)i∈N eine Folge von reellwertigen Zufallsvariablen über (Ω,F, P ). Außerdem
sei mindestens eine der nachstehenden Bedingungen erfüllt:

a) Var
[

n∑
i=1

Xi

]
= o(n2) für n→∞.

b) COV[Xi, Xj ] = 0 ∀ i, j ∈ N mit i 6= j und
n∑

i=1
Var[Xi] = o(n2) für n→∞.

c) COV[Xi, Xj ] = 0 ∀ i, j ∈ N mit i 6= j, FXi = FXj ∀ i, j ∈ N und Var[X1] <∞.

d) (Xi)i∈N ist eine i.i.d. Folge und Var[X1] <∞.
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Dann gilt:
1
n

n∑
i=1

Xi
P→ 1
n

n∑
i=1

E[Xi].

Bemerkung:
Es ist in obigem Satz mit o(n2) das wie folgt definierte Landau-Symbol gemeint:

f(n) = o(g(n)) : ⇐⇒ lim
n→∞

f(n)
g(n)

= 0.

Beweis:
Die Voraussetzungen für c) und d) wurden bereits in Satz 12.7 behandelt. Da die Forderung
a) offensichtlich schwächer ist als die Forderung b), genügt es, diesen Fall zu betrachten. Lässt
sich die Aussage für den Fall, dass die Voraussetzungen unter a) erfüllt sind beweisen, so gilt
sie auch sofort für den Fall, dass die Voraussetzungen unter b) erfüllt sind. Es gilt:

E

[
1
n

n∑
i=1

Xi

]
=

1
n

n∑
i=1

E[Xi] und Var

[
1
n

n∑
i=1

Xi

]
=

1
n2

Var

[
n∑

i=1

Xi

]

Damit folgt:

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi −
1
n

n∑
i=1

E[Xi]

∣∣∣∣∣ ≥ ε

)
≤

Var
[

n∑
i=1

Xi

]
ε2 · n2

=
o(n2)
ε2 · n2

→ 0 für n→∞.

�

12.10 Bemerkung:
Die stochastische Konvergenz macht nur eine Aussage über die Folge der Wahrscheinlichkeiten
P (|Xn −X| ≥ ε), n = 1, 2, . . .. Über die Konvergenz der zugrundeliegenden Zufallsvariablen
Xn(ω) als Funktionen von ω wird keine Aussage getroffen. Mit Fragen dieser Art beschäftigt
sich der nächste Abschnitt.

12.2 Das starke Gesetz der großen Zahlen

Im vorherigen Abschnitt konnte mittels der stochastischen Konvergenz das schwache Gesetz
der großen Zahlen aufgestellt werden. Im Folgenden wird dieser Konvergenzbegriff verschärft
und das starke Gesetz der großen Zahlen formuliert.

12.11 Definition (P–fast–sicher):
Man sagt, eine Folge (Xn)n∈N von Zufallsvariablen über einem gemeinsamen Wahrschein-
lichkeitsraum (Ω,F, P ) strebt P–fast–sicher (P–f.s.) gegen die Zufallsvariable X, falls

P
(

lim
n→∞

Xn = X
)

= 1 kurz Xn(ω) −→ X(ω) P–f.s.

gilt, d.h. es gibt eine Nullmenge N ∈ F mit P (N) = 0, so dass lim
n→∞

Xn(ω) = X(ω) ∀ ω ∈ N .
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12.12 Satz (Zusammenhang zwischen stochastischer und P–fast–sicherer Konvergenz):
a) Konvergiert die Folge (Xn)n∈N P–f.s. gegen X, so auch stochastisch, d.h. es gilt:

Xn −→ X P–f.s. =⇒ Xn
P−→ X für n→∞.

b) Konvergiert die Folge
{
supm≥n |Xm −X|

}
n∈N stochastisch gegen 0, so konvergiert die

Folge (Xn)n∈N P–fast–sicher gegen X, d.h. es gilt:{
sup
m≥n

|Xm −X|
}

P−→ 0 =⇒ Xn −→ X P–f.s. für n→∞.

Beweis:
a) Für alle ε > 0 gilt:

0 ≤ lim sup
n→∞

P (|Xn −X| ≥ ε)

≤ lim sup
n→∞

P

( ∞⋃
m=n

{|Xm −X| ≥ ε}

)

= P

( ∞⋂
n=1

∞⋃
m=n

{|Xm −X| ≥ ε}

)
= P (|Xn −X| ≥ ε für unendlich viele n)

≤ 1− P
({

lim
n→∞

Xn = X
})

= 1− 1 = 0 (da Xn −→ X P–f.s.).

b) Es wird Yn := sup
m≥n

|Xm −X| ∀ n ∈ N gesetzt. Offensichtlich ist

Yn = sup{|Xn −X| , |Xn+1 −X| , . . . }
≥ sup{|Xn+1 −X| , |Xn+2 −X| , . . . } = Yn+1,

d.h. die Folge (Yn)n∈N ist monoton fallend. Da (Yn)n∈N nach unten durch 0 beschränkt
ist, konvergiert (Yn)n∈N f.s. gegen eine Zufallsvariable Y ≥ 0. Zusammen mit Teil a)
folgt, dass (Yn)n∈N dann auch stochastisch gegen Y konvergiert. Wenn sich jetzt zeigen
lässt, dass bei stochastischer Konvergenz der Grenzwert Y f.s. eindeutig bestimmt ist,
muss aufgrund der Voraussetzung Y = 0 f.s. gelten und damit Xn f.s. gegen X. Sei
deshalb Y ′ eine weitere Zufallsvariable, für die lim

n→∞
P (|Yn − Y ′| ≥ ε) = 0 gilt. Dann

würde aber folgen

P (
∣∣Y − Y ′∣∣ ≥ ε) = P (

∣∣(Y − Yn)− (Y ′ − Yn)
∣∣ ≥ ε)

≤ P
({
|Y − Yn| ≥

ε

2

}
∪
{∣∣Y ′ − Yn

∣∣ ≥ ε

2

})
≤ P

({
|Y − Yn| ≥

ε

2

})
+ P

({∣∣Y ′ − Yn

∣∣ ≥ ε

2

})
−→ 0 für n→∞.

Aus P (|Y | ≥ ε) = 0 ∀ ε > 0 folgt

P (|Y | 6= 0) = P

(⋃
k∈N

|Y | ≥ 1
k

)
= lim

k→∞
P

(
|Y | ≥ 1

k

)
= 0.

Wenn aber Yn −→ Y punktweise und Y = 0 P -f.s., so gilt Yn −→ 0 P -f.s. und somit
Xn −→ X P -f.s. �
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12.13 Satz (Kolmogorovsche Ungleichung):
Es seien X1, . . . , Xn stochastisch unabhängige Zufallsgrößen mit den Mittelwerten E[Xi] und

den Varianzen Var[Xi] für i = 1, . . . , n. Die zugehörigen Partialsummen seien Sm :=
m∑

i=1
Xi,

m = 1, . . . , n. Dann gilt für jedes ε > 0

P

(
max

1≤m≤n
|Sm − E[Sm]| ≥ ε

)
≤ Var[Sn]

ε2
.

(Siehe auch Lebensdaten von Kolmogorov im Anhang D.)

Beweis:
O.B.d.A. kann angenommen werden, dass E[Xm] = 0 für m = 1, . . . , n gilt. Es wird

A :=
{
ω ∈ Ω | max

1≤m≤n
|Sm| ≥ ε

}
=

n⋃
m=1

{ω ∈ Ω | |Sm| ≥ ε} =
n⋃

m=1

Am,

mit
Am := {ω ∈ Ω | |S1| < ε, . . . , |Sm−1| < ε, |Sm| ≥ ε} (m = 1, . . . , n)

gesetzt. Man beachte, dass die Mengen A1, A2, . . . , An paarweise disjunkt sind.
Aus Sn = Sk + Sn − Sk folgt

S2
n = S2

k + 2(Sn − Sk)Sk + (Sn − Sk)2.

Damit wird

Var[Sn] = E
[
S2

n

]
− (E[Sn])2 = E

[
S2

n

]
=
∫
Ω

S2
n dP

≥
∫
A

S2
n dP =

n∑
k=1

∫
Ak

S2
n dP

=
n∑

k=1

∫
Ak

(S2
k + 2(Sn − Sk)Sk + (Sn − Sk)2) dP.

Es wird zunächst gezeigt, dass die Zufallsvariablen

[Sn − Sk] = Xk+1 + . . .+Xn und IAk
· Sk

stochastisch unabhängig sind. Dazu wird Satz 11.26 angewandt mit

g1 : Rn−k −→ R , (xk+1, . . . , xn) −→
n∑

i=k−1

xi

g2 : Rk −→ R , (x1, . . . , xk) −→

(
k∑

i=1

xi

)
f(x1, . . . , xk),

wobei gilt

f(x1, . . . , xk) :=
{

1 , |x1| < ε, . . . , |xk−1| < ε, |xk| ≥ ε
0 , sonst.
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Damit folgt

∫
Ak

(Sn − Sk)Sk dP = E[(Sn − Sk) · IAk
· Sk]

= E[Sn − Sk] · E[IAk
· Sk]

= 0 · E[IAk
· Sk] = 0.

Somit ist

Var[Sn] =
n∑

k=1

∫
Ak

S2
k dP +

n∑
k=1

∫
Ak

(Sn − Sk)2 dP

≥
n∑

k=1

∫
Ak

S2
k dP ≥

n∑
k=1

ε2
∫
Ak

dP =
n∑

k=1

ε2 · P (Ak) = ε2 · P (A)

bzw.

P

(
max

1≤m≤n
|Sm| ≥ ε

)
≤ Var[Sn]

ε2
.

�

12.14 Satz (Starkes Gesetz der großen Zahlen, 1. Fassung):
Es sei (Xi)i∈N eine Folge stochastisch unabhängiger Zufallsvariablen über einem gemeinsamen
Wahrscheinlichkeitsraum (Ω,F, P ) mit

E[Xi] := µ ∀ i und
∞∑
i=1

Var[Xi]
i2

<∞.

Dann gilt:

lim
n→∞

1
n
Sn = lim

n→∞

1
n

n∑
i=1

Xi = µ P–f.s.

Beweis:
Für den Beweis wird Satz 12.12 b) und die Kolmogorovsche Ungleichung benutzt. Es wird
gezeigt, dass

P

(
sup
m≥n

∣∣∣∣ 1
m
Sm − µ

∣∣∣∣ ≥ ε

)
= P

( ∞⋃
m=n

{∣∣∣∣ 1
m
Sm − µ

∣∣∣∣ ≥ ε

})
−→ 0 für n→∞

gilt. Da diese Folge von Wahrscheinlichkeiten monoton in n ist, genügt es, sich beim Konver-
genznachweis auf eine Teilfolge zu beschränken, etwa auf n := 2r−1 + 1, r →∞.
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P

 ∞⋃
m=2r−1+1

{∣∣∣∣ 1
m
Sm − µ

∣∣∣∣ ≥ ε

} = P

 ∞⋃
i=r

⋃
2i−1<m≤2i

{∣∣∣∣ 1
m
Sm − µ

∣∣∣∣ ≥ ε

}
≤

∞∑
i=r

P

 ⋃
2i−1<m≤2i

{∣∣∣∣ 1
m
Sm − µ

∣∣∣∣ ≥ ε

}
=

∞∑
i=r

P

 ⋃
2i−1<m≤2i

{|Sm −mµ| ≥ mε}


≤

∞∑
i=r

P

 ⋃
2i−1<m≤2i

{|Sm −mµ| ≥ 2i−1 · ε}


≤

∞∑
i=r

P

 ⋃
1≤m≤2i

{|Sm −mµ| ≥ 2i−1 · ε}


=

∞∑
i=r

P

(
max

1≤m≤2i
|Sm − E[Sm]| ≥ 2i−1ε

)

≤
∞∑
i=r

Var[S2i ]
ε2 · 22(i−1)

=
4
ε2

∞∑
i=r

1
22i

2i∑
j=1

Var[Xj ] .

(Kolmogorovsche Ungleichung) .

Die rechte Seite konvergiert für r →∞ gegen 0, falls
∞∑
i=1

1
22i

2i∑
j=1

Var[Xj ] <∞ gilt.

∞∑
i=1

1
22i

2i∑
j=1

Var[Xj ] =
∞∑

j=1

Var[Xj ] ·
∑
2i≥j

1
2i
· 1
2i

≤
∞∑

j=1

Var[Xj ]
j2

·
∞∑

k=0

1
22k

=
∞∑

j=1

Var[Xj ]
j2

· 1
1− 1

4

=
4
3

∞∑
j=1

Var[Xj ]
j2

< ∞.

�

Ganz analog kann mit Hilfe der Kolmogorovschen Ungleichung der folgenden Satz bewiesen
werden:
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12.15 Satz (Starkes Gesetz der großen Zahlen, 2. Fassung):
Es sei (Xi)i∈N eine Folge von stochastisch unabhängigen Zufallsgrößen über (Ω,F, P ) mit

Mittelwerten µi := E[Xi] und Varianzen σi
2 := Var[Xi] ∀ i ∈ N. Ist

∞∑
i=1

σi
2

i2
<∞ , so gilt

1
n

n∑
i=1

Xi −→
1
n

n∑
i=1

µi P–f.s.

Im Fall stochastisch unabhängiger und identisch verteilter Zufallsvariablen X1, X2, . . . kann
auf die Existenz der Varianz für die Gültigkeit des starken Gesetzes der roßen Zahlen sogar
verzichtet werden (siehe Bauer, Kapitel 6):

12.16 Satz (Starkes Gesetz der großen Zahlen, 3. Fassung):
Es sei (Xi)i∈N eine i.i.d. Folge mit E[|X1|] <∞. Dann gilt

lim
n→∞

1
n

n∑
i=1

Xi = E[X1] P–f.s.

Das starke Gesetz der großen Zahlen besagt, dass unter geeigneten Regularitätsbedingungen
die Mittelwertbildung bei Zufallsvariablen zu einem Ausgleich der zufälligen Schwankungen
führt. Diese Tatsache gilt keineswegs allgemein, wie das nachfolgende Beispiel zeigt.

12.17 Beispiel:
Es sei (Xi)i∈N eine Folge von stochastisch unabhängigen und mit den Parametern λ := 1 und
µ := 0 identisch Cauchy-verteilten Zufallsvariablen, d.h.

fXi(x) :=
1
π
· 1
1 + x2

, x ∈ R, i ∈ N.

Man zeigt, dass das arithmetische Mittel der Zufallsvariablen X1, X2, . . . ebenfalls Cauchy-
verteilt ist mit den Parametern λ := 1 und µ := 0, weshalb die Mittelwertbildung zu keinem
Ausgleich von Schwankungen führt. Andererseits ist aber wegen∫ a

0

x

1 + x2
dx =

1
2
ln(1 + a2)

auch
E[|X1|] =

∫
R

|x| fX1(x)dx =
1
π

∫
R

|x|
1 + x2

dx = +∞,

so dass die Voraussetzungen des starken Gestzes der großen Zahlen 12.16 auch nicht erfüllt
sind.
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Anhang A

Tabelle der χ2–Verteilung

Anzahl der Freiheitsgrade
F (x)

1 2 3 4 5 6 7 8 9 10
0.001 0.00 0.00 0.02 0.09 0.21 0.38 0.60 0.86 1.15 1.48
0.005 0.00 0.01 0.07 0.21 0.41 0.68 0.99 1.34 1.73 2.16
0.01 0.00 0.02 0.11 0.30 0.55 0.87 1.24 1.65 2.09 2.56
0.025 0.00 0.05 0.22 0.48 0.83 1.24 1.69 2.18 2.70 3.25
0.05 0.00 0.10 0.35 0.71 1.15 1.64 2.17 2.73 3.33 3.94

0.1 0.02 0.21 0.58 1.06 1.61 2.20 2.83 3.49 4.17 4.87
0.25 0.10 0.58 1.21 1.92 2.67 3.45 4.25 5.07 5.90 6.74
0.5 0.45 1.39 2.37 3.36 4.35 5.35 6.35 7.34 8.34 9.34
0.75 1.32 2.77 4.11 5.39 6.63 7.84 9.04 10.22 11.39 12.55
0.9 2.71 4.61 6.25 7.78 9.24 10.64 12.02 13.36 14.68 15.99

0.95 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31
0.975 5.02 7.38 9.35 11.14 12.83 14.45 16.01 17.53 19.02 20.48
0.99 6.63 9.21 11.35 13.28 15.09 16.81 18.48 20.09 21.67 23.21
0.995 7.88 10.69 12.84 14.86 16.75 18.55 20.28 21.96 23.59 25.19
0.999 10.83 13.82 16.27 18.47 20.52 22.46 24.32 26.13 27.88 29.59

Anzahl der Freiheitsgrade
F (x)

11 12 13 14 15 16 17 18 19 20
0.001 1.83 2.21 2.62 3.04 3.48 3.94 4.42 4.90 5.41 5.92
0.005 2.60 3.07 3.57 4.07 4.60 5.14 5.70 6.26 6.84 7.43
0.01 3.05 3.57 4.11 4.66 5.23 5.81 6.41 7.01 7.63 8.26
0.025 3.82 4.40 5.01 5.63 6.26 6.91 7.56 8.23 8.91 9.59
0.05 4.57 5.23 5.89 6.57 7.26 7.96 8.67 9.39 10.12 10.85

0.1 5.58 6.30 7.04 7.79 8.55 9.31 10.09 10.86 11.65 12.44
0.25 7.58 8.44 9.30 10.17 11.04 11.91 12.79 13.68 14.56 15.45
0.5 10.34 11.34 12.34 13.34 14.34 15.34 16.34 17.34 18.34 19.34
0.75 13.70 14.85 15.98 17.12 18.25 19.37 20.49 21.60 22.72 23.83
0.9 17.28 18.55 19.81 21.06 22.31 23.54 24.77 25.99 27.20 28.41

0.95 19.68 21.03 22.36 23.68 25.00 26.30 27.59 28.87 30.14 31.41
0.975 21.92 23.34 24.74 26.12 27.49 28.85 30.19 31.53 32.85 34.17
0.99 24.73 26.22 27.69 29.14 30.58 32.00 33.41 34.81 36.19 37.57
0.995 26.76 28.30 29.82 31.32 32.80 34.27 35.72 37.16 38.58 40.00
0.999 31.26 32.91 34.53 36.12 37.70 39.25 40.79 42.31 43.82 45.32

Beispiel: Bei 3 Freiheitsgraden ist F = 0.99 für x = 11.35.
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Anzahl der Freiheitsgrade
F (x)

21 22 23 24 25 26 27 28 29 30
0.001 6,4 7,0 7,5 8,1 8,7 9,2 9,8 10,4 11,0 11,6
0.005 8,0 8,6 9,3 9,9 10,5 11,2 11,8 12,5 13,1 13,8
0,01 8,9 9,5 10,2 10,9 11,5 12,2 12,9 13,6 14,3 15,0
0,025 10,3 11,0 11,7 12,4 13,1 13,8 14,6 15,3 16,0 16,8
0,05 11,6 12,3 13,1 13,8 14,6 15,4 16,2 16,9 17,7 18,5

0,1 13,2 14,0 14,8 15,7 16,5 17,3 18,1 18,9 19,8 20,6
0,25 6,3 17,2 18,1 19,0 19,9 20,8 21,7 22,7 23,6 24,5
0,5 20,3 21,3 22,3 23,3 24,3 25,3 26,3 27,3 28,3 29,3
0,75 24,9 26,0 27,1 28,2 29,3 30,4 31,5 32,6 33,7 34,8
0,9 29,6 30,8 32,0 33,2 34,4 35,6 36,7 37,9 39,1 40,3

0,95 32,7 33,9 35,2 36,4 37,7 38,9 40,1 41,3 42,6 43,8
0,975 35,5 36,8 38,1 39,4 40,6 41,9 43,2 44,5 45,7 47,0
0,99 38,9 40,3 41,6 43,0 44,3 45,6 47,0 48,3 49,6 50,9
0,995 41,4 42,8 44,2 45,6 46,9 48,3 49,6 51,0 52,3 53,7
0,999 46,8 48,3 49,7 51,2 52,6 54,1 55,5 56,9 58,3 59,7

Anzahl der Freiheitsgrade
F (x)

40 50 60 70 80 90 100 > 100 (Näherung)
0,001 17,9 24,7 31,7 39,0 46,5 54,2 61,9 (h− 3, 09)2/2
0,005 20,7 28,0 35,5 43,3 51,2 59,2 67,3 (h− 2, 58)2/2
0,01 22,2 29,7 37,5 45,4 53,5 61,8 70,1 (h− 2, 33)2/2
0,025 24,4 32,4 40,5 48,8 57,2 65,6 74,2 (h− 1, 96)2/2
0,05 26,5 34,8 43,2 51,7 60,4 69,1 77,9 (h− 1, 64)2/2

0,1 29,1 37,7 46,5 55,3 64,3 73,3 82,4 (h− 1, 28)2/2
0,25 33,7 42,9 52,3 61,7 71,1 80,6 90,1 (h− 0, 67)2/2
0,5 39,3 49,3 59,3 69,3 79,3 89,3 99,3 h2/2
0,75 45,6 56,3 67,0 77,6 88,1 98,6 109,1 (h + 0, 67)2/2
0,9 51,8 63,2 74,4 85,5 96,6 107,6 118,5 (h + 1, 28)2/2

0,95 55,8 67,5 79,1 90,5 101,9 113,1 124,3 (h + 1, 64)2/2
0,975 59,3 71,4 83,3 95,0 106,6 118,1 129,6 (h + 1, 96)2/2
0,99 63,7 76,2 88,4 100,4 112,3 124,1 135,8 (h + 2, 33)2/2
0,995 66,8 79,5 92,0 104,2 116,3 128,3 140,2 (h + 2, 58)2/2
0,999 73,4 86,7 99,6 112,3 124,8 137,2 149,4 (h + 3, 09)2/2

In der letzten Spalte ist h =
√

2m− 1
(m = Anzahl der Freiheitsgerade)
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Anhang B

Zeichenerklärungen

N Menge der natürlichen Zahlen
Q Menge der rationalen Zahlen
R Menge der reellen Zahlen
C Menge der komplexen Zahlen
M Menge der maßdefinierenden Funktionen auf R, die in (−∞, 0) ver-

schwinden
B Menge der nichtnegativen reellen Funktionen, die auf jedem Intervall der

Form [0, t] beschränkt sind
In Menge der links offenen und rechts abgeschlossenen Intervalle im Rn,

n ∈ N
Bn := σ(In) “σ–Algebra der Borelschen Mengen des Rn”
R := R ∪ {−∞,+∞}
B := {B,B ∪ {−∞}, B ∪ {+∞}, B ∪ {−∞,+∞}|B ∈ B}

P(M) Potenzmenge von M
(a, b] := {x|a < x ≤ b} “links offenes, rechts abgeschlossenes Intervall”
n! := n . . . (n− 1) · · · · · 2 · 1 “Fakultät von n”

(N)n := N !
n! = N · (N − 1) · · · · · (N − n+ 1) “n–te untere Faktorielle von N”(

n
k

)
:=

n!
k! · (n− k)!

“n über k”

F (a− 0) meint den linksseitigen Limes von F (a)
↑ konvergiert von unten gegen

X
d= Exp(λ) X ist exponential–verteilt

X
d= Y X und Y sind identisch verteilt

<(x) Realteil der komplexen Zahl x
=(x) Imaginärteil der komplexen Zahl x

O(n), o(n) seien die Landau-Symbole.
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Anhang C

Literatur

Folgende Bücher werden als begleitende Literatur zu diesem Skript empfohlen:

• H. Bauer:
Maß- und Integrationstheorie,
Walter de Gruyter, Berlin, 1990.
ISBN: 3110127725
Preis: 26.95 €
Kurzbeschreibung:
,,Viele Gebiete der Mathematik und ihrer Anwendungen [...] erfordern solide Kenntnisse
aus der Maß- und Integrationstheorie. Das Lehrbuch [...] führt den Leser [...] schnell,
verlässlich und präzise zu den wichtigsten Ergebnissen der Maß- und Integrationstheo-
rie hin. [...] Zahlreiche Beispiele erläutern die Bedeutung der erzielten Ergebnisse.[...]
Übungsaufgaben laden den Leser zum vertieften Eindringen in den behandelten Stoff
ein.”

• H. Bauer:
Wahrscheinlichkeitstheorie,
5. Auflage, Walter de Gruyter, Berlin, 2002.
ISBN: 3110172364
Preis: 36.95 €
Kurzbeschreibung:
,,Das vorliegende Buch soll dem Studierenden als Wegführer in die Wahrscheinlichkeits-
theorie dienen. Der Leser soll dabei mit den wichtigsten Ideen, Methoden und Resultaten
dieser sich heute schnell entwickelnden und verzweigenden mathematischen Theorie be-
kanntgemacht werden. [...] Da heutzutage die Wahrscheinlichkeitstheorie unlöslich mit
der Maß- und Integrationstheorie verbunden ist, verfolgt das Buch zugleich aber auch
ein zweites Ziel, nämlich den Leser mit den Grundzügen der Maßtheorie vertraut zu
machen. [...]”

• W. Behnen, G. Neuhaus:
Grundkurs Stochastik,
3. Auflage, Teubner-Verlag, Stuttgart, 1995.
ISBN: 3930737698
Preis: 24.00 €
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Kurzbeschreibung:
,,Eine integrierte Einführung in die Wahrscheinlichkeitstheorie und Mathematische Sta-
tistik für Mathematiker, Wirtschaftsmathematiker, Informatiker und Physiker.
Es enthält: Wahrscheinlichkeitsmodelle, Anwendungspostulat und statistische Tests;
mehrstufige Zufallsexperimente und grundlegende diskrete Modelle; Wahrscheinlich-
keitsmodelle über euklidischen Räumen; Koppelung von allgemeinen Zufallsexperimen-
ten (Satz von Fubini); Parameterschätzung (auch in approximativen Modellen); Konfi-
denzbereiche für Modellparameter; das Testen von Hypothesen.”

• M. A. Berger:
An Introduction to Probability and Stochastic Processes,
Springer–Verlag, New York, 1992.
ISBN: 3540977848
Kurzbeschreibung:
,,This is a textbook which will provide students with a straightforward introduction
to the mathematical theory of probability. It is written with the aim of presenting the
central results and techniques of the subject in a complete and self-contained account.
[...] Any student who has a familiarity with calculus and basic algebra will be able to
use this text and throughout there are a wide variety of exercises to illustrate and to
develop ideas. [...]”

• O. Beyer, H. Hackel, V. Pieper, J. Tiedge:
Wahrscheinlichkeitsrechnung und mathematische Statistik,
7. Auflage, Teubner-Verlag, Stuttgart, 1995.
ISBN: 3-8154-2075-X
Kurzbeschreibung:
,,Die Reihe ,,Mathematik für Ingenieure, Naturwissenschaftler, Ökonomen und Land-
wirte” umfasst den [...] Lehrstoff für die Mathematikausbildung der genannten Diszi-
plinen, bietet Möglichkeiten zur Vertiefung sowie Spezialisierung und unterstützt die
Individualisierung des Studiums. [...] Das Lehrwerk ist nach modernen fachlichen und
hochschulpädagogischen Prinzipien aufgebaut. [...]”

• P. Billingsley:
Probability and Measure,
2nd edition, John Wiley and Sons, New York, 1986.
ISBN: 0471007102
Preis: 102.90 €
Kurzbeschreibung:
,,Intertwines measure theory and modern probability: probability problems generate
an interest in measure theory and measure theory is then developed and applied to
probability. Illustrates the connections probability theory has with applied mathematics
on the one hand and with pure mathematics on the other.”

• M. Fisz:
Wahrscheinlichkeitsrechnung und mathematische Statistik,
VEB, Deutscher Verlag der Wissenschaften 1989.
ISBN: 3326000790
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Kurzbeschreibung:
,,Dieses Buch ist in der Hauptsache für Mathematiker bestimmt; es dürfte aber auch
[...] solchen Lesern zugänglich sein, die [...] über gewisse Kenntnisse in der höheren
Mathematik verfügen und sich für die Anwendungen der Wahrscheinlichkeitsrechnung
interessieren. Der Leser findet in diesem Buch eine Einführung in die moderne Wahr-
scheinlichkeitsrechnung und die moderne mathematische Statistik. [...] Das Buch enthält
zahlreiche Anwendungsbeispiele. [...]”

• P. Gänssler und W. Stute:
Wahrscheinlichkeitstheorie,
Springer–Verlag, Berlin, 1977.
ISBN: 3540084185
Kurzbeschreibung:
,,Für das Verständnis des vorliegenden Textes sind [...] Grundkenntnisse aus einer Vor-
lesung ,,Einführung in die Wahrscheinlichkeitstheorie und Mathematische Statistik”
wünschenswert. [...] Auf eine Diskusion diskreter Modelle ist deshalb bewusst verzich-
tet worden. Die [...] getroffene Stoffauswahl umfasst eine zweisemestrige Vorlesung über
Wahrscheinlichkeitstheorie. Neben der Vermittlung klassischer Grundlagen liegt der me-
thodische Schwerpunkt auf der Konstruktion stochastischer Modelle unter besonderer
Berücksichtigung einiger für die Anwendungen in der Mathematischen Statistik wichti-
gen Resultate. [...] ”

• H. O. Georgii:
Stochastik,
2. Auflage, de Gruyter, 2004.
ISBN: 3110172356

• M. Greiner/G. Tinhofer:
Stochastik für Studienanfänger der Informatik,
Hanser, München, 1996.
ISBN: 3446186360
Kurzbeschreibung:
,,Dieses Lehrbuch bietet einen Grundstock an Lehrstoff aus Wahrscheinlichkeitstheorie
und Statistik, wie er in der Informatik benötigt wird und verbindet diesen Lehrstoff
mit der Begriffswelt, die Informatiker in ihrem Berufsalltag vorfinden. Hierbei wird be-
sonderes Gewicht auf die Aspekte Methodik und Modellierung gelegt. Der Leser soll
[...] zukünftig in der Lage sein, Fragen aus seinem Berufsalltag in ein geeignetes sto-
chastisches Modell umzusetzen und die ermittelten Resultate anschließend im Rahmen
der ursprünglichen Fragestellung zu interpretieren.[...] Mehr als hundert Beispiele, Auf-
gaben und deren Lösungen sowie ein Kompromiss zwischen mathematischer Strenge
und ausgewogener textlicher Darstellung des Stoffes motivieren den Leser zur aktiven
Teilnahme an der Entwicklung und Lösung von Problemen aus der Stochastik.”

• E. Henze:
Einführung in die Maßtheorie,
Bibl. Institut, Mannheim, 1971.
ISBN: 341100505X
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Kurzbeschreibung:
,,Bei dieser Einführung in die Maß- und Integrationstheorie werden gleichzeitig die not-
wendigen Ergebnisse und Methoden für den Einstieg in die moderne Wahrscheinlich-
keitstheorie bereitgestellt. Das Buch wendet sich in erster Linie an Studenten der Ma-
thematik, der Informatik und der Physik, kann aber auch anderen interessierten Lesern
von Nutzen sein.”

• E. Henze:
Stochastik für Einsteiger,
Bibl. Institut, Mannheim, 1997.
ISBN: 3528368942
Kurzbeschreibung:
,,[...] Dieses Buch soll dem Leser einen Einstieg in die Stochastik, die Kunst des ,,ge-
schickten Vermutens”, vermitteln und ihn in die Lage versetzen [...] kritisch und kom-
petent mitreden zu können. Es enthält 160 Übungsaufgaben mit Lösungen. [...] Als
Lehrbuch zwischen gymnasialem Mathematikunterricht und Universität wendet es sich
unter anderem an: [...] Studienanfänger an Universitäten, Fachhochschulen und Berufs-
akademien; Quereinsteiger aus Industrie und Wirtschaft.”

• H. Heuser:
Lehrbuch der Analysis. Teil 2 Mathematische Leitfäden,
Teubner, Stuttgart, 2002.
ISBN: 3519522322
Kurzbeschreibung:
,,Bei der Abfassung des zweiten Bandes [...] wollte ich die Theorie ausführlich und
fasslich darstellen, ausgiebig motivieren und durch viele Beispiele und Übungen zum si-
cheren Besitz des Lesers machen. Außerdem wollte ich Brücken schlagen zu den Anwen-
dungen analytischer Methoden in den allerverschiedensten Wissenschaften. [...] Dabei
stehen diesmal im Vordergrund der Überlegungen Funktionen, deren Argumente und
Werte Vektoren aus dem Rp oder sogar Elemente aus noch viel allgemeineren Räumen
sind. [...]”

• K. Hinderer:
Grundbegriffe der Wahrscheinlichkeitstheorie,
Springer–Verlag, 1980.
ISBN: 3540073094
Kurzbeschreibung:
,,Das Buch [...] bietet eine solide, gut motivierte Darstellung mit einer Fülle konkre-
ter Beispiele, ergänzt durch sorgfältig ausgesuchte Aufgaben nach jedem Paragraphen.
Sowohl die historischen als auch die weiterführenden Bemerkungen geben eine gute
Übersicht über Probleme und Fragestellungen aus der Wahrscheinlichkeitstheorie.”

• G. Hübner:
Stochastik. Eine Einführung für Mathematiker, Informatiker und Ingenieure.,
4. Auflage, Vieweg Verlag, 2003.
ISBN: 3528254432
Preis: 22.50 €
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Kurzbeschreibung:
,,Dieses Buch soll Informatiker, Ingenieure und Mathematiker in die Lage versetzen,
konkrete Vorgänge mit Zufallseinfluss in den wesentlichen Aspekten zu verstehen, zu
modellieren und daraus Prognosen und Entscheidungshilfen abzuleiten. [...] Das Buch
[...] richtet sich [...] an [...] Informatiker, Ingenieure, Mathematiker und Mathematik–
Lehrer, die sich grundlegende Kenntnisse in stochastischer Modellierung und erste Ein-
blicke in Anwendungsbereiche verschaffen wollen. [...] Besonders auf die Belange der
Informatik zugeschnitten ist die Einbeziehung von Modellen und Bewertungen für Be-
dienungsprobleme und Kommunikationsnetze auf elementarem Niveau. [...]”

• U. Krengel:
Einführung in die Wahrscheinlichkeitstheorie und Statistik,
6. Auflage, Vieweg, 2002.
ISBN: 3528672595
Preis: 22.90 €
Kurzbeschreibung:
,,Dieses Buch wendet sich an alle, die [...] in die Ideenwelt der Stochastik eindringen
möchten. Stochastik ist die Mathematik des Zufalls. [...] Die beiden Hauptgebiete der
Stochastik sind Wahrscheinlichkeitstheorie und Statistik. In der Wahrscheinlichkeits-
theorie untersucht man zufällige Prozesse mit festen als bekannt angenommenen steu-
ernden Wahrscheinlichkeiten. [...] Darüber hinaus liefert die Wahrscheinlichkeitstheorie
Grundlagen für die Statistik, in der aus beobachteten Daten Schlüsse über unbekannte
Wahrscheinlichkeiten und über zweckmäßiges Verhalten gezogen werden sollen. [...]”

• K. Krickeberg/H. Ziezold:
Stochastische Methoden,
4. Auflage, Springer–Verlag, Berlin, 1995.
ISBN: 3-540-57792-0
Kurzbeschreibung:
,,Im Vordergrund [...] stehen die eigentlichen ,,stochastischen” Ideen und ihre prakti-
schen Anwendungen, insbesondere in der Statistik, ohne dass mathematische strenge
und Schönheit zu kurz kommen. Über die üblichen Grundlagen hinaus finden sich Kapi-
tel über Simulation, nichtparametrische Statistik und Regression- und Varianzanalyse.
[...] Besonderer Anziehungspunkt dieses Buches ist die ,,genetische” Entwicklung der
verschiedenen Typen von Wahrscheinlichkeitsverteilungen, ausgehend von der hyper-
geometrischen Verteilung. [...]”

• J. Lehn/H. Wegmann:
Einführung in die Statistik,
4. Auflage, Teubner, 2004.
ISBN: 3519320711
Preis: 22.90 €
Kurzbeschreibung:
,,Eine elementare Darstellung statistischer Schätz– und Testverfahren einschließlich der
zugrundeliegenden Modellbildung für Mathematiker, Informatiker, Wirtschaftswissen-
schaftler, Naturwissenschaftler und Ingenieure.
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Es enthält: Methoden der Beschreibenden Statistik; Zufallsvariablen und ihre Vertei-
lungen; Gesetze der Großen Zahlen und ihre Eigenschaften; Tests bei Normalvertei-
lungsannahmen; χ2-Tests und Kontingenztafeln; verteilungsunabhängige Tests; einfache
Varianzanalyse und Regression.”

• R. Mathar/D. Pfeiffer:
Stochastik für Informatiker,
Teubner, 1990.
ISBN: 3519022400
Kurzbeschreibung:
,,Das vorliegende Buch [...] wendet sich vor allem an Informatikstudenten und Mathe-
matikstudenten mit Nebenfach Informatik mit dem Ziel, stochastische Grundbegriffe
unter besonderer Berücksichtigung Informatik–spezifischer Aspekte zu vermitteln. [...]
Ziel des Buches ist es daher, eine einheitliche und möglichst geschlossene Übersicht
über die zum Verständnis benötigten Grundlagen zu geben. [...] Trotz des überwiegen-
den Lehrbuchcharakters dieses Textes haben wir uns allerdings auch bemüht, neuere
Entwicklungen, die z.T. bisher nur in Originalarbeiten vorliegen, mit einzubeziehen, um
dort, wo es im Rahmen unseres Zugangs möglich ist, Anschluss an Fragestellungen der
aktuellen Forschung zu erlangen. [...]”

• J. Pfanzagl:
Elementare Wahrscheinlichkeitsrechnung,
Gruyter, Berlin, 1988.
ISBN: 3110114194
Kurzbeschreibung:
,,Die vorliegende Einführung der Wahrscheinlichkeitsrechnung ist ,,elementar” in dem
Sinne, dass weder Kenntnisse aus der Maßtheorie noch aus der Funktionentheorie vor-
ausgesetzt werden. [...] Das Anliegen des Buches ist die Entwicklung anwendungsbe-
zogenen stochastischen Denkens. Diesem Ziel dient eine verhältnismäßig große Anzahl
von Beispielen, die [...] zeigen sollen, dass es sich bei der Wahrscheinlichkeitsrechnung
um ein Teilgebiet der Mathematik handelt, das durch Anwendungen immer wieder neue
Facetten erhält. [...]”

• P. P. Spies:
Grundlagen stochastischer Modelle,
Hanser, München, 1982.
ISBN: 3446137114

Literatur speziell zu Kapitel 4

• J. Banks:
Principles of Quality Control,
John Wiley and Sons, New York, 1989.
ISBN: 0471635510

• D.C. Montgomery:
Introduction to Statistical Quality Control,
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2nd edition, John Wiley and Sons, New York, 1991.
ISBN: 0471656313
Kurzbeschreibung:
,,This book is about the use of modern statistical methods for quality control and im-
provement. It provides comprehensive coverage of the subject from basic principles to
state-of-art concepts and applications. The objective is to give the reader a sound under-
standing of the principles and the basis for applying them in a variety of both product
and nonproduct situations. While statistical techniques are emphasized throughout, the
book has a strong engineering and management orientation. [...] By presenting theory,
and supporting the theory with clear and relevant examples, Montgomery helps the
reader to understand the big picture of important concepts. [...]”

• H. Rinne und H.–J. Mittag:
Statistische Methoden der Qualitätssicherung,
3. Auflage, Carl Hanser Verlag, München, 1995.
ISBN: 3446180060
Kurzbeschreibung:
,,Dieses Buch ist bewusst anwendungsorientiert geschrieben und zeichnet sich durch eine
besonders sorgfältige didaktische Gestaltung aus. Es enthält: Zahlreiche Abbildungen
und Fotos; mehr als 100 Übungsaufgaben mit ausführlichen Lösungen; viele durchge-
rechnete Anwendungsbeispiele; verständnisfördernde, zusammenfassende Übersichten;
kommentierte Literaturangaben.”

• W. Uhlmann:
Statistische Qualitätskontrolle,
2. Auflage, Teubner–Verlag, Stuttgart, 1982.
ISBN: 3519123061
Kurzbeschreibung:
,,Ein Lehrbuch für Statistiker, Mathematiker, Ingenieure und Wirtschaftswissenschaft-
ler. Es enthält: Wahrscheinlichkeitstheoretische Grundlagen; statistische Grundlagen;
Eingangs- und Endkontrolle; kostenoptimale Prüfpläne; sequentielle Tests; Kontrollkar-
ten; Kosten und Kontrollabstand; kontinuierliche Stichprobenpläne.”

Literatur speziell zu Kapitel 10

• F. Beichelt:
Zuverlässigkeits– und Instandhaltungstheorie,
Teubner, Stuttgart, 1993.
ISBN: 3519029855
Kurzbeschreibung:
,,Das Buch ist eine moderne Einführung in die Zuverlässigkeits– und Instandhaltungs-
theorie auf der Grundlage stochastischer Modellbildung.[...] Zahlreiche numerische Bei-
spiele erleichtern dainhaltliche Verständnis. Das Buch wendet sich an Praktiker und
Studierende mathematisch-naturwissenschaftlich-technischer Fachrichtungen. [...]”

241



Kapitel C. Literatur

242



Anhang D

Historie

In der folgenden Auflistung werden einige für die Entwicklung der Stochastik bedeutende
Mathematiker mit ihren Lebensdaten und kurzen Beschreibungen ihrer Wirkungsfelder auf-
geführt. Die Liste erhebt keinen Anspruch auf Vollständigkeit. Insbesondere fehlen wichtige
Mathematiker, die nicht direkt im Bereich der Stochastik gewirkt haben, durch ihre Arbeiten
zur Maß- oder Integrationstheorie die moderne Stochastik aber erst ermöglichten.

• Thomas Bayes
(∗ 1702 in London, England; † 17. April 1761 in Tunbridge Wells, Kent, England)

Thomas Bayes studierte ab 1719 Theologie an der Universität in Edinburgh und be-
schäftige sich nebenbei mit Mathematik. 1733 wurde er Pfarrer der presbyterianischen
Kapelle in Tunbridge Wells, 35 Meilen südöstlich von London. 1742 ernannte man Bayes
zum Mitglied der Royal Society, obwohl er bis zu diesem Zeitpunkt noch keinerlei ma-
thematische Arbeiten veröffentlich hatte. Insgesamt publizierte Bayes selbst nur zwei
Arbeiten. Seine wichtigten Forschungsergebnisse, die unter anderem auch den später
als ,,Formel von Bayes” benannten Satz enthielten, wurden erst aus seinem Nachlass
bekannt.

• Familie Bernoulli
Die schweizer Gelehrtenfamilie Bernoulli hat über mehrere Generationen hinweg sehr
große Beiträge zur Mathematik geleistet.

Im Folgenden werden nur die beiden Mitglieder der Bernoulli-Familie aufgeführt, die
sich wesentlich mit stochastischen Fragestellungen beschäftigt haben. Insbesondere wer-
den Jakob Bernoulli II, Johann Bernoulli I, Johann Bernoulli II, Johann Bernoulli III,
Niklaus Bernoulli I und Niklaus Bernoulli II, die allesamt bedeutende Mathematiker
waren, hier nicht näher erwähnt.

– Daniel Bernoulli
(∗ 8. Februar 1700 in Groningen; † 17. März 1782 in Basel)
Daniel Bernoulli interessierte sich hauptsächlich für Anwendungen der Mathema-
tik. Er entwickelte das Prinzip zur Lösung algebraischer Gleichungen mit Hilfe
von rekurrenten Reihen (,,Methode von Bernoulli”) und untersuchte Kettenbrüche.
Außerdem lieferte er wichtige Beiträge zur Wahrscheinlichkeitstheorie, die später
teilweise von Laplace in seine Theorie aufgenommen wurden.
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– Jakob Bernoulli I
(∗ 27. Dezember 1654 in Basel; † 16. August 1705 in Basel)
Jakob Bernoulli I ist der erste Gelehrte in der Familie der Bernoullis und über-
haupt der erste bekannte Schweizer Mathematiker. Er befasste sich überwiegend
mit analytischen Fragestellungen (er stand u.a. mit Leibniz, der gerade eine In-
finitesimalmethoden aufgestellt hatte, in Kontakt), sowie mit stochastischen Pro-
blemen. Seine Arbeit baute auf den Ergebnissen von Huygens über das Glücks-
spiel auf. In einer, erst nach seinem Tode durch seinen Neffen Niklaus Bernoulli
I veröffentlichten Arbeit, stellte Jakob Bernoulli I bereits das Gesetz der großen
Zahlen auf und verallgemeinerte viele kombinatorische Ansätze von Huygens.

• Emile Borel
(∗ 7. Januar 1871 in Saint-Affrique; † 3. Februar 1956 in Paris)

Borel beschäftige sich zunächst mit Funktionentheorie. Nach seiner Tätigkeit als For-
schungsbeirat im Kriegsministerium von 1914–1918 übernahm er den Lehrstuhl für
Wahrscheinlichkeitsrechnung und mathematische Physik an der Sorbonne. Während
seiner Arbeit in der Funktionentheorie prägte Borel den Begriff des Maßes und der
überabzählbaren Überdeckung. Ab 1905 befasste sich Borel mit den Nutzungsmöglich-
keiten der Maßtheorie in der Wahrscheinlichkeitstheorie. Außerdem ist Borel Mitbe-
gründer der Spieltheorie und bewies das Minimax-Theorem für 3 Spieler.

• Constantin Caratheodory
(∗ 13. September 1873 Berlin; † 2. Februar 1950 in München)

Caratheodory stammt aus einer angesehenen griechischen Familie. Er arbeitete bis 1900
als Ingenieur im Dienste Englands an der Aufstauung des Nils mit und studierte im
Anschluss daran in Deutschland u.a. bei Schwarz, Frobenius, Plank, Hilbert und Min-
kowski Mathematik. 1909 erhielt er seinen ersten Ruf als Professor an die TH Hanno-
ver. Im Folgenden lehrte er an verschiedenen deutschen und griechischen Universitäten.
Caratheodory beschäftigte sich hauptsächlich mit Variationsrechnung, partiellen Diffe-
rentialgleichungen, Maß- und Integrationstheorie sowie der Theorie reeller Funktionen.
Die von ihm bewiesenen Maßfortsetzungssätze gehören heute zu den Kernelementen der
Maßtheorie und die mittlerweile übliche axiomatische Einführung des Maßbegriffs geht
in vielen Teilen auf ihn zurück.

• Guido Fubini
(∗ 19. Januar 1879 in Venedig; † 6. Juni 1943 in New York)

Zu den wichtigsten Arbeiten Fubinis gehört der 1907 von ihm bewiesene und später nach
ihm benannte Satz. Darüber hinaus befasste sich Fubini mit projektiver Differentialgeo-
metrie sowie der Theorie diskontinuierlicher Gruppen und automorpher Funktionen.

• Andrej Nikolajewitsch Kolmogorov
(∗ 25. April 1903 in Tambow; 20. Oktober 1987 in Moskau)

Kolmogorov gilt als einer der bedeutensten Mathematiker der Gegenwart. Er befasste
sich vorwiegend mit Wahrscheinlichkeitstheorie, mathematischer Statistik und Logik,
Maß- und Integrationstheorie, Funktionnalanalysis sowie Informations- und Algorith-
mentheorie. Nebenbei entwarf er Lehrpläne und Schulbücher für den Mathematikunter-
richt und prägte so zu großen Teilen den Mathematikunterricht in der Sowjetunion.
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Mit seiner Arbeit ,,Grundbegriffe der Wahrscheinlichkeitsrechnung” aus dem Jahre 1933
löste er das 6. Problem der berühmten 23 von Hilbert gestellten mathematischen Pro-
bleme.

• Pierre Simon Marquis de Laplace
(∗ 28. März 1749 in Beaumont-en-Auge; † 5. März 1827 in Paris)

Laplace befasste sich vor allem mit partiellen Differential– und Differenzengleichungen.
Seine Entwicklung der Laplace-Transformation diente ihm dazu, Naturerscheinungen
analytisch zu erfassen. Neben Arbeiten zu physikalischen Themen befasste er sich auch
mit Themen der Wahrscheinlichkeitsrechnung. Seine 1812 erschienene Theorie beinhalte-
te bereits den mathematischen Begriff der Wahrscheinlichkeit und den des Erwartungs-
wertes. Zudem greift Laplace in seiner Arbeit das von J. Bernoulli gefundene Gesetz der
großen Zahlen auf.

Auf Laplace geht auch die Idee zurück, dass das Geschehen in einem physikaischen Sy-
stem exakt vorherbestimmbar sei, wenn nur alle Anfangszustände bekannt sind (,,La-
placescher Determinismus”).

Laplace war neben seiner Tätigkeit als Forscher ab 1794 Vorsitzender der Kommission
für Maße und Gewichte und unter Napoleon Bonaparte Minister des Inneren.

• Henri Lebesgue
(∗ 28. Juni 1875 in Beauvais (Frankreich); † 26. Juli 1941 in Paris)

Lebesgue erkannte, dass viele zu seiner Zeit gültigen Theorien für eine Reihe von Fra-
gestellungen unzureichend waren. 1902 verallgemeinerte er den Riemannschen Integral-
begriff zu dem wesentlich leistungsfähigeren Lebesgueschen Integralkalkül. Lebesgues
Resultate wurden zunächst nur zögernd aufgenommen, stellen heute aber die Grundla-
ge für die moderne Analysis dar.

• Andrej Andrejewitch Markov
(∗ 14. Juni 1856 in Gouvernement Rjasan; † 20. Juli 1922 in Petrograd)

Markov studierte von 1874–1878 unter anderem bei Tschebyscheff und beschäftigte sich
zunächst hauptsätlich mit Fragestellungen der Zahlen– und Funktionentheorie. Später
befasste er sich überwiegend mit Wahrscheinlichkeitsrechnung. Dabei legte er wichtige
Grundlagen zur Entwicklung der Theorie der stochastischen Prozesse. Außerdem ent-
wickelte Markov die Theorie der später nach ihm benannten Markovschen Prozesse bzw.
Ketten.

• Pafnuti Lwowitch Tschebyscheff
(∗ 16. Mai 1821 in Okatowo; † 8. Dezember 1894 in Petersburg)

Tschebyscheff befasste sich zunächst überwiegend mit Zahlentheorie. Unter anderem
wirkte er an der Herausgabe der zahlentheoretischen Manusskripte Eulers mit. Später
beschäftige er sich dann überwiegend mit wahrscheinlichkeitstheoretischen Fragestel-
lungen. Insbesondere erarbeitete er die Gesetzmäßigkeiten von Summen unabhängiger
Summanden. Er verdeutlichte die Wichtigkeit solcher Begriffe wie Zufallsgröße oder Er-
wartungswert, verallgemeinerte das Gesetz der großen Zahlen und vereinfachte dessen
Beweis erheblich.
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• Bernhard Georg Friedrich Riemann
(∗ 17. September 1826 in Breselenz bei Dannenberg; † 20. Juli 1866 in Selasca in Italien)

Riemann studierte ab 1846 an der Universität in Göttingen zunächst Theologie und
Philosophie, wechselte dann aber bald zur Mathematik. In seiner 1854 vorgelegten Ha-
bilitationsschrift führte Riemann das später nach ihm benannte Riemann-Integral ein.
Neben der Integrationstheorie befasste er sich mit vielen weiteren mathematischen Ge-
bieten. So forschte Riemann u.a. auf dem Gebiet der partiellen Differentialgleichungen,
sowie in der Zahlentheorie und der nichteuklidischen Geometrie. Die Ideen Riemanns
sind bis heute von großer Bedeutung: Die Riemannsche Hypothese über die Nullstellen
der ζ-Funktion wird in sehr vielen Sätzen der Zahlentheorie verwendet. Beweisen konnte
man die Riemannsche Hypothese allerdings bis heute nicht.

Weitere Informationen und diverse Biographien finden sich unter:

• S. Gottwald, H.-J. Ilgauds, K.-H. Schlote:
Lexikon bedeutender Mathematiker,
Verlag Harri Deutsch, Thun, 1990.
ISBN: 3-8171-1164-9

• Turnbell Server, Biographies
http://www-groups.dcs.st-and.ac.uk/

• Mathematik.ch: Bedeutende Mathematiker
http://www.mathematik.ch/mathematiker/

• Wikipedia (Kategorie: Mathematiker)
http://de.wikipedia.org/wiki/Kategorie:Mathematiker
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Stichwortverzeichnis

(n− c)-Stichprobenplan, 60
µ∗–messbar, 99
σ–Algebra der Borelschen Mengen, 85
σ–endlich, 101
Überlebensfunktion, 174
äußeres Maß, 98

a–posteriori–Verteilung, 48
a–priori–Verteilung, 48
additiv, 90
Algebra, 79

Produkt–σ–, 187
Alternativ–Hypothese, 61
Annahmezahl, 60
AOQ, 70
AOQL, 70
Attribut–Prüfung, 60
Ausfallrate, 174
Axiomensystem, 16

Bayes, Thomas, 243
bedingte Überlebenswahrscheinlichkeit, 175
bedingte Restlebensdauer, 175
Bernoulli, Daniel, 243
Bernoulli, Jakob I, 244
Betafunktion, 121
Betaverteilung 1. Art, 121
Bild, 128
Bildmaß, 33, 128
Binomialverteilung, 28, 30

Erwartungswert, 37
Varianz, 37

Borel, Emile, 244
Borel–Maß, 103
Borelsche Mengen, 85–86

Caratheodory, Constantin, 244
Cauchy–Verteilung, 117, 118
χ2–Verteilung, 120

Decreasing Failure Rate, 177
Dichte, 112, 193
Dirac–Maß, 91
diskret, 13
Durchschlupf

maximaler mittlerer, 70
mittlerer, 70

durchschnittsstabil, 76
Dynkin–System, 81

Einfachstichprobenplan, 60
Einschränkung, 94
Elementarereignisse, 13
Elementarfunktion, 137
endlich, 90
Ereignis, 13

Eigenschaften, 14
Rechenregeln, 13

Ergebnismenge, 13
Ergebnisraum, 13
Erlang–Verteilung, 120
Erwartungswert, 136–149

diskret, 35
Erweiterung, 94
erzeugende Funktion, 38
erzeugenden System, 83
Erzeugendensystem, 83
Erzeuger, 83
erzeugte σ-Algebra, 198
Exponentialverteilung, 113

Varianz, 164

fast–überall, 168
fast–sicher, 223
Formel von Bayes, 48
Formel von Sylvester–Poincaré, 16
Fortsetzung, 94
Fortsetzungssatz

erster, 94
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Fubini, Guido, 244
Funktionen

numerische, 129

Günther, Verfahren von, 63
Gütefunktion, 61
Gammaverteilung, 118
Gaußsche Glockenkurve, 115
Gleichverteilung, 23, 112
Gut–Schlecht–Prüfung, 60

Häufigkeit
absolute, 15
bedingte relative, 45
relative, 15

hypergeometrische Verteilung, 26

i.i.d. Folge, 221
identisch verteilt, 221
Increasing Failure Rate, 177
Indifferenzpunkt, 68
Indikatorvariable, 127
induziertes äußeres Maß, 98
Inhalt, 90
integrabel, 137, 145
Integral, 138, 168

bestimmte, 138, 143
Eigenschaften, 143

integrierbar, 137, 145, 146

Kolmogorov, Andrej Nikolajewitsch, 244
Konvergenz

stochastisch, 220
Korrespondenzsatz, 109
Kovarianz, 216

Laplace, Pierre Simon Marquis de, 245
Laplaceverteilung, 23
Lebensdauer, 174
Lebensdauerfunktion, 174
Lebesgue, Henri, 245
Lebesgue-Maß, 111
linksschief, 165
Logarithmische Normalverteilung, 117
logarithmische Normalverteilung, 117

Mächtigkeit, 24
Maß, 90

Produkt-, 206
maßdefinierende Funktion, 105, 106, 191
Markov, Andrej Andrejewitch, 245
maximaler mittlerer Durchschlupf, 70
Mengenfunktionen, 89–103
Mengensysteme, 75–86
messbar, 127, 129–132
messbare Funktionen, 132
Messraum, 127
mittlere Lebensdauer, 174
mittlerer Durchschlupf, 70
Moment, k-tes, 36
Momente, 165

k–te, 165
k–te absolute, 165
k–te zentrale, 165
k–te zentrale absolute, 165

Multiplikationssatz, 52

ncStichprobenplan, 63
Negativ–Teil, 145
nichtnegativ, 90
Normaldarstellung, 137
Normalverteilung, 115
n–te untere Faktorielle, 24
Null–Hypothese, 61
Nullmenge, 167

Operationscharakteristik, 62, 63
Operationspfade, 181
operationstreu, 126

paarweise stochastisch unabhängig, 55
Poissonverteilung, 31

Erwartungswert, 38
Varianz, 38

Positiv–Teil, 145
Prämaß, 90
Produkt–σ–Algebra, 187
Produktmaß, 206

quasiintegrabel, 145

Randverteilung, 192
Randverteilungsdichte, 197
Randverteilungsfunktion, 192
Rechteckverteilung, 112
rechtsschief, 165
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Restriktion, 94
Riemann, Bernhard Georg Friedrich, 246
Ring, 79, 84

Satz
der monotonen Konvergenz, 169
der totalen Wahrscheinlichkeit, 47
Faltungs-, 208
Transformationssatz für Dichten, 207

Satz von Bernoulli, 222
Schiefe, 165
Schnitt, 212
schnittstabil, 76
Semiring, 76, 84
separabel, 84
σ–additiv, 90
σ–Algebra, 14, 79
σ–Algebra, 81, 127
σ–subadditiv, 90
Spur–σ–Algebra, 45
Standard–Normalverteilung, 115
Standardabweichung, 165
Standardnormalverteilung, 115
statistische Tests, 60
Steilheit, 68
Stetigkeit von oben, 93
Stetigkeit von unten, 93
Stichprobenmenge, 13
Stichprobenplan

(n− c), 67
Stichprobensystem der Firma Philips, 68
Stochastik, 12
stochastisch unabhängig, 54, 198
Streuung, 165
subadditiv, 90

Test zum Signifikanzniveau α, 62
Tschebyscheff, Pafnuti Lwowitch, 245

unabhängig
paarweise stochastisch, 55
stochastisch, 54
vollständig, 56

Ungleichung, Kolmogorovsche, 225
Ungleichung, Markovsche, 220
Ungleichung, Tschebyscheffsche, 221
unkorreliert, 216
Urbild, 126

Urnenmodell, 23–28
von Polya, 53
Ziehen mit Zurücklegen, 27
Ziehen ohne Zurücklegen, 24

Varianz, 36, 164
Varianz der Lebensdauer, 174
Variationskoeffizienten, 165
vereinigungsstabil, 76
Verfahren von Günther, 63
Verteilung, 33
Verteilungsfunktion, 105, 106, 191, 197

mehrdimensionale, 188
vollständig stochastisch unabhängig, 56

Wahrscheinlichkeit, 15
bedingte, 45
Satz von der totalen, 47

Wahrscheinlichkeitsmaß, 16, 90, 106, 128
Wahrscheinlichkeitsraum, 16

diskret, 22
Laplace’scher, 23

Wahrscheinlichkeitsvektor, 22
Wahrscheinlichkeitsverteilung

Beta, 121
binomiale, 28–30
Cauchy, 117
χ2, 120
Erlang, 120
Exponential, 113

Varianz, 164
Gamma, 118
Gleichverteilung, 23, 112
hypergeometrische, 26, 29
Laplace’sche, 23
Log. Normal, 117
Poisson, 31
Rechteck, 112
Standardnormal, 115
Weibull, 115

Weibull–Verteilung, 115

zentrales Moment, 36
Zufallsexperiment, 12
Zufallsgröße, 128

reelle, 128
Zufallsvariable, 33, 128

diskret, 33
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diskret reellwertig, 33
Zufallsvektor, 128
Zuverlässigkeitsfunktion, 174
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