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Vorwort

Vorwort zur ersten Auflage

Die Wahrscheinlichkeitstheorie hat sich seit ihrer axiomatischen Begriindung durch A. N. Kol-
mogorov im Jahre 1936 zu einem bedeutenden mathematischen Teilgebiet entwickelt und ist
heute integraler Bestandteil der universititen Ausbildung von Mathematikern. Die Wahr-
scheinlichkeitstheorie befasst sich mit der Abstraktion und der Modellierung von Zufalls-
vorgingen. Thre Anfinge reichen weit in das 16. Jahrhundert zuriick. Damals waren an den
koniglichen Hofen Gliicksspiele in Mode und Gelehrte wie Pascal, Fermat und Huygens fragten
nach den Gewinnchancen in diesen Spielen unter Zugrundelegung unterschiedlichster Spiel-
regeln. Die Untersuchungen wurden fortgesetzt von J. Bernoulli, der das berithmte schwache
Gesetz der grofien Zahlen entdeckte, mit dem sich die asymptotische Stabilisierung der rela-
tiven Haufigkeit eines Zufallsereignisses mathematisch begriinden lésst. Dieses Prinzip bildet
die mathematische Vorlage fiir den axiomatischen Aufbau der Wahrscheinlichkeitstheorie.
Das Konstruktionsprinzip fiir allgemeine Wahrscheinlichkeitsmafle und die damit verbunde-
nen Existenzsitze verdanken wir C. Caratheodory. Die moderne Wahrscheinlichkeitstheorie
ist durch einen starken Anwendungsbezug gepriagt. Ob es sich um Fragen der Spracherken-
nung, der Produktionsplanung, der Bewertung von Optionspreismodellen, der Ausbreitung
infektioser Krankheiten oder der Entschliisselung genetischer Codes handelt, iiberall ist Sto-
chastik im Spiel. Der besondere Reiz der Stochastik liegt darin, dass in ihr viele mathemati-
sche Disziplinen wie Mafitheorie, Funktionalanalysis, Operatortheorie, Funktionentheorie und
diskrete Mathematik zusammengefiihrt werden.

Das Online-Skriptum zur Stochastik ist aus Vorlesungen hervorgegangen, die ich seit 1993
regelméfig an der Technischen Universitdt Clausthal abhalte. Eine Besonderheit in Claus-
thal ist, dass Mathematik— und Informatik—Studenten ein gemeinsames Grundstudium durch-
laufen und die Wirtschaftsmathematiker und Wirtschaftsinformatiker diesselben Stochastik—
Vorlesungen horen. Ich halte es fiir eine gute Idee, die Zusammenarbeit von Mathematikern
und Informatikern bereits in der Ausbildung zu fordern. Denn Mathematik und Informatik
bedingen einander in besonderer Weise. Die gemeinsame Ausbildung setzt natiirlich die Be-
reitschaft voraus, sich fiir das jeweils andere Fach zu begeistern. Indem wir in besonderem
Mafle auf Anwendungen und innermathematische Zusammenhénge eingehen, versuchen wir,
beiden Gruppen mit der Vorlesung gerecht zu werden. Da wir am eigentlichen und vorwie-
gend Mafltheorie—orientierten Vorlesungsstoff keine Abstriche vornehmen wollen, bieten wir
in Form verschiedener Applets zusétzliche Erklirungs— und Lernhilfen an. Hierin sehen wir
einen besonderen Vorteil der eLearning—Technologien.

Die Technologie fiir das Online—Skriptum haben mein langjéhriger Mitarbeiter Dr. Michael
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INHALTSVERZEICHNIS

Frank und meine ehemaligen Diplomanden Torsten Hiddessen und Thomas Rosenau ent-
wickelt. Die technische Weiterentwicklung des Systems ist durch die finanzielle Férderung im
Rahmen von ELAN (elearning academic network Niedersachsen) und durch das besondere En-
gagement meines Mitarbeiters Dipl. Math. Alexander Herzog sichergestellt. Korrektur gelesen
und Verbesserungsvorschlige eingebracht haben Dipl. Math. Sylvia Arns, Dipl. Math. Alex-
ander Herzog, Dipl. Math. Susanne Liihr und unsere Hilfsassistenten Thomas Riemer und
Henning Schmidt. Die Applets wurden von Thorsten Hiddessen und Volker Hein program-
miert. Die grafische Gestaltung stammt von Franzika Dannehl. Aber auch meinem Kollegen,
Prof. Dr. Joachim Hilgert, der nach einem Prototypen des Online-Skriptums im WS 01,/02
und im SS 02 in Clausthal die Stochastik gelesen hat, verdanke ich wichtige Korrekturhinweise
und Anmerkungen. Thnen allen sei hiermit mein herzlichster Dank ausgesprochen.

Thomas Hanschke Clausthal, Oktober 2004

Vorwort zur zweiten Auflage

Die zweite Auflage unterscheidet sich von der ersten im Wesentlichen durch einige strukturelle
Anderungen und die Hinzunahme weiterer Illustrationen. Bei der Durchfiihrung halfen diesmal
besonders Dipl.-Math. Sylvia Arns, Dipl.-Math. Alexander Herzog und unser Hilfsassistent
Hendrik Baumann.

Thomas Hanschke Clausthal, Oktober 2006
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Auf Stochastik I aufbauende Vorlesungen

Die Stochastik I Vorlesung stellt die Basis fiir eine Reihe weiterfithrender Veranstaltungen
dar, die man der nachstehenden Grafik entnehmen kann.

Stochastik Il Stochastik Ill Stochastik IV Stochastik-Praktikum

* Grundzlige der ® Zentraler Grenzwertsatz * Markovketten in diskreter * Semi-Markovprozesse * Beschreibende Statistik
Wahrscheinlichkeitstheorie ) * Bedingte Erwartung Zeit |—{ ® Semi-regenerative Prozesse [ —)f ® Regressionsanalyse
* MaB- und Integrationstheorie o Erneuerungsprzesse * Markovketten in stetiger  Martingale o Varianzanalyse
* Gesetze der groBen Zahlen ® Regenerative Prozessse Zeit * Wiener Prozess  Ereignisorientierte Simulation
Grundlagen der Monte-Carlo-Methoden Zuverlassigkeitstheorie Finanzmathematik
Computersimulation
e Erzeugung gleichverteilter  Simulation stochastischer e Lebensdauerverteilung * Optionspreismodelle
Ly Zufallszahlen Prozesse [ ¢ Systemfunktionen [ ¢ Binomialprozess
e Erzeugung nicht- * Stochastische Approximation o Instandsetzungs- und o Wiener Prozess
gleichverteilter Zufallszahlen Instandhaltungsstrategien + Black-Scholes Optionsmodell
o Tests fr Zufallsgeneratoren e Lebensdaueranalysen « Europaische und

amerikanische Optionen

Statistische Methoden Stochastische Methoden
i Warteschlange )
der Qualitatssicherung rieschiangen der Produktionsplanung

® Gut-Schlecht-Prifung * Markovmodelle ¢ Auslegungsplanung
* Messende Priifung * Matrix-geometrische Verfahren * Kanban-Systeme
Ly * Qualitatsregelkarten mit Lyl * Zustandsabhéngige | w,| ® Pufferdimensionierung
Gedéchtnis Bediensysteme o Batch-Verarbeitung
* Kostenoptimale Prifplane * Methode der eingebetteten o Belastungsorientierte
Markovkette Auftragsfreigabe
« Diffusionsapproximation * Anwendungssysteme

* Offene und geschlossene
Warteschlangennetzwerke

(Siehe auch PowerPoint-Prisentation zum Stochastik—Vorlesungsplan.)
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Kapitel 1

Einfiithrung und
grundlegende Begriffe

In diesem Kapitel werden die Objekte erldutert, mit denen Zufallsexperimente mathematisch
beschrieben werden. Auflerdem wird das von A.N. Kolmogorov stammende Axiomensystem
der Wahrscheinlichkeitstheorie vorgestellt.

Schliisselworter: Zufallsexperiment, Elementarereignis, Stichprobenraum, Ereig-
nis, Rechenregeln fiir Ereignisse, absolute und relative Haufigkeit, Wahrscheinlich-
keit, Axiomensystem nach Kolmogorov.
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Kapitel 1. Einfithrung und grundlegende Begriffe

1.1 Zufallsexperiment

Die Stochastik stellt Methoden und Verfahren zur Beschreibung und Analyse von Zufalls-
vorgéingen zur Verfiigung.

Stochastische Problemstellungen sind etwa:

e Aussagen iiber die Genauigkeit von Messergebnissen

Vergleich der Vertriglichkeit von Medikamenten

Zuverladssigkeit technischer Systeme

Gewinnchancen bei Gliicksspielen

Aussagekraft von Meinungsumfragen, Hochrechnungen

Populationsprozesse, Ausbreitung infektioser Krankheiten
e Vererbung von Kigenschaften

Der vermeintliche Zufall ist allgegenwértig: In einem Produktionsprozess fallen unvorherge-
sehen Maschinen aus und fithren zu Staus auf den Transportbindern. Die Fuflball-Europa—
Meisterschaft fiel anders aus, als von den Experten prognostiziert wurde. Trotz akribisch
dokumentierter Permanenzen eines Roullette—Tisches bleibt der Ausgang des néchsten Spiels
ungewiss. Doch auch eine algorithmisch erzeugte Zahlenfolge werden wir als zuféllig erachten,
solange wir ihr Bildungsgesetz nicht durchschaut haben. Angesichts dieser Beispiele mogen
Zweifel aufkommen, ob Begriffe wie ,,Zufall” und ,,Wahrscheinlichkeit” iiberhaupt mathema-
tisch objektivierbar sind oder mangels iibergeordneter Erkenntnise lediglich Ausdruck einer
subjektiv empfundenen Unsicherheit sind. Die Stochastik will und kann diesen eher philo-
sophischen Sachverhalt nicht aufklédren, sondern versucht durch geeignete Abstraktion und
Modellbildung, Gesetzméfigkeiten in Zufallserscheinungen zu erkennen und mathematisch zu
erfassen. In der Regel beschriankt sich die Stochastik deshalb auch auf solche Zufallsexpe-
rimente, die analog einem physikalischen Experiment reproduzierbar und durch hinreichend
lange Beobachtung geeignet iiberpriift werden kénnen.

1.1 Definition (Zufallsexperiment):
Unter einem Zufallsexperiment versteht man einen, im Prinzip beliebig oft, wiederholbaren
Vorgang mit ungewissem Ausgang.

1.2 Beispiel:
Zufallsexperimente in diesem Sinne sind

e der einmalige Wurf einer Miinze,
e die Wartezeit am Postschalter oder

e die Gewinnausschiittung an einem Spielautomaten.

Keine Zufallsexperimente in diesem Sinne sind
e der Ausgang der nichsten Bundestagswahl,

e die Niederschlagsmenge in Clausthal-Zellerfeld am 20. Oktober 2009.
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1.2. Ergebnisraum

1.2 Ergebnisraum

Zu Beginn eines Zufallsexperiments muss festgelegt werden, welche Resultate (Elementarer-
eignisse) fiir die Untersuchtung relevant sind und im mathematischen Modell beriicksichtigt
werden sollen. Der zugrundegelegte Ergebnisraum bestimmt gewissermafien den Detaillie-
rungsgrad der Modellbildung.

1.3 Definition (Elementarereignisse, Ergebnisraum, Stichprobenmenge):

Die konkreten Ergebnisse eines Zufallsexperimentes heiflen Elementarereignisse. Die Men-
ge aller Elementarereignisse wird Ergebnisraum, FErgebnismenge oder auch Stichprobenmenge
genannt und mit § bezeichnet.

1.4 Beispiel:
e Das Werfen eines Wiirfels: Q := {1,2,3,4,5,6}.

e Die Wartezeit an einer Ampel: Q := {w € R |w > 0}.

e Der Betriebszustand von n Maschinen, defekt (= 1) oder intakt (= 0):
Q= {(w1,...,wn) |w; €{0,1},i=1,...,n}.

1.3 Ereignisse

Aus den Elementarereignissen lassen sich kompliziertere Ereignisse zusammensetzen. Im Fall
des Wiirfelspiels kann man z.B. auch das Ereignis A, eine ungerade Augenzahl zu wiirfeln,
betrachten. Man schreibt dann A = {1,3,5} und sagt, dass das Ereignis A eingetreten ist,
wenn der beobachtete Versuchsausgang in A liegt. Deswegen definiert man:

1.5 Definition (Ereignis):

Wenn Q diskret ist, d.h. endlich oder héchstens abzihlbar unendlich ist, so heiffen die Teil-
mengen der Stichprobenmenge  Ereignisse. Man sagt, dass das Ereignis A eingetreten ist,
wenn der beobachtete Ausgang des Zufallsexperimentes in A liegt (w € A). Ist Q diskret, dann
ist die Menge aller Ereignisse gerade die Potenzmenge P(Q2) von €.

1.6 Beispiel:
e Das Ereignis ,gerade Augenzahl® beim Wiirfeln: A := {2,4,6}.

e Das Ereignis, dass mindestens 2 von n Maschinen defekt sind:
A={weQ|w + - +w, >2}.

Mit Hilfe der mengentheoretischen Grundoperationen lassen sich weitere Ereignisse bilden.

1.7 Bemerkung (Interpretation von Ereignissen):
Es seien A, B, Ay, As, ... Ereignisse, dann gilt:

Q := ,,sicheres Ereignis, das immer eintritt®,
(%) := ,,unmogliches Ereignis, das nie eintreten kann®,
AUB = A oder B treten ein“,
ANB = ,,A und B treten ein*,
A\B = A, aber nicht B, tritt ein“; kurz: ,, A ohne B,
A = A tritt nicht ein“,
Unen An  := ,mindestens ein A, tritt ein®,
Mhen An := alle A, treten ein®.

13



Kapitel 1. Einfithrung und grundlegende Begriffe

1.8 Bemerkung (ﬁbersicht iiber die Eigenschaften von Mengen):
Fiir allgemeine Mengen gelten folgende Beziehungen:

1. Komplementbildung:
A=A Q=9 T=0

2. Die Durchschnittsbildung ist kommutativ und assoziativ:
ANB=BNA, AN(BNC)=(AnB)NC, ANA=A4, ANQ=A4, Ang=g,
ANA=o.

3. Die Vereinigungsbildung ist kommutativ und assoziativ:
AUB =BUA, AU(BUC) = (AUB)UC, AUA=Q, AUA=A4, AUQ = Q,
AUg = A.

4. Es gelten die Distributivgesetze:
AN(BUC)=(ANB)U(ANC), AUBNC)=(AuB)N(AUC).

5. Absorptionsgesetze:
AU(ANB)=A, An(AuUB)=A.

6. Reziprozititsgesetze:
ANB=AUB, AUB=ANB.

7. AC B<= ADB.

8. Die Regeln von de Morgan:

nelN nelN nelN

U 4.
nelN

1.9 Bemerkung (oc—Algebra):

Im Falle eines beliebigen Stichprobenraumes kénnen aus logischen Griinden nicht alle Teil-
mengen von §) als Ereignisse zugelassen werden. Im Falle einer allgemeinen Ergebnismenge
Q) ist es daher notwendig, sich auf kleinere Mengensysteme als (€2) zuriickziehen, die aber
hinsichtlich ihrer Verkniipfungsstruktur noch universell genug sind, um alle im Experiment
enthaltenen Moglichkeiten reflektieren zu koénnen. An die Stelle der Potenzmenge tritt ein
Mengensystem § C PB(£2) mit folgenden Eigenschaften:

(i) Q e,
(i) fir A € Fist A € F,

(iii) fiir jede Folge (A;,)nen von Elementen aus § gilt: U A, €5
neN
§ nennt man o—Algebra iiber ). § wird sich spéter als der natiirliche Definitionsbereich von
Wahrscheinlichkeitsmaflen herausstellen.

Man erkennt sofort, dass aufgrund der Forderung (ii) mit 2 auch die leere Menge @ und
aufgrund der Regeln von de Morgan mit U,en A, auch NpenAn zu § gehoren. Damit ergibt
sich, dass § bzgl. aller wesentlichen Mengenoperationen abgeschlossen ist und alle wesentlichen
Ereignisse enthalten sollte.

Das Ziel ist es nun, jedem Ereignis A € § eine Mafizahl P(A) zuzuordnen, die angibt, welche
Chance A hat, bei einem Zufallsexperiment einzutreten.

14



1.4. Wahrscheinlichkeit

1.4 Wahrscheinlichkeit

Ein naheliegender Weg, den Begriff der Wahrscheinlichkeit zu definieren, ist der folgende:
Das Zufallsexperiment wird n—mal unter gleichen Bedingungen durchgefiihrt. Dabei wird
beobachtet, wie oft das Ereignis A eingetreten ist.

1.10 Definition (absolute Hiufigkeit, relative Hiufigkeit):
Fiir jedes Ereignis A wird mit H(A) := Hy,(A) gezdhlt, wie oft es in einer Versuchsreihe der
Linge n aufgetreten ist. H(A) wird absolute Hiufigkeit und

H(4)

n

h(A) := h,(A) :=

relative Haufigkeit des Ereignisses A in einer Versuchsreihe der Ldnge n genannt.

Auf den ersten Blick nachteilig ist, dass h(A) von n und der jeweiligen Versuchsreihe mit
deren Bedingungen abhéngt. Die Erfahrung zeigt jedoch, dass sich die relativen Haufigkeiten
mit groBer werdendem Stichprobenumfang stabilisieren.

h(A)
0.4y

0 2000 4000 6000 8000 10006l
Abbildung 1.1: Stabilisierung von relativen Haufigkeiten
1.11 Beispiel:
e Als Zufallsexperiment wird das Werfen eines Wiirfels betrachtet. In Abhéngigkeit von
der Versuchsliange n ergibt sich fiir die relative Haufigkeit des Ereignisses A:=, Augen-

zahl 6 gewiirfelt“, der Graph aus Abbildung 1.1. Es ist deutlich zu erkennen, dass sich
h(A) um den Wert 1/6 stabilisiert.

e Das Geschlecht von Neugeborenen: A:=, ménnlich“: h(A) —— 0.514.

n—oo
Man iiberpriift leicht folgende Eigenschaften absoluter und relativer Hiufigkeiten:
a) Nichtnegativitdt: H(A) > 0, d.h. h(A) > 0,
b) Normiertheit: H(Q2) = n, d.h. h(Q2) =1,

c) Additivitat: Fir ANB = @ gilt H(AUB) = H(A)+ H(B) d.h. h(AUB) = h(A)+h(B).
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Kapitel 1. Einfithrung und grundlegende Begriffe

Das auf A.N. Kolmogorov zuriickgehende Axiomensystem der Wahrscheinlichkeitstheorie ori-
entiert sich an diesen Eigenschaften relativer Haufigkeiten, wobei aus mathematischen Griin-
den die Eigenschaft der Additivitit durch die Eigenschaft der sogenannten o-Additivitit
ersetzt wird.

1.12 Definition (Axiomensystem nach Kolmogorov):
Gegeben sei eine o—Algebra § tiber einem Stichprobenraum Q # &. Jede Abbildung P: § — R
mit den Figenschaften

1. Nichtnegativitit: ¥V A € §: P(A) >0
2. Normiertheit: P(Q) =1

3. P ist o—additiv, d.h. sei A1, Ao, ... eine Folge von paarweise unvereinbaren Ereignissen
(AN A; =@ fiiri#j), dann gilt:

PLUA4 | =) P4

jeN jEN

heifst Wahrscheinlichkeitsmafl auf § bzw. Q.
Das Tupel (2, F, P) heifit Wahrscheinlichkeitsraum tiber €.
(Siehe auch Lebensdaten von Kolmogorov im Anhang D.)

Folgerung:
Aus dem Axiomensystem ergibt sich unmittelbar:

4. P(2)=0
5. (Additivitit) AN B = @ = P(AU B) = P(A) + P(B)
6. P(A) =1— P(A)

7. (Monotonie) A C B = P(A) < P(B)
Aus dieser Eigenschaft folgt insbesondere P(A) <1 fiir alle A € §, da stets A C 2 gilt.

8. (Additionssatz) Fiir beliebige A, B € § gilt

P(AuUB)=P(A)+ P(B)— P(ANnB).

9. (Formel von Sylvester—Poincaré) In Erweiterung zum Additionssatz gilt fiir beliebige

A A, €3
P(U Ak> = ZP(Ak)— Z P(AklﬂAkQ)—l- Z P(AklﬂA]QﬂAkg)
k=1 k=1 ki ko=1 ki ko, k=1
k1 <kz k1<ko<ks
o+ (=D)L PA NN AY).
Beweis:

[

4. Esgilt: 1=P(Q)=PQUQU---UZU...)ZP(Q)+P(D)+---= P(@) =0.

5. Aussage 5 folgt unmittelbar aus Aussage 3.
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1.4. Wahrscheinlichkeit

6. Die Behauptung folgt unmittelbar aus der Additivit:it und der Zerlegung Q = AU A.
7. Die Behauptung folgt unmittelbar aus der Additivitit und der Zerlegung B = AU(B\A).

8. Esgilt AUB = AU(B\A), AN(B\A) = @, (ANB)U(B\A) = B und (ANB)N(B\A) =
d.h.
P(AUB) = P(AU (B\A)) = P(A) + P(B\A).

Da P(B) = P((ANnB)U (B\A)) = P(AN B) + P(B\A) aquivalent ist zu P(B\A) =
P(B) — P(AN B), folgt insgesamt

P(AU B) = P(A) + P(B) — P(AN B).

9. Es gilt zunéchst

P(Al\AQ) = P(Al\AQ)—FP(AlﬂAQ)—P(AlﬂAQ)
= P((Al\AQ)U(AlﬂAQ))—P(AlﬂAQ) = P(Al)—P(AlﬂAQ).

N>

Der Beweis der Formel von Sylvester—Poincaré erfolgt durch Induktion. Fiir n = 2 ist
die Aussage mit dem Additionssatz identisch. Fiir n > 2 gilt:

o= #(([G) )0l Gl ) )
(((G) () )
(HAk)+p<A \UAk>+p(@Ak>Mn)
ok

{5 ()

= (UlAk)JrP (g AN A, )

k=1

w
N

= Yol p(Ag)- zk . 1P(AklmAkQ)+...+(—1)"*2P(A10An,1)—I—P(An)
k1<k2

=P(UpZ, 1 Ay)

(z;; L P@ARNA =S IP(AklﬁAkQﬂAn)ﬂLer(1)"2P(AlﬁAnlﬁAn))
k1<k2

=P(UZ] AN4n)

17
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n n—1 n—1
= Y P(A)— D P(AnNAg) =Y PANA)+... +
k=1 ky k=1 k=1
k1<ko

== 2k ko=1 DAk NALy)
k1<ka

(=1)""2P(A1N..NAp—1)—(=1)" 3 221 P(A1N...NAg—1NAg11N..NAp—1NA,) +

=(—1)n=23 0 P(A1NA,_1NAg11N...NAL)
—(=1)"2P(A1N...NA,)

=(=1)""1P(A1N...NAy)

n n n

= ZP(Ak) — Z P (Ak1 N AkQ) + Z P (Akl N AkQ N Akg)
k=1 ky ka=1 k1 kg kg =1
k1<ko k1<ko<ks

+od (=D)L PAIN- N A).

(Siehe auch PowerPoint-Présentation zu diesem Beweis.)
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Kapitel 2

Diskrete
Wahrscheinlichkeitsverteilungen

In diesem Kapitel werden anhand einfacher diskreter Zufallsexperimente die Grundprinzipien
stochastischer Modellbildung und die Konstruktion von Wahrscheinlichkeitsmafien erliutert.

Schliisselworter: Konstruktion diskreter Wahrscheinlichkeitsmafie, Wahrschein-
lichkeitsvektor, Laplace—Experiment, Urnenmodelle, Hypergeometrische Verteilung,
Binomialverteilung, Poisson—Verteilung, diskrete reellwertige Zufallsvariable, Bild-
maf, Verteilung einer Zufallsvariablen, Kenngrofien einer diskreten Zufallsvariablen,
Erwartungswert, Varianz, k—tes Moment, k—tes zentrales Moment, erzeugende Funk-
tion.
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Kapitel 2. Diskrete Wahrscheinlichkeitsverteilungen

2.1 Konstruktion diskreter Wahrscheinlichkeitsmafle

In der Einfiihrung wurde festgestellt, dass c—Algebren den natiirlichen Definitionsbereich von
Wahrscheinlichkeitsmaflen darstellen. Im Fall eines diskreten Zufallsexperimentes bietet es
sich an, als Ereignisalgebra die Potenzmenge B(2) iiber Q zu verwenden. Da selbst bei einem
endlichen Wahrscheinlichkeitsraum die Mé#chtigkeit der Potenzmenge in Abhéngigkeit von
der Michtigkeit des Ergebnisraumes sehr rasch anwichst, ist es meist schwierig, P(A) fiir alle
A C Q explizit anzugeben. Im Fall des Wiirfelspiels hatte sich allerdings herausgestellt, dass
P(A) bereits durch die Werte p,, := P({w}) fiir alle w € Q festgelegt ist. Dieser Sachverhalt
soll jetzt ndher untersucht werden.

2.1 Definition (Wahrscheinlichkeitsvektor, diskreter Wahrscheinlichkeitsraum):
Es sei Q eine diskrete Stichprobenmenge. Ein Vektor p := (p,)weq mit den Eigenschaften

(i) po >0 fir alle w € Q

(i) > pw=1 (d.h. die Rethe ist (abs.) konvergent gegen 1)
we

heiffit Wahrscheinlichkeitsvektor iber 2. Das Tupel (2, p) wird auch
diskreter Wahrscheinlichkeitsraum genannt.

2.2 Satz:
Es sei Q) eine diskrete Stichprobenmenge und p := (py,)weq ein Wahrscheinlichkeitsvektor iber
Q.

a) Ist P ein Wahrscheinlichkeitsmaf iber (Q,B(Q2)), so wird durch
po:=P{w}) Ywe
ein Wahrscheinlichkeitsvektor p iber € definiert.

b) Ist p := (pw)weq ein Wahrscheinlichkeitsvektor iber Q, so gibt es genau ein Wahr-
scheinlichkeitsmaf$ P iiber (Q,B(2)) mit

pw =P{w}) YVweQ.

Damit ist die Zuordnung P — (py)wecq eine Bijektion zwischen Wahrscheinlichkeitsmafen
und Wahrscheinlichkeitsvektoren.

Beweis:
a) Da P(A) > 0ist fiir alle A € P(Q), gilt natiirlich auch p,, := P({w}) > 0 fiir alle w € Q.
Aus Q =, cqfw} folgt, dass

S opo=> P(w)) =P (U {w}) =P(Q) =1
we we we

b) Wir definieren P(A) := ) 4 po fiir alle A C Q. Offensichtlich ist P(A) > 0 fiir alle
ACQund P(Q) =3 cqpo = 1. Fiir paarweise disjunkte Mengen gilt auSerdem

p (U Az) _ Z Do abs.féonv. Z Z Do abs.[éom}. Z P(AZ),

1€IN weUie]N A; 1ENweA; 1€IN
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2.2. Laplacescher Wahrscheinlichkeitsraum

d.h. P ist auch o—additiv. Mit der o-Additivitéit ergibt sich auch die Eindeutigkeit der
Definition von P:

P(A) =P ( U w) TN P{wh) =D pa

wEA w€eA wEA

2.2 Laplacescher Wahrscheinlichkeitsraum

Bei der Betrachtung der Wahrscheinlichkeit fiir das Auftreten einer bestimmten Augenzahl
beim Wiirfelspiel stellt man fest, dass alle Elementarereignisse mit der annéhernd gleichen
relativen Haufigkeit auftreten. Dieser Sachverhalt gibt Anlass zu folgender Definition:

2.3 Definition (Laplacescher Wahrscheinlichkeitsraum):
Ein endlicher Wahrscheinlichkeitsraum (S, P) heifit Laplacescher Wahrscheinlichkeitsraum,
falls fiir alle w € Q

1
pw—|Q|

gilt. P heifst Gleichverteilung oder Laplacesche Wahrscheinlichkeitsverteilung tiber €. Die
Wahrscheinlichkeit eines Ereignisses A C ) ist dann:

Al
P(A) = =

2]
(Siehe auch Lebensdaten von Laplace im Anhang D.)

2.4 Beispiel (Spiel mit zwei Wiirfeln):
Beim gleichzeitigen Spiel mit zwei Wiirfeln ergibt sich als Ergebnisraum

Q= {(w1,w2) |w; € {1,...,6};i=1,2}.
Es gilt 2] = 36. Das Ereignis A:=,Die Summe der Augenzahlen ist 7 entspricht der Menge
A= {(wi,w2) w1 +wy =7} ={(1,6),(2,5),(3,4), (4,3),(5,2), (6, 1)}.
Es ist |A| = 6. Unter der Annahme eines Laplaceschen Wahrscheinlichkeitsraums folgt

A6 1
P(A)_|Q|_36_6'

2.3 Das Urnenmodell

In einer Urne befinden sich gut durchmischt N Kugeln. Darunter sind R schwarze und N — R
weile Kugeln. Es werden der Urne zufillig n Kugeln entnommen. Es stellt sich die Frage:

Wie grof} ist die Wahrscheinlichkeit, dass sich unter den n gezogenen Kugeln genau
k (k <n, k < R) schwarze befinden?
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Kapitel 2. Diskrete Wahrscheinlichkeitsverteilungen

Abbildung 2.1: Urnenmodell

Ziehen ohne Zuriicklegen

Offensichtlich lassen sich die Kugeln auf zwei verschiedene Arten ziehen und wieder zuriick-
legen (Ziehen mit Zuriicklegen und Ziehen ohne Zuriicklegen). Zuerst wird das Ziehen ohne
Zuriicklegen betrachtet, d.h. es wird davon ausgegangen, dass die Kugeln nacheinander gezo-
gen und auflerhalb der Urne belassen werden. Zur Lésung des Problems wird angenommen,
dass die R schwarzen Kugeln von 1 bis R und die N — R weilen Kugeln von R + 1 bis NV
durchnumeriert seien:

[ [ ] [ e [ [¢] e (0]
123 ... R|R+1 ... N
schwarze Kugeln weile Kugeln

Der Ergebnisraum ist dann
Q= {(wi,...,wp)|wj €{1,...,N},1 < j <n,w; # wj fiir i # j}.
Um die Méchtigkeit von Q, d.h. die Anzahl |Q| der Elemente von € zu bestimmen, wird
angenommen, dass die Kugeln in n Késtchen abgelegt seien.
goooo. ..o

Die jeweilige Anzahl der Moglichkeiten, die n Késtchen zu belegen, ergibt sich wie folgt:

1. Kastchen: N Moglichkeiten
2. Kastchen: N — 1 Moglichkeiten

n. Késtchen: N — (n — 1) Moglichkeiten

Da sich die Moglichkeiten von Késtchen zu Késtchen multiplizieren, ergibt sich

IQ\Z(N)n:=N-(N—1)'~~(N—(n—1))ZM'

(N),, heilit n—te untere Faktorielle von N.
Das Ereignis Ay, dass sich unter den n gezogenen Kugeln genau k schwarze befinden, besteht
aus allen n—Tupeln (w1, ...,w,), fir die genau & Komponenten kleiner oder gleich R sind.

Zunéchst gibt es genau
n-n—1)---(n—k+1) (n
E-(k—1)---2-1 " \k
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2.3. Das Urnenmodell

Moglichkeiten, die k£ schwarzen Kugeln auf die n Késtchen zu verteilen, denn: Fiir die erste
Kugel gibt es n mogliche Késtchen, fiir die zweite n — 1 usw. und schliellich fiir die k—te
n — k + 1 mogliche Késtchen. Da die schwarzen Kugeln untereinander nicht unterscheidbar
sind, kommt es nicht auf die Reihenfolge an, in der sie auf die Késtchen aufgeteilt werden,
d.h. schwarze Kugel 1 in Késtchen 1 und schwarze Kugel 2 in Késtchen 2 fithrt zu demselben
Ergebnis wie schwarze Kugel 1 in Késtchen 2 und schwarze Kugel 2 in Ké&stchen 1. Die
auf diese Weise doppelt gezdhlten Moglichkeiten miissen also wieder herausdividiert werden:
Vertauscht man also die schwarzen Kugeln untereinander, so gibt es fiir die erste schwarze
Kugel k mogliche Positionen, fiir die zweite k — 1 usw. und schliellich fiir die k—te Kugel nur
noch eine mogliche Position. Damit ergibt sich obiger Quotient.

Ein gewahltes Muster wird festgehalten und es wird wieder nach der Anzahl der Moglichkeiten,
die einzelnen Kistchen zu belegen, gefragt.

1. schwarzes Késtchen: R Moglichkeiten
2. schwarzes Késtchen: R—-1 Moglichkeiten
k. schwarzes Késtchen: R—-—k+1 Moglichkeiten
1. weifles Késtchen: N-—-R Moglichkeiten
weifles Késtchen: N-R-1 Moglichkeiten

n — k. weifles Késtchen: N—-R—(n—k)+1 Mboglichkeiten

Zusammenzihlen der Moglichkeiten ergibt

Aal = () O = )

Damit wird
_ ARl () (R)k(N — R)p—g
12 (N)n
B g (BN = R)pi

(N)n
(R)k (N—R)n—
k! (n—k)!

e

R\ (N—R
_ WG
N
()
Offensichtlich ist py > 0 fiir £ = 0,1,...,n. Um nachzuweisen, dass die Folge (py)}_, einen
Wabhrscheinlichkeitsvektor iiber Q' = {0,1,...,n} darstellt, muss die Identitét

Z”: R\(N-R\ (N
k n—k) \n
k=0
bewiesen werden. Der Beweis folgt sofort aus der Tatsache, dass 2 die disjunkte Vereinigung
der A; mit k = 0,...,n ist. Alternativ lasst sich die Gleichung auch durch Nachrechnen

pr = P(Ag)

(k=0,1,...,n).
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Kapitel 2. Diskrete Wahrscheinlichkeitsverteilungen

verifizieren. Zunéchst wird folgende Gleichung betrachtet:
(142N =1 +2)f0 + )N R
Mit dem Binomischen Lehrsatz folgt weiter:

N
Q+z)V =) <N> 2" = (1+2)fQ+z)NH

n
n=0

I
bl
=
N 2
> IML
7 N\
Eliey
N— <
7N
=
<
=
N———
8
ol
+
<

Die Behauptung ergibt sich nun durch Koeffizientenvergleich.

2.5 Definition (hypergeometrische Verteilung):
Es seien N,R,n € N mit N > R und n < N. Das durch den Wahrscheinlichkeitsvektor
R\ (N—-R
_ WGES)
Pr= "8y
(n)

auf (Y, B(Q)) definierte Wahrscheinlichkeitsmafl heifst hypergeometrische Verteilung mit den
Parametern N, R und n; kurz Hg(n, R, N).

2.6 Beispiel (Lotto ,,6 aus 49¢):
Mit N :=49, R:=6,n:=6und k € {0,1,...,6} gilt:

_ @)

po = © ~~ 0.4359,
6
pL = () () ~ 0.4130
(%) ’
6 643
py = (2()4%1) ~ 0.1323,
6 643
p3 = (3()42;’) ~ 0.0176,
6 643
ps = (4()4(9)2) ~ 0.9686 - 1073,
o)
ps = ~25t ~0.1845 - 1074,
(s)
6\ (43
p6 = ) (o) ~ 0.7150 - 1077,
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2.3. Das Urnenmodell

p
0.4/
0.3 [ —
0.2t
0.1}
— ‘ ‘ ‘ — k
2 4 6 8 10

Abbildung 2.2: Hypergeometrische Verteilung mit NV := 30, R := 8 und n := 20

Ziehen mit Zuriicklegen

Beim Ziehen mit Zuriicklegen wird jede gezogene Kugel sofort wieder in die Urne zuriickgelegt.
Nach erneutem Durchmischen wird die nachste Kugel gezogen. In diesem Fall kann jedes der
n Késtchen mit jeder der N Kugeln belegt werden. Folglich ist

Q:={L,...,N}"={(w,...,wn) |wj €{1,...,N},j=1,...,n}.

Damit ist |Q] = N™.
Ap besteht aus allen (wy,...,wy) € Q, fir die genau k& Komponenten kleiner oder gleich R
sind. Da die Kugeln zuriickgelegt werden, kann jedes der k schwarzen Késtchen mit jeder der
R schwarzen und jedes der n — k weiflen Késtchen mit jeder der N — R weiflen Kugeln belegt
werden. Folglich ist

|Ay| = (Z)R’“(N ~R"* (k=0,1,...,n)

P(Ay) = <Z> (ff)k <N];R)H (k=0,1,...,n).

Mit den Vereinbarungen p := R/N und ¢ :=1—p = (N — R)/N ergibt sich

und

n _
n= Pl = () =01

Damit definiert (py)jl_, einen Wahrscheinlichkeitsvektor auf ' = {0,...,n}, denn es gilt
pr >0 fir k=0,1,...,n und

zn:pk = i(:)l)kqn_k = (p+q" = L

k=0 k=0
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2.7 Definition (Binomialverteilung):
Esseien0 < p<1,q:=1—pundn €N, dann heifst die durch den Wahrscheinlichkeitsvektor

n _
Pk = <k>p’“q" P (k=0,1,...,n)

auf der Menge Q' := {0,...,n} definierte Wahrscheinlichkeitsverteilung Binomialverteilung
mit den Parametern n und p, kurz B(n,p).

P
0.257¢
0.2
0.15
0.1r
0.05
‘ ‘ — — k
5 10 15 20

Abbildung 2.3: Binomialverteilung mit p := 0.3 und n := 20

2.8 Beispiel (Roulette—Spiel):

Beim Roulette—Spiel sei p;, die Wahrscheinlichkeit, in einer Spielserie vom Umfang n genau k—
mal ,, Zero“ zu haben. Die Berechnung von p; kann auf die Binomialverteilung zuriickgefiihrt
werden, indem N :=37, R:=1, p:= R/N = 1/37 und ¢ := 36/37 gesetzt wird. Damit gilt

w= () () (2) o,

Allgemein ldsst sich der Parameter p der Binomialverteilung als Wahrscheinlichkeit fiir das
Eintreten eines bestimmten Ereignisses A interpretieren. p; ist dann die Wahrscheinlichkeit
fiir das k—malige Eintreten bei n gleichwertigen (unabhéngigen) Wiederholungen des Zufalls-
experimentes.

2.4 Beziehungen zwischen den Verteilungen

Wenn sich in der Urne wesentlich mehr Kugeln befinden, als gezogen werden, sollte es keine
Rolle spielen, ob die gezogenen Kugeln wieder zuriickgelegt werden oder nicht. Fiir prak-
tische Rechnungen kann man sich daher auf das einfachere Modell der Binomialverteilung
zuriickziehen.
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Formaler ausgedriickt besteht zwischen der hypergeometrischen und der Binomialverteilung
folgende Beziehung:

2.9 Satz:
Es seien 0 <p <1 undn € N fest gewdhlt. Falls N, R — oo, so dass R/N — p, dann gilt:

Hg(n, R, N)(k) — B(n,p) (k), (k=0,1,...,n).

Bemerkung:

In der Stochastik II wird diese Art der Konvergenz auch als ,,schwache Konvergenz”’ oder
,,Konvergenz in Verteilung” bezeichnet (vgl. Kapitel 14 ,,Schwache Konvergenz und zentraler
Grenzwertsatz”).

Beweis:
Fiir p < 1 gelten die Implikationen

R N —-—R falls p<1
NNHoop N N—o00 1_p:>N L v~ N~>oo 0
wohingegen (%) — 0 fiir p =1 gilt. Somit folgt zunéchst fiir p < 1:
N-R _ ! —n)n!
He(n, R, N)(K) () o) (N - R)! R (N-—n)n!
( (n—k)!(N—-R—-—n+k)! (R—k)k! N!
< > N R n k
R)i (N—R),
N R\"F (Ri’“igN Rgn 5
(N)n
N’VL
1—p) k= :
Fr— (k:) "1 -p)" B(n,p)(k)
Falls p = 1 ist, so gilt wegen (N; — Rj)n—t < (N — Rj)"~ k und (NTZ , (}gk)k - 1, dass
j j—oo

n\ (R\F /N — R\ e et

— RF (N—R)n—
et )0 = () () (F0) G 5 0= Bl 1))
e e N

—_——

beschr.

—1k —0

fir K <n und
Hg(anT7Nj)(n) = M = @ —— 1=B(n,1)(n).

2.10 Beispiel:

In einer Stadt mit 2 Millionen Einwohnern stimmen 800.000 (40%) fiir eine bestimmte Partei.
100 Personen werden zufillig ausgewéhlt. Die Verteilung der Anzahl der Einwohner unter
jenen 100, die fiir diese Partei stimmen, ist:

Hg(100, 800 000, 2000 000) ~ B(100, 0.4) .
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20 40 50 80 100
Abbildung 2.4: Binomialverteilung mit n := 100 und p := 0.4 sowie hypergeometrische Ver-

teilung mit N := 2000000, R := 800000 und n := 100; es ist in der Grafik kein Unterschied
zwischen den beiden Verteilungen erkennbar.

Es ist
max |Hg(100, 800 000, 2000 000)(k) — B(100,0.4) (k)| < 3-107°.
ke{0,100}
2.11 Satz:
Es seien k € Ng, k <n und X\ > 0 fest gewdhlt. Setze p, = A/n, so folgt:
)\k
lim B(n,pn) (k) = ﬁeﬂ\
Beweis:
Allgemein ldsst sich folgendes Teleskop-Produkt schreiben:
B(n,pn) (k) B(n,pa) (k—1) B(n,pn) (1)
B(n,pn) (k) = . s ————=. B(n,pn) (0).
) ) = Bl ) (k= 1) Blnp) (k=2 Blnpa) @) 0P O
Fiir k = 0 gilt
. . ny o n . A\
lim B(n,p,)(0) = lim 0 (1 —pp)" = lim [1-——
n—oo n—o0 n—oo mn

= lim exp (nln(l—)\>) = exp(lim nln(l—)\>)
n—00 n n—0o0 n
. n A / -\
= exp|—A- lim DY In{1—-— = exp(—A- In'(1)) = e

Ferner gilt:

Bnp) (k) _ (Dpk(—p)"™*  mpim P
Bnpn) (k=1) — (2)pn (1= pn)" ™ gty - (1= pa)
n—k+1 % A n—k+1 1

k -2 Tk n -

31>
3>
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2.4. Beziehungen zwischen den Verteilungen

Folglich gilt

Abbildung 2.5: Die Grafik verdeutlicht die Anndherung der Binomialverteilung an die Pois-
sonverteilung im Falle A := 15. Die Grenzfunktion ist rechts dargestellt.

2.12 Bemerkung;:
Die Groflen

ey
D = He_ (k=0,1,...)
bilden einen Wahrscheinlichkeitsvektor iiber 2 := INg, denn es ist py > 0 fiir alle k£ und es gilt
o o
s D W
k=0 k=0

2.13 Definition (Poissonverteilung):
Es sei A € RT. Das durch den Wahrscheinlichkeitsvektor

)\k
Di = Eef)‘ (k=0,1,2,...)

definierte Wahrscheinlichkeitsmaf dber (No,B(No)) heifst Poissonverteilung mit dem Para-
meter A\, kurz P(\).

2.14 Beispiel:

Es sei bekannt, dass pro Jahr 0.005% einer Bevolkerungsgruppe durch einen gewissen Unfall
verletzt wird. Bei einer Versicherung sind 10.000 Personen gegen diesen Unfall versichert.
Gesucht ist die Wahrscheinlichkeit, dass in einem Jahr mindestens drei Versicherungsneh-
mer verungliicken. Diesem Zufallsexperiment liegt offensichtlich die Binomialverteilung mit
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5

2 4 6 8 10 12 14

Abbildung 2.6: Poissonverteilung mit A := 3

den Parametern n := 10000 und p := 0.00005 zugrunde. Fiir die Approximation durch die
Poissonverteilung wird A :=n - p = 0.5 gesetzt. Es ergibt sich:

P(es verungliicken mindestens 3) = 1-— P(es verunglﬁcken maximal 2)

oLy o5y, 11
:1—2pk_1— ﬁe A=1-c¢ (1+2+8>

R 0.0144 = 1.44%.

2.5 Diskrete Zufallsvariable

Im Zusammenhang mit dem Wiirfelspiel wurde gefragt, wie grofl die Wahrscheinlichkeit ist,
eine der Zahlen 1 bis 6 bzw. eine gerade oder ungerade Augenzahl zu wiirfeln. In beiden Fallen
wurde als Ereignisalgebra die Potenzmenge (£2) von  := {1,...,6} zugrundegelegt, die be-
reits 26 = 64 verschiedene Elemente enthilt. Hiitte man sich von Anfang an auf die Ereignisse
A :={1,3,5} (ungerade Augenzahl) und A := {2,4,6} (gerade Augenzahl) beschrinkt, so
hiitte als Ereignisalgebra ebensogut das Mengensystem § := {@, A, 4, Q} verwendet werden
kénnen, in der die Ereignisse A und A sogar als Elementarereignisse auftreten. Es kann sich
also durchaus als sinnvoll erweisen, einen gegebenen Wahrscheinlichkeitsraum den prakti-
schen Erfordernissen entsprechend einzuschréinken bzw. zu modifizieren. Der Ubergang von
einem Wahrscheinlichkeitsraum (€2, §, P) zu einem anderen (€,§, P') wird im Allgemeinen
mit Hilfe einer Abbildung X: Q — ' vollzogen. In diesem Zusammenhang stellt sich die
Frage, wie man die iiber ({2, §) gegebene Bewertung P zu einer Bewertung P’ auf (€', §') aus-
dehnen kann. Da man das Ereignis A’ € § immer dann beobachtet, wenn im urspriinglichen
Experiment ein w mit X (w) € A’ eintritt, definiert man

P'(A"):=Px(A)=P(X 'A) =Plwe| X(w)ec A} VAcF.
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Wenn man in dieser Weise vorgeht, muss sichergestellt werden, dass fiir alle A’ € § die
Bedingung

XA ={weQ|Xw) ecA}eF
erfiillt ist, denn nur fiir Elemente A € § ist P(A) definiert. Eine Abbildung X : Q — ' mit
dieser Eigenschaft heifit Zufallsvariable. Ersetzt man Q und €’ durch diskrete Mengen und
§ und § durch die zugehorigen Potenzmengen PB(Q2) und P('), dann ist diese Bedingung
aufgrund der Beziehung

XAy =xTAn)= |J XD
w'eA'NQY

stets erfiillt (siehe Abbildung 2.7). Auflerdem ist sofort ersichtlich, dass

Px({wi}) == P(X™ ' ({wi}))

einen Wahrscheinlichkeitsvektor auf Q' darstellt und Px deshalb fiir alle A’ € P(Q)') eindeutig
definiert ist (siehe Satz 2.2).

[ o—o—]—o » IR
X)) X(@) X(ws)

Al

Abbildung 2.7: Zufallsvariable

2.15 Definition (diskrete Zufallsvariable, Bildmaf}, Verteilung):

Es seien Q und Q' diskrete Stichprobenmengen und die Potenzmengen PB(Q) und P(Q') seien
die zugehdorigen o-Algebren. Jede Abbildung X: Q — Q' heifit diskrete Zufallsvariable. Ist
Q' C R spricht man von einer reellwertigen diskreten Zufallsvariable. Das durch X induzierte
Wahrscheinlichkeitsmafl Px auf § = PB(Q) heifit Bildmaf$ von P unter X bzw. die Verteilung
von X unter P.

2.16 Beispiel (Spiel mit zwei Wiirfeln I):
Es soll die Abbildung X : (w;,w2) — min(wi,ws) betrachtet werden.

w1 \CUQ
1

min(wy,ws) :

ST W N

— = s = = e
NN DN DN
W W W WwN W
NSO SESUR TR I
St U = W DN | Ot
ST W N O
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Somit ist
Px({1}) = P(X~'({1})) = P{(1,1),(1,2),...,(1,6),(2,1),(3,1),...,(6,1)}) = %
Analog gilt
11
Px({1}) = 36’ Px({4}) = -
Px({2) = o Px({5) = o
Pe((3) = o, Px({6}) = 5

(Siehe auch PowerPoint-Présentation zu diesem Beispiel.)

2.17 Beispiel (Spiel mit zwei Wiirfeln II):
Es soll die Abbildung X: Q x Q — Q' = {2,...,12} mit X: (w;,ws) — wy + wy betrachtet
werden.

wi\w2 |1 2 3 4 5 6

1 23 4 5 6 7

2 345 6 7 8

w1 two: 3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7T 8 9 10 11 12

d.h.
Px((2) = 5. Pe(()) = Pe(noy = 2,
P({3)) = 5. P = o Pe(u = 2
Pe({4) = =, Py({8)) = . Pe(i2)) =
Px({5}) = %, Px({9}) = —

(Siehe auch PowerPoint-Présentation zu diesem Beispiel.)

2.6 Kenngroflen einer diskreten Zufallsvariablen

Ein Hochschullehrer der Stochastik mochte herausfinden, ob sich das Leistungsniveau seiner
Studentinnen und Studenten gegeniiber fritheren Jahren verdndert hat. Aus diesem Grunde
vergleicht er die Klausurergebnisse des laufenden mit denen eines fritheren Jahrgangs. Als
Klausurergebnis mogen die Punktzahlen x;, ¢ = 1,...,r, mit den absoluten H&aufigkeiten
H, (z;) auftreten. Dann wird man

(Hp(x1) - x1+ ...+ Hp(zy) - x1)
(1) -x1+ ...+ hp(x) - 2,
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als die mittlere oder erwartete Punktzahl pro Teilnehmer bezeichnen (wobei hy, (x;) die relative
Haufigkeit des Elementarereignisses z; bezeichnet) und denjenigen Jahrgang als den besseren
ansehen, fiir den dieser Wert der groflere ist. Wenn sich die relativen Héaufigkeiten fiir n — oo
gegen die Grenzwerte p; := P({x;}) stabilisieren kann die Fragestellung mit Mitteln der
Stochastik untersucht werden. Allgemein kann definiert werden:

2.18 Definition (Erwartungswert):
Es sei X eine reellwertige Zufallsvariable iber dem diskreten Wahrscheinlichkeitsraum (2, P).
Ist die Rethe

EX]:= Y 2-PX=2)= »_ xz-Px({z})

zeX(Q) 2EX(Q)

absolut konvergent, so heifit ihr Wert Erwartungswert von X.

2.19 Bemerkung:

Die absolute Konvergenz der Reihe wird gefordert, damit E[X] von der Reihenfolge der Sum-
mation unabhéngig ist.

Bei der Definition des Erwartungswertes wurde das Bildmafl Px zugrundegelegt. Aufgrund
der Beziehung

= > - Px(X=2)= > =z > p

z€X(Q) zeX(Q) w|X(w)=z
Z Z Pw = Z X(w) Pw
2€X (Q) w| X (w)=x weN

kann jedoch ebensogut das origindre Mafl verwendet werden.

2.20 Beispiel (Erwartungswert beim Spiel mit einem Wiirfel):
Es seien z; =i und p; = 1/6 fiir i = 1,...,6. Damit gilt also:

2.21 Beispiel (Erwartungswert beim Spiel mit zwei Wiirfeln):

Es ergibt sich Q := {(k,0) | k, £ =1,...,6}, F = P(2) und Q' := 'Summe der Augenzahlen’ =
{2,...,12}. Somit wird die ZufallsgroBe X: Q — Q' mit X (k,¢) := k + ¢ betrachtet. Der
Erwartungswert von X berechnet sich unter Zugrundelegung einer Gleichverteilung wie folgt:

12
=>j-Plw=(k0)€Q|k+l=j})

j=2

2 3 4 S 6

=2.— S s — — —

364—3 36+ 36—{_5 36+6 36_{_7 36+

5 4 3 2 1
— —+ 10—+ 11— +12.
8 36+9 36+ 0 36+ 36+ 36

=T.
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2.22 Bemerkung;:

Ist X: Q — ' eine reellwertige diskrete Zufallsvariable und g: @' — R eine reellwertige
Funktion auf €', so ist Y := g o X eine reellwertige Zufallsvariable. Mit Ep [Y] bezeichnen
wir den Erwartungswert von Y bzgl. P und mit

Epe 9] := Y g(o)- Px({w'})
w'eqY
den Erwartungswert von g bzgl. Px.

2.23 Satz:

Der Erwartungswert Ep [Y] existiert genau dann, wenn Ep, [g] ezistiert und es ist Ep [Y] =
EPX [g] :

Beweis:

Existiert einer der beiden Erwartungswerte, so lédsst sich mit Hilfe des Umordnungssatzes der
jeweils andere berechnen:

EplY] = > g(X@)po= Y. gw) >, pu

weh e weX—1({w})
= > 9W) PXT'({wh = D gw) - Px({w'}) = Erlgl.
w'eQ’ w'eQ

2.24 Definition (k—te Moment, k—te zentrale Moment, Varianz):
Es sei X eine reellwertige diskrete Zufallsvariable mit den Werten 1, xa, ... und den Wahr-
scheinlichkeiten p1 := P(X = x1), po := P(X = x2), ... Gilt > 2, ‘a:ﬂ p; < oo, dann nennt

man .
E[Xk} = Zazf - Di
i=1
das k—te Moment von X. Gilt Y22, |(x; — E[X])*| p;i < 00, dann nennt man

B[(X ~ BIX])] = Y (@ — BIX]) ps

=1
das k—te zentrale Moment von X. Das zweite zentrale Moment wird auch die Varianz von X

genannt, kurz Var[X].

2.25 Satz:
Es seien X und'Y reellwertige diskrete Zufallsvariablen tiber demselben Wahrscheinlichkeits-
raum (2, p), fir die E[X] und E[Y] existieren. Dann gilt fir a,b € R:

ElaX +b=a -E[X]+5b

und
E[X +Y] =E[X]+E[Y].

Fiir E[XQ] < 0o gilt auflerdem
Var[X] = E[X?] — (E[X])? (Verschiebungssatz)

und
Var[aX +b] = a* - Var[X].
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2.6. Kenngrofien einer diskreten Zufallsvariablen

Beweis:
Mit p; := P(X = z;) gilt

o0

ElaX +8] = (az;+b)pi=a) wipi+by  pi
i=1 =1 i=1

:ainpi—f—b:a-E[X]-i—b
=1

bzw.

ElaX +b =Y [aX(w)+bps =a Y _ X(w)po+b Y po=a-E[X]+b.
weN weN weN

Entsprechend gilt

EX +Y] =) [X(@)+YW)po =Y X(w)po + Y Y(w)p = E[X] + E[Y].

we weN weN
Weiter ist
Var[X] = E[(X — E[X])?] = E[X? - 2XE[X] + (E[X])?]
= E[X?] - 2E[X]E[X] + (E[X])? = E[X?] — (E[X])*
und

Var[aX + b] = E[(aX + b — aE[X] — b)?] = E[a*(X — E[X])?] = a® Var[X].

2.26 Beispiel:
Die Zufallsvariable X sei binomialverteilt mit den Parametern n und p. Dann gilt:

LX) = ék@pk(l e

=D k!(:i! IO,
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k=2
_ = n! k n—k
k=2
. (n —2)! — n
= n(n 1)2922(k_Q)!(n_k),p"c 21 =p)" " +np
k=2
2n72 n—2\ g n—2—k
=nn—1p" > (", ") A -p) +np
k=0

Insgesamt folgt damit:
Var[X] = E[XQ] — (E[X])? = n?p? — np® + np — n*p* = np(1 — p).

2.27 Beispiel:
Die Zufallsgrofle X sei Poisson—verteilt mit dem Parameter A. Dann gilt:

i~ > Ak . )\l .
E[X]:Zk-pk:z:k-ﬁe :)\-Z PRI
k=0 k=0 ' :1( 1!

=X-et-e =)\

E[X?] =E[X(X — 1) + X] = E[X(X — 1)] + E[X]

> )\k N 9 0 )\k—2 N
=Sk (k—1) e a=22. NI
R b =

=Xt e A= 22+

Folglich ist:
Var[X] = E[X?] — (B[X])2 = 2+ A= A2 =\

(Siehe auch PowerPoint-Prisentation zu diesem Beispiel.)

2.7 Erzeugende Funktion

Oftmals ist die direkte Berechnung von Erwartungswert und Varianz aufwendig. Die in diesem
Abschnitt betrachtete erzeugende Funktion stellt einen alternativen Weg zur Berechnung der
Kenngroflen dar.

2.28 Definition (erzeugende Funktion):
Fir eine auf No verteilte Zufallsvariable X mit der Verteilung py := Px({k}) = P(X = k),
k=0,1,2,..., z € C heifit die Potenzreihe

G(z) := E[ZX] = Zpkzk, |z| <1,
k=0

erzeugende Funktion von X bzw. (pg)i-
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2.29 Bemerkung:
o Wegen > 2 pr = 1 konvergiert G(z) mindestens fiir alle 2| <1, z € C.

e Der Wahrscheinlichkeitsvektor p := (p);2, ist durch G(z) eindeutig bestimmt (und
umgekehrt). Insbesondere gilt:

Gk (0)
k!

wobei G¥) die k-te Ableitung von G bedeutet.

(k=0,1,2,...),

2.30 Satz:
Es sei G(z) die erzeugende Funktion der diskreten Zufallsvariable X mit Werten in No. Dann
qgilt:

d*G(z)
X 1) (X i B — T
EIX- (X~ 1) (X k4 D] = lim ¢W(z) = Tim =57,

k € N,

genau dann, wenn E[Xk] < 00 1ist.

Beweis:
Mit E[X*] sind auch alle E[X™] fiir 0 < m < k endlich, da |X (w)|™ < |X(w)|* gilt, falls
| X (w)] > 1ist. Fr |z] < 1 gilt:

GM(2) :fy-(£—1)-...-(e—k+1).P(X:£).zf—k.
/=0

<tk
und |Fpezt=F| < fFp,. Wenn E[Xk] < 00 ist, so folgt mit E[Xk] =300 lkp, die folgende
Identitét (und damit insbesondere die absolute Konvergenz der Reihe)
d*G(2)
(X =1)-... (X — — 1 k) () — 1
EX - (X-1)-...- (X —k+1)] ZIE?_G (2) zl_l)nla_ pRa

Die Umkehrung kann durch Induktion iiber k gezeigt werden, wobei die Identitéit

m
XM = X(X = 1) (X —m) + > X"
k=1

fiir passende c¢; € Z benutzt wird. [ |

2.31 Beispiel:
Die Zufallsvariable X sei binomialverteilt mit den Parametern n und p, d.h.

n

pri=P(X =k) = <k:

>p’“(1 —p)"F (k=0,1,...,n).

Dann ist

k=0
= (pz+q)", z€C,
E[X] = lim G'() =p(n-(pz+9)" )| _ =n-p.
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2.32 Beispiel:
Die Zufallsvariable X sei Poisson—verteilt mit dem Parameter A > 0, d.h.

)\k
pri=P(X = k) := He*A (k=0,1,2,...).
Dann gilt
o oo )\k- B o0 )\Z k B
G(Z):Zpkzk— e ,\Zkzz(k‘) oA
k=0 k=0 k=0
_ 7)\6)\,2 — 7)\(17z)’ seC
T ! —A(1-2) —
E[X] = lim () (e )\) L =A

2.33 Beispiel:
Die Zufallsvariable X sei hypergeometrisch verteilt mit den Parametern n, R und N, d.h.

Iy

pei= POC=1) = D =0, )
Dann gilt
Glz) = gpkzk_:o (f)((g)iﬁ) .

(Nfl)f(Rfl))

i (R—-1)! . ((n—l)—(k‘—l)
E-—DI((R—-1)—(k—1))! N(N-1)!
( A )= ( ) n(n—D)(N—1)—(n—1))!

Il
=y

- N—-1)—(R-1
_ nRR  (R-1)! (")
- N 1) — ' N-1
N &= E((R—-1) - k)! D
R-1
R R
= ny Hg(n—l,R—l,N—l)(k)—nN.

>
Il
o

2.34 Bemerkung:
Die Varianz einer Zufallsgrofle berechnet sich mit Hilfe der erzeugenden Funktion wie folgt:

Var[X] = E[X?] - (BIX])? = BIX (X — 1) + X] - (E[X))?
=G"(1) +G'(1) - (G'(1)?,
falls G in z = 1 zweimal stetig differenzierbar ist.

2.35 Beispiel:
Fiir die Binomialverteilung gilt

G(z) = (pz+", z e C.
G'(2) = n-(pz+q" ' p, z e C.
G"z2) = n-(n—1)-(pz+q)"2-p? ze€C.
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Also
Var[X] = G"(1) + G'(1) = (G'(1))? =n-(n—1)-p* +n-p— (n-p)?
=n’p’—n-p’+n-p-n*-p’=n-p-(1-p).

2.36 Beispiel:
Fiir die Poissonverteilung gilt

G(z) = e =2 z e C.
G'(z) = e?M=2.\  zeC.
G'(z) = e M=2). )2 2.

Also
Var[X] = G"(1) + G'(1) — (G'(1))* = M2+ A= N2 =\
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Kapitel 3

Bedingte Wahrscheinlichkeiten

Manchmal erhélt man bei der Durchfiihrung eines Zufallsexperimentes eine Teilinformation
dariiber, wie das Experiment verlaufen wird. Die Kenntnis solcher Zusatzinformationen macht
eine Revision der urspriinglichen Wahrscheinlichkeitsbewertung erforderlich und fithrt auf den
Begriff der bedingten Wahrscheinlichkeit. In der Praxis werden bedingte Wahrscheinlichkeiten
verwendet, um die Wahrscheinlichkeiten komplizierter, zusammengesetzter Ereignisse zu be-
rechnen. In diesem Zusammenhang spielt auch der Begriff der stochastischen Unabhéngigkeit
eine zentrale Rolle.

Schliisselworter: Bedingte relative Haufigkeit, bedingte Wahrscheinlichkeit, Spur-
o-Algebra, Satz von der totalen Wahrscheinlichkeit, a—priori—Verteilung, a—post-
eriori—Verteilung, Multiplikationssatz, stochastische Unabhéngigkeit, paarweise und
vollstédndige Unabhéngigkeit.
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3.1 Begriffe und Zusammenhinge

In der Praxis treten oftmals Problemstellungen auf, bei denen Teilinformationen iiber den
Ausgang eines Zugfallsexperiments bekannt werden, bevor das endgiiltige Ergebnis eintritt.
Diese Informationen kénnen die Wahrscheinlichkeit fiir das Eintreten eines bestimmten Er-
eignisses beeinflussen, wie die folgenden Beispiele verdeutlichen:

3.1 Beispiel:
e Ein Pokerspiel enthélt genau 52 Karten, bestehend aus den vier verschiedenen Farben
(o, b, O, &) mit jeweils 13 Karten. Eine Pokerhand erhilt immer 5 Karten.

Abbildung 3.1: ,,Kartenspieler” von Paul Cezanne, siehe www.Heinrich-Boell.de

Gefragt wird nach der Wahrscheinlichkeit des Ereignisses F', einen ,, Flush® zu erhalten,
d.h. dass alle Karten in einer Hand von derselben Farbe sind.

= (552>’ [Fl=4- <153> = P(F) = 4@%’3)

5

=~ 0.002.

Erhilt man nun die Vorabinformation, dass alle Karten, die man bekommen hat, rot
sind (©, ), so dndert sich die Wahrscheinlichkeit fiir das Eintreten von F.

] = (256>, |F|=2- <153> — P(F) = 2&{%’3) ~ 0.039.

e Wir betrachten die Wartezeiten in der Mensa.

Es werden zwei Essen ausgegeben. W7 sei das Ereignis, dass die Wartezeit eines Stu-
denten kleiner gleich 10 Minuten ist und Wy die Wahrscheinlichkeit, dass die Wartezeit
grofler ist als 10 Minuten. Eine Umfrage ergab folgende Statistik:

Anzahl | Essen I | Essen 11
Wi 7000 3500 3500

Wy | 3000 | 2500 500
Hieraus folgt
7000 3000
AWy) = — 2 — 0.7 und h(Wy) = — 2 —0.3.
(W) = 200 13000 — 07 wnd AW2) = wone—=agg = 03
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3.1. Begriffe und Zusammenhénge

Abbildung 3.2: Mensa der TU Clausthal

Kennt man die Préferenz eines Studenten, &ndern sich die Wahrscheinlichkeiten geméf3

HW;nI)  HW,nI) n
Wil D) H(I) n H(I)
_ RWinI) {ggggzmg fiir ¢ = 1

h(I) 200 ~ 0417  firi=2"

dabei sei h(W;|I) die relative Haufigkeit fiir das Ereignis W; unter der Bedingung, dass
der Student Essen I gewéhlt hat.

Fiir h(B) > 0 heiit h(A | B) = h({égj)g) bedingte relative Haufigkeit von A unter B.

Beobachtung: Bedingte relative Hiufigkeiten stabilisieren sich fiir n — oo ebenso wie die
relativen Haufigkeiten.

3.2 Definition (bedingte Wahrscheinlichkeit):
Es seien (2,8, P) ein Wahrscheinlichkeitsraum und B € § mit P(B) > 0. Dann heifit fir
jedes A € §
P(ANB)
P(B)

die bedingte Wahrscheinlichkeit von A unter B bzgl. P.

P(A|B) :=

Folgerung:
ANB=@—=— P(A|B)=0und BC A= P(A|B)=1.

Wahrscheinlichkeitstheoretisch bedeutet der Ubergang von P(A) zu P(A|B) die Einschrink-
ung der urspriinglichen o—Algebra § auf das Mengensystem §', das aus § hervorgeht, indem
man alle ihre Elemente mit B schneidet. Es stellt sich heraus, dass §’ eine o—Algebra iiber
Y = B ist. Entsprechend definieren P(A|B) ein Wahrscheinlichkeitsmafl auf § und die Ein-
schrinkung von P(A|B) auf § ein Wahrscheinlichkeitsmafl auf §’. Diesem Nachweis dienen
die beiden nachfolgenden Sétze:

3.3 Satz:
Es seien § eine o—Algebra iiber Q und Q' eine nichtleere Menge mit Q' C Q. Dann ist § =
{YNA|Ae€F} eine o-Algebra iiber ', die sogenannte Spur-o—Algebra.
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Beweis:

1. 9 e g§":
Wegen ' C Qist @' NQ =€ Da Q € F ist, ist deshalb auch Q' € §'.
2.4y = AeF:
Es sei A’ € §'. Aufgrund der Definition von F gibt esein A € Fmit A’ = Q' NA. Dag
eine o—Algebra ist, ist A € §. Dann ist A = ' NA € §. A ist aber das Komplement
von A” in §, denn es gilt:
ANA=@QNANQNA) =
AUA=(QNA U NA) =

ANANA)=0No =0,
ANAUA)=0Na=Q".

3. Fiir jede Folge (A])nen von Elementen aus §' ist U Al e

neN
Es sei (A}, )nen eine Folge von Elementen aus §'. Dann gibt es aufgrund der Definition

von § eine Folge (A,)nen von Elementen aus §, so dass A/, = Q' N A, fiir alle n € N
gilt. Da § eine o—Algebra ist, ist (J,cn An € §. Mit der Definition von § folgt weiter:

'n|JAned.
nelN
Es gilt aber

AnlJa=@nAa)={] 4, also [J4,€53

nelN nelN nelN nelN
|

3.4 Satz:
Es seien (Q,F, P) ein Wahrscheinlichkeitsraum und B € § mit P(B) > 0. P(- | B): § — R
definiert durch

P(AN B)

P(A|B) = =5

(A €3

ein Wahrscheinlichkeitsmafs tiber €.

Beweis:

1) Aus der Definition der bedingten Wahrscheinlichkeit folgt fiir alle A € § sofort P(A |
B) > 0.
. P(QNB) _ P(B . .
2) Esgilt P(Q| B) = % = ﬁ =1, d.h. P(- | B) ist normiert.

3) Es sei (4;)ien eine Folge von paarweise fremden Elementen von §. Dann gilt:

) - P((U)os)  r(yuos)

P(UA”B

e P(B) P(B)
> P(AinB)
_ ieN A e
=07 (o—Additivitat von P)
= ) P4
i€EN
und es folgt die o—Additivitat von P(- | B). [
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Dieser Satz rechtfertigt die Bezeichnung bedingte Wahrscheinlichkeit.

3.5 Beispiel (Regenwahrscheinlichkeit):
An einer Wetterstation (nicht in Clausthal) wurde die Regenwahrscheinlichkeit in Abhéngig-
keit des Monats aufgezeichnet:

Monat Jan | Feb | Méar | Apr | Mai | Jun
Wahrscheinlichkeit fiir Regentag | 15% | 15% | 26% | 256% | 20% | 25%

Monat Jul | Aug | Sep | Okt | Nov | Dez
Wahrscheinlichkeit fiir Regentag | 30% | 20% | 26% | 30% | 25% | 25%

Bekannt sind also die bedingten Wahrscheinlichkeiten

P(,,Regentag” |Monat =) firi=1,...,12.

Gesucht ist die durchschnittliche Regenwahrscheinlichkeit fiir das ganze Jahr.
Mit A; :=,ein zufillig gewidhlter Tag liegt in Monat " ist P(A;) = %, P(Ay) = %,
P(A3) = 2%, P(A4) = 2= usw. und damit lisst sich allgemein schreiben:

12
P(,,Regentag”) = Z P(,,Regentag” [Monat = i) - P(A;).
i=1
Also:
31

P(,,Regentag”) = 365 P(,,Regentag” [Monat = 1) +

28

365
31

365

30
365 P(,,Regentag” |Monat =4) + ...

~ 0.234.

- P(,,Regentag” [Monat = 2) +

- P(,,Regentag” |[Monat = 3) +

In dem Beispiel wurde also riickwérts von einer bedingten Wahrscheinlichkeit auf eine unbe-
dingte Wahrscheinlichkeit geschlossen. Dieser Sachverhalt soll nun im folgenden Satz allgemein
bewiesen werden:

3.6 Satz (Satz von der totalen Wahrscheinlichkeit):
Es seien (Q,§, P) ein Wahrscheinlichkeitsraum und (Bp)nen eine Folge paarweise fremder
Mengen aus § mit Q = |J, e Bn und P(B,,) >0V n € N. Dann gilt fiir jedes Ereignis A € §:

neN
Beweis:
Esseit A=ANQ=An U B,= U (ANB,) und (ANB,)N(ANB,,) = fir m#n. Es
neN nelN
folgt

P(A) =P ( Jn Bn)> =" P(ANB,) "= Y P(A| B,) - P(B,).

nelN neN neN
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Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit kann von bedingten Wahrscheinlich-
keiten P(A|B;) auf die unbedingte Wahrscheinlichkeit P(A) geschlossen werden (sofern die
P(B;) bekannt sind). Im Folgenden soll noch ein Schritt weiter gegangen werden: Es soll jetzt
P(B;]A) bestimmt werden. Gerade diese Fragestellung hat sehr viele praktische Anwendun-
gen, wie sich in Beispiel 3.9 zeigen wird.

3.7 Satz (Formel von Bayes):

Es seien (2,8, P) ein Wahrscheinlichkeitsraum und (Bp)nen eine Folge paarweise fremder
Mengen aus § mit Q = |J,,ciy Bn und P(B,,) > 0Y n € N. Dann gilt fir jedes Ereignis B € §
mit P(B) > 0 und alle k € N:

P(B | By) - P(By)

neN

P(By | B) =

(Siehe auch Lebensdaten von Bayes im Anhang D.)

Beweis:
Aus Satz 3.6 folgt
P(B)=> P(B|By,)-P(By).
neN
AuBerdem ist
P(ByNB)=P(By | B)-P(B)=P(B| By) P(By).

Es ergibt sich
. b, )~ PO _PBI By PBY
PIPPTPB) T Y P(B|Ba)-P(Ba)
neN

3.8 Definition (a—priori—Verteilung, a—posteriori—Verteilung):
e (P(By))en nennt man a—priori—Verteilung (vor dem Eintreten von B).

o (P(By | B))en nennt man a-—posteriori—Verteilung (nach dem Eintreten von B).

3.9 Beispiel:

,,Let’s make a deal” (3-Tore-Problem):

In einer Spielshow wird der Kandidat vor drei verschlossene Tiiren gestellt. Hinter einer der
Tiiren wartet ein Gewinn, in allen anderen Fillen geht der Kandidat leer aus. Der Kandidat
wéhlt eine Tiir aus, die aber nicht geoffnet wird. Stattdessen 6ffnet der Quizmaster eine der
beiden anderen Tiiren, hinter der sich jedoch nichts befindet. Nun wird der Kandidat vor die
Wahl gestellt, bei der gewéhlten Tiir zu bleiben oder sich fiir die andere, noch nicht getffnete
Tiir zu entscheiden. Es stellt sich die Frage, ob der Kandidat seine Gewinnchance erhthen
kann, wenn er sich umentscheidet.

Zur Klarung des Sachverhalts werden folgende Bezeichnungen eingefiihrt:

U :=,,eine Umentscheidung fiithrt zu Gewinn” und r :=,richtige Tiir war von Anfang an
gewihlt”. Wurde bereits von Anfang an die richtige Tiir gewahlt, so fithrt eine Umentschei-
dung zum Verlust (P(U|r) = 0). Wurde allerdings von Anfang an die falsche Tiir gewéhlt, so
fithrt eine Umentscheidung zum Gewinn (P(U|7) = 1). Die Wahrscheilichkeit, von Anfang an
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die richtige Tiir gew#hlt zu haben, betrégt %, also P(r) = % Damit ergibt sich mit dem Satz
von der totalen Wahrscheinlichkeit:

P(U)=P(U!r)-P(r)+P(U|r).p(?):o.%ﬂ.g:;

Das Ergebnis zeigt, dass sich im Allgemeinen die Gewinnwahrscheinlichkeit erh6ht, wenn sich
der Kandidat umentscheidet.

Fertigungs—A usschussanteil:
Die Produktion in einer Fabrik erfolgt durch drei Maschinen. Diese sind zu verschiedenen
Anteilen an der Gesamtproduktion beteiligt und weisen folgende Ausschussraten auf:
Maschine A | Maschine B | Maschine C
Anteil an der Gesamtproduktion 20% 50% 30%
Ausschussrate 1% 3% 4%

Abbildung 3.3: Eine der drei Maschinen

Demnach lauten die Parameter des Systems:

P(A) —20%, P(B) 50%, P(C) = 30%
P(,,Ausschuss”|A) = 1%, P(,,Ausschuss’|B) = 3%, P(,,Ausschuss”|C) 4%.

Wir berechnen zunéichst den Ausschussanteil bezogen auf die gesamte Produktion. Dieser
ldsst sich mit Hilfe des Satzes von der totalen Wahrscheinlichkeit berechnen:

P(,,Ausschuss”) = Z P(,,Ausschuss”|M) - P(M)
Me{A,B,C}
= 1%-20% + 3% - 50% + 4% - 30% = 2.9%.

Mit Hilfe des Satzes von Bayes ldsst sich jetzt auch noch bestimmen, wie gross die Wahr-
scheinlichkeit dafiir ist, dass ein Ausschussteil von Maschine A stammt:

P(,,Ausschuss”|A) - P(A 1% .2
P(A|,,Ausschuss”) = (,»Ausschuss”|A) - P(A) 1% -20%

= = ~ 6,90%.
ZME{A,B,C} P(,,Ausschuss”|M) - P(M) 2.9% e
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Die entsprechenden Wahrscheinlichkeiten fiir die anderen beiden Maschinen sind:

3% - 50%

P(B|,,A huss”) = ——— & 51,72 d
(B|,,Ausschuss”) 5.9% 51,72% un
4% - 30
P(C|,,Ausschuss”) = 4% - 30% ~ 41,38%.
2,9%

Multiple-Choice—Test:

Eine Priifungsfrage in einem Multiple-Choice—Test hat n mo6gliche Antworten, von denen k
(0 < k < n) richtig sind. Hat ein Student sich vorbereitet, so sollte er die richtigen Antworten
auswihlen konnen. Hat ein Student sich nicht vorbereitet, so muss er raten und wahlt j der
n moglichen Antworten zufillig aus.

Es sei P(,,Student hat sich vorbereitet”) =: p.
Gesucht ist die Wahrscheinlichkeit (in Abhéngigkeit von p und n), dass der Student sich
vorbereitet hat, wenn man weif}, dass er die richtigen Antworten gewéhlt hat.
Losungsmenge: €2 := {(0,0); (0,1);(1,0);(1,1)}
(0 0) := ,nicht vorbereitet, falsche Antwort*
0,1) := ,nicht vorbereitet, richtige Antwort*
) := ,,vorbereitet, falsche Antwort*
) := ,,vorbereitet, richtige Antwort*
={(0,1);(1,1)} = ,richtige Antwort*
={(1,0);(1,1)} = ,,der Student hat sich vorbereitet*

Es gilt P(B) = p € (0,1], auBerdem wird angenommen, dass es Studenten gibt, die die
richtigen Antworten gegeben haben, d.h. dass P(A) > 0 gilt. Ein Student, der sich vorbereitet
hat, gebe immer die richtigen Antworten, d.h. P(A | B) = 1 und ein nicht vorbereiteter
Student wiéhle zufillig j der n Antworten. In diesem Fall ist P(A | B) = 5, da er bei jeder
der n méglichen Antworten raten muss, ob sie richtig ist oder nicht und dabei jeweils eine
Chance von 5 ! hat. Gesucht ist P(B | A). Zur Lésung des Problems wird die Formel von Bayes
verwendet:

P(A|B) - P(B) _ 1-p p

PB4 = P(A[B)-P(B)+ P(A|B)-P(B) 1p+q(1-p) pt 52 no

1.

D.h., je groBer die Anzahl der Antworten ist, desto wahrscheinlicher ist es, dass der Student
sich vorbereitet hat, wenn man weif3, dass er die richtige Antwort gegeben hat.

Beachte: Es wurde in dem Beispiel vorausgesetzt, dass die n moglichen Antworten der Frage

unabhéngig voneinander sind, d.h. es gibt keine Antworten der Form ,,Es gilt A.” und ,,Es

gilt nicht A.” Wenn es Antworten gibt, die sich gegenseitig ausschlieflen, so gilt nicht mehr
P(A|B) = sondern nur noch 3 > P(A | B) > 5.

Da aber in jedem Fall P(Student hat eine Frage richtig beantwortet | B) < 1 ist, lisst sich
trotzdem P(B | A) — 1 durch die Erhohung der Anzahl der Fragen erreichen.

2”7

Spam-—Filter:
In der eMail-Kommunikation stellen Spam-Mails (unerwiinschte Werbemails) ein sténdig
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wachsendes Argernis dar. Der naheliegenste Ansatz, Spam automatisiert auszufiltern, besteht
darin, eine Liste von Wortern anzulegen, die fast nur in Spam-Mails vorkommen. Tritt ei-
nes der Worter aus dieser Liste in der Mail auf, so wird diese als Spam aussortiert. Mit
einem solchen Ansatz werden aber auch erwiinschte Mails aussortiert, sofern diese eines der
Schliisselworter enthalten. Auflerdem muss die Liste stéindig aktualisiert und erweitert werden,
um moglichst viel Spam zu erfassen.

Einen anderen Ansatz, der diese beiden Nachteile weitgehend ausgleicht, stellen die lernfihigen
Bayes—Filter dar. (Die Spam-Filter von Mozilla und Thunderbird funktionieren nach diesem
Prinzip.) Zunéchst muss der Filter einige Zeit trainiert werden, indem man Mails manuell
als Spam markiert. Der Spam-Filter liest alle Spam— und alle Nicht—Spam—Mails und z&hlt
dabei, wie hiufig welches Wort auftritt. (Dabei werde jedes Wort nur jeweils ein Mal pro Mail
gez#hlt).

Nach dem Scannen von 2000 Mails (je 1000 Spam— und Nicht-Spam-Mails) koénnte sich z.B.
folgende Tabelle mit Wort—Héufigkeiten ergeben haben:

absolute Hiufigkeit
Wort in Spam—Mails | in Nicht—Spam—Mails | gesamt
Viagra 500 0 500
enlargement 400 0 400
money 350 3 353
buy 300 4 304
credit 250 10 260
etgener Name 250 800 1050
Software 150 200 350
Dir 0 500 500
und 10 700 710
der 0 950 950
die 0 950 950

Mit Hilfe dieser Daten lassen sich nun u.a. folgende bedingte Wahrscheinlichkeiten aufstellen:

P(,,Viagra” tritt auf | Spam) = 50%
P(,,enlargement” tritt auf | Spam) = 40%
P(,,money” tritt auf | Spam) = 35%

P(,,buy” tritt auf | Spam) = 30%

P(,,credit” tritt auf | Spam) = 25%

P(,,eigener Name” tritt auf | Spam) = 25%
P(,,der” tritt auf | kein Spam) = 95%

P(,,die” tritt auf | kein Spam) = 95%
P(,,eigener Name” tritt auf | kein Spam) = 80%
P(,,und” tritt auf | kein Spam) = 70%
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P(,,Dir” tritt auf | kein Spam) = 50%.

Das Verhéltnis von Spam zu normalen Mails sei bekannt. In diesem Beispiel sind es 50%.
Fiir die absoluten Eintrittswahrscheinlichkeiten gilt dann:

P(,,money” tritt auf) = 17,65%
P(,,credit” tritt auf) = 13%
P(,,eigener Name’ tritt auf) = 52,5%

Erhélt man nun eine neue Mail, so wird diese vom Spam-Filter nach den bekannten Schliis-
selwortern durchsucht. Wenn die Mail jetzt die Worter ,,money”, ,,credit” oder den Namen
des Empfingers enthilt (und sonst keine bekannten Schliisselworter), so lidsst sich mit Hilfe
der Formel von Bayes Folgendes berechnen:

P(,,money” tritt auf | Spam) - P(Spam)
P(,,money” tritt auf)

35% - 50%
= 220920 ~99,15
17,65% , 15%,

P(Spam|,,money” tritt auf) =

P(,,credit” tritt auf | Spam) - P(Spam)
P(,,credit” tritt auf)
25% - 50%

= —_— =) 1
3% 96, 15%,

P(Spam|,,credit” tritt auf) =

P(,,eigener Name” tritt auf | Spam) - P(Spam)

P(Spam|,,eigener Name” tritt auf) = P(,.cigener Name™ tritt auf)

25% - 50%
= 22270 ~2381%.
52,5% 81%

Abschlieflend wird der Mittelwert iiber alle drei Wahscheinlichkeiten gebildet:

1
. (P(Spam|,,money”) + P(Spam|,,credit”) + P(Spam|,,eigener Name”)) ~ 73,04%.

Uberschreitet dieser Wert eine vorgegebene Grenze, so wird die Mail als Spam aussortiert.
Zur technischen Ausfithrung und zu weiteren Details siehe:

e Paul Graham: ,,A Plan for Spam”
e Gary Robinson: ,,Spam Detection”

3.10 Satz (Multiplikationssatz):
Sei (Q,§, P) ein Wahrscheinlichkeitsraum. Fir Ay, ..., A, € § gelte P(AgNA1N---NA,_1) >
0. Dann gilt:

P

.

Aj :P(A())‘P(Al|A0)-P(A2|AO0A1) ---- P(An‘AoﬂAlﬂ-”ﬂAn_l).
0

J
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Beweis:
Mit AgNATN---NA,_ 1 CAyNAN---NA, o2C---CAyNA; C Ay folgt

0<P(A0ﬂ"'ﬂAn_1)SP(Aoﬂ"-ﬂAn_Q)S“'SP(A()).

Der Rest wird durch Induktion bewiesen. Den Induktionsanfang stellt die Definition der
bedingten Wahrscheinlichkeit dar:

P(AO N Al) = P(Ao) . P(A1 ‘ AQ)
Der Induktionsschluss von n auf n + 1 erfolgt durch:

PAgn---NA,NAp1)=P(AoN---NA,) - P(Aps1 | AoN---NA,) (Def)
= P(Ao) '''' P(An|A0ﬂ...ﬂAn_1)~P(An+1|A0ﬂ-‘-ﬂAn).

3.11 Beispiel (Urnenmodell von Pdlya):
Gegeben sei eine Urne, die r rote Kugeln und s schwarze Kugeln enthélt. Nach der zufilligen
Entnahme einer Kugel wird diese mit ¢ weiteren desselben Typs zuriick in die Urne gelegt.

VS
L i

Abbildung 3.4: Urnenmodell von Pélya

Gesucht ist die Wahrscheinlichkeit dafiir, bei n Ziehungen jeweils eine rote Kugel zu ziehen.
Hierzu wird das Ereignis A; := ,,im i—ten Versuch eine rote Kugel ziehen* definiert. Nun kann
die gesuchte Wahrscheinlichkeit wie folgt beschrieben werden: P(A;NAyN---NA,). Mit Hilfe
des Multiplikationssatzes ldsst sich die gesuchte Wahrscheinlichkeit berechnen:

P(Alﬁ"-ﬂAn) = P(Al)P(A2|A1)P(An‘AlﬂﬂAnfl)
T r+c T+ 2¢ r+(n—1)c
r+s r+s+c r+s+2¢ " r4+s+(n—1)c

(Siehe auch PowerPoint-Prisentation zu diesem Beispiel.)

3.2 Stochastische Unabhéingigkeit

Diese Abschnitt behandelt den Begriff der stochastischen Unabhéngigkeit. Als Motivation
diene das folgende Beispiel:
Es wird eine Population §2 medizglischer Probanden betrachtet, in der sich solche befinden, die

rauchen (R), die nicht rauchen (R), die an Lungenkrebs erkrankt sind (L) oder nicht erkrankt
sind (L). Unter der Annahme, dass das Rauchen keinen Einfluss auf die Entstehung von
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Lungenkrebs habe, erwartet man, dass in der Gruppe der Raucher genauso viele Probanden an
Lungenkrebs erkrankt sind wie in der Gruppe der Nichtraucher, d.h. im Fall einer hinreichend
groflen Population sollte gelten:

ILNR| |LNR|

|R| |R|
ILNR|/1Q _|LNR|/IQ]
IBI/19f  |R[/I9
by P(LNR) P(LNR)
- PR P(R)

& P(L|R =PL|R).

Diese Feststellung gibt Anlass zu folgender Definition:

3.12 Definition (stochastisch unabhingig):
Es sei (Q, 5, P) ein Wahrscheinlichkeitsraum und A, B € § mit P(B) > 0 und P(B) > 0. A
heif$t stochastisch unabhdngig von B bzgl. P, falls

P(A|B)=P(A| B)
gilt.

3.13 Satz:
Es sei (2,5, P) ein Wahrscheinlichkeitsraum und A, B € § mit P(B) > 0. Dann sind folgende
Aussagen dquivalent:

a) P(A| B) = P(A| B), falls P(B) > 0.
b) P(A|B) = P(A).
¢c) P(ANB) = P(A)- P(B).

Beweis:
a) = b):
P(A)=P(A|B)-P(B)+ P(A|B)-P(B)
=P(A|B)-P(B)+ P(A| B)- P(B)
= P(A| B) (P(B) + P(E)) =P(A|B)-P(Q)=P(A|B).
b) = a):
P(A)=P(A|B)-P(B)+ P(A|B)-P(B)
= P(A)-P(B)+ P(A|B) - P(B)
— P(A)-(1—P(B)) = P(A| B)- P(B)
<= P(A)-P(B)=P(A|B)-P(B)
<~ P(A)=P(A|B).
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b) = ¢):
P(A|B):P(J;4(;)B) — P(ANB)=P(A| B)- P(B) = P(A) - P(B).
c b):
)= |y~ PANB) _PA)-PB)
WIB="pm = rm "W

3.14 Beispiel:
Es wird das Werfen eines Wiirfels betrachtet. Es seien A := {1,3,5} und B := {3,4,5,6} und
somit P(A) =1/2 und P(B) =2/3. A und B sind unabhéngig, da

P(AN B) = P({3,5}) = % _ % _ P(A)- P(B).

Wl N

3.15 Bemerkung:
Die stochastische Unabhéngigkeit zweier Ereignisse geht beim Ubergang zu einem anderen
Wahrscheinlichkeitsmafl im allgemeinen verloren.

3.16 Beispiel:

Es seien © := {1,2,3}, A := {1} und B := {1,2}. Man wihle zwei Wahrscheinlichkeitsmafle
P und P’ wie folgt: P({1}) := 1, P({2}) := P({3}) := 0 und P'({i}) := 1 fiir i = 1,2,3.
Unter dem Wahrscheinlichkeitsmafl P sind A und B stochastisch unabhingig, denn es gilt:

P(ANB)=P({1})=1=1-1= P(A)- P(B).
Unter P’ sind A und B jedoch nicht unabhiingig:
1 2 1 2
P/(AQB):P/({l}):g#§:§'§:P,(A)'P/(B)~

3.17 Definition (paarweise Unabhéngigkeit):
Endlich viele Ereignisse A; € § (i = 1,...,n) heiffen paarweise stochastisch unabhdngig bzgl.
P, wenn gilt:

P(AiNAj) = P(Ai) - P(A;) firi#j.

Eine Frage in diesem Zusammenhang ist, ob aus P(A; N Ay N A3) = P(A;) - P(A2) - P(A3)
auch die paarweise Unabhéngigkeit der Ereignisse A1, A3 und As folgt. Dieses Problem fiihrt
zum Begriff der vollstdndigen Unabhéngigkeit (siehe Definition 3.19).

3.18 Beispiel:
Es seien Q = {1,2,3}, P({1}) := &, P({2}) :== 3, P({3}) :== 0, A; = {1}, Ay := {2} und
Az = {3}. Dann gilt:

P(Al NAsN Ag) = P(Al) . P(AQ) : P(Ad)v

aber

P(A1NAz) =0# - = P(A1) - P(Ag).

1
4

95



Kapitel 3. Bedingte Wahrscheinlichkeiten

3.19 Definition (vollstéindig stochastisch unabhingig):
Endlich oder abzihlbar unendlich viele Ereignisse A; € § heifen
vollstindig stochastisch unabhdngig bzgl. P, wenn gilt:

P(Ay N---NA;,) = P(Ay) -+ P(4q,)
fiir je endlich viele paarweise verschiedene Indizes i1,...,4,, € N, m € N.

3.20 Bemerkung:

Die vollstandige Unabhéngigkeit ist eine schirfere Forderung als die paarweise Unabhéngig-
keit. Aus der paarweisen Unabhéngigkeit folgt nicht notwendig auch die vollstdndige Un-
abhingigkeit.

3.21 Beispiel:
In einer Urne befinden sich vier Lose mit den Zahlen 6, 7, 10 und 15. Der Urne wird zufillig
ein Los entnommen. T} sei das Ereignis, dass die gezogene Zahl durch k teilbar ist. Es gilt:

P(T3) = P({6,10}) = 0.5
P(T3) = P({6,15}) = 0.5
P(T5) = P({10,15}) = 0.5
P(T,NTs) = P({6}) = 0.25 = 0.5- 0.5 = P(T3) - P(T3)
P(T,NTs) = P({10}) = 0.25 = 0.5 - 0.5 = P(T3) - P(Ts)
P(T5N7Ts) = P({15}) = 0.25 = 0.5 - 0.5 = P(T3) - P(Ts)
P(T,NT5NTs) = P(@)=0+#05-05-0.5= P(Ty) - P(T5) - P(T3) .

(Siehe auch PowerPoint-Prisentation zu diesem Beispiel.)
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e P. GANSSLER UND W. STUTE:
Wahrscheinlichkeitstheorie,
Springer—Verlag, Berlin, 1977.
ISBN: 3540084185

e H. O. GEORGIL
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2. Auflage, de Gruyter, 2004.
ISBN: 3110172356
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Kapitel 4

Statistische Methoden der
Qualititssicherung

Sowohl wiahrend seiner Entwicklung als auch wihrend seiner Herstellung durchléuft ein Pro-
dukt verschiedene Qualifizierungsstufen. Die Sicherstellung seiner technischen Spezifikatio-
nen durch prozessintegrierte Meflsysteme und computergestiitzte Auswerteverfahren stellt
fiir alle Unternehmen eine besondere Herausforderung dar. Besonders Grofiserien—Hersteller
wie PC—, Automobil-, Elektronik- oder Lebensmittelhersteller miissen sich darauf verlassen
konnen, dass die von ihnen verwendeten Komponenten und Zutaten einwandfrei sind. Aber
auch der Kunde mochte sicher sein, ein fehlerfreies Produkt zu erwerben. Eventuell erfor-
derlich werdende Garantieleistungen und Riickrufaktionen sind nicht nur mit hohen Kosten
sondern auch mit einem erheblichen Vertrauensschwund bei den Kunden verbunden. Aus die-
sem Grund betreiben fast alle grofien Firmen ein umfassendes Qualitdtsmanagement, das die
mit der Qualitétsiiberwachung einhergehenden Geschéftsprozesse koordiniert und die fiir die
Erfassung und Auswertung der Qualitdtsdaten erforderlichen Methoden und Verfahren zur
Verfiigung stellt. Aufgrund der Datenmengen werden dabei auch grofie Anforderungen an die
Informationstechnik gestellt.

Die Organisation des Qualitdtsmanagement und die Installation von Qualitétssystemen wird
in verschiedenen Richtlinien geregelt. Entsprechende Empfehlungen findet man u.a. in der
DIN ISO 900x. Unter dem Druck des Wettbewerbs sehen sich viele Unternehmen gezwungen,
ihre Qualitdtssysteme von unabhéngigen Institutionen zertifizieren zu lassen.

Schliisselworter: Gut—Schlecht—Priifung, Stichprobenplan, Stichprobe, Annahme-
zahl, Test, Null-Hypothese, Alternativ—Hypothese, Lieferantenrisiko, Konsumen-
tenrisiko, Fehler 1. Art, Fehler 2. Art, Signifikanzniveau, Giitefunktion, Operati-
onscharakteristik, Gutgrenze, Schlechtgrenze, Steilheit, Indifferenzpunkt, Philips—
Stichprobenplan, Maximaler mittlerer Durchschlupf, Mittlerer Priifaufwand.

99


http://www.kba.de/Stabsstelle/Technik/rueckrufe.htm
http://www2.din.de/
http://www.iso.org/

Kapitel 4. Statistische Methoden der Qualitdtssicherung

4.1 Hypothesentest

Die statistische Qualitétskontrolle ist ein Teilgebiet der Stochastik. Sie beschéftigt sich sowohl
mit Methoden fiir die laufende Prozesskontrolle als auch mit Verfahren fiir die Wareneingangs-
und Endkontrolle. Im ersten Fall wird anhand von Messungen iiberpriift, ob die beobachte-
ten Toleranzen noch akzeptabel sind oder ein Eingreifen in den Prozess erforderlich machen
(sogenannte messende oder Attribut—Priifung). Im zweiten Fall geht es um die Frage, ob die
angelieferten Komponenten bzw. die ausgelieferten Produkte den vereinbarten Qualitéitsan-
forderungen geniigen oder nicht (sogenannte zdhlende oder Gut—Schlecht—Priifung). Dieser
Abschnitt beschéiftigt sich zunéchst mit der Gut—Schlecht—Priifung.

Der mit einer Vollkontrolle einhergehende technische und personelle Aufwand steht oftmals
in keinem Verhéltnis zum Erloés, der mit dem Produkt erzielt werden kann, oder zum Risiko,
das mit dem Versagen des Produkts verbunden ist. Hinzu kommt, dass viele Priifverfahren
zerstorenden Charakter haben, weshalb eine Vollkontrolle nicht in Frage kommt. Umfangrei-
che Tests verldngern auflerdem die Durchlaufzeiten durch die Fertigung, was im Rahmen einer
schlanken Produktion nicht erwiinscht ist. Die mathematischen Verfahren der Gut—Schlecht—
Priifung zielen darauf ab, die mit der Qualitdtsiiberpriifung verbundenen Kosten aufgrund
einer Stichprobenpriifung zu reduzieren und die Moglichkeit einer Fehlentscheidung unter

Kontrolle zu halten.
IR O A |4

Entscheidung
Los (N Einheiten) Stichprobe (n Einheiten) Priifung Annahme/Riickweisung

Abbildung 4.1: Prinzip der Stichprobenpriifung

Im Fall einer Stichprobenpriifung stellt sich die Frage, wie man anhand der Anzahl fehlerhaf-
ter Stiicke in der Stichprobe auf den Ausschussanteil in der gesamten Lieferung schlieffen kann.
Diese Frage soll mit Hilfe von statistischen Tests beantwortet werden. Unter einem statisti-
schen Test versteht man ein Verfahren zur Uberpriifung einer Hypothese iiber den Parameter
einer Wahrscheinlichkeitsverteilung. Im einfachsten Fall entnimmt man dem Los vom Umfang
N eine zufillige Stichprobe vom Umfang n und verwendet als sogenannte Testgrofle X die
Anzahl fehlerhafter Stiicke in der Stichprobe. Liegt X unterhalb einer kritischen Grenze ¢ (so-
genannte Annahmezahl) wird die Lieferung angenommen, andernfalls zuriickgewiesen. Diese
Vorgehensweise wird als Einfach— oder (n — ¢)-Stichprobenplan bezeichnet, wobei n und ¢
noch genauer zu bestimmen sind.

Wichtige Begriffe der Testtheorie

Wenn man im Urnenmodell in der Fassung ohne Zuriicklegen (siehe 2.3) die Anzahl der Kugeln
N mit der Anzahl der angelieferten Stiicke und die Anzahl der schwarzen Kugeln R mit der
Anzahl der fehlerhaften Stiicke identifiziert, stellt man fest, dass X einer hypergeometrischen
Verteilung mit den Parametern N, R und n geniigt. Dabei bezeichnet p = R/N den wahren,
aber unbekannten Ausschussanteil. Die Hypothesen iiber die zugrundeliegende Verteilung
lauten damit:
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Los (Lieferung)
N Einheiten

h 4
Stichprobe
n Einheiten

h 4
Prifung
(Messreihe) |

| |
alle Merkmale
des Prifplanes

nach Priifplan

h 4
Daraus folgt:
fehlerhafte Teile X

¢ Annahmezahl aus Priiftabelle I

b4

X kleiner oder .
. X groBer ¢
gleich ¢
l
Los annehmen Los sperren

Abbildung 4.2: Schema des einfachen Stichprobenplans

Hp : p < po Der Ausschussanteil liegt unterhalb einer kritischen Grenze pg, d.h. die Lieferung
erfiillt die geforderten Qualitdtsmerkmale (sogenannte Null-Hypothese).

Hy : p > py Der Ausschussanteil liegt oberhalb einer kritischen Grenze pg, d.h. die Lieferung
erfiillt die geforderten Qualitdtsmerkmale nicht (sogenannte Alternativ—Hypothese).

Je kleiner der Wert der Testgrofle, umso deutlicher spricht er fiir Hy und gegen Hi. Diese
Vorgehensweise birgt offensichtlich zwei Risiken:

Der Lieferant hat das Risiko «, dass er aufgrund eines zufillig schlechten Stichprobenergebnis-
ses die Lieferung zuriickerh#lt, obgleich sie eigentlich den vereinbarten Qualitéitsanforderungen
genugt.

Der Abnehmer hat das Risiko 3, dass er aufgrund eines zufillig guten Stichprobenergebnisses
die Lieferung akzeptiert, obgleich sie den vereinbarten Qualitidtsanforderungen nicht geniigt.
Im Hinblick auf die wirtschaftlichen Auswirkungen von Fehlentscheidungen bei der Qualitéts-
priifung sollten das Lieferanten- und Abnehmerrisiko moéglichst klein sein.

Zur Beurteilung eines Tests stehen verschiedene Kriterien zur Verfiigung. Die Funktion

Gp)=PX e{c+1,...,n})=P(X >¢)

wird als Giitefunktion bezeichnet. Diese stellt einen Zusammenhang zwischen der Ablehn-
wahrscheinlichkeit fiir Hy und dem unbekannten Parameter p her. Der Begrenzung des Liefe-
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rantenrisikos dient die Forderung
G(p) = P(X >c¢) < a fir alle p < py. (4.1)
Ein Test, der diese Bedingung erfiillt, nennt man Test zum Signifikanzniveau c. Ublicherweise

wahlt man o = 0.1, 0.05 oder 0.01.
Die Beurteilung des Konsumentenrisikos geschieht mit Hilfe der Funktion

L(p) == P(X €{0,1,...,c}) = P(X <o),

die als Operationscharakteristik bezeichnet wird. Der Zusammenhang zwischen G(p) und L(p)
ist

G(p)=1-L(p).

Damit ldsst sich die Bedingung (4.1) auch in der Form

1—L(p) < a fiir alle p < pg

bzw.

L(p) >1—a« furalle p <pg

schreiben.

4.2 Konstruktion von (n-c)-Stichprobenplinen

Wie bereits erwihnt, tragen Lieferant und Abnehmer bei einer Stichprobenpriifung unter-
schiedliche Risiken. Sie verfolgen deshalb auch unterschiedliche Ziele:

Zielsetzung des Lieferanten

Wenn der (unbekannte) Ausschussanteil p der Lieferung nicht grofler als eine Gutgrenze (AQL;
Acceptance Quality Limit) p;_,, ist, soll die Lieferung mit einer moglichst groen Wahrschein-
lichkeit, ndmlich 1 — «, angenommen werden. a beschreibt das Risiko des Lieferanten, dass die
Lieferung zuriickgewiesen wird, obgleich sie den vereinbarten Qualitdtsanforderungen geniigt.
Lehnt man die Hypothese Hy (,,Lieferung geniigt den vereinbarten Qualitétsanforderungen*)
zu Unrecht ab, spricht man von einem Fehler 1. Art. Ublicherweise verwendet man o = 0.1,
a = 0.05 oder a = 0.01.

Zielsetzung des Abnehmers

Wenn der Ausschussanteil p grofler oder gleich einer Schlechtgrenze (LQ; Limiting Quality)
DB, P3 > DPl—a, ist, soll die Lieferung mit einer moglichst groffen Wahrscheinlichkeit 1 —
0 abgelehnt werden. 3 ist folglich das Risiko des Abnehmers, dass er eine unzureichende
Lieferung akzeptiert. Nimmt man die Hypothese Hy (,Lieferung geniigt den vereinbarten
Qualitétsanforderungen®) zu Unrecht an, spricht man von einem Fehler 2. Art. Ublicherweise
verwendet man § = 0.1, 8 = 0.05 oder 5 = 0.01.
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Gemeinsame Zielsetzung
Da jede Kontrolle mit Zeit und Geld verbunden ist, haben beide Vertragsparteien ein Interesse
daran, dass der Priiffaufwand n moglichst gering ist.
Die Wahrscheinlichkeit, dass ein angeliefertes Los akzeptiert wird, ist bei hypergeometrisch
verteiltem X
“ (1) k)

L=Lyne(p)=P(X <c)=) ~Fukl (4.2)
k=0 (n)
wobei p = R/N den wahren (aber unbekannten) Ausschussanteil in der Lieferung bezeichnet.
Die Annahmewahrscheinlichkeit Ly, .(p) als Funktion von p wird Operationscharakteristik
des (n — ¢)-Stichprobenplans genannt.

Es bleibt die Frage, wie die Werte n und c¢ eines Stichprobenplanes bestimmt werden. Gibt
man die Werte o, 3, p1—o und pg vor, so besteht die Idee darin, die Zahlen n und ¢ so zu
wihlen, dass die Operationscharakteristik durch die beiden Punkte (pi1—q,1 — ) und (pg, 3)
verlauft. Dadurch werden sowohl die Zielsetzung des Lieferanten als auch die des Abnehmers
und, bei der Wahl eines moglichst kleinen n, auch die gemeinsame Zielsetzung erfiillt. Da
es aber in Abhéngigkeit von n und ¢ nur endlich viele Operationscharakteristiken gibt, ist
dieses Problem in seiner strengen Form im allgemeinen nicht losbar, weshalb man die folgende
Abschwéichung wahlt:

Bestimme n und ¢, so dass gilt:

LN,n,c(pl—a) > 1- «, LN,n,c(pﬁ) < /67 n — Min. (43)

Pio pB

Abbildung 4.3: Beispiel einer Operationscharakteristik

Im Folgenden werden einige Verfahren zur Bestimmung von n und c¢ vorgestellt:

Das Verfahren von Giinther

Das Verfahren von Giinther beruht auf der Feststellung, dass sich die Operationscharak-
teristik fiir grofler werdende n immer stirker an die xz—Achse anschmiegt und fiir groflier
werdende ¢ angehoben wird, d.h.
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Lynt1,c(p) < Lnne(p), cfest, n=c,c+1,...,N—1
1 firec> Np
L = -
N.Ne(P) {O fiir c < Np
Lynnc+1(p) > Lnne(p), nfest, c=0,1,...,n—1
LN,c,c(p) =1

Beweis:

(i)

(iii)

Wir unterscheiden zwei Falle:

Bei der Priifung der ersten n Teile der Lieferung mogen sich bereits ¢ als defekt erwiesen
haben. Ist das (n + 1)-te Element in Ordnung, so wird die Lieferung angenommen. Ist
es defekt, so wird die Lieferung abgelehnt.

Waren unter den ersten n Teilen weniger als ¢ defekt, so wird die Lieferung auf jeden
Fall angenommen, unabhéngig davon ob das (n + 1)-te defekt ist oder nicht. (Da in
diesem Fall die Gesamtzahl der defekten Teile hochsten ¢ betragen kann.)

Durch die Erhohung des Losumfangs kann folglich die Annahmewahrscheinlichkeit nur
gleich bleiben oder abnehmen.

Fiir n = N gilt:

Ly nNe(p) = C (I:)((z]\]}[[)_}:) - i <1:> <]]\\[f:llj>

k=0 N k=0

Fir k > Rist (¥) = 0 und fiir k < Rist N —k > N — R bzw. es ist (§_¥) = 0. Damit
kann nur der Summand mit k¥ = R ungleich 0 sein:

min{R,c}
R\ /N —-R

k=R

Ist ¢ < R := Np, so ist die Summe leer und somit = 0, andernfalls ist

min{R,c}
R\ /(N —R
k=R e —D
=1 =1
Da in der Reihe
c R\ /(N—R
Lana(p) = S W lai)

O

alle Summanden > 0 sind, kann der Wert der Summe nicht kleiner werden kann, wenn
ein Summand hinzugefiigt wird. Somit muss also Ly p c4+1(p) > Lnn.c(p) gelten.
|
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Praktische Vorgehensweise zur Bestimmung von n und c:

Indem man mit ¢ := 0 anféingt, versucht man zun#chst durch Vergréflern von n die Bedin-
gung Ly no(pg) < B fiir alle p > pg zu befriedigen. Hat man erstmals ein n gefunden mit
Ly no0(pg) < B, tiberpriift man die Bedingung Ly .0(P1—a) > 1 — o. Der Prozess bricht ab,
wenn diese Bedingung erfiillt ist. Andernfalls setzt man ¢ := 1 und wiederholt die Proze-
dur, bis man ein n findet mit Ly, 1(pg) < B. Ist zugleich Ly, 1(pi—a) > 1 — «, endet das
Verfahren. Andernfalls setzt man den Algorithmus mit ¢ := 2 in entsprechender Form fort.

4.1 Beispiel:
Es seien N := 100, AQL:= 0.01, LQ:= 0.15 und « := § := 0.1. Dann ergibt sich nach dem
Algorithmus von Giinther:

c:=0 n:=1 L(pg) =0.85
n:=2 L(pg) =0.721

ni=13 L(ps) = 0.1039
ni=14 L(ps) =0.0860 < =01  L(pi_a)=086<1—a =09
c:=1 n:= L(pg) =1

n:=22 L(pg) = 0.1061
ni=23 L(pg) =0.0902<B=01 L(pia)=1>1—a=09

Der gesuchte Stichprobenplan ist von der Form (23 — 1). (Siehe auch Mathematica-Notebook
und PowerPoint-Prisentation zu diesem Beispiel.)

Abbildung 4.4: Beispiel einer Operationscharakteristik Ly p..(p) fiir N = 100 und verschiedene
Werte von (n;c).

Zur Vereinfachung der Berechnung von Ly ,, (p) kénnen auch die Approximationen durch die
Binomial- und Poisson—Verteilung verwendet werden. Bezeichnet

C

Lue(p) =) (i)p’”(l -p)"", 0<p<l,

m=0
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die Operationscharakteristik bzgl. der Binomialverteilung mit den Parametern n und p, so
gilt
lim LNJL,C(p) = LTL,C(p)'

— 00
Diese Naherung ist fiir & < 0.1 hinreichend genau.
Die Operationscharakteristik Ly, .(p) kann ihrerseits durch die Operationscharakteristik bzgl.
der Poissonverteilung

Lep) o= S0 " oo

|
= m!
angenihert werden, falls n > 100 und p < 0.05.

Das Verfahren von Giinther kann nicht nur mit der hypergeometrischen Verteilung sondern
in derselben Weise auch mit der Binomial- und der Poissonverteilung als Modellverteilung
durchgefiihrt werden.

Die y2-Methode

Will man n und ¢ numerisch bestimmen, bietet sich das Verfahren von P. Peach und S.B. Lit-
tauer an, das auf der Poisson—Verteilung als Modellverteilung basiert und den folgenden Zu-
sammenhang ausnutzt:

4.2 Satz:
Firc=20,1,2,... und alle A\ > 0 gilt:

2\
c c )\k B 1 .
> pak) = e A= 1-G@2N2(c+1) = 1—/20+1C!y e V2 dy, (4.4)

wobei G die sogenannte x?-Verteilung mit 2(c + 1) Freiheitsgraden bedeutet.

Beweis:
Es seien
AR T
fQA) = He_/\ und g(\) = 1—/26+1.c!yce—y/2dy, A>0.

Im Folgenden wird gezeigt, dass f(0) = ¢g(0) und f'(A) = ¢’(\) fiir alle A > 0 gilt.
(i) Offensichtlich ist f(0) =1 = g(0).

(i) Es gilt

, 3 ¢ )\k ! 3 c k/\kfl c )\k
o= (o g) -t g

k=1 ’ k=
¢ )\k—l ctl )\k—l A€
= _ — _ A
o [%M' Y
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und
1 d [ 1 d [
/ et P — C_y/2 — _ . 200—1’.2
g 201 . ¢l d)\/o yre v dy 2e+1 . ¢l d)\/o ver-2du
1 d [, _,
= Tad D ; xe " dx
Es sel F(z) := [~ dx. Damit folgt weiter:
1 d 1
"N = — = —(F(\) = F(0) = — =\
JO) = = (FO) = F(0) = - X,
was zu zeigen war. |

Fiir die Annahmewahrscheinlichkeit eines (n — c¢)-Stichprobenplans unter Zugrundelegung der
Poisson—Verteilung gilt:

“ (o) i
* np)- _ _
Ln,c(p) = k‘ e P = 1 - / 26+1C| yc e y/2 dy
= k! / !
= 1-G2np;2(c+1)), np>0. (4.5)

Setzt man diese Beziehung in die beiden Abschitzungen der Operationscharakteristik (4.3)
ein, erhdlt man

Ly e(pr-a) 21 —a 1 - G2np1a;2c+1))>1—a
G(2np1—a;2(c+1)) <«

G (3 2(c +1)) > 2np1_q

G a;2(c+1))

2p1—a

11t

>n

- 9

bzw.

Ly.pg) B <= 1-G(2npg;2(c+1))<p

<~ GQ2npg;2(c+1)>1-p

= G '1-p;2(c+1)) < 2npg

L. G-820c+1) .
2p5

Fasst man diese Ungleichungen zusammen, erhélt man das folgende abschliefende Resultat.

4.3 Satz:
FEin (n — ¢) Stichprobenplan erfillt die Bedingungen

L;kz,c(plfa) >1-« und L:(z,c(pﬁ) < ﬁ
genau dann, wenn gilt:

G-t D) G o2 +1)
2pﬂ - 2p1-a

(4.6)
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Indem man fiir ¢ nacheinander die natiirlichen Zahlen ¢ = 0,1,2,... einsetzt, ermittelt man
das kleinste ¢, zu dem es eine natiirliche Zahl n > ¢ gibt, die der Bedingung (4.6) geniigt.

4.4 Beispiel:
Es seien N := 6000, p1_o = 0.015, o := 0.05, 1 — a := 0.95, pg := 0.12 und B := 0.025,
1—(3:=0.975. In diesem Fall tritt an die Stelle von (4.6) folgende Ungleichung:

-1 . —1 .
GTH09T5:2(c+1) _  _ GTH0.052(c+ 1)
0.24 == 0.03

Mit Hilfe der Tabelle fiir die y?-Verteilung (siche Anhang A) findet man

. G~10.975;2(c + 1)) G~10.05;2(c + 1))
0.24 0.03

0 7.38/0.24 = 30.75 > 3.33=10.1/0.03

1| 11.14/0.24 = 46.42 > 23.67 = 0.71/0.03

2| 14.45/0.24 = 60.21 > 54.67 = 1.64/0.03

3| 17.53/0.24 =73.04 < 91 =2.73/0.03

Hieraus folgt ¢ = 3 und n = 74. (Siehe auch PowerPoint-Présentation zu diesem Beispiel.)

Vorgabe des Indifferenzpunktes und der Steilheit

Aus der Operationscharakteristik wird klar, dass ein (n — ¢)—-Stichprobenplan umso besser
zwischen einer guten und einer schlechten Lieferung trennt, je steiler die Annahmekennlinie
verlauft. Als Maf3 fiir die Trennschérfe verwendet man den Quotienten

Gutgrenze AQL
i T _ 4.7
rennschérfe Schlechtgrenze LQ"’ o

der im Idealfall in der Nihe von 1 liegen wiirde, was aber nur durch einen sehr hohen Priifauf-
wand zu erreichen wiére.

Das Stichprobensystem der Firma Philips orientiert sich an der Steilheit der Operationscha-
rakteristik. Die Steilheit hg wird dabei im sogenannten Indifferenzpunkt pg s gemessen, der
durch die Gleichung

L(pos) = 0.5 (4.8)
bestimmt ist. Als Steilheit wird
%___p,ﬂw __pos dL(p)
Llp)  dp |pepys 05 dp |pepys

definiert. Wahlt man als Modellverteilung die Poissonverteilung, so ergibt sich

dL;, .(p)
dp

2(npo.s)°t! J—

ho = —2pos ol

Pp=Dpo.5
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0.5]

Pia Pas pﬁ

Abbildung 4.5: Indifferenzpunkt und Steilheit

Andererseits gilt aufgrund fritherer Uberlegungen:

Ly, (pos) =1 —G(2npos;2(c+ 1)) = 0.5
> G(2npos;2(c+1))=0.5
= GH0.5;2(c+1)) = 2npos

1
— §G71(0.5; 2(c+1)) =npos.

Beim Philips Stichprobensystem wird nun folgendermafien vorgegangen: Gegeben sind hy und
po.5- Es sind n und ¢ so zu bestimmen, dass

2 c+1 7 1
ho = %6_"730-5 > ho und iG_1(0.5; 2(c+1)) =npos
c!

gilt.
Um diese beiden Bedingungen zu erfiillen, wird genau wie beim Algorithmus von Giinther
vorgegangen. Es wird zunéchst ¢ := 0, ¢:=1, ... gesetzt, bis man zum ersten Mal

2n - c+1 -
ho = 4( p(:_g,) e P05 > po
C:

erzielt hat. Der zugehorige Stichprobenumfang n wird mit Hilfe der Gleichung
G10.5;2(c+ 1))
2-pos

n =

ermittelt, wobei [z] die kleinste ganze Zahl groBer oder gleich = bedeutet.

4.5 Beispiel: o
Es seien N := 1500, hg := 1.5 und pg.5 := 0.03.

Tabelle der x?—Verteilung
| G52t | @=CTOIRM | g2 eTE | S5 | e | OTIOBE(CH)
0 1.39 0.695 0.694 nein
1 3.36 1.68 1.052 nein
2 5.35 2.675 1.319 nein
3 7.34 3.67 1.541 ja [122.33]=123
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Der gesuchte Stichprobenplan ist folglich von der Form (n — ¢) = (123 — 3). (Siehe auch
PowerPoint-Prisentation zu diesem Beispiel.)

4.6 Bemerkung:

Die Werte n und c¢ eines Stichprobenplanes kénnen bei gegebenem Indifferenzenpunkt pg s
und gegebener Steilheit hg auch durch Naherungsformeln bestimmt werden. Aus der Tabelle
der y?-Verteilung lisst sich die Approximation G=1(0.5;2(c + 1)) ~ 2(c + 1) — 0.66 ableiten.
Daraus ergeben sich folgende Abschétzungen: ¢ = 7 - 2hg? — 1 und n = ¢+ 0.67 - po.5.

4.3 Maximaler mittlerer Durchschlupf

Trotz sorgfiiltiger Kontrolle kann bei der Anwendung eines (n — ¢)-Stichprobenplans nicht
verhindert werden, dass defekte Einheiten die Priifung passieren. Die Tests sind lediglich
darauf ausgerichtet, dass eine Lieferung mit einer Qualititslage p < p1_, mit grofler Wahr-
scheinlichkeit angenommen und eine Lieferung mit einer Qualitétslage p > pg mit grofler
Wahrscheinlichkeit abgelehnt wird. Der Anteil durchschliipfender defekter Einheiten Y ist
deshalb ein weiteres Beurteilungskriterium fiir einen (n — ¢)-Stichprobenplan.

Es wird zunéchst angenommen, dass der Lieferant Lose mit konstanter Qualitéitslage p an-
liefert. Die Darstellung der Zufallsvariablen Y héngt davon ab, wie mit den Einheiten der
Stichprobe und, bei Ablehnung, auch mit den im Los verbleibenden Einheiten verfahren wird.
Unter der Annahme, dass die Teile in der Stichprobe grundsétzlich nicht weiterverwendet wer-
den und bei Ablehnung eine Vollkontrolle erfolgt, bei der sémtliche defekten Teile durch gute
ersetzt werden, erhélt man:

v — p, falls X <¢
o, falls X >¢’

wobei X wieder die Anzahl defekter Einheiten in der Stichprobe bedeutet. Der Erwartungs-
wert von Y ist

E[Y]=p-P(X <¢)+0-P(X >c)=p-L(p)

und wird mittlerer Durchschlupf (englisch: Average Outgoing Quality (AOQ)) genannt.
Fiir den Konsumenten ist der maximale mittlere Durchschlupf (Average Outgoing Quality
Limit (AOQL)) von besonderem Interesse:

AOQL := max p - L(p).

0<p<

Um den AOQL zu berechnen, wird wieder die Approximation durch die Poissonverteilung
benutzt:

_ . _ ~(n-p)*
AOQL = 11131;8( p- Ly .(p) =max p Z e P,

4.7 Satz:
E's gibt genau ein p € (0, 6‘5—2) mat

AOQL = maz p- Ly, .(p) =p- L;, .(P)-
p=>0
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0.025¢

0.015¢

0.005¢

0.05 0.1 0.15 0.2 P

Abbildung 4.6: Mittlerer Durchschlupf E[Y] bei n := 100 und ¢ := 4

Dabei ist D ist eindeutig bestimmt durch die Gleichung

K c!

i (n-p)* _ (n-pH
k=0
und es gilt
)c+2

a0qQL =P

e P,
cl-n

Beweis:
Zu zeigen sind:
e Existenz der Maximalstelle p
e Bestimmung des Maximums durch
(i) &p- L) =0
(i) Lp- Ly (p) <0
Die Existenz einer Maximalstelle p von p - L;kw(p) ist aufgrund der Beziehungen

=0, firp=0
p-Lyc(p)q >0, firp>0
— 0, firp— o0

gesichert.

Zu (i): Es gilt
d d

L Lt (p) =L 2L (p).
gt Lne®) = Luctp- 3 lnc(p)
Mit L;, .(p) = f(np) wie im Beweis von Satz 4.2 und der dort berechneten Ableitung
von f
d * _ d _ ! _ —np (np)c
aplnetp) = g fnp) = n- fi(np) = =n- 7" =0
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folgt

und somit insgesamt

d *
%p Ln,c(p) =0
(&
()" _np _ —np (np)°"
— Z k! N c!
k=0
C
(n-p)* _ (n-p)*!
k=0
Zu (ii) Es gilt:
(. d (. d .,
Tzﬂan,c(p) = % < mc(p) +pdan,c(p)>
d ., d _, a2
= d n,c(p) + Ian’C(p) +p- Tpg n,c(p)
d _, a?
= 2 %Ln,c(p) +p- d7p2 n,c(p)
und damit folgt durch Einsetzen
2 nc+1pc pnc—l-l d
. * . _ —np _ R —np,.Cc
dpgan,c(p) = —2 7 a @t P
c+1,.c c+1
— _2n p e P _ pn efnp(_npc_kcpcfl)
c! c!
1 <O0fir 0<p<<?
n
= c'p e "P(np — (c+2)) < =0 fiir p:CjZ‘J
: .. 2
>0 fir p> %

Deswegen muss die Maximalstelle p im Intervall (0, %) liegen.

Unter Verwendung der letzten Identitét aus Punkt (i) erh&lt man nun mit

(& —
* — *  [— — n-p —np
AOQL = max p- L) =+ Lifp) = 30 P o
- k=0 ’
z)et1 =Yc+2
= p- (n .p)c . 6—n§ — (TL .p)c . e—nﬁ
c! c-n
die behauptete Identitédt fiir den maximalen mittleren Durchschlupf AOQL. |

An den letzten beiden Ausdriicken erkennt man, dass die Gréflen z = n-p und 2’ = n- AOQL
nur noch von ¢ abhingen und deshalb leicht tabelliert werden kénnen.
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c | n-p | n-AOQL
0 | 1.000 | 0.3679
1 | 1.618 0.840
2 | 2.270 1.371
3 | 2.945 1.942
4 | 3.640 2.544
5 | 4.349 3.168
6 | 5.071 3.812
7 | 5.804 4.472
8 | 6.546 5.146
9 | 7.297 5.831
10 | 8.055 6.528

Mit Hilfe dieser Tabelle lassen sich der maximale mittlere Durchschlupf und die dazugehorige
Qualitétslage p fiir beliebige (n — ¢)—Stichprobenpléne leicht berechnen.

4.8 Beispiel:
Bei einem (n — ¢)-Stichprobenplan mit n := 100 und ¢ := 3 ist der maximale mittlere

Durchschlupf

1.942
AOQL = —— = 0.01942.
Q 100

Die zugehorige Qualitéitslage ist

2.945
p = —— = 0.02945.
D 100 0.02945

4.4 Mittlerer Priifaufwand

Mit jeder Stichprobenpriifung ist ein gewisser technischer Aufwand verbunden, der Kosten
verursacht. Bei der Berechnung des mittleren Priifaufwands wird wie bei der Berechnung des
maximalen mittleren Durchschlupfs vorgegangen und angenommen, dass bei einer Ablehnung
eine Vollkontrolle stattfindet, bei der alle defekten Teile durch gute ersetzt werden. In diesem
Fall ergibt sich fiir die Anzahl M der zu priifenden Stiicke

M= n, falls X <c
N, falls X > c.

Die durchschnittliche Anzahl zu priifender Einheiten ist deshalb
EM]=n-P(X<c¢)+N-P(X >c¢)=n-L(p)+ N(1 - L(p)).

4.9 Beispiel:
Es seien n := 150 und ¢ := 3. Die Lose vom Umfang N := 2000 werden mit einer mittleren
Qualitétslage von 1% angeliefert.
Es ist
150,3(0.01) = 0.9344

und deshalb
E[M] = 150 - 0.9344 4 2000 - 0.0656 = 271.36.
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Kapitel 5

Mengensysteme

In der Einfiihrung wurde bereits festgestellt, dass c—Algebren den natiirlichen Definitionsbe-
reich von Wahrscheinlichkeitsmaflen darstellen. Im Vorgriff auf die beiden Mai—Fortsetzungs-
sitze, die im néchsten Kapitel behandelt werden, erweist es sich als zweckméfig, als Vorstufen
von o—Algebren auch einfachere Mengensysteme zu untersuchen.

Schliisselworter: Semiring, Ring, Algebra, Dynkin—System, c—Algebra, Erzeugen-
densystem, Darstellungssatz fiir Ringe, o—Algebra der Borelschen Mengen.
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5.1 Begriffe und Zusammenhinge

In diesem Abschnitt werden verschiedene Typen von Mengensysteme eingefiihrt und ihre
Eigenschaften untersucht.

5.1 Definition (vereinigungsstabil, durchschnittsstabil):
Es seien Q eine nichtleere Menge und 2 C PB(£).

o M heifft vereinigungsstabil — U—stabil —, wenn mit A, B € M auch AU B € 9 ist.

o M heifst durchschnittsstabil oder einfach schnittstabil — N—stabil —, wenn mit A, B €
M auch AN B € M ist.

5.2 Definition (Semiring):
FEin System S von Teilmengen von Q heifst Semiring iber 2, wenn es folgende Figenschaften
besitzt:

(i) @ €8S,
(ii) S ist N—stabil,

(i) A,B € S = es existieren n € N und C1,...,C,, € S mit C;NCj = O fiir i # j, so
dass A\B = J;-_, C; ist.

Es sei jetzt speziell Q := R", n € N, gewihlt. Bezeichnen a := (aj,...,a,) und b :=
(b1,...,by) zwei Punkte des Euklidischen Raumes R™ mit a < b, d.h. a; < b; firi =1,...,n,
dann versteht man unter einem linksseitig offenen und rechtsseitig abgeschlossenen Intervall
die folgende Punktmenge:

(a, by ={z = (¥1,...,2n) ER" |a; <o; < by i=1,...,n}.
Im Folgenden soll gezeigt werden, dass die Mengen
1" := {(a,b]ny | a,b € R", a < b}

einen Semiring iiber 2 := R" bilden. Dies wird zunéchst im folgenden Beispiel fiir n = 1,2
anschaulich dargestellt und dann in Satz 5.4 allgemein bewiesen.

5.3 Beispiel:

Das Mengensystem [ ist fiir n = 1,2 ein Semiring iiber €2 := R". Denn:

1. Der Fall n :=1:

a) Die leere Menge @ wird durch (a, a] hinzugezogen.

b) Der Durchschnitt von zwei linksseitig offenen und rechtsseitig abgeschlossenen In-

tervallen A := (a,b] und B := (c,d] ist entweder leer oder wieder ein solches
Intervall, wie die nachfolgenden Abbildungen zeigen:
a b c d
( J— ] AnB=goel,
—_—— ~—
A B
a c b d
{4+ AnB=C=(cH el
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T~
AN 0
[

S

- BCA= ANnB=Becl.

¢) Schlieflich ist A\B = AN B gleich A (falls A und B disjunkt sind) oder wieder ein
Intervall bzw. Vereinigung von héchstens zwei Intervallen desselben Typs:

a b c d o
{ — ] ANB=g=—= A\B=ANB=AcT
—_—— ~—
A B
a c b d .
4+ A\B=4AnB=C=(adel,
~——
C
a ¢ 4 b BC A= A\ B=ANB = C; UC,, wobei
;/—i\ u Cl,CQE]Il und C1 NCy = @,
C1 Co
c a b d .
{ o ] AC B = A\B=ANB = @ ¢ T (Siche auch
—~—
A
B

PowerPoint-Présentation zu diesem Beispiel.)

2. Der Fall n := 2:

a) Die leere Menge @ wird durch (a,a] x (a, a] hinzugezogen.
b) Auch I? ist N-stabil, wie die nachfolgenden Abbildungen zeigen:

ANB =@ T2

ANB#@=— ANB=C €1I?

A 1 B BCA— ANB=DBecIl2

c¢) Fiir alle moglichen Fille ist A\ B € 1%
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AB=ANB=Acl?

8
' & | G || Ap=Uder
/ i=1
(Siehe auch PowerPoint-Prisentation zu diesem Beispiel.)

5.4 Satz:
Das Mengensystem

I":={(a,b](ny | ;b € R", a < b}

ist ein Semiring iber  := R™.

Beweis:
Folgende Eigenschaften sind nachzuweisen:

1. Es gilt @ € I, denn es ist @ = (a,a](,) € 1"

2. Der Schnitt zweier Intervalle aus I" ist wieder ein Intervall aus I":
Es seien (a,b](,) und (c,d](,) zwei Intervalle aus I". Mit e; := max{a;,¢;} und f; :=
min{b;, d;} gilt:

(a; 0]y N (e, d](ny = (& flmy € T

Dabei ist zu beachten, dass (e, f](,) leer ist, wenn fiir ein 1 <i < n gilt ¢; > f;.

3. Fiir zwei Elemente A, B € I" mit A C B lésst sich A \ B als endliche Vereinigung von
Elementen aus I" darstellen:
Es seien A := (a,b]) und B := (c,d](,) zwei Intervalle aus I". Mit e; := max{a;, ¢;}
und f; := min{b;, d;} gilt zunéchst wie im 2. Punkt AN B = C := (e, f](,) und damit
A\ B = A\C. Aulerdem gilt

a; <e < fi <bVi=1,...,n,

da nach Wahl der ¢; und der d; gilt: (c,d](,) € (a,b](,). Damit ldsst sich allgemein
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schreiben:
al bl i C1 d1
an bn) | (n) Cn, dy,
a1 ca\ ] di by
as by as bo
A I U .
(279) bn I (279 bn (n)
c1 dr\ ]| c1 dy
as c2 da by
ag [, | bs as bs
an bn) | (n) an bn ()
c1 dy c1 dy
U , U ,
Cn—1 dn—l Cn—1 dn—l
G Cn dp, by,

Dabei sind die Vereinigungen disjunkt und einige der 2" Stiicke eventuell leer.
|

5.5 Definition (Ring):
FEin System R von Teilmengen einer nichtleeren Menge  heif$t ein Ring tiber 2, wenn es die
folgenden Figenschaften besitzt:

(i) @ € R,
(i) R ist U-stabil,
(i) A,B € R = A\B € A.

5.6 Definition (Algebra):
FEin System 21 von Teilmengen einer nichtleeren Menge ) heifst eine Algebra iiber 2, wenn
gilt:

(i) Qe
(ii) A ist U—stabil,
(iii) Ae A= Ac

5.7 Definition (o—Algebra):
FEin System § von Teilmengen einer nichtleeren Menge 0 heifit o—Algebra iber 2, wenn es
die folgenden Figenschaften besitzt:
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(i) Qe F,
(ii) Ae = A€3.

(iii) Fir jede Folge (An)nen von Elementen aus § ist U A, €F.
nelN

5.8 Beispiel (Visualisierung einer o—Algebra):

Frame 11/50 108 Quader | Frame 17/50 494 Quader
‘ Pl f
i i1
{l —— /| i
[ — T
I | =
/2 474
B . - /T
/ A 7
Y Y /
Frame 33/50 8414 Quader | Frame 48/50 8490 Quader

5.9 Bemerkung:
1. R := {@} ist der kleinste Ring iiber € fiir jedes 2.

2. Es gilt {o—Algebra} D {Algebra} O {Ring} O {Semiring}.
3. §:={9,Q} ist die kleinste o—Algebra iiber Q fiir jedes .
4. § :=P(Q) ist die groBte o—Algebra iiber ) fiir jedes Q.
5. Jede o—Algebra iiber 2 ist eine Algebra iiber 2.
6. Ist R ein Ring iiber 2, dann ist SR auch N-stabil, denn:
ABeR A\BeR,
A A\B € % 2L A\ (A\B) € R.

Es gilt aber

A\(A\B) = An(A\B) = AN(ANB)

= AN (AuUB) (Reziprozitétsgesetz)
=(ANA)U(ANB) (Distributivgesetz)
=ANB.
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7. Ein Ring R iiber ) ist genau dann eine Algebra iiber 2, wenn € € R gilt. Um dies zu
zeigen wird zunéchst angenommen, dass R ein Ring iiber €2 ist und dass 2 € R ist. In
diesem Fall ist noch zu zeigen, dass mit A € SR auch A € R gilt. Aus 4,Q € R folgt
aber sofort: Q\A = A € R. Es wird jetzt angenommen, dass R eine Algebra iiber (2 ist.
In diesem Fall muss noch gezeigt werden, dass mit A, B € 2 auch A\B € 2 ist. Aus

A, B € 2 folgt jedoch AA\B=ANB=AUB €. Wegen @ = Q gehért auch die leere
Menge zu 2.

8. Es sei § eine o—Algebra iiber 2. Dann gilt: Fiir jede Folge (A4,)nen von Elementen aus
S ist N,en An € 3, denn:

Aef= A= JAeg= JA= A=) 4n€SF
neN

nelN nelN nelN

Es ist mitunter schwierig, bei einem vorgegebenen Mengensystem direkt festzustellen, ob es
sich um eine o-Algebra handelt. Diese Schwierigkeit lésst sich jedoch mit Hilfe der nachfolgend
eingefithrten Dynkin-Systemen umgehen.

5.10 Definition (Dynkin—System):

FEin System © wvon Teilmengen von 0 heifit Dynkin—System diber ), wenn es die folgenden
Figenschaften besitzt:

(i) QeD,
(ii) Fir D,E €® mit D C E gilt: E\ D € D.

(iii) Fir jede Folge (An)nen paarweise disjunkter Mengen aus © ist auch U A, €9.
neN

5.11 Bemerkung: o
e Jede o-Algebra ist ein Dynkin-System, denn fiir A, B € § gilt B € § und nach Bemer-
kung 5.9.7 gilt A\ B=ANBEc3J.

e Mit der Wahl E := Q in (ii) folgt auch sofort: A€ ® = AeD.

Der nachfolgende Satz 5.12 charakterisiert den Zusammenhang zwischen Dynkin—Systemen
und o—Algebren.

5.12 Satz:
Es sei ® ein Dynkin—System tiber Q. © ist genau dann eine o—Algebra, wenn D N-stabil ist.

Beweis:

Da die Richtung ,,© ist o-Algebra = 9 ist Dynkin-System” nach Bemerkung 5.11 gilt, ist
nur die Umkehrung ,,® ist N-stabiles Dynkin-System = ® ist o-Algebra” zu zeigen.

Da sich die ersten beiden Eigenschaften einer o-Algebra direkt aus der Definition der Dynkin-
Systeme ergeben, bleibt nur noch der Nachweis zu fithren, dass fiir jede Folge A1, Ay, ... €D
(A, nicht notwendig paarweise disjunkt) auch (J, . An € D ist.

D ist nach Voraussetzung N-stabil, somit folgt (), _; Ap, € D fiir alle n. Ferner bildet (A, N
ﬂZz_:ll A )nen eine Folge paarweise fremder Mengen aus ®. Es gilt

nelN nelN
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aber auch
n—1
U A (A,m N Am)7
neN nelN m=1

wie man sich folgendermaBen klarmachen kann: Es sei x € J,,c An, dann existiert ein no,
sodass x € Ay, und = ¢ Ay, k = 1...,ng—1 (falls ng > 1, sonst _trivial). Es folgt © € Ay,
k=1,...,n9— 1, sowie x € ﬂzgl Aj und damit x € A, N ﬂ’,;‘ozzl Ag.
Insgesamt folgt also

n—1
U (Anm N Am>= U AneD.

m=1

nelN

€D

5.2 Erzeugendensysteme

Im néchsten Kapitel wird gezeigt, wie Mafile von kleineren Mengensystemen (Semiringen)
auf groflere Mengensysteme (o-Algebren) fortgesetzt werden kénnen. Dafiir muss zunéchst
beschrieben werden, wie man aus kleinen Mengensystemen grofiere bilden kann. In diesem
Abschnitt werden dafiir die sogenannten Erzeugendensysteme eingefiihrt, die genau dies lei-
sten.

5.13 Satz:
Es seien I eine beliebige Indexmenge und X; fiir jedes i € I ein Ring, eine Algebra, ein
Dynkin—System oder eine o—Algebra tiber Q. Dann ist

X=X ={ACQAcx; Vicl}
i€l

ein Mengensystem desselben Typs wie die X;.

Beweis:
Der Satz wird im Folgenden exemplarisch fiir Ringe bewiesen. Fiir Algebren, Dynkin-Systeme
und o-Algebren verlduft der Beweis analog.

1. oeXx; Vi — @Eﬂ:{i,
el

2. Ac(XiABe ()% = ABeX;Vicl, X, sind Ringe
el el
— AUBeX;Viel — AUBe )X,
el

3. Ac()XiABe ()% = ABeX; Viel, X sind Ringe
el el
— A\BeX;Viel = A\Be )X, [ |
i€l
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5.14 Bemerkung:
Der Durchschnitt von Semiringen ist im Allgemeinen kein Semiring mehr, wie das folgende
Gegenbeispiel zeigt. Es seien

S1={2,{1},{2},{3},{1,2,3}} und
Sy ={2,{1},{2,3},{1,2,3}}
zwei Semiringe iiber Q := {1,2,3}. Der Schnitt
S:=51Nn8y={2,{1},{1,2,3}}
ist zwar gegeniiber der Durchschnittsbildung abgeschlossen und enthélt die leere Menge, doch
es gilt:
Sy {1,2,3}\{1} = {2,3} = {2} U {3} mit {2}, {3} € 51,
Sy {1,2,31\{1} ={2,3} € 59,

St {1,2,30\{1} = {2,3} und A 00i={2,3} mit C; € S.

=1

5.15 Satz:
Es sei Q # @ und B ein beliebiges System von Teilmengen von ). Dann gibt es unter den

Ringen, Algebren, Dynkin—Systemen bzw. o—Algebren, die B enthalten, jeweils ein kleinstes
solches System (symbolisch M(B) = R(B),A(B), D(B) bzw. o(B)) nimlich

M(B) = ﬂ{im' | 9 D B, M ist Ring, Algebra, Dynkin—System bzw. o—Algebra}.

M(B) heifst das von B erzeugte System und B der Erzeuger des Systems.

Beweis:

Die Existenz eines solchen Systems folgt aus der Tatsache, dass die Potenzmenge B(2) die
Menge B umfafit und alle Eigenschaften eines Ringes, einer Algebra, eines Dynkin—Systems
bzw. einer o—Algebra besitzt. Die Behauptung ergibt sich nun unmittelbar aus Satz 5.13,
wonach der Durchschnitt von Ringen, Algebren, Dynkin—-Systemen bzw. o—Algebren wieder
ein Ring, eine Algebra, ein Dynkin—System bzw. eine c—Algebra ist. |

5.16 Satz:
Es seien Q eine nichtleere Menge und £ C B(Q). Ist € N-stabil, so stimmen das von &
erzeugte Dynkin—System (&) und die von & erzeugte o—Algebra o(E) iberein.

Beweis:

Da jede o—Algebra auch ein Dynkin—System ist, gilt D(£) C o(&). Lésst sich umgekehrt
nachweisen, dass D (&) eine o—Algebra ist, so folgt auch ¢(£) C () und somit D (&) = o ().
Nach Satz 5.12 muss dafiir nur noch tiberpriift werden, ob ©(€) mit je zwei Mengen A und
B auch AN B enthélt. Betrachte folgendes System fiir beliebiges A € ©(E):

D4:={CCQ|ANC € DE)).

Zeige zunichst, dass D 4 ein Dynkin—System ist. Mithilfe der N—Stabilitéit von £ gilt dann
ECODpfiralle Fe& = D) CDp,

dh. END e (&) fir alle E € £ und alle D € D(&),

d.h. D(E) CDp (D eD(E)).

Es bleibt zu zeigen, dass ® 4 ein Dynkinsystem ist:
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e Wegen ANQ=A€D(E)ist Q€ Dy.

e Seien weiter B,C € © 4 mit B C C. Dann ist (ANC)\(ANB) € (&), weil ANC D ANB
und D (&) Dynkin-System ist. Es gilt aber (ANC)\ (AN B) = AN (C\ B), so dass
C\BeDjy.

e Sei nun (D, )nen eine Folge paarweise fremder Mengen aus ©4. Da ©(€) Dynkin—

System ist, folgt |J (AND,) € D(E) und wegen |J (AND,)= AN |J D, ist deshalb
neN nelN nelN
U D, € Da. n
neN

5.17 Definition (separabel):
Eine o-Algebra § heifst separabel, wenn es ein abzihlbares Teilmengensystem K C PB(Q) gibt
mit o(K) = 5.

5.18 Satz (Darstellungssatz fiir Ringe):
Ist S ein Semiring, so ist der von S erzeugte Ring die Klasse K aller Mengen E, die eine
endliche Zerlegung der Form

n
E=JA, AeS(i=1,...,n), AinA; =@ firi+#j,
i=1
gestatten.
Beweis:
Es ist nur zu zeigen, dass K ein Ring ist. Denn jeder Ring fR’, der S enthilt, beinhaltet auch

alle Mengen der Form E = [J| A;, A; € S. Um zu zeigen, dass K ein Ring ist, miissen die
Ringeigenschaften nachgewiesen werden.

(i) Es gilt offensichtlich @ € K, da mit Ui1:1 A;, A; € S automatisch K D S gilt und @ € S
ist.

(i) Um E\ D € K zu zeigen, wird die folgende Umformung verwendet:

o) (1) (04) G- 01)

d.h. E\D besitzt eine endliche Zerlegung in disjunkte Mengen der Form (;_, (4;\B;),
i =1,...,m. Nach Voraussetzung sind aber A;, B; € S. Deshalb gilt A;\B; = Ule Cy
mit C; € S, weshalb A;\B; aus K sein muss. Ist K M-stabil, so wiirde ();_; (4;\B;) € K
fir i = 1,...,m folgen. Dann wére E\D endliche Vereinigung von disjunkten Mengen
aus S, d.h. E\D € K.

Die N—Stabilitédt von K zeigt man so:

Es seien E,D € K, d.h. es gibt Zerlegungen der Form

Ej
1

n

J

AinB;) = J NA\B)),

i=1j=1

E=|JA, Aies und D=|JB;, B;€S.
i=1 j=1
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Mit Hilfe des Distributivgesetzes folgt

EﬂDZ( Al>ﬂ UB]' IUU(AiﬂBj), AiﬂBjES,
=1 7j=1

i=1j=1

d.h. EN D besitzt eine Zerlegung in disjunkte Mengen der Form A; N B; € S. Folglich
gilt END € K, d.h. K ist N-stabil.

(iii) Die U-Stabilitét ldsst sich wie folgt zeigen:
Fir E,D € K ist EUD = (E\D) U D eine Zerlegung von E U D in zwei disjunkte
Mengen E\D € K und D € K. EUD ist somit eine endliche Vereinigung von disjunkten
Mengen aus S, d.h. FUD € K. |

5.3 Die 0—Algebra der Borelschen Mengen

Im Folgenden sollen noch einmal der Semiring 1" := {(a,b],,) | a,b € R"} aller endlichen,
links offenen und rechts abgeschlossenen Intervalle des R™ sowie die Elemente der von I"
erzeugten o—Algebra o(I"™), die auch o—Algebra der Borelschen Mengen genannt und mit 8"
bezeichnet wird, betrachtet werden. Da es sich bei den Ergebnissen von Zufallsexperimenten
in der Regel um reelle Zahlen oder reellwertige Vektoren handelt, spielt die o—Algebra der
Borelschen Mengen in der Wahrscheinlichkeitstheorie und deren Anwendungen naturgeméaf
eine besondere Rolle.

(Siehe auch Lebensdaten von Borel im Anhang D.)

Da die Vereinigung bzw. der Durchschnitt von abzéhlbar vielen Mengen aus 8™ wieder ein
Element von B" ist, gehoren neben den Intervallen (a,b]:,) auch die folgenden Mengen zu
B

[@,b]y = {z=(z1,...,20) ER" |a; S2; <bi=1,...,n}
L
= ﬂ (CL — f,b € %n,
jEN Jodm
(a,b)y = {x=(21,...,20) ER" | a; <x; <bji=1,...,n}
1
= U (a,b - - S %n,
JEN Tl
(_Oo’b}(n) = {z= (1, @) € R™ | —o0 <y <byi =1, ;n}
= U ((_m7 7_m)7b](n) € B",
meN
{b} = (a7 b](n)\(aa b)(n) € B".

Es seien
K(z,y;r) = {(&,9) e R?: (x —2)* + (y — §)* < r}

die offene Kreisschreibe um (z,y) mit Radius » > 0 und
Klz,y;r] = {(&,9) €R*: (w = )" + (y = §)" <}

die abgeschlossene Kreisschreibe um (z,y) mit Radius 7 > 0. Beide gehéren zu 82, denn:
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e Esist

K(z,y;7) = U (a1 —8,q1+6) x (g2 — 6, q2 + 0)
(91,92) €(RXQ)NK (,y;1)

mit & := 8(q1, 42, 2,y,7) = 75 (?” V(@ —2)* + (g2 — y)z), wobel (g1 — 6,q1 + 6) x
(q2 — 8,2 + &) € B2 sind.

e Hs ist

~ 1
Klz,y;r] = ﬂK(w,y;r—f—r).

n=1

(a:0)=(-1/2,112), (9.9)=(0,3/4),

(4,,9=(0,172),
8~0.35

(9,,9,)=(0,0), 6=0,707

Abbildung 5.1: Veranschaulichung von K (0,0;1) = U(qth)E(QXQ)mK(I,y;r) (@1 —0,q1 + ) x
(qZ - 57 q2 + 6)

Auf dhnliche Weise kann gezeigt werden, dass als Erzeugendensystem fiir 8" ebenso die
linksseitig abgeschlossenen und rechtsseitig offenen Intervalle des R™ hétten gewé&hlt wer-
den konnen. Insbesondere bilden auch die offenen oder die kompakten Mengen des R™ ein
Erzeugendensystem der o—Algebra der Borelschen Mengen 9B".

Literatur zu Kapitel 5

Folgende Biicher werden als begleitende Literatur zu diesem Kapitel des Skriptes empfohlen:
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Kapitel 6

Mengenfunktionen

Im Folgenden wird der Begriff des Wahrscheinlichkeitsmafies behandelt. So wie es sich bei
den bisherigen Betrachtungen als zweckméfig erwies, neben der primér interessierenden o—
Algebra auch Mengensysteme mit verwandten Strukturen zu untersuchen, wird es sich auch in
diesem Kapitel als niitzlich herausstellen, neben Wahrscheinlichkeitsmafien zunéchst allgemei-
nere Mengenfunktionen zu untersuchen. Im Zusammenhang mit der Konstruktion allgemeiner
Wahrscheinlichkeitsmafle spielen die beiden Maffortsetzungssétze von C. Caratheodory eine
zentrale Rolle, die zusammen mit dem Axiomensystem von A.N. Kolmogorov die Grundlage
der modernen Wahrscheinlichkeitstheorie bilden.

Schliisselworter: Inhalt, Pramafl, Maf, Wahrscheinlichkeitsmaf, Stetigkeit von un-
ten, Stetigkeit von oben, Fortsetzung, 1. und 2. Mafl—Fortsetzungssatz, o—endlich,
dulleres Maf.
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6.1 Grundbegriffe

In diesem Absachnitt geht es allgemein um Mengenfunktionen und ihre Eigenschaften.

6.1 Definition (nichtnegativ, additiv, o—additiv, subadditiv, o—subadditiv):
Es seien S ein Semiring dber Q und p: S — R U {oo} eine numerische Funktion.

e i heifst nichtnegativ, wenn (&) =0 und p(A) > 0 fir alle A € S ist.

w heifst additiv, wenn fir alle A,B €S mit ANB =2 und AUB €5 gilt:

H(AU B) = u(A) + u(B).

w heifft o—additiv, wenn fir jede Folge (Ay)nen von paarweise fremden Elementen aus

S (d.h. Ay Aj =@ fiiri # j) mit J,en An € S gilt:

u(U An> = nl(An).

neN neN

u heifit subadditiv, wenn fiir alle A,B € S mit AUB € S gilt:

(AU B) < pu(A) + u(B).

p heifit o —subadditiv, wenn fir jede Folge (Ayp)nen von Elementen aus S mit | J, e An €

S gilt:

nelN neN

6.2 Bemerkung:
Die Einschrankung S — RU{oco} anstelle von S — RU{—o00, +00} wird gemacht, um sinnlose
Ausdriicke wie oo — 0o zu vermeiden.

6.3 Definition (Inhalt, Primafl und Maf):
Es seien S ein Semiring iber Q und p: S — R U {oc} eine numerische Funktion. Dann gilt:

e 1 heif$t Inhalt, wenn p nichinegativ und additiv ist.
e 1 heifst Pramaf, wenn u nichtnegativ und o—additiv ist.

Mit Hilfe der Begriffe Inhalt und Pramaf lassen sich nun die zentralen Begriffe der Maftheorie
und der Wahrscheinlichkeitstheorie definieren:

e 1 heifst Mafs, wenn u Primaf$ und S eine o—Algebra ist.

e i heifst Wahrscheinlichkeitsmaf$, wenn p ein Maf$ ist und p(2) =1 gilt.

6.4 Definition (endlich):
e FEin Inhalt oder Primaf 1 heifft endlich, wenn p(A) < oo fir alle A € S ist.

e FEin Maf$ p heif$t endlich, falls () < oo ist.
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6.5 Bemerkung:
1. Es seien R ein Ring iiber Q und w € Q. Die Abbildung p: R — R U {oo} sei definiert

durch
1, wed

“M*:{o,ng'
Dann ist p ein endliches Pramafl. Ist R eine o—Algebra, so ist p ein Wahrscheinlich-
keitsmaf (sogenanntes Dirac—Ma$B).
Veranschaulichung:
Gegeben sei die o-Algebra R = {2, {1},{2,3},{1,2,3}} iiber Q := {1,2,3}. Wihle
w := 1. Dann ergibt sich u(@) =0, u({1}) =1, u({2,3}) =0, u({1,2,3}) = 1.
2. Jedes Pramaf ist ein Inhalt.

3. Es sei (un)nen eine Folge von Wahrscheinlichkeitsmaflen, die alle auf einer o—Algebra
§ iiber Q definiert sind. Es sei weiter (a;,)nen eine Folge von nichtnegativen reellen
Zahlen mit ) o, = 1. Die numerische Funktion p: § — R U {oo} mit

u(A) = Z antin(A), VAEF
nelN
ist ein Wahrscheinlichkeitsmafl auf §.

Beweis der o—Additivitat:

u(LL%):E:%MmOJAJ (Def. von 1)

nelN meN nelN

= Z Qm Z tom (Ar) (o—Additivitiat der puy,)
meN neN

= Z Z U, fon(An) (Umordnungssatz fiir abs. konv. Reihen)
neEN melN

= Z w(Ay) (Def. von p).
neN

4. Essei F: R — R eine monoton wachsende Funktion. Die auf dem Semiring I' der links
offenen und rechts abgeschlossenen Intervalle (a,b] C R, a < b durch

p((a, b)) == F(b) — F(a)
definierte Mengenfunktion ist ein endlicher Inhalt auf I'. Denn es gilt:
(a) u(@) = pu((a;a]) = F(a) - F(a) = 0.
(b) p((a,b]) = F(b) — F(a) > 0 fiir a < b aufgrund der Monotonie von F.
(c) Es seien (a,b] und (a’,¥'] zwei Intervalle aus I' mit b = a’. Die Eigenschaft b = a’
wird gefordert, um (a, b]U(a’, '] = (a, ] € T* und (a, bjN(a’,b'] = @ sicherzustellen.
Dann gilt:

p((a,0]U (d,0])

p((a,b']) = F(V') — F(a)

(@) = F(a) + F(V') — F(d)

(b) — F(a) + F(V/) — F(d) (wegen b= a')
p((a, b)) + p((a’, b']).

F
F
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6.6 Satz:
Es seien R ein Ring iiber Q und p: R — R U {oo} ein Inhalt. Dann gilt:

a) Fiir alle A, B € R gilt: n(AU B) + u(AN B) = u(A) + u(B).
b) w ist monoton, d.h. ¥V A, B € R mit A C B gilt n(A) < p(B). (Isotonie)

¢) Fir alle A;B € R mit A C B und u(A) < oo gilt u(B\A) = u(B) — u(A). (Subtrakti-
vitit)

d) p ist subadditiv.

e) Ist p ein Pramaf, dann ist p o—subadditiv.

Beweis:
a) Fiir alle A, B € R gilt:

AUB = AU(B\A), wobei AN (B\A) = & ist,
(ANB)U(B\A) = B, wobei (AN B)N (B\A) = & ist.
Damit wird
u(AU B) = p(A) + p(B\A),
WA B)+ u(B\A) = u(B).
Addition dieser beiden Gleichungen ergibt:

(AU B) + p(ANB) + p(B\A) = p(A) + u(B\A) + n(B) bzw.
n(AU B) + u(ANB) = p(A) + u(B).

b) und c) Fiir alle A,B € R mit A C B gilt: B= AU (B\A) und AN (B\A) = @. Damit
gilt:

1(B) = p(A) + p(B\A) <= p(B\A) = u(B) — u(A) = pu(B) = u(A).
d) Aufgrund von a) gilt:
(AU B) = p(A) + u(B) — n(AN B) < p(A) + p(B).

e) Es sei (An)nen eine Folge von Elementen aus R mit (J, . An € R. Es werden By := Ay
n—1

und B, = A,\ U A, fiir n > 2 gesetzt. Dann gilt U B, = U A,, B, C A, und

m=1 nelN nelN
B, € M fiir alle n sowie B; N B; = & fiir i # j. Aus der o-Additivitdt von p folgt jetzt

A(VEREA(VEY

= Z w(By) (da p o—additiv ist)
neN

< Z w(Ap) (da p monoton ist)
neN
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6.7 Satz:
Es seien § eine o—Algebra iber Q und p: § — R U {oo} ein MafS. Dann gilt:

a) Fir jede Folge (Ap)nen von Elementen aus § mit A, C A,41 fir allen € N (sogenannte
monoton wachsende Folge) gilt:

H < U An) = JLHQOH(An)
neN

b) Ist p endlich, dann gilt fiir jede Folge (Ay)nen von Elementen aus § mit A,11 C A, fir
alle n € N (sogenannte monoton fallende Folge):

H < ﬂ An) = JLH;OH(An)
neN

Die unter a) angegebene Figenschaft von u bezeichnet man als Stetigkeit von unten, die unter
b) als Stetigkeit von oben.

Beweis:

a) O.B.d.A. sei pu(A4,) < oo Vn e N (sonst trivial).
Es wird By := Ay und Bp1 = Apt1\ A, fiir n > 1 gesetzt. Dann gilt: B; N B; = & fiir
i # j und |J,en Bn = U, en An- Hieraus folgt:

A(VESEVES

= Z w(By) (p ist o—additiv)
nelN

= 1(A1) + Y p(Ant1\Ayp)

n=1

= u(A1)+ lim Z p(Ans1) — u(Ayn)  (aufgrund von Satz 6.6 c))

m—o00
n=1

= lim p(An).

b) Allgemein gilt:

I ( ﬂ An> = U ( U An> (Regeln von de Morgan)

neN neN
=/ (Q\ U An) (Definition des Komplements)
neN
=u(Q)—p ( U An) (aufgrund von Satz 6.6 c))
nelN
= (@)~ p ( U m\An)) .
nelN
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Es gilt aber Q\A; C Q\As C Q\ A3 C - --. Deshalb kann Satz 6.7 a) angewandt werden,
mit dem sich

m (U <Q\An)) = lim p(Q\Ay) = ©(Q) — lim p(Ay)

n—oo
neN

ergibt. Damit wird

7 ( N An) = lim pi(Ay).

neN

6.2 Erster Maf3—Fortsetzungssatz

Die beiden nachfolgenden Abschnitte sind der Konstuktion allgemeiner Wahrscheinlichkeits-
mafe gewidmet. Die Grundlage hierfiir bilden die beiden Maf}fortsetzungsséitze, die von C. Ca-
ratheodory stammen und auf folgender Erkenntnis beruhen: Ist S ein durchschnittsstabiles
Mengensystem und P ein Wahrscheinlichkeitsmaf§ auf der von S erzeugten o—Algebra, dann
ist untergewissen Regularitétsbedingungen P durch seine Einschrinkung P|g auf S bereits
eindeutig bestimmt. Fiir die Praxis geniigt es folglich, eine geeignete Mengenfunktion P auf
S zu definieren und nachzuweisen, dass ihre Erweiterung auf § ein Wahrscheinlichkeitsmaf}
darstellt. Dieser Nachweis erfolgt in zwei Schritten. Man betrachtet zunédchst die Erweiterung
von P auf den von S erzeugten Ring (erster Fortsetzungssatz) und schliet dann weiter auf
die von S erzeugte o—Algebra (zweiter Fortsetzungssatz).

6.8 Definition (Fortsetzung, Erweiterung, Restriktion, Einschrinkung):

Es seien MMy und My zwei Mengensysteme tber Q0 mit My C My, Gilt fiir die beiden Men-
genfunktionen v: My — R U {oo} und p: Moy — R U {oo} die Beziehung v(A) = p(A) fir
alle A € My, dann nennt man p eine Fortsetzung (Erweiterung) von v auf Me und v eine
Restriktion (Einschrinkung) von p auf 9.

6.9 Satz (1. Fortsetzungssatz):
Fiir jeden Inhalt v auf einem Semiring S ist

M(A):Zu(Ai) mit A::UAZ-, AieS i=1,...,n, und A;NA; =@ firi#j
=1 i=1

die einzige Fortsetzung von v zu einem Inhalt auf R = R(S). Ist v ein Pramafs, dann ist auch

i ein Primapf.

Beweis: »

Nach dem Darstellungssatz fiir Ringe 5.18 kann jede Menge E € R(S) in der Form F = |J A;,
i=1
AjeSfiri=1,...,pund A; N A; = & fiir i # j dargestellt werden. Es wird

gesetzt und gezeigt:
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(i) p ist wohldefiniert, d.h. u(FE) ist unabhingig von der gew#hlten Zerlegung der Menge
E.

(ii) p ist Inhalt.
(iii) p ist eindeutig.
(iv) Ist v PramaB, so ist auch p Prama$.

Zu (i) pist wohldefiniert. Sind £ = (J}_; A; und E = ngl BjmitA;,B; € S(i=1,...,p; j=
1,...,q)und A;N A, = o fiir i # k, BjN By = @ fur j # { zwei endliche Zerlegungen
von E, dann ist zu zeigen:

i=1 j=1
Offensichtlich sind
q
A;=A,NE=A;nN UBj :U(AZQBJ) (221, ,p)
j=1 j=1
p p
B]_EmBJ_(UAZ>QB]:U(AlmB]> (]:11 7q)
i=1 =1

Zerlegungen von A; und B; in paarweise fremde Mengen A; N B; € S fiiri =1,....,p
und j =1,...,q. Es gilt also

V(AZ) = ZV U(AZ N BJ)

~

,_.
<.
Il
—_

<
Il
—_

P 4q
=> Y v(AinBy) (da v additiv ist)

Zu (ii) p ist ein Inhalt. Hierfiir ist zu zeigen, dass p nichtnegativ und additiv ist. Die Nicht-
negativitdt von p folgt unmittelbar aus der Definition von pu. Fiir die Additivitidt wird
E:=F UE'"mit FNE" =& und E,E',E" € R(S) betrachtet. Es existiert dann
Zerlegungen

P q
E'=|]J4, E'=J4], A,AjesS, i=1,...,p j=1,...q
i=1 j=1
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so dass

E:El E// UA/U UA//

gilt. Da wegen E' N E" = @ auch A; N A} = & ist, gilt
p q
:ZV +ZVA// _ E’)—&-/L(E”)
i=1 j=1

Zu (iii) p ist eindeutig. Es sei 9 eine weitere Erweiterung von v und E € R(S) mit £ := (J!_; 4;,

dann gilt:
P
I(E) = 9(A) (9 ist Inhalt)
i=1
= Zu(Ai) (n =1 auf 9)
i=1
= u(E).

Zu (iv) Ist v PramaB, so ist auch p PramaB. Zunéchst wird gezeigt: Mit v ist auch p o—additiv.
Ist E :=J,cn En eine Zerlegung von E € R(S) mit £, € R(S) und B, N E,, = I fiir
n # m, so ist zu zeigen:
!
wE) L5 u(E,).
neN
Aufgrund des Darstellungssatzes fiir Ringe 5.18 existieren fiir £ und F,, Zerlegungen
der Form:

p
E:UAZ, A; €8, AiﬂAjZQ fur ¢ # 7,
i=1
Pn
En=|JBnj, Bnj €S, BN Bu =2 fiir j #k.
j=1

Hieraus folgt:

o0 Pn
E=J U Bu.
n=1j=1
oo Pn
A, =A,NE= U U(Aiman)v
n=1j=1
p

an =FEnN an = U(AZ N an)
=1
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Die Mengen A; N B,,; sind paarweise fremd. Folglich gilt:

P
w(E) = Z v(A;) (Definition der Erweiterung)

i=1
p o0 Pn

= Z v U U (A; N Byj) (aufgrund der speziellen Zerlegung der A;)
i=1  \n=1j=1
P o0 Pn

= Z Z Z v(A; N Bpj) (v ist nach Voraussetzung o—additiv)
i=1n=1j=1
oo Pn P

= Z Z v(A; N Byj) (Umordnungssatz fiir abs. konv. Reihen)

p
v U(Aman)> (v ist additiv)

o0 Pn
= Z v(Bpj) (aufgrund der speziellen Zerlegung der B,;)
n=1 j=1
oo Pn
S S ) (=
n=1j=1
o0 Pn
= Z 1 U By (n ist additiv)
n=1 7j=1
[e.e]
::jz:#(E%) L

6.3 Zweiter Maf3—Fortsetzungssatz

Im ersten Mafl—Fortsetzungssatz wurde die Erweiterung eines Pramafles v auf einem Semiring
S zu einem Primafl v auf dem von S erzeugten Ring 8 = R(S) behandelt. Der zweite
Maffortsetzungssatz behandelt die Erweiterung eines Pramafles p auf S zu einem Maf} auf
o(S). Fiir den Beweis, der auf eine Idee von C. Carathéodory zuriickgeht, benétigen wir einige
Vorbereitungen.

Fiir beliebiges U € PB(Q) wird S(U) als das System aller Folgen Ay, As,... € S mit U C
Uflozl A,, definiert. Es sei

p*(U) = inf {Z (A | (Ap)nen € §(U)} fiir alle U € P(), (6.1)
n=1

hierbei ist inf @ := co.

Im folgenden Satz werden zunichst einige wichtige Eigenschaften von u* festgehalten.
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6.10 Satz:
Die in (6.1) definierte Fortsetzung p* des Primafes p auf dem Semiring S iiber Q0 besitzt
folgende FEigenschaften:

(1) w*(U) > 0 fiir alle U € $(92),
(2) w(2) =0,

(3) Uy C Uz = p*(Ur) < p*(U2),

(4) 1w (UpZy Un) < 32050 17 (Un).

Beweis:
(1) u*(U) > 0 folgt direkt aus der Definition von p*.

~

(2) p*(@) =0 folgt mit (&,9,...) € S(2).
(3) Uy C Uy = p*(Uy) < p*(Us) folgt aus Uy C Uy = S(Uy) C S(Us).
(4) Zu zeigen ist p* (Up2y Un) < > 02 p*(Uy). Es wird p*(U,) < oo angenommen. Wiihle

ein beliebiges, aber festes € > 0. R
Fiir jedes n € N gibt es eine Folge (Aym)nm=12,.. € S(U) mit

o] . e
> ilAnm) < p*(Un) + 5 -

Die Folge (Anm)n,m=12,.. liegt in §(Uz°:1 U,,). Hieraus entsteht

s <U Un) < ZN(An,m) < Z (N*(Un) =+ 2%) < ZM*(UH) +e.
n=1 m,n n=1 n=1

Da ¢ > 0 beliebig gewihlt war, folgt die Aussage. |

6.11 Definition (duBleres Maf}, induziertes dufleres Maf3):
a) Jede Abbildung p*: P(2) — R U {oo} mit den Eigenschaften aus Satz 6.10 heifit ein
daufleres Maf$ auf 2.

b) Die durch (6.1) definierte Mengenfunktion p* wird als das vom Primaf u
duzierte duflere Maf$ bezeichnet.

Im Folgenden wird die eindeutig bestimmte Fortsetzung des Pramafles 1 auf den Ring R :=
R(S) wieder mit u bezeichnet (vgl. Satz 6.9).

6.12 Lemma:
Es gilt *(B) = u(B) fiir alle B € R.
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Beweis:
Der Darstellungssatz fiir Ringe 5.18 besagt, dass jedes B € R in der Form B = |J;", Ci,n €
N,C; € S,C;NC; = @,1 # j dargestellt werden kann. Daraus folgt:

(C1,Ch,...,Cn@,2,...) € S(B) = u*(B) < u(B).

Wenn p*(B) = oo ist, ist alles gezeigt. Es sei also p*(B) < oo = §(B) # @, und es sei
nun (Ap)nen € S(B). Es folgt: 4, € S € R = (A, N B) € R. UiA, 2 B= B =
U2, (A, N B). Wird nun D; := (A; N B) und D, := (4, ﬂB)\U?;ll(Aj NB) e R firn>2
gesetzt, so ergibt sich

oo
B=|JDn DinDj=2,i#j.
n=1

Da p ein Pramaf ist und D,, C A,, n € N, ist, folgt

u(B) = u(Dn) <> pu(An).
n=1 n=1
Also ist
u(B) < p*(B).
[ |
Existenz

Wenn man zeigen kann, dass jedes von p: S — RU{oc} induzierte &uflere Ma8 eingeschrinkt
auf o(5) ein Maf bildet, hétte man eine Fortsetzung gefunden.

Fiir das weitere Vorgehen wird der Begriff der p*—Messbarkeit eingefiihrt:

6.13 Definition (p*—messbar):
Es sei p* ein dufleres Maf$ auf Q. G € PB(Q) heifst p*—messbar, falls

p(U) = p*(UNG) + u*(UNG) fiir alle U € P(Q) (6.2)

gilt.

6.14 Satz:
Es sei pu* ein dufleres Maf auf Q. Dann ist das System 2 aller p*—messbaren Mengen G C €2
eine o—Algebra iber Q, und die Restriktion von u* auf 2l ist ein Majs.

Beweis:
1. Schritt: 2 ist eine Algebra und p* ein Pramaf auf 2.
QeA:p*U)=p*UNQ)+p*(UNg). GeA= G A (wegen (6.2)).

Es seien nun G, H € 2 und U C () beliebig:

P (U) =p(UNG) +pu (UNG)
= UNGNH)+p*(UNGNH)+p*(UNGNH)+p*(UNGNH). (6.3)
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Wenn U durch U N (G U H) in (6.3) ersetzt wird, ergibt sich:
pUNGUH)=p*(UNGNH)+p*(UNGNH)+p*(UNGnNH). (6.4)

(6.4) in (6.3) eingesetzt ergibt:

pw(U)=p*(UN(GUH))+p*(UN(GUH)),dh. GUH € A = 2 ist eine Algebra.

Weiter wird gezeigt, dass pu* o-additiv auf 2 ist.

G1,Go, ... € Useien paarweise disjunkt und U C Q beliebig. Nach (6.3) und mit G = G
und H = G folgt:

p(UN(GLUG2)) =p (UNGL) + " (UNGa). (6.5)
Durch vollstdndige Induktion ergibt sich daraus:
wlunlJG | =) w(UNnG)) fir allen € N. (6.6)
j=1 j=1

Wird in (6.6) U := Q gesetzt, so ergibt sich wegen Satz 6.10(3)

n

w* U G| > U G| = Zu*(Gj) fiir alle n € N,
j=1 j=1 1

oder

Gj

s

Jj=1 1

J

e e [ee]
w UG | 2D wi(G) >
j=1
wegen Satz 6.10(4), d.h. p* ist ein Pramaf auf 2.

2. Schritt: 2l ist eine o—Algebra.
Da 2 als Algebra N-stabil ist, geniigt es zu zeigen, dass 2 ein Dynkin-System ist (vgl.
Satz 5.12). Es seien also G1,Ga,. .. € 2 paarweise disjunkt, und U C 2 beliebig. Setze
G =2, Gj. Da 2 eine Algebra ist, erhilt man wegen (6.2), (6.6) und Satz 6.10(3)

w (U) =p* UOUGj + UOUGj
j=1 j=1

> | Un G |+ (UNG) =) w(UNG)) +p"(UNG)
j=1 =1

fiir alle n € N. Mit Hilfe von Satz 6.10, Eigenschaften (3) und (4), gilt schlielich:
pU) 2 Y (UNG) +uUNG) = p (UNG) +p*(UNG) = p*(U).
j=1

Also
G € 2 = A ist ein Dynkin-System .
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Wenn nun p* das von p induzierte duflere Maf ist, dann muss noch gezeigt werden, dass allle
A € S p*-messbar sind. In diesem Falle ist S C 4. Hieraus folgt o(S5) C 4, und damit ist
" eingeschrénkt auf o(S) ein Maf}, das p fortsetzt. Im Allgemeinen ist 4 jedoch grofer als
o(5). In diesem Zusammenhang wird der folgende Satz gezeigt:

6.15 Satz:
Wenn p* das von p induzierte duflere Mafs ist, dann sind alle B € R = R(S) p*—messbar.

Beweis:
Es seien B € R und U C 2 beliebig. Wegen Satz 6.10, Eigenschaften (1) und (4), gilt immer:

P (U) < (UNB)+p*(UNB).

Ist S(U) = @, so folgt u*(U) = oo, und alles ist gezeigt. Es sei nun (Ap)nexy € S(U).
Aus B € R ergibt sich B = |J,C;, C; € S, C;, NCi, = & fiir i1 # ip. Aus 4;\B € R
folgt: A\B = U}, Dj; mit D;; € S, D;j;; N D;;, = @ fiir 41 7& i2, j € N. Somit folgt
Aq = (A NC; )]E]N,ISZSH € S(UOB) und Ay = ( ]z)]e]N 1<i<n; € S(U\B) = S(UQB)

u additiv auf R ist, ergibt sich

p(A;) = u(A; N B) + u(A;\B) = Zu ﬂCi)+ZM(Dj,i)

fiir alle j € IN. Hieraus folgt wiederum

[e.e]

doulA) = > wE)+ Y w(Ey) <p'(UNB)+p"(UNB)
j=1

EieAq FEocAg

fir jedes (A;)jen € S(U). Daraus ergibt sich schlieflich

§*(U) = 1i*(U N B) + 1" (U N B).
Folglich ist B p*—messbar. |

Eindeutigkeit

6.16 Definition (oc—endlich):

Es seien S ein Semiring iber Q und p ein Primaf (Inhalt) auf (Q,S). M C S sei ein
Mengensystem tiber Q. p heifst o—endlich in 9, wenn es Mengen A1 C Ay C ... € 9 mit
U5Z, Aj = Q und p(A;) < oo, j €N, gibt.

6.17 Satz (Eindeutigkeitssatz fiir Mafle):
Es sei M ein N—stabiles System von Teilmengen von Q. Sind py und pe zwei Mafe auf o(9N),
die auf M ibereinstimmen und dort c—endlich sind, so stimmen sie auch auf o(9M) iberein.

Beweis:
Zu zeigen ist, dass fiir alle M € o (M) gilt: p1 (M) = po(M). Fir E € M mit py (E) = pa(E) <
oo wird Dp :={D € c(M) | 1 (EN D) = p2(E N D)} gesetzt.

Behauptung: D ist ein Dynkin-System.
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1. Wegen p1(ENQ) = (E) = pa(F) = p2(ENQ) gilt Q € Dp.
2. Es seien A, B € ®p mit A C B. Mit Satz 6.6 gilt:

pm(EN(B\A) = m((ENB)\(ENA)
m(ENB) —m(ENA)
p2(ENB) — pa(ENA)
(
(

p2((ENB)\ (ENA))
— (BN (B\A).
Damit gilt also u1(EN(B\ A)) = ue(EN(B\ A)) bzw. B\ A € Dp.

3. Es sei (Dy)nen eine Folge paarweise disjunkter Elemente von ® . Dann gilt:

" <Eﬂ U Dn> i <U<EnDn>>

neN nelN

= Y m(ENDy)

neN

= Y pu(ENDy)

nelN

= m(Em UDn>7

nelN

also ist (J,cn Dn € DE.

Damit ist ® g ein Dynkin-System.

Da mit A,B € 9t auch AN B € M gilt, folgt zundchst M C Dp. Somit gilt fiir das von
M erzeugte Dynkin-System D () die Beziehung D (M) C Dp. Nach Satz 5.12 folgt deshalb
D(M) =Dg = o(M) und es ergibt sich:

pi(ENA)=pmw(ENA) VAco(®) undVE €M mit p1(F) = pa(E).

Aufgrund der o—Endlichkeit von p; und po existiert eine Folge (A, )nen von Mengen aus I

mit |J A, =Q und p1(A,) = p2(A,) < oo ¥V n € N. Wie oben ist
nelN

/.Ll(An N A) = ILLQ(AH ﬂA) VAe O'(m), n € N.
Es wird nun By := Ay, By := A\ A1,...,B, := Ay \ (A1 U...UA,_1) gesetzt, so dass
(Bn)nen eine Folge von paarweise fremden Mengen aus o(9) wird. Man beachte, dass B,, €

o(M); B, C A, YVneNund | B, = | 4, = Q gilt. Damit ergibt sich
n=1 n=1

p1(BpNA) = (A, N (BpNA)) =p2(A,N(B,NA)) =ux(B,NA) YA€), neN.

Da A= | (B,NA) ist, folgt aus der o—Additivitéit von g1 und po:

n=1

pr(A) = p(BanNA) = pa(ByNA) = pp(A) V A€ o(IM). ]
n=1 n=1
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Damit ist nun der zweite Maf}fortsetzungssatz 6.18 bewiesen:

6.18 Satz (2. Fortsetzungssatz):
Es sei p ein Pramaf$ auf einem Semiring S diber . Dann ist

ﬂ*(A) = inf {Z :U(An) | (An)ne]N € §(A)} s A€ U(S)a
n=1

ein MafS auf o(S), das u fortsetzt. Ist p o—endlich auf S, so ist u* die einzige Fortsetzung
von p zu einem Maf auf o(S).

Borel-Mafl

Im Hinblick auf die Konstruktion von Wahrscheinlichkeitsmafien auf der o—Algebra der Bo-
relschen Mengen 8" im néchsten Kapitel wird nun der Begriff des Borel-Mafles eingefiihrt.

6.19 Definition (Borel-Mafle):

Ein Maf p auf (R™,B"), fir welches p(K) < oo fir jedes kompakte K C R"™ ist, heifit ein
Borel-Maf auf (R™,B™).

(Siehe auch Lebensdaten von Borel im Anhang D.)

6.20 Lemma:
w ist genau dann ein Borel-Maf$ auf (R™,B"), wenn es auf 1" endlich ist.

Beweis:

Die Aquivalenz folgt aus dem Satz von Heine-Borel, der besagt, dass jedes kompakte K C R
eine Teilmenge eines Intervalls [a, b] fiir geeignet gewé#hlte a,b € R™ ist. |
6.21 Satz:

Jedes Borel-Maf 1 auf (R™,B"™) ist eindeutig durch seine Werte auf 1" bestimmit.

Beweis:
Es wird Satz 6.17 angewandt: 8" = o(I"™). I" ist als Semiring N-stabil, p ist endlich auf I"
und es gilt

U=n,...,=n),(n,...,n)] =R",

d.h. p ist o—endlich auf I". |
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Kapitel 7

Mafddefinierende Funktionen

Als eine erste Anwendung der beiden Mafl—Fortsetzungssitze wird die Konstruktion von
Maflen und Wahrscheinlichkeitsmafien auf der o-Algebra der Borelschen Mengen (R, B)
behandelt. Grundlegend hierfiir sind die Begriffe der mafidefinierenden Funktion und der
Verteilungsfunktion. Anschlieffend werden Beispiele von Wahrscheinlichkeitsmaflien und Ver-
teilungsfunktionen vorgestellt.

Schliisselworter: Mafidefinierende Funktion, Verteilungsfunktion, Korrespon-
denzsatz, Rechenregeln fiir mafldefinierende Funktionen und Verteilungsfunktio-
nen, Lebesgue—Maf}, Exponentialverteilung, Riemann—Dichte, Rechteck—Vertei-
lung, Weibull-Verteilung, Normalverteilung, Standard—Normalverteilung, logarith-
mische Normalverteilung, x>~ Verteilung, Cauchy—Verteilung, Gammaverteilung, Er-
lang—Verteilung, Betaverteilung
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7.1 Korrespondenzsatz

Mafle und Wahrscheinlichkeitsmafle {iber (R, B) lassen sich durch spezielle reelle Funktionen

erzeugen. Dabei sind solche Funktionen von besonderem Interesse, die die Existenz eines
Mafles p tiber (R, ) mit der Eigenschaft

p((a,b]) = F(b) — F(a)

nach sich ziehen.

7.1 Definition (mafB3definierende Funktion, Verteilungsfunktion):

Fine Funktion F': R — R heiffit mafdefinierende Funktion tber R, falls sie monoton nichit-
fallend und rechtsseitig stetig ist. FEine Funktion F: R — R heifit Verteilungsfunktion tiber
R, falls sie monoton nichtfallend, rechtsseitig stetig und normiert, d.h. xEmwF(m) =0 und

lim F(x) =1, ist.

T——+00

7.2 Satz:
Zu jeder mafdefinierenden Funktion F: R — R gibt es genau ein Maf$ pp iber (R,B) mit

ur((a,b]) = F(b)— F(a) Ya,beR mit a<b.

Ist F eine Verteilungsfunktion, dann ist ur ein Wahrscheinlichkeitsmafs, das mit Pr bezeich-
net wird.

Beweis:
Zu zeigen sind:

(1.) Existenz von up.

(2.) Ist F Verteilungsfunktion, so ist ur Wahrscheinlichkeitsmaf.

Zu (1.): Um die Existenz von up zu zeigen, betrachten wir den Semiring T! der links offenen
und rechts abgeschlossenen Intervalle (a, 8], a,b € R mit a < b, auf dem v := v((a, b]) :=
F(b) — F(a) bekanntlich einen Inhalt definiert (siehe Beispiel 6.5).

(a) Ist v o—additiv und somit ein Pramaf, kann v aufgrund des ersten Maffortset-
zungssatzes eindeutig zu einem Primafl ¥ auf dem von I' erzeugten Ring R(I')
fortgesetzt werden.

(b) Ist v o—endlich, so existiert aufgrund des zweiten Maffortsetzungssatzes eine ein-
deutige Fortsetzung von ¥ zu einem MaB pp auf der von I' erzeugten o—Algebra
o(T') = VL.

Zu (a): Beweis der o—Additivitit.
(An)nen bezeichne eine Folge von paarweise fremden Mengen aus I' mit der Ei-
genschaft A = |J,, o An € I''. Mit ¢ wird die eindeutige Fortsetzung von v auf den
von I! erzeugten Ring R(I') bezeichnet. Es werden

v(A) = y(U An> > ZV(AR)
n=1 n=1
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und

v(A) =

V(oo An> < iV(An)
1 n=1

n=

gezeigt. Aufgrund der Additivitdt und der Monotonie von 1 gilt:
m m

;1 v(An) = :1¢(An)
= ¢’ JJrAn>

CRics
b
3
N——

I

N
N\
3
Il
—

s

3
"

Hieraus folgt

o0

n=1
Es bleibt v(Uy2; An) < D02 v(Ap) zu zeigen.
Firn=1,2,... sei
A= (a,b], Ap = (an,by]
gesetzt und fiir beliebige § > 0 und 6, >0, n=1,2,... sei
A= (a+0,b)], Al = (an, by + 0p).
Offensichtlich gilt:
A= (a,a+6]U(a+6,b], Al = (an,bp] U (bn, by, + 64

da v und ¢ auf I' iibereinstimmen

da lediglich | Ay, € R(I') vorausgesetzt

werden kann, muss 1 anstelle von v
herangezogen werden

aufgrund der Monotonie von 1)

da 2, A € I! vorausgesetzt war und

v und v auf I' iibereinstimmen

> v(An) = n}i_@OOZy(An) < V<U An> = v(A).
n=1 n=1

v(A) = v((a,a+9d])+v((a+6,0]), v(AL) = v((an,by))

= F(a+6)—F(a) +

+v((by, by, + 0p])
v(A) = (A + F(by + 6p)
—F(by).

Da F' als rechtsseitig stetig vorausgesetzt war, gibt es zu jedem ¢ > 0 ein § > 0
und ein 6, >0, n=1,2,..., so dass gilt:

v(A) < v(A)+3,

v(4,) < v(An)
tonrr (n=1,2,..

(%)

).

Die Intervalle (ay, by, + 6,) bilden eine offene Uberdeckung des Intervalls [a + d, b]

und damit auch von (a + 4, b]:

A'=(a+6b CA :=la+6C |J(anbn+6,) C | 4. (7.1)
n=1 n=1

Nach dem Uberdeckungssatz von Heine-Borel reichen endlich viele der A/, zur

Uberdeckung der Menge A’ aus:

k

Al C GA;LQ L 4}, fiir ein k € N,

n=1

n=1
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Damit folgt:

V(A) < v(A) + %
= p(4) + 5 da v = ¢ auf I'
g £
< (U A%) + = aufgrund von (7.1)
n=1 2
a €
< 2_311#(14;1) + B da 1 subadditiv ist
d €
:ZV(A;)-Fi dayzz/zauf]ll
n=1
. € €
< Z <V(An) + W) t3 aufgrund von ()
n=1
S A o~ € €
SZV( n)te da22n+1:§‘
n=1 n=1

Da € > 0 beliebig gewihlt werden kann, folgt hieraus die Behauptung.

Zu (b): Fiir die o-Endlichkeit von v ist die Existenz einer Mengenfolge (Ay)nen aus I
mit Ay C Ay C A3 C ..., U,en An = R und v(A,) < oo fiir alle n nachzuweisen.
Hierfiir wird A,, = (—n,n|, n € N, gewihlt. Offensichtlich gilt A} C Ay C A3 C ...
und |J,, e An = R. AuBerdem ist v((—n,n]) = F(n)—F(—n) < oo fiir alle n. Es ist
somit der zweite Fortsetzungssatz (Satz 6.18) anwendbar, d.h. es gibt ein eindeutig
bestimmtes Mafl pp: o(T') — R U {cc}, das v fortsetzt und o-endlich ist.

Zu (2.): Ist F Verteilungsfunktion, so ist ur Wahrscheinlichkeitsmafl.
Es wird gezeigt, dass aus den beiden Aussagen lim,_, o F'(z) = 0 und
limg 400 F(x) = 1 die Eigenschaft urp(R) = 1 folgt. Dafiir wird zunéchst bewiesen,
dass F(z) = pp((—o0,z]) fir alle x € R gilt. Da up stetig von unten ist (siche Satz
6.7a)), folgt:

pr((=o0,a]) = pr ((|J (=n.a]) = Tim pup((=n,a]) = lim (F(x) = F(-n))

n—oo
nelN

= F(z) — lim F(—n)=F(z)— 0= F(x).

n—oo

Aufgrund der Darstellung R = (J,,cn(—00,7] und der Tatsache, dass pp stetig von
unten ist (siehe Satz 6.7a)), folgt

pur(R) = ,up( U(—oo,n]) = nllngoup(—oo,n] = lim F(n) = 1.

n—o0
neN
[

Die Verteilungsfunktion F' wird durch die im folgenden Satz beschriebenen Eigenschaften
gekennzeichnet:
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7.3 Satz:
Gegeben sei ein Wahrscheinlichkeitsmaf$ P diber (R,B) und eine Funktion F: R — R mit
der Figenschaft F(x) = P((—o0,z]) fir alle x € R. Dann gilt:

a) F ist monoton nichtfallend,
b) F ist rechtsseitig stetig,
¢) lim F(z)=0und lim F(x)=1,

T——00 Tr——+00

d.h. F st eine Verteilungsfunktion.

Beweis:

Die Aussage a) folgt unmittelbar aus der Annahme, dass P monoton ist (vgl. Satz 7.2). Fiir
den Nachweis von b) muss noch gezeigt werden, dass fiir jede monoton fallende Folge (z,)nen
mit limy, 00 &, = 0 auch lim, o [F(x + z,,) — F(x)] = 0 fur alle x € R gilt. Da P stetig von
oben ist (siehe Satz 6.7b)), gilt aber:

Tim [F(o + ) = F(2)] = lim P((z,7+ 2,]) = P( M.z + xn]> = P(@) = 0.

Die Aussage c) ldsst sich ebenfalls mit Hilfe von Satz 6.7 beweisen:

0 = Pw) = P( N (—oo,—n]> = nlLrI;OP((—oo, -n]) = nhﬂngo F(—n)
nelN |
1 = P = P EJ]N(—OO,H}) = T}LnoloP((—oo,n]) = nlLHoloF(n)

7.4 Bemerkung:

Die Kernaussage dieses Kapitels liegt in der Existenz einer bijektiven Abbildung von Vertei-
lungsfunktionen iiber R und Wahrscheinlichkeitsmaflen auf (R, ). Dieser Sachverhalt wird
als Korrespondenzsatz bezeichnet.

7.2 Rechenregeln fiir mafldefinierende Funktionen

7.5 Satz (Rechenregeln fiir maf3definierende Funktionen):
Es sei F' eine mafdefinierende Funktion tber R und pp das korrespondierende Maf auf
(R,B), dann gilt fiir alle a,b € R mit a < b:

a) pr((a;b]) = F(b) - F(a),

b) pr((a;b)) = F(b—0) = F(a),

¢) pr([a,b]) = F(b) = F(a =0),

d) pr({a}) = F(a) = F(a—-0),

¢) pr(la,b)) = F(b—0)—F(a—-0),

wobei mit F(x — 0) der linksseitige Grenzwert von F an der Stelle x bezeichnet werde (ent-
sprechend F(x +0)).

Ist F' eine Verteilungsfunktion iber R und bezeichnet Pr das zugehdorige Wahrscheinlichkeits-
maf auf (R,B), dann gilt fir alle z € R:
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f) Pr((=o0,2]) = F(x),
9) Pr((—o0,2)) = F(x—0),
h) Pp((z,00)) = 1— F(x).

Beweis:
a) Diese Behauptung ist gleichbedeutend mit der Aussage von Satz 7.2.

b)

pr((a,b) = pp (fj (a,b_ i]) Satz 6.7a) nli—{go'uF <<a,b ﬂ)

n=1

- lim F <b _ i) _ F(a) = F(b—0) — F(a).
c)
pr (o) = pr (ﬁ (a- flb])
n=1
~ lm g ((a _ % bD (ur ist stetig von oben (siehe Satz 6.7b)))
= lim <F(b) _F <a - ;))
_ F(b) - F(a—0).
d)

pr(fa}) = (ﬂ (

n

o
|
S|
o
| I
N——
1
Tﬂ.
gE
=
|
—
—
S
|
S|
)
—_
N
1
T’—.‘
gE
A
e}
K
|
S
—
)
|
S|
N
~

1
= F(a) — F(a—0).
e) ur([a;b)) = pr((a,b) U{a}) = pr((a,b)) + pr({a}) = F(b - 0) = F(a - 0).
f) Wurde bereits unter (iv) im Beweis von Satz 7.2 gezeigt.

8) Pr((=00,2)) = Pr((—o0,2]\{z}) = Pr((—00,2]) = Pr({z}) = F(z) — (F(z) — F(z -
0)) = F(x —0).

h) Pr((z,0)) = Pp(R\(—00,z]) = Pr(R) — Prp((—o00,z]) =1 — F(x). [

7.6 Beispiel:
Die Funktion

0, <0,
%, 0<z<1,

F(z):= 50 1<z <2,
) 2§x<3,
1 3<zx
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y o

-

-1 1 2 3 1 5

Abbildung 7.1: Darstellung der Verteilungsfunktion F'(x)

definiert eine Verteilungsfunktion iiber IR.
Man verifiziert leicht:

Pr((—1,5) = F(5) — F(—1) =1 -0 =1
Pr((0.5,2]) = F(2) — F(0.5) = % - é _ z
Pr([1.5,3)) = F(3—0) — F(1.5 - 0) = g - % _ g
Pe((0,1)) = F(1—0) — F(0) = é _ é 0.
Pe({2}) = F2) - F2—0)= L~ 2 =2,

Prp((—00,1.5]) = F(1.5) =
Pr((Loo) =1~ F(1) =5 = 1.

(Siehe auch Mathematica-Notebook zu diesem Beispiel und PowerPoint-Présentation zu die-
sem Beispiel.)

7.3 Beispiele fiir mafidefinierende Funktionen

Wurden die diskreten Wahrscheinlichkeitsmafie in Kapitel 2 durch die Summe ihrer Wahr-
scheinlichkeiten beschrieben, so kennzeichnet die stetigen Wahrscheinlichkeitsmafle auf 95 eine
Dichte beziiglich des Lebesgue Mafes.

Das Lebesgue-Mafi A auf (R, B) ist dabei das mit der mafBdefinierenden Funktion
F(z) == VzeR

korrespondierende Mafl A = Ap iiber B. Es ist die Fortsetzung des elementargeometrischen
Inhalts

A(a, b)) = F(b) — F(a) =b—a, VabeR, a<b.

(Siehe auch Lebensdaten von Lebesgue im Anhang D.)
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7.7 Definition (Dichte):
Man bezeichnet eine uneigentlich Riemann-integrierbare Funktion f: R — RT mit der Ei-

genschaft
/ F(t) dt =1
R

als Dichte. (Siehe auch Lebensdaten von Riemann im Anhang D.)

Um einen Zusammenhang zwischen dem Wahrscheinlichkeitsmafi P und der Dichte f herzu-
stellen, wird die Verteilungsfunktion F' betrachtet:
Da die Verteilungsfunktion monoton ist, ist sie (A— fast iiberall) differenzierbar (siche Defini-

tion 9.35). Setze

d

= —F
! dx

Mit den Ergebnissen der vorhergehenden Kapitel folgt dann
T
Pel(-cea) = Fa) = [ f)dt, aeR

und

Pr((a,b]) = F(b) — F(a) = /bf(t) dt, abeR, a<b

Es lésst sich zeigen, dass die Ableitung der Verteilungsfunktion eine Dichte ist. Damit kann
das nachfolgende Ergebnis formuliert werden:

Es sei f: R — R* eine Dichte. Dann wird durch
F(x) ::/ ft)dt, zeR

eine Verteilungsfunktion F' iiber R und damit ein Wahrscheinlichkeitsmafl Pp auf (R, *B)
definiert. Die Funktion f wird auch Dichte der Wahrscheinlichkeitsverteilung Pr genannt.

Es werden nun einige Beispiele fiir mafidefinierende Funktionen bzw. stetige Wahrscheinlich-
keitsmafle und ihre korrespondierenden Verteilungsfunktionen und Dichten angegeben:

Die Rechteckverteilung

Fiir jedes Paar a,b € R mit a < b wird durch

1

| 3=, z€la,b
ﬂ@f{bo,x¢M%

eine Riemann—Dichte iiber R definiert. Das zugehorige Wahrscheinlichkeitsmaf} heif3t
Rechteck(a, b)—Verteilung oder Gleichverteilung auf [a, b], kurz R(a,b). Die zugehorige Vertei-
lungsfunktion lautet:

0, z<a
Flz):=¢ =2, a<x<b
1, x>0
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e =2

1 2 3 4 5

Abbildung 7.2: Dichtefunktion der Rechteckverteilung mit a := 2 und b := 4.

Es ist sofort ersichtlich, dass

b 1 1 b
/]Rf(a:)dx /a b—adx b—a/a dx

gilt, sowie dass F'(—oo) = 0 und F(0c0) =1 ist.

Die Rechteck—Verteilung spielt bei der Erzeugung von Zufallszahlen und der Simulation sto-
chastischer Prozesse eine wichtige Rolle.

Die Exponential-Verteilung

Es sei A > 0. Die Funktion F': R — R mit

l—e ™™ >0
F(a:)::{ 0 z <0

definiert eine Verteilungsfunktion iiber R. Man nennt F' Exponentialverteilung mit dem Pa-
rameter \. Fiir die Exponentialverteilung mit dem Parameter A verwenden wir das Symbol
Exp()).

Abbildung 7.3: Verteilungsfunktion der Exponentialverteilung mit A := 0.2.

Man beachte, dass F' stetig und an allen Stellen x # 0 differenzierbar ist:

_dF(x) [ e 2>0
)= dx _{ 0 , z<0.
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Abbildung 7.4: Dichtefunktion der Exponentialverteilung mit A := 0.2.

Der Nachweis von [ f(z) do = 1 erfolgt durch Nachrechnen:

/]Rf(x) dr = /OOO Ae ™ dx = A [—}\e‘ero =0—(-1)=1.

0

Diese Verteilung eignet sich besonders zur Modellierung von Lebensdauern, wie etwa dem
Ausfallverhalten einer Maschine oder der Dauer eines Telefonats im Callcenter.

Weibull-Verteilung

Fiir A\, 8 > 0 definiert

. )\-ﬁ-xﬁfl-e*k’:ﬁ , x>0
f@%_{ 0 <0

eine Wahrscheinlichkeitsdichte iiber R.

Abbildung 7.5: Dichtefunktion der Weibullverteilung mit A := 1 und g := 2.

Integration liefert zundchst [ f(z) dz = —e’ o= F(z) fir x > 0. Das Einsetzen
der Bedingung F'(co) = 1 ergibt ¢ = 1. Daher lautet die zu der Dichte f(x) gehorende
Verteilungsfunktion:

1— e’ , >0
F@%_{ 0 z < 0.
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0.5 1 1.5 2 2.5 3

Abbildung 7.6: Verteilungsfunktion der Weibullverteilung mit A := 1 und 3 := 2.

Damit ergibt sich auch fiir die Bedingung [ f(z) dz = 1:

[ fardo= [Tapat e d = [ 0 (1) =

0

Das zu der Verteilungsfunktion korrespondierende Wahrscheinlichkeitsmaf§ Pr iiber (IR, *B)
heit Weibull-Verteilung mit den Parametern A, 3. Fiir den Fall § = 1 ergibt sich die Expo-
nentialverteilung.

Die Weibull-Verteilung findet Anwendung in der Zuverlassigkeitstheorie, etwa bei der Model-
lierung von Lebensdauern bei Gerdten mit Abnutzungserscheinungen.

Die Normalverteilung

Die Funktion

NG

wird als Gauflsche Glockenkurve mit den Parametern 4 € R und ¢ > 0 bezeichnet und
definiert eine Wahrscheinlichkeitsdichte iiber R. Die korrespondierende Verteilungsfunktion
lautet

oV 2T

F() ::if(t)dt:i L (4 zeRr.

—0o0

Die zu F(z) gehorende Verteilung Pp auf (R,%) wird Normalverteilung mit den Para-
metern g und o genannt. Im Fall 4 = 0 und ¢ = 1 spricht man von der sogenannten
Standard-Normalverteilung. Fiir die Normalverteilung verwendet man das Symbol N (p, o).
Im Fall der Standard-Normalverteilung verwendet man anstelle von F(x) das Symbol ®(x)
und anstelle von f(z) das Symbol ¢(z).

Um die Werte der Normalverteilung zu berechnen, geniigt es, die Standard—Normalverteilung
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: : x
-2 2 4 6

Abbildung 7.7: Dichtefunktion der Normalverteilung mit Lokalisationsparameter p := 2 und
Streuparameter o := 1.

zu kennen, denn mit der Substitution y = (t — p)/o und o - dy = dt erhélt man

oV 2

Fa) = [ sy = e [l
z—p T—p

1 [
= Tﬁ/e VR dy = /w(y) dy

= <I><$_'u>, z €R.
o

Dies ist der Grund, warum in Statistik—Biichern lediglich die Standard—Normalverteilung
tabelliert ist. Fiir den Nachweis von

“+oo

/ o(z) dz =1

—0o0
benutzt man die Beziehung

+o00 2

(m /_ ;Oogo(x) d:v)z _ / exp(—12/2) dt

— OO

+00 +00o

_ / / exp(—a?/2) exp(—y?/2) da dy

—00 —00

2, 2
= / /exp(—x —;—y) dzx dy,
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die mit Hilfe von Polarkoordinaten, d.h. mit Hilfe der Substitution dx dy = r d¥ dr, in

21 oo
//exp(—r2/2)r dr dd = 27w [—exp(—r2/2)]‘go = 27
0 0

iiberfithrt werden kann. Damit gilt also:

(x/% /_ :O o(z) d:c>2 =21 bzw. 7090(;1;) dz = 1.

—00

Die Normalverteilung erhélt ihre Bedeutung hauptsichlich aus dem ,,zentralen Grenzwert-
satz”, der besagt, dass Summen aus unabhéngigen aber identisch verteilten Zufallsvariablen
gegen die Normalverteilung konvergieren (vgl. Kapitel 14.3 in Stochastik II).

Logarithmische Normalverteilung

Fiir 4 € R und o > 0 definiert auch

1
fz) = oxV 2w

ef(lOg(x)7#)2/20'2 , T > O

0 , <0

eine Wahrscheinlichkeitsdichte iiber R. Das zugehorige Wahrscheinlichkeitsmaf iiber (IR, B)
heifit logarithmische Normalverteilung.

Die logarithmische Normalverteilung kann auf die Standardnormalverteilung zuriickgefiihrt
werden. Mit der Substitution y = (log(t) — p)/o und dy = ot - dt ergibt sich:

F(z) /x f(t) dt /x 1 —%(M)Q "
Yo - e -
> 0 O't\/%
1 42

= 6_7 d
0 V2T 4

= & <log(x) - M) , reR.

g

log(z)—p
(e

g

Damit folgt auch sofort [ f(x) do = F(00) = limy_o @ (M) =1

Die logarithmische Normalverteilung wird als Modellverteilung bei Lebensdauer— und Festig-
keitsproblemen eingesetzt.

Die Cauchy—Verteilung

Fiir A > 0 und p € R definiert
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2 4 6 8

Abbildung 7.8: Dichtefunktion der logarithmischen Normalverteilung mit Parametern p := 1
und o :=1.

eine Wahrscheinlichkeitsdichte iiber R, denn es ist

o0 o0
1 1 T — U 1
/f(:r)dx = ——————dx (z = , dZ:dl’>
J PR E=n A A
11
= — d
/771—1—2’2 i
—00
(71 r
1
- - d d
T /1+22 Z+/1+222
— 00 0
0 b
! li / ! dz + i d
= —| lim [ -——=dz im [ ——dz
7w \a>—o0 ) 1+ 22 b—too ) 1+ 22
a 0
1 . .
= ( lim (—arctana)+ lim (arctanb))
T \a——00 b——+o0
1

T w
= —+ =] = 1.
7r<2+2)

Die zu f gehorende Verteilungfunktion heiffit Cauchy—Verteilung.

Die Gammaverteilung

Es seien b,p € R™. Das zur Dichte

bP
——gPlet® x>0

f(x):=4¢ T(p)
0 , <0

gehorende Wahrscheinlichkeitsmafi P auf (R, 98) heift Gammaverteilung mit den Parametern
b und p, kurz Gamma(b, p). Dabei sei I'(p) die Gamma-Funktion an der Stelle p:

o0

I'(p) := /xp_le_xdx.

0
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x
2 4 6 8 10 12

Abbildung 7.9: Dichtefunktion der Cauchy—Verteilung mit Lokalisationsparameter p := 4 und
Streuparameter A\ := 2.

R

i
)

IR
R

Abbildung 7.10: Dichtefunktion der Gammaverteilung mit variablem Parameter b bei kon-
stantem p (links) und entsprechend umgekehrt (rechts).

Die Tatsache, dass fj;o f(z) dz =1 ist, folgt aus der Beziehung

o0

L(p)- / f(z) dz = /bpxp_le_bx dx
—00 0
(bx)P~te b dz (2 := bz und dz = b dx gesetzt)

P le ™ dz = T(p).

0\8 0\8

Fir die Gammaverteilung wird das Kiirzel Gamma(b,p) verwendet. Die Gammaverteilung
wird unter anderem als Modellverteilung in der Zuverldssigkeitstheorie und der Warteschlan-
gentheorie verwendet. Als Spezialfille der Gammaverteilung ergeben sich die y?-Verteilung
und die Erlang-Verteilung (siehe unten).
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Die y*-Verteilung
Das Wahrscheinlichkeitsmafl P mit der Dichte
27" [ 1>0

0 , <0

heifit x> Verteilung mit n Freiheitsgraden, n € N. Die x?-Verteilung ergibt sich aus der Gam-
maverteilung, indem p := § und b := % gesetzt wird. (Damit folgt auch sofort f]R f(z)dx=1.)

Abbildung 7.11: Dichtefunktion der y?-Verteilung mit variablem Freiheitsgrad n.

Die x2?-Verteilung spielt eine zentrale Rolle in der mathematischen Statistik.

Die Erlang—Verteilung

Es seien n € N und b € R*. Das zur Dichte

b" n—1_—bx
fla) = | G w20
0 , <0

gehorende Wahrscheinlichkeitsmaf3 P auf (R, %) heifit Erlang-Verteilung mit den Parame-
tern b und n, kurz Erlang(b,n). Fiir diesen Spezialfall der Gammaverteilung ldsst sich die
zugehorige Verteilungsfunktion F'(z) in geschlossener Form darstellen:

n—1
b )"
1—e_b’”-z(— x>0
' ) -
Pt k!
0 , x<0.

F(x):=

Die Behauptung lésst sich durch Differenzieren leicht verifizieren:

n—1 k n—1 k—1
! _ —bx (bl‘) —bx (b.ﬁl])
k=0 k=1
—bx (bx)n_l _ b" n—1_ _—bx

-1 (-1
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Abbildung 7.12: Dichtefunktion der Erlangverteilung mit variablem Parameter b bei konstan-
tem p = 3 (links) und entsprechend umgekehrt (rechts) mit b = 2.

Da die Erlang—Verteilung ein Spezialfall der Gammaverteilung ist, ist somit f]R f(z) dx =1
sichergestellt.

Die Erlang—Verteilung verdankt ihren Namen dem dénischen Mathematiker A.K. Erlang,
der 1908 Mitarbeiter der Copenhagen Telephone Company wurde und mit seinen Arbeiten
zur Leistungsbewertung von Fernsprechvermittlungssystemen den Grundstein fiir die Warte-
schlangentheorie legte.

Die Betaverteilung
Das Wahrscheinlichkeitsmaf} iiber (R, 8B) mit der Riemann-Dichte

(b— a)l-P

f(x) = B(p,q) (z—a)P~t(b—2)" | z€(a,b)

0 , x¢(a,b)

mit a,b € R, a < b und p,q > 0 heifit Betaverteilung 1. Art iiber dem Intervall (a,b). Der
Ausdruck

1
Blpa) = [0 -t ai
0

stellt dabei die Betafunktion dar. Fiir die Betaverteilung mit den Parametern p und ¢ wird
das Symbol Beta(p, q) verwendet.

Die Tatsache, dass f]R f(z) dz =1 gilt, folgt durch nachrechnen; mit der Substitution x =
(b—a)t+abzw. t = {=2 und Ccll—f = b — a ergibt sich:

—a

= —(b_a)l—p—q bx—ap_l —z) ! dz
/]Rf(x)dx— o /a< PLb - 2)t L d

= —(b ) —a)P 'l b—a—-(b-a Lb—a

= ) /0 (b )PP (b (b )t)? (b—a)dt
(b—a)? ‘. q)Prat Lo -1

= X (b )pra /0 Pl - dt = 1.

~~

=B(p,q)
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Die Betaverteilung hat Anwendungen in der Netzplantechnik, in der sie zur Modellierung von
Ubergangszeiten verwendet wird.

Abbildung 7.13: Dichtefunktion der Betaverteilung mit Parameter ¢ := 4 und variablem p.
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Kapitel 8

Messbare Abbildungen

In diesem Kapitel wird der Begriff der Zufallsvariablen auf allgemeine Wahrscheinlichkeits-
rdume ausgedehnt. Um die damit zusammenhéngenden Fragen beantworten zu kénnen, wird
auf den Begriff der messbaren Abbildung aus der Mafitheorie zuriickgegriffen.

Schliisselworter: Umkehrabbildung, Urbild, operationstreu, messbare Abbildung,
Indikatorvariable, Bildmaf}, Zufallsvariable, Zufallsgrofle, Zufallsvektor, Verteilungs-
funktion einer Zufallsvariable
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8.1 Messbare Abbildungen und Bildmafle

Bei manchen Fragestellungen erweist es sich als zweckméfig, einen gegebenen Wahrscheinlich-
keitsraum (Q,F, P) durch einen modifizierten Wahrscheinlichkeitsraum (Q',§, P') zu erset-
zen, wobei Q' aus Q durch eine Abbildung T': Q — €’ hervorgeht. In diesem Zusammenhang
stellt sich die Frage, wie P’ von P abhingt bzw. wie T beschaffen sein muss, um P’ direkt
aus P gewinnen zu kénnen.

8.1 Definition (Urbild):
a) Es sei T: Q — Q' eine beliebige Abbildung von Q in Q. Dann ist die zu T gehdérige
Umkehrabbildung T~L: PB(Q) — P(Q) definiert durch

THA)={weQ|Tw)e A} VAeP).
T~Y(A") heifit das Urbild von A’ unter T.
b) Ist M ein Mengensystem iiber V', so heifit das Mengensystem
TH ) = {TH(A) | A € '}
das Urbild von I unter T.
8.2 Satz (Eigenschaften von T):

Es sei T: Q — ' eine Abbildung von Q in ' und es seien ferner A'; A}, A, ... € P(Y).
Dann gilt:

(i) TY(2) = 2,

(i) T71(A) = T-1(A),

(i) (JT (4 =77 (U A;>,

i€l iel

(iv) (T4 =T"" (ﬂ A;> .

iel iel

Man sagt, T ist operationstreu.

Beweis:
(i) Folgt direkt aus der Definition.

(i) we T A) = T(w) e A == T(w) ¢ A = w ¢ TH(A) < we T-1(A).

(i) we | JTT'A) <= Fiel: T(w) € A= T(w) € | JAj <= we T (UA;>.
i€l el el

(iv) weﬂT‘l(A;) = Viel : T(w)eA, — T(w)eﬂA; = weT™? <ﬂA;>.
iel i€l iel
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Folgerungen:

(v) THQ) =T"YB) ET (o) 25 = Q.
(vi) A/ C B = T-YA) CcT-YB).

) T~H(A\AY) = T~ (AT~ (AD).

) T

1A NT YA = @ falls A] N A =

(vii
(viii
8.3 Satz:
Es sei T: Q — Q' eine beliebige Abbildung. Dann gilt:
a) Das Urbild T~1(F') einer o—Algebra §' iiber € ist eine o—Algebra tiber .
b) Ist § eine o—Algebra tiber 2, so ist das System
G ={Ac|T7YA)eF}

eine o—Algebra tiber Q.

Beweis:
Der Beweis ergibt sich unmittelbar aus Satz 8.2. |

Damit lasst sich nun der Begriff des Messraums einfiihren:

8.4 Definition (Messraum, messbar):

Sind 2 eine Menge und § eine o—Algebra tiber 2, so nennt man das Paar (2, F) Messraum.
Es seien (Q,§) und (¥, §') 2wei Messriume. Eine Abbildung T: Q — Q' heifit §-F ~messbar,
wenn T~HF') C § ist.

8.5 Beispiel:
1. Esseien (£2,F) und (£, §) zwei beliebige Messrdume. Die konstante Abbildung T': @ —
' mit T(w) := ¢ fiir alle w € Q ist messbar, denn es gilt:

TUF) = QegF ,fallsceF
geF ,fallscé¢F.

2. Es seien (,F) und (', ) zwei Messrdume und A C . Die Indikatorvariable

T(w) = L) = {(1) i;j

ist genau dann §—§ —messbar, wenn A € § ist. Denn es gilt:

@, fir 0¢A/, 1¢ A’
A | fiir 0¢A/, 1€ A
A fiir 0eA, 1¢ A’
Q , fir 0eA’, 1€ A'.

) =

127



Kapitel 8. Messbare Abbildungen

Mit Hilfe messbarer Abbildungen kénnen Mafle auf andere Messrdume iibertragen werden,
wie aus dem nachfolgenden Satz hervorgeht.

8.6 Satz (Bild, Bildmaf):
Es seien T: (,F) — (2, F) eine messbare Abbildung und p ein Mafi auf (2, F).

a) Mit der Festlegung p'(A") := p(T~Y(A")) fir alle A’ € F wird ein Map i’ auf (', F)
definiert.

b) Ist p ein Wahrscheinlichkeitsmaf auf (2, ), dann ist auch p' ein Wahrscheinlichkeits-
mafl auf (,F).
w' heifst das Bild oder Bildmafl von u unter T.

Beweis:
zu a) Es gilt (siehe Satz 8.2):

W) = p@A) =0 VA EF
W(@) = wT (@) = ue) = o.

Aufgrund der o—Additivitit von p gilt fiir jede Folge paarweise fremder Mengen (A});en

aus §:
(W) = oY)

= u (U T_l(A;)) (aufgrund von Satz 8.2 (iii))
SN
= Zu(T‘l(A;)) (u ist o—additiv)
i€EN

= > W4,

€N
d.h. auch p' ist o-additiv.

zu b) /() = u(T7HY)) = p() =1 (Satz 8.2).
|

Mit Hilfe dieser Voriiberlegung kann der Begriff der Zufallsvariablen im allgemeinen Fall
eingefiihrt werden.

8.7 Definition ((reelle) Zufallsvariable, Zufallsgréfle, Zufallsvektor):

Es seien (2, F, P) ein Wahrscheinlichkeitsraum und (', F') ein Messraum, dann heifit jede
§-F -messbare Abbildung X : (Q,F) — (V,F) Zufallsvariable.

Ist speziell (V,F') := (R,B) bzw. := (R",B™), n > 1, so heifst X eine reelle Zufallsvariable
(Zufallsgrifse) bzw. ein reeller n-dimensionaler Zufallsvektor.
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8.8 Bemerkung:

Es seien X eine reelle Zufallsvariable und Px das Bildmafl von P unter X. Die Verteilungs-
funktion von Py sei Fx. Fir P{w € Q | X(w) < z}) wird auch P(X < x) geschrieben.
Aufgrund des Zusammenhangs von X und Px gilt:

Fx(z) = Px((~00,2]) = P(X"}((~00,2])) = P({w € Q| X(w) < 2}) = P(X <),

d.h. es ist Fx(x) = P(X < z). In diesem Fall sagt man, dass X nach Fx verteilt ist bzw.
dass X die Verteilungsfunktion F'x besitzt. Ist F' die Verteilungsfunktion von X, so wird auch

x<p (,,d” von englisch ,,distribution”) geschrieben, wobei fiir F' in der Regel das spezifische
Verteilungssymbol verwendet wird, z.B. X 4 Exp()).

8.2 Kiriterien fiir Messbarkeit

Fiir Anwendungen ist es wichtig, iiber einfache Kriterien fiir die Messbarkeit von Abbildungen
zu verfiigen. Solche Kriterien kdénnen aus dem folgenden Satz abgeleitet werden.

8.9 Satz:
Es seien (Q,F) und (V,F') zwei Mefirdume und E' ein Erzeugendensystem von §', d.h. §F =
o(E"). Die Abbildung T: (,5) — (', F) ist genau dann messbar, wenn gilt:

T-YE) C 3.

Beweis:
Ist T messbar, so gilt T-1(A’) € § fiir alle A’ € §, also auch

TYE)={T"1(A)| A cE}C5.

Fiir die umgekehrte Richtung wird das System S’ := {4’ C ' | T~1(A’) € §} betrachtet. Zu
zeigen ist: S” O F'. Nach Satz 8.3 b) ist S’ eine o—Algebra iiber . Aufgrund der Voraussetzung
gilt £/ C S'. Hieraus folgt o(F’) = § C 5, da § die kleinste o-Algebra ist, die E’ enthilt,
d.h. T-1(A') € § fiir alle A’ € §'. [ |

8.10 Bemerkung:

Es sei (9,5, 1) ein Mafiraum. Im Folgenden werden lediglich Abbildungen f: 2 — R un-
tersucht, deren Werte in den erweiterten reellen Zahlen R := R U {—00, +0o} liegen. Zu R
gehort die erweiterte o—Algebra der Borelschen Mengen

B = {B()’ By U {—OO}, By U {—I—OO}, By U {—OO, +OO} | By € %}

Man nennt F-B-messbare Abbildungen auch Fmessbare numerische Funktionen.

Die nachstehenden Sitze vereinfachen die Analyse der Messbarkeit von Abbildungen.

8.11 Satz:
Fine numerische Funktion f: Q — R ist genau dann F-B-messbar, wenn fir alle c € R gilt:

a) {fw| flw)<cted
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bzw. dquivalent dazu
b) {w] f(w) <c} €5,
c) {wl|flw)>cteSF,
d) {w| flw)=cteF.

Beweis:
a) Ubertrigt man die Messbarkeitsanforderung aus Satz 8.9 auf die Mengensysteme § := B

und § := B, so muss fiir den Nachweis von a) gezeigt werden, dass die Intervalle [—oo, c)
o0

die o—Algebra B erzeugen. Aus [c—n,c) € B Vn € N folgt (—oo,c) = | [c—n,c) € B.
n=1

Wegen B C B und wegen {—co} € B ist deshalb auch [~oo,c) € B. Sei nun B die

von den Intervallen [—o~o, ¢), ¢ € R, erzeugte c—Algebra. Aufgrund der Vorbemerkung

gilt B C B. Um B C B zu zeigen, betrachten wir die Intervalle [a,b). Wegen [a,b) =
[—00,b) \ [-00,a), a < b gilt [a,b) € B bzw. I* C B. Wegen [a,b] = [a,b+1) € B

n—
[e.9]

und damit [—oco,b] € B fiir alle b € R sind auch {—oo} = ﬂl[—oo,—n) € B und
{400} = ﬁ [Zoo,n] € B, womit B C B gezeigt ist. Insgesanit ergibt sich B = B.
Und wir schlieBen weiter:

b) (@] f@) <cb= 0 fw| @) <t} €.

o) {w] flw)>ct={w[flw)<c} e,

) {w|fw) zet={w|[flw) <c}eF u

8.12 Satz:
Die beiden Funktionen f: Q — R und g: Q — R seien §-B-messbar, dann gilt:

a) {w| f(w) <g(w)} €7,
b) {w| flw) <gw)} €T,
¢) {w] fw) =g(w)} €3

Beweis: Ubung.

8.13 Satz:
Es seien f, g und fn, n € N, -8B -messbare Abbildungen von Q nach R und ¢ € R. Dann
sind auch folgende Abbildungen F-B-messbar:

a) f+g (wobei die Summe tiberall definiert sein muss),

b) C'f7
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C) fg;

d) % mit Wlw) = 400 falls g(w) =0,

e) su inf
) sup fn, Inf fn,

f) max(f,g), min(f,g), f* = maa(f,0) und f~ = —min(f,0),

g) liminf f,, imsup f,,
n—oo n—oo

h) lm f,, falls {fn(w)} fir alle w konvergiert.

Beweis:
a) Aufgrund der Messbarkeit von f gilt stets {w | f(w) < a} € § fiir alle a € R. Entspre-
chendes gilt fiir g, f1, fo,.... Aus

{w|fl) +gw) <a} = (w] flw) <r}n{w]|gw) <a-r})
reQ

folgt zusammen mit Satz 8.11, dass f + ¢ (und analog auch f — g) messbar sind.

b) Es ist
_ w|f(w)<% ,C>0
{wlef(w) <a} = {}w\f(w)>‘£ , ¢ <0.

Ist ¢ =0, dann ist ¢f = 0 eine konstante Funktion, die messbar ist.

c) Zunichst wird gezeigt, dass f2 messbar ist:

) o ,a<0
{w] fH(w) <a} {{w’_\/&<f(w)<\/6},a>0

ey ,a<0

{{wlf(w)<\/5}ﬂ{wf(w)>\/5}63 a>0.

Da f - g fiir reellwertige f und g als

frg= 37+~ (F~9))

dargestellt werden kann, ist in diesem Fall auch f - g messbar. Im Falle numerischer
Funktionen f und g sieht man, dass die Mengen A; := {w | f(w) - g(w) = o0}, Ay :=
{w| f(w) - gw) = —oc}, A3 :=={w | f(w) - g(w) = 0} und Ay := A; UA2U A3 in §
liegen. Die Restriktionen f* und g* von f und g auf A4 sind A4 N § — B—messbar und
reellwertig. Das Produkt f*-g* ist daher ebenfalls A4 NF — B-messbar. Folglich ist f-g
B — B-messbar.

d) Es sei g(w) # 0 fiir alle w € Q. Offensichtlich ist fiir a > 0

ol G<af = (wrsw>anfeigw>11) o

o (i <onfvlgw<il)es.
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Damit ist nicht nur 1/g, sondern wegen b) auch f/g = f - (1/g) messbar. Fiir a < 0
schliefit man analog.

e) Es wird f(w) :=sup,cn fn(w) und g(w) = inf,en fr(w) gesetzt. Damit wird

{w|fw)<a} = ({wl/falw) <a} €3,
neN

{wlgw)>a} = [{w]falw)>a} €3
nelN

f) Die Behauptungen folgen aus den Zusammenhéngen:

{wlmax(f,9)(w) <aj = {w]|[f(w) <ajn{w]|g(w) <a},
{wmin(f,g)(w) >a} = {w]|flw)>a}N{w]g(w) > a}.

g) Diese Aussage ist eine unmittelbare Konsequenz aus d) und e), denn es gilt:

li n = inf n )

imsup fn(w) ;i?ﬁ‘;%f (W)

liminf f,(w) = sup inf f,(w).

n—00 keN n>k
h) Es gilt:

limsup fp(w) = liminf f,(w) = lim f,(w).
[ |

8.14 Satz:

Firi e {1,2,3} seien (Q4,§;) Messriume. Die Abbildung f: Q1 — Qo sei F1-F2-messbar und
die Abbildung g: Qo — Q3 sei Fa—F3—messbar. Dann ist go f: Q1 — Qg eine F1-Fs—messbare
Abbildung.

Beweis:

Die §1-F3-Messbarkeit von g o f folgt aus der Tatsache, dass (go f)~ (A) = f~(g~(A)) fiir
alle A € §3 gilt. [
8.15 Satz:

Jede stetige Abbildung T : R™ — R™, n,m € N, ist B" B —messbar.

Beweis:

Es wird Satz 8.9 angewandt: Bekanntlich bilden die offenen Mengen des R"™ ein Erzeugen-
densystem von B" (Ubung). Bei einer stetigen Abbildung ist das Urbild einer offenen Menge
wieder eine offene Menge. Die offenen Mengen liegen aber in B™. |
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Kapitel 9

Integration

In diesem Kapitel wird der aus der Analysis bekannte Begriff des Lebesgue-Integrals verall-
gemeinert und fiir die Definition des Erwartungswertes allgemeiner Zufallsvariablen herange-
zogen.

Schliisselworter: messbare numerische Funktion, Elementarfunktion, u—Integral,
Positiv— und Negativteil einer messbaren numerischen Funktion, Erwartungswert
und Varianz einer reellen Zufallsvariable, Transformationssatz fiir Erwartungswerte,
k—tes Moment, k—tes zentrales Moment, Variationskoeffizient.
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9.1 Vorbemerkungen

In Analogie zum Begriff des Erwartungswertes fiir diskrete Zufallsvariablen wiirde es nahelie-
gen, fiir eine reellwertige Zufallsvariable X mit Dichte f zu definieren:

E[X]:= /a?f(ac) dx,
R

sofern

/|x|  f(z) dz < .

R

Fiir eine mit dem Parameter A exponentiell verteilte Zufallsvariable wiirde sich auf diese Weise
z.B.

B[X] = /x  f(x) do

R

= /x-/\-e_m dx

R+
und nach partieller Integration:

(o ()] (D)

ergeben. Allerdings fiihren schon einfache praktische Fragestellungen auf Zufallsvariablen, die
weder diskret noch stetig sind. Als Beispiel betrachten wir die Wartezeitverteilung an einem
Fahrkartenschalter. Aus eigener Beobachtung weifl man, dass das System selbst bei hoher
Auslastung des Bedieners immer wieder einmal in einen leeren Zustand zuriickkehrt, so dass
ein neu ankommender Kunde iiberhaupt nicht warten muss. Folglich besitzt die Wartezeitver-
teilung F'(w), die angibt wie grofi die Wahrscheinlichkeit ist, eine Zeit kleiner als w zu warten,
an der Stelle w = 0 einen Sprung der Hohe p. Dabei bedeutet p die Wahrscheinlichkeit, dass
der Bediener frei ist. Da p > 0 ist, besitzt F'(w) keine Dichte. Deswegen ist es notwendig,
einen allgemeineren Integralbegriff einzufiihren.

Vorgehensweise in den nichsten Abschnitten:

Ziel des Kapitels ist es, den Begriff des Erwartungswertes aus dem mafitheoretischen Begriff
des p—Integrals fiir messbare numerische Funktionen zu entwickeln.

Dies geschieht in drei Schritten:

1. Definiere das p—Integral fiir Elementarfunktionen (Kapitel 9.2).

2. Erweitere den Begriff des py—Integrals fiir Elementarfunktionen durch Grenziibergang
auf den Begriff des p—Integrals fiir nichtnegative messbare Funktionen (Kapitel 9.3).
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3. Erweitere den Begriff des pu—Integrals auf messbare numerische Funktionen durch Be-
trachtung ihrer Positiv— und Negativ-Teile (Kapitel 9.4).

Damit lisst sich in Kapitel 9.5 der Begriff des Erwartungswerts definieren.

9.2 Das p—Integral von Elementarfunktionen

9.1 Definition (Elementarfunktion):
Es sei (Q,F) ein MefSraum. FEine reellwertige Funktion e: Q — R heiffit Elementarfunktion,
wenn sie §-B-messbar ist und nur endlich viele Werte annimmdt.

9.2 Satz:
Ist e(w) eine Elementarfunktion, dann existieren eine Partition (A;)]_, von Q und reelle
Zahlen o; € R, i =1,...,n, so dass mit den Indikatorvariablen I4,, i =1,...,n, gilt:
n
e(w) = ails,(w). (9.1)
i=1
Beweis:
Besitzt e(w) die n verschiedenen Werte x;, so setzen wir «o; := x;, i = 1,...,n. Die Tréger

(Urbilder) der Werte «;
Ai=e N o) ={weelw)=w;}, i=1,...,n

bilden ein disjunktes System von Teilmengen aus 2. Es ist A; € §, da die Mengen {a;} € B
sind und e(w) messbar ist. Es ist e(w) = «;, falls w € A;. Da die A; disjunkt sind, kann man

dafiir auch
o], weE A

Qs , weE A

ew) = ail, (@) =
i=1
oan, weEA,

schreiben. [ |

Die unter (9.1) angegebene Darstellung von e heifit eine Normaldarstellung von e.

9.3 Satz:
Summe, Differenz und Produkt von Elementarfunktionen sind wieder Elementarfunktionen.
Ist e elementar und X € R, dann ist auch Ae elementar.

Beweis:
Die Messbarkeit der zusammengesetzten Funktionen folgt aus Satz 8.13. Offensichtlich bleibt
bei den genannten Operationen auch die Endlichkeit der Wertebereiche erhalten. |

9.4 Definition (integrierbar, integrabel):
Es sei (2,5, 1) ein Mafraum. Eine Elementarfunktion e(w) := > " | o;la,(w) heift integrabel
oder integrierbar, wenn p(A;) < oo fir alle i =1,...,n mit o; # 0 gilt.
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9.5 Definition (bestimmtes Integral, pu-Integral):
Es sei (Q,§, 1) ein Mafsraum. Weiter sei e: Q — R eine nichinegative Elementarfunktion
mit einer Normaldarstellung e(w) := > | oila,(w). Dann heifit

[etw) duw) = [ ean = > ()

Q

das bestimmte Integral oder pu—Integral von e iber ).

9.6 Satz:
Das bestimmte Integral tiber € hingt nicht von der speziellen Wahl der Normaldarstellung ab.

Beweis:
Es seien e(w) = >7IL; a;la, und e(w) = 377, BjIp,;(w) zwei Normaldarstellungen von e.
Dann ist

AlezﬂQ:AzﬁUB]:U(Asz]),
j=1 j=1

Bj:BjﬂQ:BijAi:U(AiﬂBj).
i=1 =1

Also
Ly (w) = Iy (a,nB;) (@ ZIA nB; (
Ip;(w) = I y» (4B (W ZIAmB
Damit wird
m n
33 ek Z%IA ZWB =2 > Bilans,(
=1 j=1 7j=11i=1

woraus wegen der Vertauschbarkeit der endlichen Summen o; = 3; fiir alle w € A; N B; # @
folgt. Andererseits ist

/6 dp = /ZaiIU?—l(AiﬂBj) = Z(Jéiu U A; N Bj = Z Z Oé“u(AZ N B])
i=1 i=1 j=1 i=1 j=1
und
/6 dp = /Zﬁjfuy_l(AimBj) = Zﬁjﬂ (U AiﬁBj> = ZZﬂju(AiﬁBj)-
j=1 j=1 i=1 i=1 j=1

Da aber fiir w € A; N Bj # @, o; = (3}, gilt, miissen die beiden Summen identisch sein. |
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9.7 Satz (Eigenschaften des Integrals):
Fiir das Integral nichtnegativer Elementarfunktionen e, ey und es gilt:

a) /IA du = p(A).

b) Fir A € R ist /)\e dp = )\/e dp (Linearitit).

c) /(61 +e2) du = /61 du + /62 du (Linearitit).

d) Aus eq < eg folgt /61 dp < /62 dup (Monotonie).

e) /61 dlp+v)= /61 du—l—/el dv (Linearitit).

Beweis:
a) Ergibt sich unmittelbar aus der Definition der Indikatorfunktion.

b) Aus e(w) = ZO@IAZ. (w) ergibt sich Z()\ai)ﬂ(Ai) = )\Zam(Ai).
i=1 i=1

i=1
c) Aus
n m n m
=3 > alung,  wnd  e=3 3 Gilans,
i=1 j=1 i=1 j=1
folgt
n m n m n m
evter=2 > (it Blane =) > cilans +> > Bilans,
i=1 j=1 i=1 j=1 i=1 j=1

d) Aus e; < ey folgt e3 — e; > 0 und damit [(ez — e1) dp > 0. Eine Anwendung von c)

ergibt weiter
/62 dpy = /(62—61) d,u+/61 dyu > /61 du,

was zu zeigen war.

e) Es gilt:

Jerdusr) = Yailud) +v(4)) = Y am(a)+ Y aw(a)
=1 =1

1

I
—~—

e1 du + /61 dv.
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9.3 Das p—Integral nichtnegativer messbarer numerischer
Funktionen

9.8 Satz:
Jede nichtnegative messbare numerische Funktion f: Q — RT ist punktweiser Grenzwert
einer monoton nichtfallenden Folge nichtnegativer Elementarfunktionen.

Beweis:
Definiere fiir alle w €

k-1 k-1 k

fn(w) := 2n 7 2n 2" (k=1,...,n-2").
n o, flw)>n

Zu zeigen ist lim f,(w) = f(w).
n—oo
Die Funktionen f,, lassen sich wie folgt durch Indikatorfunktionen ausdriicken:

n-2"

k-1
fn: Z mn .IAn,k_'_n'IBn
k=1
E—-1 k
mit A, = f1 S o und By, := f~1([n, ).

Nun kann man wie folgt schlieflen:

f ist messbar
=Apr € §und B, € § fiir alle n und k

=-Die Indikatorfunktionen /4 _, und Ip, sind messbar

n,k

= fy, ist messbar.

Fiir alle w € Q mit f(w) < oo und fiir alle n € N mit f(w) < n folgt

0§f(w)—fn(u))§i — 0 (fir n— o0).

2n

Fiir alle w € Q mit f(w) = oo gilt fr(w) =n — oo fiir n — oo. [ |

9.9 Beispiel:
Essei f: R — R, f(w) := w? In diesem Fall ist

0, ()Sf(w)<%
filw) = %,%gﬂ@<1
1, flw)=>1

bzw.
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[} 1 1.5 4

Abbildung 9.1: Ndherung einer nichtnegativen messbaren Funktion durch Elementarfunktio-
nen (dargestellt sind f(w) := w? und fo(w))

(Siehe auch Mathematica-Notebook zu diesem Beispiel.)

Als n#chstes soll das pu—Integral einer nichtnegativen messbaren numerischen Funktion defi-
niert werden. Zur Vorbereitung dienen die Sétze 9.10 und 9.11.

9.10 Satz:
Es sei (fn)nen eine monoton nichtfallende Folge von Elementarfunktionen von € nach R™T.
Dann gilt fiir jede nichtnegative Elementarfunktion h mit h < sup,, fn, = f:

/hd,u<sup/fn du .
neN
Beweis:

Der Fall h = 0 ist trivial. Es sei daher h # 0 mit der Darstellung h = Z?;l aily, mit A; € F
und den Koeffizienten a; € R*. Fiirn € N und 0 < 8 < 1 sei

By = {w € Q| Bh(w) < fulw)}.

Da h und f, messbar sind, gilt aufgrund von Satz 8.12 B,, € § und aufgrund der Definition
der Menge B, dass Shlp, < f, ist. Wegen Satz 9.7 b) und d) folgt

/ﬂhIBn dp = ﬂ/hIBn dp < /fn dp < s%p/fn dpi . (9.2)

Da die Folge (fn)nen monoton nichtfallend ist und A < sup,, f,, gilt, folgt B,, /" Q fir n — oo
und damit (A; N B,) / A; fiir n — oco. Aufgrund der Stetigkeit von p (vgl. Satz 7.5) folgt
schliefllich p(A; N By) — u(A;). Damit wird

/hd,u:Zai,u(A = hm Z%,LLA NB,) = lim [ hlg, du.
=1

Somit ergibt sich
ﬂ/hdu—limﬁ/hlg du<sup/fndu
Da (€ (0,1) beliebig gewihlt war, folgt die Behauptung. |
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9.11 Satz:
Es seien (fn)nen und (gn)nen zwei monoton nichtfallende Folgen nichtnegativer Elementar-
funktionen. Gilt
sup f(w) =supgp(w) VweQ,
n n

dann st

sup/fndu—sup/gndu-

Beweis:
Gilt sup,, fr, = sup,, gn, dann ist fiir alle m € N

fm <supgn und Im < sup fr.
n n
Mit Hilfe von Satz 9.10 kann weiter gefolgert werden, dass gilt:

/fmduésup/gndu und /deﬂésup/fn dy

bzw.

sup / Jm dp < sup / gn dp und sup / gm dpp < sup / In du,

woraus sich die Behauptung unmittelbar ergibt. |

9.12 Definition (bestimmtes Integral):
FEs sei f eine nichtnegative messbare numerische Funktion und (fn)nen eine monoton nicht-
fallende Folge nichtnegativer Elementarfunktionen mit f = sup,, fn. Dann heifit die Zahl

/fdﬂr= lim /fndu=sup/fndu
Q Q nQ

das bestimmte Integral von f tiber Q. Man schreibt auch

[ran=[1du= [ 1) du) = [ sina)
Q Q Q

Die Definition 9.12 nutzt Satz 9.11 aus, wonach das Integral nicht von der speziellen Wahl
der Folge (fn)nen abhéngt.

9.13 Satz (Eigenschaften des Integrals):
Es seien f und g nichtnegative messbare Funktionen. Dann gilt:

a)/afd,u:oz/fd,u VaeR".

b) /(f+g)dﬂz/f dﬂ+/g dp.
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¢) f<g = /fdué/gdu-

d) /fd(,u+z/):/fdu+/fdz/.

Beweis:
Es seien (fy)nen und (gp)nen nichtnegative, monoton nichtfallende Elementarfunktionen mit
sup fn = f und sup g, = g.

n n

a) Essei @ € R*. Dann gilt:

/af dp = sup/afn dp nach Definition 9.12

= ozsup/fn dp mnach Satz 9.7 b)

= a/f du nach Definition 9.12.
b)
/(f +g)dp = / o+ gn) du nach Definition 9.12
= sup < frn du + In du) nach Satz 9.7 c)
([0 o)
- nhin J o i [ o
= /f dp + /g du nach Definition 9.12.
c)
f<g9g = fm<supgn VmeN
= /fm dp < sup/gn du ¥Vm e N nach Satz 9.10
= /fm du < /g du nach Definition 9.12
= sup/fmdu</gdu
— [rdus [gan
d)
/f dlpu+v) = sup/fn d(p+v) nach Definition 9.12
= Jim [ o dt )
= nan;O fn dp+ nlingo/fn dv  mnach Satz 9.7 ¢)
= /f du + /f dv nach Definition 9.12.

144



9.4. Das p—Integral allgemeiner messbarer numerischer Funktionen

9.14 Definition (integrierbar, integrabel, p-integrabel):
Es sei (0,8, 1) ein Mafraum und f: Q@ — RT U {oco} messbar. Die Funktion f heifit
integrierbar, p—integrabel oder kurz integrabel, wenn

/Qfdu<oo

gilt.

9.4 Das p—Integral allgemeiner messbarer numerischer Funk-
tionen

9.15 Definition (Positiv-Teil, Negativ-Teil):
Es sei f: Q — R eine numerische Funktion. Der Positiv-Teil f* bzw. Negativ-Teil f~ von
f ist definiert durch:

fH(w) == maz{f(w),0} und f(w) := —min{f(w),0}

fiir alle w € Q.

Folgerung:
a) Esist ft(w) = f(w), wenn f(w) >0 ist und f*(w) =0, wenn f(w) < 0 ist.

b) Esist f~(w) = —f(w), wenn f(w) < 0ist und f~(w) =0, wenn f(w) > 0 ist.
c) Esgilt f=ft—f".
d) Esgilt |[f|=f"+f".

9.16 Satz:

FEine numerische Funktion f ist genau dann messbar, wenn ihr Positiv— und ihr Negativ—Teil
messbar sind.

Beweis:
Nach Satz 8.13 f) sind mit f auch max(f,0) und min(f,0) messbar. Umgekehrt ist mit f+
und f~ auch f = f* — f~ messbar. [ |

9.17 Definition (quasiintegrabel, u—integrierbaQ:
Es sei (2,5, 1) ein Mapraum und f: Q — R eine F-B-messbare Funktion.

a) Ist /f+ dp < oo oder /f dp < 00, so nennt man f (u—)quasiintegrabel.
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b) Ist f quasiintegrabel, so ist das u—Integral von f definiert durch

/fdu:—/ﬁdu—/f dp.

c) [ heifit u—integrierbar, wenn sowohl /f+ dp < oo als auch /f_ dp < oo sind.

9.18 Satz:
Es sei f: Q0 — R eine messbare numerische Funktion, dann sind folgende Aussagen dquiva-
lent:

a) f ist u—integrierbar.
b) ft und f~ sind p—integrierbar.
c) Es gibt eine u—integrierbare Funktion g mit |f| < g.

d) |f] ist u—integrierbar.

Beweis:
Die Aquivalenz zwischen a) und b) folgt unmittelbar aus der Definition 9.17.

b)=— ¢)
Sind f* und f~ p-integrierbar, dann sind: f*, f~ und g := |f| = f* + f~ messbar
und es ist nach Satz 9.13

Jodu= [t v ryau= [ dus [ 5 du<oc

Somit ist auch g p—integrierbar und wegen |f| = g = f* + f~ folgt die Behauptung.

c)=— d)
Existiert eine p—integrierbare Funktion g mit |f| < g, so gilt aufgrund der Monotonie

des Integrals (Satz 9.13):
/Ifl duﬁ/gdﬂ-

Die Behauptung folgt nun aus der Annahme, dass [ g dp < .

d)= b)
Es sei nun |f| p—integrierbar. Es gilt: f* < |f| und f~ < |f|. AuBlerdem sind f*, f~
und |f| messbar und nichtnegativ. Damit wird

[rrans [iftdui<oe wd [5aus [ifl du<o
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9.19 Satz (Eigenschaften des Integrals): B
Es sei (2, F,p) ein Mafsraum und f,g: Q@ — R seien messbare numerische und p— und v-
integrierbare Funktionen. Dann gilt:

a) Fir alle « € R ist af p—integrierbar, und es gilt

/afdu:a/fdu.

b) Falls f + g definiert ist, so ist f + g p—integrierbar und es gilt:

/(f+9) du=/fdu+/gd#-

c) max(f,g) und min(f,qg) sind p—integrierbar.

) Aus £ <9 polgt [ fdn< [gan
¢) Es gilt‘/f du‘ < [111 du

f) Esgz'lt/fd(,u—i—zx)—/fdu—i-/fdu.

Beweis:
a) Es sei @ € R. Fiir @ > 0 ist (af)" = aft und (af)” = af . Fir a <0 ist (af)t =
la| f~ und (af)” = |a| f*. Alle diese Funktionen sind nichtnegativ und messbar. Die

u—Integrierbarkeit von f ist nach Satz 9.18 gleichwertig mit der p—Integrierbarkeit von
ST und f~, woraus auch die p—Integrierbarkeit von (af)™ und (af)~ folgt. Damit ist
aber auch af p—integrierbar. Weiter ist fiir a > 0

Jatan = [@ntau- [@n du = [artan- [ar au
a/f+du—a/fdu:a</f+du—/fd,u) :a/fd,u.

Im Fall @ < 0 gilt (af)™ = |a| - f~ und (af)” = |a| - f*. Aufgrund von Satz 9.13 ist

deshalb
/ozf+du: ]oz|/f_du bzw. /af_d,u: |oz|/f+d,u.
Q Q Q

Q

Damit wird

Jatan=tal| [5au=[rrauw|=a| [rrau- [ au)=a [san.
Q

Q Q Q Q Q
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b) Nach Satz 9.18 sind |f| und |g| integrierbar. Wegen |f + g| < |f| + |g| ist deshalb auch
f + g integrierbar. Aulerdem ist f+¢g = (f* +g¢7) — (f~ +g7), so dass gilt

[+ ae = [t egy - [ g de
= /f+du+/g+du—/f‘du—/g_du
= /f+du—/f_dﬂ+/g+du—/g_du
= /fdu—f—/gd,u,.

¢) Mit f und g sind auch |f| und |g| integrierbar (siehe Satz 9.18). Also ist auch |f| + |g|
p—integrierbar. Da aber

imax(f, g)| < |f]+ gl und imin(f, g)| < || + 9|

gilt, folgt die Behauptung jetzt unmittelbar aus Satz 9.18 c).

d) Aus f < g folgen die beiden Ungleichungen f* < gt und ¢~ < f~. Damit wird:

/f*duﬁ/fdu und /gduﬁffdu
und weiter

/fdMZ/f+dM—/fdﬂ§/9+dﬂ—/9dM=/9dM-

e) Es gilt:

fra = [ o] s |fr o] | o

= [rraus [rde = [ty ae = [1fl de

[rawew) = [ awen+ 5 dusn
= /f*du—l—/erdV—i—/fd,u—i-/de
= /fd,u—l—/fdy.
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9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

9.5 Erwartungswert und Varianz einer reellwertigen Zufalls-
variable

9.20 Definition (Erwartungswert):
Es seien (Q,§, P) ein Wahrscheinlichkeitsraum und X : Q — R eine Zufallsvariable. Ist X
P—integrierbar, dann heifft

Ep[X] = Q/X(w) dP(w) = /X dP

der Erwartungswert der Zufallsvariable X .

9.21 Beispiel:
Im Folgenden soll der Erwartungswert einiger Verteilungen berechnet werden:

e Poisson—Verteilung:
Es seien (€2, §, P) ein Wahrscheinlichkeitsraum und X : @ — R eine Zufallsvariable mit
Verteilungsfunktion

=] \;

Es folgt zunéchst

i b1 L%*J/\j . L%*J)\] .
J]= J=
| %] | | %2 )
() Mo !
jgo J =
L
= ALzl ke _
(L@J)!e Mot [BR] > |5

((%): VOJ :xl}%m = V;}J fiir n € N und k € Ny.)

k—1 k—2
{271 J>{ o J — 2"|(k—-1) <= k=j-2"41, je Ny.

Essoll [ X (w)dPp(w) = lim [ X, (w) dPr(w) berechnet werden, wobei Pr das durch F
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induzierte Ma$ auf (R, ) und X,, die in Satz 9.8 verwendeten Funktionen bezeichnen.

[xu@ars) = ,; e (|5t g)) + e Pe(inoo

_ 2171:2:(1{;—1) [F(éi—O) —F(k;nl —oﬂ

tn-(1—F(n—0))
RISt
= 50 >, (k=D Fye +n (1= F(n—0)
= (%)
2" |(k—1)
1 n—1 )\] \
= o j~2”f'e +n-(1—-F(n-0))
- J:
7=1
N7, Noa
= )\Z(]_l)!e +n I—Zﬁe
7j=1 7=0
n—1 ; n—1
ML Y
S D £ D)
|
——er —F0

¢ Exponentialverteilung:
Es seien (€2, §, P) ein Wahrscheinlichkeitsraum und X : © — R eine Zufallsvariable mit
Verteilungsfunktion
{1 —e M x>0

0, x < 0.
Essoll [ X (w)dPp(w) = lim [ X, (w) dPr(w) berechnet werden, wobei Pr das durch F
n—oo
induzierte Maf auf (R, ) und X,, die in Satz 9.8 verwendeten Funktionen bezeichnen.

n-2"

[x@aree) = S T re (|55 ) ) 40 Peno)

k=1
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9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

- SloE) o) ()

n n2"
+ (2" 1) F (5 ] tn-(1— F(n))
1"t 1 n2n
- 5 2 F(5)+ (o) F (5) 4
k=1
| w2l 1
— —Ak/2™ —/\ -2
=g X () () () e
k=1
n2" —1 1 "eX' s ek
= St 2 () +<”‘2n)
k=1
— (n—1>e Ay em AN
2n
;| nt . 1
= —A/2m =
= 2 (e ) oo
k=1
1 1= —A/2™\n2" 1 1
= _ (e ) o + . e—)\n
on 1— efA/2" on on
Folglich gilt:
L L 1 1—e™" 1 1
/X(w) dPp(w) = nhﬁrgo X (w)dPp(w) = T}LIIQlQ T v o + on €
~ i L1 —e
a nLH;OQT ' 1 — e A2"
Aus .
lim & =1
z—0 x
folgt
1—e N2 n
lim — S =1 bzw. lim M. (1—e M)y =,
Damit wird
X dPp = li X,dPp = li ! (1— —M)—l
F_nl—{go F_ni»nc}o 2”.(1_€*>‘/2n) ¢ - A

Rechteckverteilung auf [—1,1]:
Es seien (9, §, P) ein Wahrscheinlichkeitsraum und X :  — R eine Zufallsvariable mit
Verteilungsfunktion

0, z < —1
Flz)=q2, —1<a2<1
1, x> 1.

Die Darstellung

/ X (w) dPp(w / X (w) dPp(w / X~ (w) dPp(w)

151



Kapitel 9. Integration

legt nahe, Positiv— und Negativteil separat zu betrachten. X und X~ werden dabei
durch die Funktionen X, und X, wie in Satz 9.8 approximiert:

mit
_ k-1 k _
An = (XF) ' ({2”,2,)) und B, = (X7) " ([n, 0)).
1.) Positivteil: Fiir X ergeben sich:
k—1 k
An7k = |:2n, 2”) und Bn = [TL, OO)

Damit gilt:

[xi@are = S5 e ([E1 E)) v patn o)

=0 fiir n>1

k—
_ 1
T on+1
277.
1 1 27(2r—1)
= 9241 (k—1) = 22n+1 9
k=1
11 1
4 272 nooo 4
2.) Negativteil: Fiir X~ ergeben sich:
ko k-1
Ap g = <—2n,— o ] und B, := (—o0, —n].
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9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

Damit gilt:

k—1 ko k-1
l/X ) dPp(w) = Z:QRP%<PTW—QH>>+nHﬂFmp%D
~—_——
= =0 fiir n<—1
B on T\ | T Ton
k=1

2 k-1 Eook—1
o5 ()

=F(~ %5 ~0)~F(~ 5 —0)=0-0=0

e 2

- ;Hffk—n<;<—k;1+1>—;<—§,+0>

_ 1
T on+l
2TL
1 1 2n(2" —1
= —S(k-1) = 2 )
92n+1 922n+1 2
k=1
1 1 1

Damit ergibt sich insgesamt:
+ 1 1
X(w) dPp(w X" (w) dPp(w X (w) dPp(w) = 1 1= 0.

Fir die Praxis ist es wichtig, einfacher zu handhabende Verfahren zur Berechnung des Er-
wartungswertes einer reellwertigen Zufallsvariable zu haben. Der nachfolgende Satz zeigt,
dass sich der Erwartungswert einer reellwertigen Zufallsvariable als uneigentliches Riemann—
Integral aus der zugehorigen Verteilungsfunktion berechnen léisst. Aus dieser Darstellung folgt
insbesondere, dass der Erwartungswert nicht von der speziellen Gestalt der Zufallsvariable,
sondern nur von der speziellen Gestalt der Verteilungsfunktion abhéngt.

9.22 Satz:
Es bezeichne F' die Verteilungsfunktion von X beziiglich P. Ist X beziiglich P integrierbar, so
gilt:

? m-jﬂ@m
0 —00

Existiert umgekehrt jedes der beiden letzteren Integrale, so ist X P—integrierbar, wobei der
FErwartungswert wiederum durch diese Beziehung gegeben ist.
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Beweis:
Idee: Betrachte den Positiv— und Negativteil des Erwartungswertes

/XdP: /X+dP—/X—dP

und zeige

1. /XdP = | F(z)dz und

Zu 1.: Wir berechnen zunéchst die im Beweis von Satz 9.8 definierte Folge { X, } von nichtne-
gativen Elementarfunktionen mit X, , X~. Aufgrund von Satz 9.8 und der Beziehung

X (w)=—-X(w) fiir X(w) <0

kann

n2" E_1

Xy )= 3 D)+ I @) (= 12)

gewihlt werden, wobei

kE—1 k k—1 k

= < - _— = < —_ _—
Ak {w| o <X (w)<2n} {w\ o < X(w)<2n}
k

und

&
S
|

{win<X (w)<oo}={w|n<-X(w) < oo}
= {w|—-00<X(w)<—-n}

ist. Damit wird

k-1 k k-1
- = . _— L . — < —
/XndP ,;1 on P< 271<X_ 2n)—|—n P(—o0o < X < —n)
Z”Q"k—1 kook—1
pu— -P P J— p—
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9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

n-2"—1 n-2"—1 n - 2"
- -~ pl==_""")V_F(= . F(—
(P () r () e
1 1 2
= —(F|—-—— Fl——
(7 () 7 () +
n-2" -1 n-2"
Fl—m7m8— Fl - )
() ()
n2™m
- 1 F<_k>
n n
k=1

Da F' monoton nichtfallend ist, gilt auflerdem

0 n-2" Tam
1 k
/F(x)d:EZZn;F<—2n)Z / F(x) dx.
-n = —p— L
on

Durch Grenziibergang n — oo, erhélt man

n2m 0

1 k
X" dP =1 X, dP = lim — Fl— )= F . .
[ ap= i [ ap = g ir () = [F@ e 09

—0o0

Zu 2.: Wir betrachten eine Folge { X;'} von nichtnegativen Elementarfunktionen mit X,
X7 und wie im Beweis von Satz 9.8 setzen wir:

n27L
k—1
X:(UJ) ::Z on .IAn,k(w)—I_n'IBn(w) (n=12,...),
k=1
wobei
k-1 n k n
App =<w] on <X (w)<2—n und B, ={w|n< X" (w) < oo}
sind. Damit wird
n2m
k—1 k—1 k
Xtdp = - P, — - P
fxia = EE2n () o i
k-1 k k-1
= o [ (2n >F< o 0)]+n-(1F(n0))
k=1
L2

n2m
k—1
- (20
k=1
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Da 1 — F(x) monoton nichtwachsend ist, gilt weiter

n+1/2"

[ (o (E o)) - [ / _
0/(1 F(x)) d > ; <1 F <2n 0)> /Xn dp > A (1— F(x)) dz.
Durch den Grenziibergang n — oo erhélt man
/X+ dP = lim [ X;5 dP = lim1§<I—F<k—0>):7(1—F(q:)) dz.
n—00 " n—oo 2N £~ 2n )

-3 -2 -1 1 2 3

Abbildung 9.2: Approximation der Verteilungsfunktion der Standardnormalverteilung (dicke
Linie) durch Treppenfunktionen; hier ist X,, fiir n = 4 dargestellt.

(Siehe auch Mathematica-Notebook zu dieser Approximation.)

Die Umkehrung ist eine unmittelbare Konsequenz der Beziehungen (9.3) und (9.4). [

9.23 Beispiel:
Im Folgenden soll der Erwartungswert einiger Verteilungen nach dem Verfahren aus 9.22
berechnet werden:

e Poisson—Verteilung:
Es seien (Q,§, P) ein Wahrscheinlichkeitsraum und X : @ — R eine Zufallsvariable mit
Verteilungsfunktion
lz]
Z Af:e*)‘ firz >0
i=0 7
0 fiir x < 0.

F(z) =
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9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

Dann gilt:
o0 0 00 =] )\j
Ep[X] = / (1—F(z)) daz—/ F(z)dz = / 1=) =ede
0 —00 0 j=0 J:
| ——
=0
x n ;
bY,
= X (1= 5 Pl t )
n=0 j=0 J: 1
Betrachte zunéchst die endliche Summe:
N noo\a 0 . 1\ N
Moy DY DY Moy
R D B T N I
n=0 =0 =0 =0 §=0
N . )\j N
= N+1—Z(N+1—])ﬁe
=0
N N <
N N
SRLERI] R SE-2) S S
— j! — (j—1)!
J= J=
N N—1 .,
_ N+1 N Y Moy -
= — |e _z;! +)\Z%j!e —— 0+ 1=
J= Jj=

Exponentialverteilung:
Es seien (€2, §, P) ein Wahrscheinlichkeitsraum und X : @ — R eine Zufallsvariable mit

Verteilungsfunktion
Pla) = l—e ™ fiirz>0
0 fir z < 0.

Dann gilt:

Rechteckverteilung auf [—1, 1]:
Es seien (€2, §, P) ein Wahrscheinlichkeitsraum und X : @ — R eine Zufallsvariable mit
Verteilungsfunktion

0, r< -1
Flz)=q%, —1<2<1
1, x> 1.
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Dann folgt:

00 0
Ep[X] = /0 (l—F(az))dx—/ F(x) dx

—0o0

_ /Ol(l—F(x)) dx—i—/loo(l—F(x)) dx—/o Plz) da

In allen Féllen erkennt man die Ubereinstimmung mit den Ergebnissen aus Beispiel 9.21 und
die Effizienz der alternativen Vorgehensweise.

Bereits in der Vorbemerkung zu Kapitel 9 wurde nahegelegt, den Erwartungswert einer Zu-
fallsvariable X mit einer Dichte f(x) als

E[X] = /xf(x) dx
festzulegen. Fiir den speziellen Fall der Exponentialverteilung wurde die Kompatibilitdt dieses
Ansatzes mit der allgemeinen Definition des Erwartungswertes aus Satz 9.20 bereits tiberpriift.

Offensichtlich handelt es sich hier um ein allgemeingiiltiges Resultat, wie der nachfolgende
Satz bestétigt.

9.24 Satz:
Wenn in der Situation von Satz 9.22 die Verteilungsfunktion F' stetig ist und eine Dichte f
hat, so ist X genau dann P—integrierbar, wenn

+oo
/ |z| f(x) dz < 0o

gilt. In diesem Fall ist

Ep [X] = /xf(:v) dx.

Beweis:
Fiir den Beweis wird wieder die Beziehung

EP[X]:/X+dP—/XdP
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9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

“+oo

ausgenutzt. Zunéchst wird der Positivteil bearbeitet, d.h. es wird / XtdpP = / xf(x) dx

gezeigt.

Fir X;t, n=1,2,..
+o00

1. /X;[dPS /xf(a:) dx und
0
+o0

2. /X:dPZ /mf(x) da:—QLn
0

0

. wie im Beweis von Satz 9.22 werden dazu

gezeigt. Damit wird / X7 dP von oben und unten eingeschlossen und es ergibt sich

—+o00

n—oo

/X+dP: lim [ X dP= /xf(x) de.

Zu 1.: Esgilt firn=1,2,...:

/X,de =

n2n k/2" °

- Zk;nl f(x) d:v—l—n/f(x) dx
k=1 (k—1)/2n n
W2 -

= Z / k2n fx) d1:+/nf(:c) dx
=1y /20 n
non F/2" o0

< Z xzf(x) da:+/xf(x) dx
F=1(k-1)/2n n

Zu 2.: Andererseits ist fir n =1,2,.. .

nomn k/2m
/ X+ dpP = Z /
F=L(p—1)/2n
n2" k/2®
F=1(k-1)/2n

k—1 o
o fx) dx—l—n/n f(z) dx
n2" k/2® k 1
xf(x) dm—z / (m— Q_n )f(:c) dx
F=1(k-1)/2n
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—i—n/f(x) dx
>0
n n2" k/2™ E—1
> /0 xf(x) dz:kZ:l/(k_l)/Zn <x o )f(x) dx.

Da aber fiir z € [E51, &) und fiir alle n und alle k gilt: z — (k — 1)/2" < 1/2", kann
gefolgert werden

! o K2
/X;r dpP > /:Uf(a:) dw—%z / f(z) dx
0 k=11 _1)/2n
= /:Uf(ﬂ:) d$—21n/f(:v) dx
0 0
<1
[ 1
> zf(z)de——-1 (n=12,...)
o

Entsprechend wird nun der Negativteil bearbeitet, d.h. es wird /X_ dP = /acf(:p) dx

—0o0

gezeigt. Es ist

n2™

) k—1 k-1 k
/Xn dP = ; on Pr <<2n,2n]> +n - Pp((—00,—n])
2 —(k—1)/2" —n
— Z o / f(x) da:+n/f(x) dx
k=1 —k/2n —00
on —(k—l)/Q"k X —n
= Z / 5 f(x) dx—i—/nf(x) dx
k=1 —k/2n —00
gn —(k=1)/2" —n
<Y [ slf@dos [ el s ds
k=1 —k/2n —00
0 0
= [lls@ == [af@ s n=12.)
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und andererseits

—(k—1)/2"

/X; dP = Z / k2_nlf(x) d:c—/_oonf(x) dx
k=1 _k/2n
on —(k=1)/2" on —(k=1)/2"
-1
=X [ esway (1ol = 551 ) £ as
k=1 ) on k=1t /on

+n /n f(z) dz

>0
—(k—1)/2™

—(k—1)/2™

v
N
8
=
=
8
|
M
M
\
~
&
&

k/2n k/2n
0 0
1 1
> [lalf@ do-go1=- [oi@ -5 =12,
also folgt
0
/X_ dP = lim [ X, dP:—/.’Ef(:E) dx
[ ]
9.25 Satz (Transformationssatz fiir Erwartungswerte):
Es sei X eine reelle Zufallsvariable tiber (Q,§,P) mit Werten in (X,B) (R,®B) und

g: (X,8) — (R,B) eine messbare Abbildung, derart dass g > 0 oder g(X) als Funktion
von w P—integrierbar ist. Dann gilt:

Elg(X)] = /Q 9(X ())dP(w) = /}R 9(2)dPx(z) kurz Elg(X)] = / g(X) dP = / g dPx,

wobei Px das Bildmaf$ von P bzgl. X sei.

Beweis:

Der Beweis folgt dem Prinzip der ,,Algebraischen Induktion”, indem die Aussage sukzessive
fiir Indikatorfunktionen (1), Elementarfunktionen (2), nichtnegative messbare Funktionen (3)
und schlieflich fiir allgemeine messbare Funktionen (4) bewiesen wird, so wie wir auch bei
der Einfithrung des p-Integrals vorgegangen sind.

(1): Fiir die Aussage von Satz 9.25 heifit dies konkret:
Betrachte Abbildungen g der Form g = I4 mit A € 8. Offensichtlich gilt:

9(X (W) = LX) = { . §Ezgzj - { ) i;ﬁ_igﬁ; = Ix-1()(@).

161




Kapitel 9. Integration

Mit Hilfe von Satz 9.7 folgt deshalb:

Eplg(X)] = Epllx-1(4)] = P(X~'(4)) = Px(A) = Ep, [Ia] = Ep,g].

(2): Es sei nun g eine Elementarfunktion mit den endlich vielen Werten «y, ..., ap, n € N.
Aufgrund von Satz 9.2 besitzt g eine Normaldarstellung der Form

n
Z a’iIAia
i=1

mit A; € B fiir i = 1,...,n. Deshalb ldsst sich schreiben

zn:ailxl(Ai)] ZaZEp Ix-1(a;)] ZaZEpX [14,]

i=1 i=1

Z aiIAi] = Epy [g]
=1

Eplg(X)] = Ep

(3): Fiir ¢ > 0 existiert aufgrund von Satz 9.8 eine monoton nichtfallende Folge g, von
nichtnegativen Elementarfunktionen mit g = sup g,
n

Satz 9.10

Eplg(X)] = EP[Sglpgn(X)] = SngP[gn(X)] = SngPX[gn]

= EPX[Supgn] = EPx[g]
n

(4): Allgemeine integrierbare messbare Funktionen behandelt man, indem man wieder ihren
Positiv— und Negativteil betrachtet:

g=g" -9 = (goX)+:g+oX und (go X) =g oX.

Folglich gilt:

Ep[g(X)] = /Q (g(X))* dP - / (9(X))™ dP = /Q g (X)dP — / 4~ (X)dP

Q Q

:/g+dpx—/gdPX:/gdpx.
R R R

9.26 Bemerkung:
Indem man fiir g die identische Abbildung g: x — x betrachtet, l4sst sich allgemein schreiben:

/X ) dP(w /deX() EZxde()

162



9.5. Erwartungswert und Varianz einer reellwertigen Zufallsvariable

9.27 Satz (Erwartungswert und Riemann—Integral):

Es sei X eine stetige Zufallsvariable iber (Q,§, P) mit der Dichte f und es sei g: (R,B) —
(R,B) eine messbare Abbildung mit der FEigenschaft, dass |g| - f Lebesgue—integrierbar ist.
Dann ist g(X) P—integrierbar mit

(Siehe auch Lebensdaten von Lebesque und Riemann im Anhang D.)

Beweis:

Ubung. |

Aufgrund der Sdtze 9.22, 9.24 und 9.25 stehen unterschiedliche Methoden zur Berechnung
des Erwartungswertes einer Zufallsgrofie zur Auswahl. Diese Moglichkeiten sollen an einem
Beispiel veranschaulicht werden.

9.28 Beispiel:
Es sei X = R(0,2) und g(z) := x2. Gesucht ist Ep[X?] = Ep[g(X)]. Die Rechteckverteilung
besitzt die Dichte
B 1/2 |, = €(0,2)
e = {0 IR0

und die Verteilungsfunktion

0 ,x2<0
F(z) = z/2 ,0<x<2
1 ,2>2

1. Moglichkeit: Aufgrund von Satz 9.27 gilt:

400 2
1 1 1,4° 18 4
E X2 — 2 dr = / 2'*d — .23 - _ .=
P[]/wf(x)w Tt 72373
—00 0
2. Méglichkeit: Wir setzen Y = X?2. Es gilt
~ 1
Fy)=P(Y <y)=P(X* <y) = P(X <) = 5vy,  0<y<d
Die Anwendung von Satz 9.22 liefert dann
00 4 4
~ 1 1 32
Ep [X?] = 1-F — 1— = — 4.9
P [X7] /( (v) dy /< 2\/§> dy 2 372
0 0 0
1 1/2
R SR
2 3/2 3 3
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3. Moglichkeit: Die Dichte von Y lautet:

1
~ — ,0<y<4
fly) = 4/y
0 , sonst
Damit wird
7 ro 3 1 2 4y
Ep[X? = [yf)dy= [ y——dy= | ~Vydy= ~-/y3| =-.
p[]/yf(y)y/yllﬂy 4\/§y43y03
0 0 0

9.29 Definition (Varianz):
Es sei (Q,5, P) ein Wahrscheinlichkeitsraum und X : Q@ — R eine Zufallsgrife, fir die
sowohl Ep [X] als auch Ep[(X — E[X])?] existiert. Dann heift

Var[X] := Ep [(X — E[X])?]
die Varianz von X.

Wie im diskreten Fall beweist man

9.30 Satz:
Es sei (Q,§, P) ein Wahrscheinlichkeitsraum und X : Q@ — R eine Zufallsgriofe, fir die
Ep [X?] existiert. Dann ezistiert auch Ep[X] und es gilt:

a) Var[X] = Ep [X?] — (Ep[X])? (Verschiebungssatz).
b) Var[aX +b] = a® - Var[X].

Beweis:
Die Existenz von Ep [X] folgt aus der Abschiitzung |X| < max(1, X?) und Satz 9.18c. Die
weiteren Schritte sind identisch mit dem Beweis von Satz 2.25. [ |

9.31 Beispiel:
Es sei X = Exp()), dann gilt:

o [e.e]

Ep[X] = O/xf(z:) de = O/:me—” de = %
Ep [X?] = {OP(X2>:E) da : O/P(X>\/5) dx = 0/(1—1?(\/5)) da
= O/e—WﬂE dr = 20/6_)‘ttdt = %

Damit ergibt sich:

2 1 1
peiabeiivel

Var[X] = E[X?] - (E[X])® =
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9.32 Bemerkung:
Neben dem Erwartungswert und der Varianz einer Zufallsvariablen werden manchmal noch
weitere Kennzahlen zur Charakterisierung einer Verteilungsfunktion herangezogen:

Die Grofe
o := 4/ Var[X],

heifit Standardabweichung oder Streuung von X. Im Falle Ep [X] # 0 nennt man den Quo-
tienten

Var[X]
Ep [X]

den Variationskoeffizienten von X. Beide Kennzahlen charakterisieren — ebenso wie die Va-
rianz — die mittlere Abweichung der Zufallsgrofie von ihrem Erwartungswert.

Andere Eigenschaften des Verteilungsgesetzes kann man mit Hilfe der sogenannten

hoheren Momente beschreiben:

Ep |X*|, Bp|IXI*|, Ep|(X ~EIX)"|, Ep[IX -EIX]F] (keN).

Sie heiflen der obigen Reihenfolge nach das k—te Moment, das k—te absolute Moment, das
k—te zentrale Moment und das k—te zentrale absolute Moment von X. Das zweite zentrale
Moment entspricht der Varianz. Den Quotienten

Ep [(X - E[X])*]
Var[X] 2

bezeichnet man als die Schiefe von X.

linksschief rechtsschief

f®) f(t)

Diese Kennzahl charakterisiert Abweichungen von der Symmetrie des Verteilungsgesetzes von
X. Ist X symmetrisch verteilt zu einem Punkt « € R, wie zum Beispiel jede normalverteilte
Zufallsvariable, so ist die Schiefe gleich Null, wiahrend Zufallsvariablen X mit Dichtefunktio-
nen der Form wie in der obenstehenden Abbildung eine positive bzw. eine negative Schiefe
besitzen.

9.33 Bemerkung:
Sofern keine Verwechslungen mdoglich sind, wird auch anstelle von Ep[X] kurz E[X]| geschrie-
ben.

9.6 Tabelle mit Kenngrof3en verschiedener Verteilungen

Zum Abschluss dieses Kapitels soll noch eine tabellarische Ubrsicht iiber die KenngroBen der
bisher behandelten kontinuerilichen Verteilungen gegeben werden.
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Rechteckverteilung (R(a,b), a < b)

T
Dichte f(z) = { ba“ : i ; {Z: Z}’
0, x<a,
Verteilung F(z):=9 =5, a<z <D,
1 , z>b
Erwartungswert E[X] = ‘IT‘H’
Varianz Var[X]| = (b—a)*

. Ae™™ x>0,
Dichte f(x) { 0 zeo.

. l—e ™, >0,
Verteilung F(z) = { 0 220
Erwartungswert E[X] = %

Varianz Var[X] = %
Weibull-Verteilung (), 5 > 0)
Dichte fla) = { AAa e x>0

0 , <0

_ —\zP
Verteilung F(z) :{ 1 % | iig
_ AU (1
Erwartungswert E[X]=25-T (3)
. A—2/8 2 1 1 2

Varianz Var[X] = 25 <2p (B) -1 (F (5)) )

Dichte f(x) = %6*7
xr
Verteilung F(z):= [ ﬁedet
—o0
Erwartungswert E[X] =
Varianz Var[X] =

2=\ 2
Dichte @)= Lem3(55)
z — 2
Verteilung F(z):= [ = 127ref%(%) dt = ¢ (=4
— 00
Erwartungswert EX]=p
Varianz Var[X] = o?

Logarithmische Normalverteilung (¢ € R, 0 > 0)

1__—(log(x)—p)?/20?
Dichte f(z) =14 o= 57 C , >0
0 , <0
i = log(z)—
Verteilung F(z):=® (w)
Erwartungswert E[X] = ek ta?/2
Varianz Var[X] = c2nt207 _ 2uto’
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Cauchy—Verteilung (A > 0, 4 € R)
Dichte flz) =2 W

z—p1)?
. T
Verteilung F(z):= [T f(t)dt
Erwartungswert EX]=p
Varianz existiert nicht
Gammaverteilung (Gamma(b,p), b,p € R™)
P p—1_—bx >0
Dichte f(z) = AOESEES
0 , <0
. X
Verteilung F(z):= [T f(t)dt
Erwartungswert | E[X] =%
Varianz Var[X] = /5
Die y*—Verteilung (Gamma(%,2), n = N) ]
Az leT2 | >0
Dichte flx) = 227(35)
0 , <0

Verteilung F(z):= [*__f(t)dt
Erwartungswert | E[X]=n
Varianz Var[X] = 2n

_br  on—1_-bx
Dichte f(z) = % € , © >0,
0 , <0
n—1 k
_ bz, (b$) >
Verteilung F(z) := l—e kz_o ot 0,
0 , ¢ <0.

Erwartungswert E[X] =
Varianz Var[X

Betaverteilung (Beta(p, q)

%
) .
Dichte flx) = { w(x —a)P Hb—2)', x€(a,b)

0 , = ¢ (a,b)
Verteilung F(z) = ffoo f(t) dt
Erwartungswert E[X] = %
Varianz Var[X]| = ((a#%q
p+4¢)°(1+p+q)

(Siehe auch Mathematica-Notebook zu den Verteilungen.)

Eine umfangreiche Sammlung von Informationen zu den Verteilungen aus diesem Abschnitt
und vielen weiteren Verteilungen findet sich unter www.xycoon. com.

9.7 Weitere Hilfsmittel aus der Maf3— und Integrationstheorie

In diesem Abschnitt geht es zunichst um fast iiberall bestehende Eigenschaften.

9.34 Definition (u—Nullmenge):
Es sei (2, F, p) ein MafSraum. Eine Teilmenge N C Q heifit p—Nullmenge, wenn N € § und
u(N) =0 ist.
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9.35 Definition (pu—fast—iiberall):
Man sagt, die Aussage P iiber Elemente von Q ist p—fast—iberall (auf Q) wahr, wenn es eine
p—Nullmenge N C Q gibt, so dass P fiir alle w € N = Q\N wahr ist.

9.36 Satz:
Es sei (2,8, 1) ein Mafraum und f: Q — R™T sei integrierbar. Es ist genau dann fQ fdu=0,
wenn f =0 fi..

Beweis:
1. Es sei [ fdu = 0: Wegen der Messbarkeit von f ist T'(f) = {w | f(w) > 0} € § und fiir
n=1,23,...sei A, ={w|flw)>1} €F Esgilt A, /T(f). Nungilt f > 1.1,,
und nach Voraussetzung 0 = [ fdu > [ %IAnd,u = %/L(An) fiir alle n. Damit ist auch

" ( U An> — W(T(f)) =0, d.h. es ist f =0 L.
n=1

2. Es sei jetzt f = 0 f.i.: Fiir die Folge von Elementarfunktionen f, = nlp)(w) gilt
[ fndp = 0 fiir alle n € N. Der Grenzwert f := lim f, ist eine nichtnegative messbare
n—oo

Funktion, fir die f < f' gilt. Dann ist nach der Definition und wegen der Monotonie
des Integrals [ fdu < [ fdu =0.
|

9.37 Satz:
Es sei (2, F, p) ein Mafsraum und f,g: Q — R seien messbar. Ist f p—integrierbar und f = g
f-i., dann ist auch g p—integrierbar und es gilt

!fdu=ﬂ/gdu~

Beweis:

Wir setzen h := f — g, dann ist h messbar und h = 0 f.ii. Damit ist auch h™ = h~ = 0 f.iL.
Somit ist dann [ htdp = [h™dp =0, also [ fTdu = [gTdp und [ f~du = [ g~ du. Daher
ist g integrabel und [ fdu = [ gdp. [ |

9.38 Definition (Integral):
Es sei (Q,§, 1) ein MafSraum und f: Q — R quasiintegrabel. Fir A € § nennt man

A/fdﬂ:ﬂ/f-IAdu

das Integral von f iber A.

Im Folgenden sollen einige Eigenschaften des Integrals genauer betrachtet werden.

9.39 Satz:
Es sei (Q,F, 1) ein Mafraum und f: Q — R integrabel. Ist f > 0 fii. auf A € §, dann gilt:

/fd,u:O < p(A)=0.
A
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Beweis:

Esist f.ii. [4-f > Oundessei [ Iaf dp = 0und aufgrund von Satz 9.36 ist daher 14 f = 0 f.ii..
Folglich ist 4 = 0 f.ii. und mithin ist A eine y—Nullmenge. Umgekehrt folgt aus u(A) = 0,
dass f - T4 =0 f.ii.. Fiir diesen Fall besagt Satz 9.36, dass [, fladu= [, fdu=0. [ |

Selbstverstandlich gilt 9.39 auch fiir f < 0 f.ii.. Der Beweis verlauft analog.

9.40 Satz:
Es sei (Q,§, 1) ein MafSraum und f: Q — R eine integrierbare Funktion mit fA fdpu =0 fir
alle A € §, dann ist f =0 f.i..

Beweis:

Es seien P := {w | f(w) > 0} und N := {w | f(w) < 0}. Wegen [ fdp =0 und f(w) > 0 f.ii.
auf P folgt aus 9.39, dass u(P) = 0 gilt. Analog schlieit man auf p(N) = 0. Daher ist der
Tréger von f: {w | f(w) # 0} = PUN eine Nullmenge, also f = 0 f.ii., was zu zeigen war.ll

9.41 Satz:
Es sei (Q,§, 1) ein Maffraum und f,g: Q@ — R seien integrierbare Funktionen. Gilt fir alle
Aeg
/ fdp = / gdp,
A A
so ist f =g fi.
Beweis:

Nach Satz 9.40 folgt aus [(f —g)dp=0V A€ F: f — g =0 L.ii., womit alles gezeigt ist. W
A

9.42 Satz (Satz von der monotonen Konvergenz): L
Es sei (Q,§, 1) ein Mafraum und (f,)nen eine Folge messbarer Funktionen f,: Q — RT mit
fn < fas1 fiir alle n € N. Dann gilt:

(i) / lim frdp = / sup fndp = sup / fadp = lim / fndp

neN nelN JQ

(ii) f := sup f, ist integrierbar oder sup/ fn dp < oco.
neN nelN JQ

Beweis:
Wegen der Monotonie von (fn)nen und ([ fn)nen sind die Suprema gleich den Limiten. Es
sel f :=sup,cy fn- Dann zeigt f,, < f sofort [ f, du < [ fdp und somit

SUP/fndMS/fdﬂ-
neN

Ist umgekehrt (Apm)men eine monoton nichtfallende Folge von Elementarfunktionen mit
hnm — fn, so gilt aufgrund von Satz 9.10

[ o< sup [ fuda.
nelN

Alles weitere folgt mit Satz 9.11. |
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Aus Satz 9.42 ergibt sich

9.43 Satz:
Es sei (2,5, 1) ein Wahrscheinlichkeitsraum und (gn)nen eine Folge messbarer Funktionen

gn: 2 — R*. Dann gilt:
/Zgn d,u Z/.gn dﬂ

nlg

Beweis:
Man wende Satz 9.42 an mit f,, := Y ;_, gi fiir alle n € N und f := supy, gi. |

9.44 Satz (Lemma von Fatou): L
Es sei (Q,§,p) ein Mafiraum und (fn)nen eine Folge messbarer Funktionen f,: Q — Rt.
Dann gilt

/lim inf f, du < lim inf/fn du .
Q Q

Beweis:
Fiir jedes w € Q sei gp(w) = ]ir>1f fr(w). Dann ist g, > 0, messbar und die Folge (g, )nen ist
>n

monoton nichtfallend mit

lim g,(w) = sup gn(w) = liminf f,(w).

Da fiir alle n gilt: f,, > gy, ldsst sich mit Hilfe von Satz 9.42 folgern, dass

hmmf/fn du > hm /gn du = / lim g, du = /liminffn dp .

9.45 Satz (Satz von der majorisierten Konvergenz):

Es sei (Q,§, 1) ein Mafraum und (f,)nen eine Folge integrierbarer Funktionen fp: Q — R,
die f.i. gegen eine messbare Funktion f: Q) — R konvergiert. Existiert eine integrierbare
Funktion g: Q — R mit | f,| < g f.i. fir alle n € N, dann ist auch [ integrierbar und es gilt:

/fd,u: lim /fndu.
Beweis:

0O.B.d.A. kann angenommen werden, dass f, > 0,V n € Nund f > 0. Es sei jetzt NV € § eine
Nullmenge mit

lim fo(w) = flw) VweQ\N,
)] <glw) VweQ\N.

Ersetzt man nun f, durch f,, - (1 — Iy) und f durch f - (1 — Iy), lésst sich deshalb N = &
annehmen. Mit dem Lemma von Fatou (Satz 9.44) folgt dann, dass

[ #an < timint [ ,du< [ gan
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und

/gdu—/fdu—/(g—f)duS1inlgiogf/(g—fn)du—/gdﬂ—limsup/fndw
Folglich gilt

limsup/fndug/fdugliminf/fnduglimsup/fnd,u,,

n—oo n—oo

was zu zeigen war. [ |
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Kapitel 10

Zuverlassigkeit

Die Zuverlassigkeitstheorie stellt eine Anwendung der Wahrscheinlichkeitstheorie dar. Gegen-
stand der Zuverldssigkeitstheorie ist die Zuverldssigkeit technischer Systeme, die gemessen,
analysiert und optimiert werden soll. Analyse und Optimierung werden anhand bestimmter
Kenngrofien wie Lebensdauerverteilung und Ausfallrate vorgenommen.

Schliisselworter: Lebensdauerverteilung, Zuverléssigkeitsfunktion, Ausfallrate, Se-
rienschaltung, Parallelschaltung, Briickenschaltung, Operationspfade, dynamische
Optimierung, Zustand, Entscheidungsfolge, Bellmansches Optimalitétsprinzip, Bell-
mansche Funktionalgleichung, Aufteilungsproblem
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10.1 Einfiihrung und Grundbegriffe
In der Zuverlissigkeitstheorie werden folgende Aufgabenstellungen betrachtet:

e Modellierung des Ausfallverhaltens und der Abnutzung von Systemen mit Hilfe stocha-
stischer Modelle. (Stichworter: Lebensdauerverteilungen, Zuverlissigkeit)

e Untersuchung des Zusammenhangs zwischen Zuverlissigkeitskenngrofien eines Systems
und seiner Subsysteme. (Stichworter: Systemfunktionen, monotone Systeme)

e Untersuchung und Optimierung von Mafinahmen zur Erhaltung bzw. Wiederherstel-
lung der Arbeitsfihigkeit von Systemen, einschliellich der Interdependenzen zwischen
Mensch und Maschine. (Stichworter: Instandsetzungs— bzw. Instandhaltungsstrategien,
repair—-men—problem)

e Schitzung und Priifung der Zuverlissigkeitskenngréfien durch Anwendung mathema-
tisch—statistischer Verfahren sowie Entwicklung spezifischer Schétz— und Priifverfahren.
(Stichwort: Lebensdaueranalyse)

In dieser Vorlesung soll lediglich ein Einblick in die Zuverléssigkeitstheorie gegeben werden.
Daher beschriankt sich dieses Kapitel auf den ersten der oben genannten Bereiche.

10.1 Definition (Lebensdauer-, Uberlebens- und Zuverlissigkeitsfunktion):

Als Lebensdauer einer Maschine oder Komponente wird die Zeit zwischen Inbetriebnahme und
Ausfall bezeichnet. Sie wird durch eine nichtnegative Zufallsgrofie T beschrieben.

Die Lebensdauerfunktion sei die Verteilungsfunktion der Lebensdauer T, d.h.

F(t):=P(T<t), teR".

Mit Hilfe der Lebensdauerfunktion lisst sich die Uberlebens- bzw. Zuverlissigkeitsfunktion

F(t) der Komponente als
F(t):=1-F({t)=P(T >t), tcRT,
definieren.

Im Weiteren sei F' eine stetige Verteilungsfunktion und f die dazugehorige Dichte.

10.2 Bemerkung (mittlere Lebensdauer, Varianz der Lebensdauer):
Typische Kenngrolen der Lebensdauerfunktion sind die mittlere Lebensdauer E[T] und die
Varianz der Lebensdauer Var[T].

10.3 Definition (Ausfallrate):
Es sei F' eine stetige Verteilungsfunktion. Dann heifst

1
a(t) ::hli%l+EP(t<T§t+h|T>t)

die Ausfallrate eines Bauteils mit der Lebensdauer T.
Ah - a(t) ist die Wahrscheinlichkeit dafir, dass eine Komponente nach Erreichen des Le-
bensalters t innerhalb der Zeitspanne Ah ausfdllt.
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10.4 Satz:
Es sei a(t) die Ausfallrate eines Bauteils mit stetiger Lebensdauerverteilung. Dann gilt fiir die
Zuverldssigkeitsfunktion:

t
F(t) =exp —/a(u) du |, teRT.
0

Beweis:
Es gilt:
Pit<T <t+h) F({t+h)—F()

< = —
Pt<T<t+h|T>t) P> 1) 1= F )

Somit folgt:

1 F(t+h)—F(t) F(t+h) — F(t) 1

o) = Mmoo =S —pp h TZFQ)
d 1 _f®)

teRT,

afYV 1T FEe T o Fwy

bzw. 1) J
t)=————~=——1In(1—-F(t teRT.
Diese Differentialgleichung ldsst sich durch Integration lésen:

t

In(1 — F(u))’ =— /Ota(u) du + c,

0

was gleichbedeutend ist mit

1—-F(t)=c  exp <—/Ota(u) du), teRT.

Die Bestimmung der Konstanten ¢’ erfolgt mit Hilfe der Anfangsbedingung F(0) := 0, die
¢ =1 und damit insgesamt

F(t)=1—F(t) = exp —/a(u)du , teRT,
0

ergibt. |

Neben der Ausfallrate ist die bedingte Restlebensdauer, d.h. die Lebensdauerverteilung unter
der Bedingung, dass das Bauteil bereits bis zum Zeitpunkt ¢y iiberlebt hat, von Interesse.

10.5 Definition (Bedingte Uberlebenswahrscheinlichkeit, bedingte Restlebensdauer):
Es set

— F(t+ty) 1—F(t+tg)
Fi (t) = P(T >t +to|T > ty) = — = ,
die bedingte Uberlebenswahrscheinlichkeit ab dem Zeitpunkt to € RY. Entsprechend wird die
bedingte Restlebensdauer ab dem Zeitpunkt to € RT, d.h. die Verteilung der Restlebensdauer

teR",
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unter der Annahme, dass das Bauteil bereits bis zum Zeitpunkt to € R™ iiberlebt hat, definiert

als
F(t + to)

——° teR".
F(to)

Fi(t) :=1—F, (t) = P(T <t+to|T > ty) =

Die bedingte Uberlebenswahrscheinlichkeit Fy,(t) ldsst sich ebenfalls durch die Ausfallrate

a(t) ausdriicken:
t

Fy,(t) = exp —/a(u+to)du , teRT.
0

Damit lassen sich folgende Eigenschaften formulieren:

e Die Ausfallrate a(t) ist genau dann eine monoton wachsende Funktion, wenn fiir je-
des feste t die bedingte Uberlebenswahrscheinlichkeit F'y, () eine fallende Funktion des
erreichten Lebensalters ist.

e Die Ausfallrate a(t) ist genau dann eine monoton fallende Funktion, wenn fiir jedes
feste t die bedingte Uberlebenswahrscheinlichkeit F%,(¢) eine wachsende Funktion des
erreichten Lebensalters ist.

Klassen von Lebensdauerverteilungen

Parametrische Klassen

Im giinstigsten Fall kann die Lebensdauer mit einer bekannten Verteilung beschrieben werden.
In Kapitel 7.3 wurden bereits die Exponentialverteilung, ihre Verallgemeinerung, die Weibull-
verteilung, sowie die logarithmische Normalverteilung als Kandidaten zur Modellierung von
Lebensdauern genannt. Nachstehende Tabelle stellt die im vorigen Abschnitt definierten Be-
griffe fiir diese Verteilungen zusammen:

Es gilt jeweils fiir alle t € RT:

Exponentialverteilung | Weibull-Verteilung | Log-Normalverteilung
Verteilungsfunktion F(t) =
1—e ™ a>0 l—e_o‘tﬁ, a,3>0 @(%)
Dichte f(t) =
ae—at aBth—le—ot’ T\l/ge—(log(t)—u)Q/%Z
Zuverlissigkeitsfunktion F(t) = 1 — F(t) =
oot o—ot? 1— & (log(g)—u>
Mittlere Lebensdauer E[T] =
: L o
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Exponentialverteilung | Weibull-Verteilung | Log-Normalverteilung
Varianz der Lebensdauer Var[T] =
1 L(2/8+1)—(D(1/8+1))? 62,u+20'2 _ 62,u+<72
a? (al/P)2
Ausfallrate a(t) = 1fgzt) =

e—at _ 1_—(log(t)—p)?/20°

aee—at =« O‘ﬁtﬁ ! tJ?_@(log(t)fu)
Bedingte Uberlebenswahrscheinlichkeit Fy, (t) =
log(t+tg)—p

1—(1—e—(tHt0)) o e—alto+t)+aty 1_‘1)(%)

1-(1—e=%t0) 1_¢)(10g(t0>*u)

Besonders hervorzuheben ist hier die bedingte Restwahrscheinlichkeit der Exponentialvertei-
lung, die, unabhéngig vom Beobachtungszeitpunkt, wieder exponentiell verteilt ist.

Nichtparametrische Klassen

Die vorgestellten Lebensdauerverteilungen der parametrischen Klasse sind durch ihre Ver-
teilungsfunktionen bzw. deren Parameter charakterisiert. Durch die Wahl dieser Parameter
bedingt, kénnen sowohl fallende, als auch steigende Ausfallraten auftreten. Unter Umstidnden
ist es jedoch schwierig, einer gegebenen Ausfallrate eine entsprechende Verteilungsfunktion
anzupassen. In diesen Fiéllen wird die Verteilungsfunktion oft anhand der Eigenschaften der
Ausfallrate klassifiziert.

10.6 Definition (Increasing Failure Rate, Decreasing Failure Rate):

FEine Verteilungsfunktion F(t) ist eine Increasing- (IFR) oder eine Decreasing Failure Rate
(DFR) Verteilung, wenn die bedingte Uberlebenswahrscheinlichkeit Fy,(t) bei beliebigem, aber
festem t > 0 monoton fallt bzw. wdchst in tg.

10.7 Beispiel:

Die Weibull-Verteilung fiir § > 1 und die Erlangverteilung sind IFR—Verteilungen. Fiir 5 < 1
ist die Weibull-Verteilung eine DFR—Verteilung. Die Exponentialverteilung ist sowohl eine
IFR~, als auch eine DFR-Verteilung. Die logarithmische Normalverteilung hingegen stellt
keinen der beiden Typen dar.

10.8 Satz:
Eine Verteilungsfunktion F(t) ist genau dann vom Typ IFR bzw. DFR, wenn die Funktion
In F(t) konkav bzw. konvex ist.

Beweis:

Eine Funktion heifit konvex, wenn die Sekante durch zwei Punkte des Graphen stets ober-
halb des Graphen liegt. Liegt die Sekante stets unterhalb des graphen, so heifit die Funktion
konkav. Es gelten folgende Kriterien:

e Eine Funktion f ist konvex (konkav) genau dann, wenn f’ monoton wachsend (fallend)
ist.

e Eine Funktion f ist konvex (konkav) genau dann, wenn f” >0 (f” <0).

177



Kapitel 10. Zuverléssigkeit

7 zeigen ist somit:

e F(t) ist vom Typ DFR <= % In F'(t) ist monoton wachsend.

e F(t) ist vom Typ IFR <= % In F'(t) ist monoton fallend.

Es wird hier nur der Typ DFR betrachtet. Fiir den Typ IFR gilt die entsprechende Argumen-

tation. B
Es sei F(t) vom Typ DFR, d.h. fiir alle beliebig fest gewihlten ¢t € R ist Fy, := Fg(—z?)

monoton wachsend in ty. Dies ist dquvialent zu

F(t+t — _
n M =InF(t +t9) — In F(ty) ist monoton wachsend in to V t € R

F(to)
InF(t+ty) — In F(tg)

ist monoton wachsend in to V¢t € R

d _
= o In F'(tg) ist monoton wachsend in ¢y
0

Die Richtung ,,==" in der letzten Aquivalenz folgt durch Grenziibergang und die Richung
,,<="" ergibt sich, da % In F(to) fiir alle ty € RT monoton wachsend ist. |

Zusammengesetzte Lebensdauerverteilungen

Die typische Form einer Ausfallrate ist die sogenannte Badewannenkurve. Die Kurve besteht
aus drei Bereichen: Am Anfang steht ein hoher, schnell abklingender Bereich. Dies ist die Zeit
der Kinderkrankheiten. Der mittlere Bereich hat eine fast konstante Ausfallrate, wihrend
zum Schluss die Ausfallrate durch Alterserscheinungen wieder ansteigt.

a(t)

t
Abbildung 10.1: typischer Ausfallratenverlauf; sogenannte Badenwannenkurve

Bei der Betrachtung der Ausfallraten der bisherigen Verteilungsfunktionen lisst sich fest-
stellen, dass keine dieser Funktionen einer Badewannenkurve &hnlich ist. Um ein solches
Ausfallverhalten nachbilden zu kénnen, miissen mehrere Lebensdauerverteilungen kombiniert
werden.
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FEine zusammengesetzte Verteilungsfunktion ldsst sich wie folgt definieren:

Es seien f1,..., fr Dichten von Verteilungsfunktionen, p; > 0 fiir ¢ = 1,..., k. Ist die Summe
aller p; gleich eins, so definiert

k
F@&) = pi- filt)
i=1

die zusammengesetzte Dichte. Die zugehorige Verteilungsfunktion lautet

k
Ft) = pi- Bi(t).
=1

10.2 Zuverlissigkeit von zusammengesetzten Systemen

Dieser Abschnitt behandelt die Zuverldssigkeit zusammengesetzter Systeme. Als Grundmu-
ster fungieren Serien— und die Parallelschaltungen. Mit Hilfe dieser Grundmuster lassen sich
anschlieBend komplexere Systeme bilden und analysieren.

Zuverlassigkeit von Seriensystemen

Das einfachste zusammengesetzte System ist die Serienschaltung.

— M= e =

Die angegebene Serienschaltung habe die Lénge n. Das System ist intakt, wenn alle Kompo-
nenten intakt sind. Es sei X; fiiri = 1,...,n die Lebensdauer der Komponente i. Y bezeichne
die Lebensdauer des Gesamtsystems. Auflerdem wird angenommen, dass die X; stochastisch
unabhéngig seien. Es gilt dann:

Y = min(Xy,...,X,).

Die Lebensdauerverteilung des Seriensystems berechnet sich damit wie folgt:

Fy(t) = P(Y<t) = 1-P(Y >1) = 1 — Pmin(Xy,...,Xn) > 1)

10.9 Bemerkung:
Aus F(t) = Fy(t) - F,(t) folgt
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und somit ay (t) = ai(t) + -+ 4+ a,(t), d.h. im Fall eines Seriensystems addieren sich die
Ausfallraten.
Zuverlassigkeit von Parallelsystemen

Ein anderes einfaches zusammengesetztes System ist die Parallelschaltung.

Wiederum bestehe die Schaltung aus n Komponenten und die Lebensdauern seien gegeben
durch die Zufallsgréfien X;, ¢ = 1,...,n. Die Lebensdauer des Gesamtsystems sei Z und die
X; seien wieder stochastisch unabhéngig. Die Parallelschaltung ist solange intakt, bis auch
die letzte Komponente ausgefallen ist, d.h. es gilt

Z =max(Xy,...,Xp).

Die Lebensdauerverteilung ergibt sich damit zu

Fy(t) = P(Z<t) = Pmax(Xy,...,Xn)<t) = P(X1<t,..., X, <t)
= PXp<t) - P(X, <t) = Fx,(t)--- Fx,(t), teR™.

Die Zuverléssigkeitsfunktion des Gesamtsystems lésst sich also berechnen durch

Ft)=1-Fz(t)=1- ﬂ(1 — E(t), teR™.

Allgemeine Schaltbilder

Teilsysteme

Allgemeine Schaltbilder, etwa von der nachstehenden Form, kénnen durch eine Zerlegung in
Teilsysteme gelost werden.

B

B

In diesem Fall ist eine Dekomposition in die Teilsysteme A’ und C naheliegend:

— e
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Die Zuverldssigkeitsfunktion berechnet sich nun primér nach dem Gesetz fiir eine Serienschal-
tung. In Kurzform ergibt sich

F(t) = Fa(t)- Fo(t), teRT,

wobei sich F4/(t) aus der Parallelschaltung von A und B errechnet:

Fart) =1~ [(1— Fa(®)(1 — Fp())] = Fa(t) + Fp(t) — Fa(t) - Fp(t), t€R*,

Daraus resultiert:

F(t) = (Fa(t)+ Fp(t) = Fa(t) Fp(t)) - Fc(t)

= Fa(t)- Fo(t) + F(t) - Fo(t) — Fa(t) - Fp(t) - Fo(t), teR™.

Abbildung 10.2: Uberlebensfunktion F mit F4(t) := exp(—t?), Fp(t) := exp(—t) und
Felt) = (1 . g) Moo (1), t € RY.

10.10 Bemerkung:

Die Argumentation ldsst sich auch umkehren. So kann man die Ausgangsschaltung auch als
Erweiterung einer einfachen Serienschaltung verstehen, in der ein Element durch eine Par-
allelschaltung mehrerer Elemente ersetzt wird. Wie obige Rechnung zeigt, wird dadurch die
Zuverlissigkeit der Serienschaltung vergrofiert. Dies fithrt zu einem wesentlichen Ergebnis der
Zuverlassigkeitstheorie:

Die Zuverladssigkeit eines Systems lésst sich durch die Erhohung der Zuverldssigkeit seiner
Teilsysteme vergrofiern.

Operationspfade

Eine weitere Moglichkeit zur Berechnung der Zuverlissigkeitsfunktion allgemeiner Schaltbil-
der stellen die sogenannten Operationspfade dar. Ein Operationspfad ist eine Serienschaltung
von Bauelementen, die, wenn sie alle intakt sind, auch das System intakt halten. In dem
obigen Beispiel gibt es zwei mogliche Operationspfade: X := AC und Y := BC'. Damit funk-
tioniert das Gesamtsystem noch, falls Operationspfad X intakt ist, die Bauelemente A und
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C also funktionieren. Entsprechendes gilt fiir Y. Das System ist also intakt, wenn entweder
X intakt oder Y intakt, oder sowohl X, als auch Y intakt sind.
Die Zuverléssigkeit des Gesamtsystems ist somit

P({,,X intakt”} U {,,Y intakt”}).
Diese Wahrscheinlichkeit soll kurz mit P(X UY’) bezeichnt werden. Es gilt:
P(XUY) = P(X)+P(Y)-P(XnY)
= P(AC)+ P(BC)— P(ACNBC)
= P(A)-P(C)+ P(B)- P(C) - P(A)- P(B) - P(C),

Womit sich dasselbe Gesamtergebnis wie in Abschnitt ,, Teilsysteme” ergibt:

F(t) = Fa(t) - Fo(t) + Fp(t) - Fo(t) — Fa(t) - F(t) - Fo(t).

Briickenschaltung

In einer Briickenschaltung

gibt es drei Operationspfade: X := AB,Y := AD und Z := CD. Die Intaktwahrscheinlichkeit

bzw. die Zuverléssigkeit l4sst sich nach dem oben beschriebenen Verfahren wie folgt berechnen:

P(XuYuZ) = PX)+PY)+P(Z)—PXNY)-P(XNZ)—P(YNZ)
+P(XNYNZ)
= P(AB)+ P(AD) + P(CD) — P(ABN AD) — P(ABNCD)
— P(ADNCD)+ P(ABNADNCD,)
= P(A)-P(B)+ P(A)-P(D)+ P(C)-P(D)—P(A)-P(B)-P(D)

— P(A)- P(B)- P(C) - P(D) - P(A)- P(C) - P(D)
+ P(A)- P(B) - P(C) - P(D)

= P(A)-P(B)+ P(A)- P(D) + P(C) - P(D) — P(A) - P(B) - P(D)
— P(4)- P(C) - P(D).

Zusammenfassend ergibt sich:

F(t) = Falt)- Folt) + Fa(t)- Fo(t) + Folt) - Fo(t)
—Fa(t) - Fp(t) - Fp(t)
—FA(t)-Fc(t)-FD(t), teR".

(Siehe auch PowerPoint-Présentation zur Briickenschaltung.)
Die Berechnung ldsst sich mit Hilfe des folgenden Schemas vereinfachen:

(i) Erstelle eine Tabelle mit jeweils einer Spalte pro Operationspfad und Systemkomponen-
te, sowie eine Spalte fiir das Vorzeichen.
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(ii) Trage alle moglichen Kombinationen der Operationspfade mit den daran beteiligten
Komponenten ein.

(iii) Bewerte eine ungerade Anzahl Operationen mit dem Vorzeichen Plus, eine gerade An-
zahl mit Minus.

Pfade Einheiten Vorzeichen

XY Z A B C D

X A B +

Y A D +

7 C D +

XY A B D —

X Z A B C D —

Y 7 A C D —

XY Z A B C D +

Die mit einem Haken versehenen Zeilen bestehen aus denselben beteiligten Komponenten mit
jeweils unterschiedlichen Vorzeichen. Diese werden im Folgenden nicht mehr beriicksichtigt.
Die verbleibenden Zeilen enthalten nach Aufsummieren mit dem angegebenen Vorzeichen die
Formel fiir die Intaktwahrscheinlichkeit.

Literatur zu Kapitel 10

Folgende Biicher werden als begleitende Literatur zu diesem Kapitel des Skriptes empfohlen:

e . BEICHELT:
Zuverlissigkeits— und Instandhaltungstheorie,
Teubner, Stuttgart, 1993.
ISBN: 3519029855

o K.-W. GAEDE:
Zuverlissigkeit — Mathematische Modelle,
Hanser, Miinchen, 1977.
ISBN: 3446123709

183



Kapitel 10. Zuverléssigkeit

184



Kapitel 11

Produktriume und
mehrdimensionale Zufallsvariable

Mehrdimensionale Zufallsvariablen dienen zur Erfassung von Zufallsexperimenten, bei denen
mehrere Groflen gleichzeitig beobachtet werden. In diesem Kapitel geht es im Wesentlichen
darum, die fiir eindimensionale Zufallsvariablen eingefiihrten Begriffe auf mehrdimensionale
Zufallsvariablen zu iibertragen. Bei der gleichzeitigen Beobachtung verschiedener Zufallsva-
riablen spielt auflerdem der Begriff der stochastischen Unabhéngigkeit eine wichtige Rolle.

Schliisselworter: Produkt—o—Algebra, mehrdimensionale Verteilungsfunktion,
Randverteilungen, Produktmafl, Unabhéngigkeit von Zufallsgrofien, Transformati-
on von Zufallsvariablen, Transformationssatz fiir Dichten, Faltung, Satz von Fubini,
Kovarianz.
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11.1 Zufallige Vektoren

Zusammengesetzte Stichprobenrdume, bzw. sogenannte Produktraume € := Qy x - -+ x €, er-
geben sich, wenn aufeinanderfolgende oder parallele Beobachtungen eines Zufallsexperiments
vorliegen. Einige solcher Situationen wurden bereits betrachtet:

1. n—maliges Werfen mit einem Wiirfel. In diesem Fall ist Q; := {1,2,3,4,5,6} fiir i =
I,...,nund Q:=Qy x -+ x Q, ={1,2,...,6}"

2. Gruppierte Daten aus einer Vorsorgeuntersuchung
(Gewicht, Korpergrofle, Blutdruck, Cholesterin—Spiegel, .. .)

3. Belegungszustand eines Produktionssystems
(Pufferbelegung an Arbeitsstation 1, Pufferbelegung an Arbeitsstation 2, ... )

4. Rauber—Beute—Modell
(Anzahl der Rduber und Anzahl der Beutetiere jeweils zu einem bestimmten Zeitpunkt)

Um die genannten Fille behandeln zu kénnen, wird zunéchst eine zum kartesischen Produkt
Q= Q x -+ x Q, passende o—Algebra benotigt. Dazu werden Messraume (9;,§;), ¢ =
1,...,n, betrachtet. Angesichts der Darstellung

n

i=1

koénnte man versucht sein,
n
F=X 3
i=1

als o0—Algebra iiber 2 zu verwenden. Doch im Allgemeinen fiihrt das kartesische Produkt von
o—Algebren nicht wieder zu einer o—Algebra, wie das folgende Beispiel zeigt:

Es werden n := 2, A :=[—1,0] x [-1,0] und B := [0, 1] x [0, 1] gew&hlt. Wie man sich anhand
von Abbildung 11.1 schnell iiberzeugt, ist AU B kein kartesisches Produkt zweier Teilmengen
von R.

B

-1

Abbildung 11.1: AU B ist kein kartesisches Produkt.

Deswegen benutzt man die folgende Begriffsbildung:
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11.1 Definition (Produkt—o—Algebra):

Es seien (2;,38i), i =1,...,n, Messriaume und
n
¢" = {>< Az ’Az e&-, i—l,...,n}
=1

das System aller kartesischen Produkte aus den Mengen der gegebenen o—Algebren. Dann
heif§t die durch

®3¢ = o(¢")

i=1

definierte o—Algebra iber Q := >< Q; die Produkt-o—Algebra der o—Algebren §1,...,8n-

=1
Der Spezialfall Q; == R, §; := B, i = 1,...,n, fihrt auf die o-Algebra der Borelschen
Mengen des R™.

11.2 Satz (Rechenregeln fiir Rechteckmengen):
Es seien A1, A1; € Qq, 1 € Iy und As, Ag; € Qs, i € Is. Dann gilt:

a) ﬁ(z‘h;‘ x Agj) = (ﬁ Alj) X <Oo A2j>’
j=1 j=1 J=1

b) (AlXAQ):(EXQZ)U(AIXXQ):(Ql XE)U(EXAQ),

J

¢) U (Aij x 42) = (

J=1

U A1j> X Ag,
=1

U A2j>,
=1

J

d) Ej (Alj X AQJ') C <.°°1 A1j> X (G A2j>7

J=1 Jj=1

Ej(AlXAQj):A1X<

J=1

e) Ai x Ag =0 < wenn Ay =@ oder Ay =0,

f) A1 x Ay C By x By A1 C By und Ay C By (Al,AQ 75@),
Beweis:
a)

o0

(w1,w2) € [)(Arj x Ag;)

j=1
<~ ((JJ1,WQ) S (Alj X Agj) V] e N
@wleAlj,wgeAngjE]N

0o 00
<:>wl€ﬂA1jAw2€ﬂA2j
Jj=1 Jj=1

(e.) (o)
= (W1,WQ) S ﬂ Alj X ﬂ Agj
j=1 j=1
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b) Es gilt
(wl,WQ) €A x Ay & (wl,wg) Q (A1 X Ag)
S wi €A A wggAQOderwl €A1 A wo € Q9
~ (Wl,WQ) € (A1 X A72) oder (wl,wg) € (E X Qz)
=1 (wl,WQ) € (A1 X A72) U (Aig X Qg).
Entsprechend c)-f) (Ubung!). [

Konstruktion einer Produkt—oc—Algebra

Betrachte den zweidimensionalen Fall mit den beiden Messrdumen (£21,§1) und (Q2,F2).
Konstruiere eine geeignete o—Algebra §1 ® §2 zum Produktraum Q; x Qs:
Betrachte die sogenannten Zylindermengen

3(1) = {Al X Qg | Al S 31} und 3(2) = {Ql X A2 | AQ S 32}

Mit Hilfe von Satz 11.2 ldsst sich schnell nachpriifen, dass §(;) und §2) o-Algebren iiber
0 x Qg darstellen. Zu zeigen ist: §1 ® F2 = o ({F1) U 3(2)}).

o Weil die Zylindermengen spezielle Mengen von §1 ® §2 sind, gilt
c({S1yUS2)}) € 31 ®J2.

e Da sich andererseits aber jede Rechteckmenge A; x Ay als Durchschnitt zweier Zylin-
dermengen darstellen ldsst, ndmlich in der Form

(A1 X AQ) = (A1 X QQ) N (Ql X A2>7

gilt
{A1 x Ag | A €Fi,i=1,2 Co({8a) US2)})

und damit

(T({Al X As | A; €5t = 1,2}) =F%51®F C (T({g(l) US(Q)}).

Wie im eindimensionalen Fall werden Wahrscheinlichkeitsmafle auf der Borelschen o—Algebra
$B" durch sogenannte n—dimensionale Verteilungsfunktionen erzeugt.

11.3 Definition (n—dimensionale Verteilungsfunktion):
Es sei P ein Wahrscheinlichkeitsmaf$ auf der o—Algebra B™. Die durch

n

Fp(xy,...,2p): =P <>< (—oo,:z:d) , (x1,...,2n) € R",

i=1

definierte Funktion heifit die zu P gehdérende n—dimensionale Verteilungsfunktion.
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Die Funktion Fp ist durch eine Reihe von Eigenschaften, die im Folgenden betrachtet werden
sollen, ausgezeichnet.

11.4 Satz:
Es sei F:= Fp eine Verteilungsfunktion dber (R™,B"™). Dann gilt:

a) A-Monotonie:
Fir alle a == (a1,...,a,) und b:= (by,...,b,) € R™ mit a < b (d.h. a; <b;,1 <i<mn)
gilt:

AR = Z (=1)Zi=1% F(0ray + (1 — 01)b, . .., 0nan + (1 — 6,)by) > 0.
(91)7071)6{0,1}”

b) F ist in jeder Variable rechtsseitig stetig, d.h. es gilt:

171—>y1+013-1-n,27n—>yn+0F(x17 s 7$n) = F(yh s ,yn) v (ylv cee 7yn) e R"™

c¢) F ist normiert, d.h. es gilt:

lim F(zy,...zy) =1

xr1—+00,...,Tn—+00
und fir (z1,...,z,) € R" und jedes i € {1,...,n} gilt:

lim F(xy,...,z,)=0.

T;——00

Beweis:
Fiir n := 1 reduziert sich die Aussage a) auf den bereits bekannten Fall (vgl. Satz 7.2) und es
ist

AYF =F(b)—F(a) >0 fir b>a.

Fir n := 2 erhélt man
AP F = F(by,by) — F(ay,by) — F(b1,az) + F(ai, ag). (11.1)

Es wird gezeigt, dass Ag’bF mit P((a,b]2)) zusammenfillt. Dafiir wird die Abbildung 11.2
benutzt. Offensichtlich gilt:

((a1,a2), (b1,b2)] = {((—00, —00), (b1,b2)]\((—00, —00), (a1, b2)]}

(=00, =00), (b1, a2)|\((—00, —00), (a1, a2)]} .
P((a,b]2)) = P(((a1,a2), (b1,b2)])

(((a1, —00), (b1,b2)]) — P(((a1, —00), (b1, a2)])

(((=00, —00), (b1, b2)]) — P(((—00, —00), (a1, b2)])

— P(((—00, —00), (b1, a2)]) + P(((—o0, —00), (a1, a2)])

F(bl, ba) — F(a1,b2) — F(b1,a2) + F(a1,az2)

= A

I
Aol
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(a,b,) (b,,b,)
b, + :
|
|
a, =+ | & - = —
(a5,a,) (b2,
1 1 .
I I v
a] bl

Abbildung 11.2: Zur Berechnung von P((a, b](2)).

in Ubereinstimmung mit (11.1). Fiir n > 3 verlaufen die Beweise analog, sie werden jedoch
mit wachsendem n formal aufwendiger.

b) folgt aus der Beziehung

1 1
lim F Lo L
o <x1 Tt kn)

kp—00
~ m P(( —oo), (21 + = + L
_kl—lg,..., 00,...,—00), | 71 kl,...,xn W
kn—00
- 1 1
=P ﬂ <(—oo,...,—oo),(aﬁl—i—]ﬁ,...,xn—l—k?l)]
ki=1,..,
kn=1
:P(((—oo,...,—oo),(xl,...,xn)]):F(xl,...,xn).

Die unter c) beschriebenen Beziehungen ergeben

lim F(z1,...,2y) = lim P(((—00y...,—00), (x1,...,xp)])

T1—00,...,Ln—>00 T1—00,...,Lp—>00

lim F(z,...,20,...,20) = Jim F(x1,..., =k, ..., mp)
= lim P(((—o00,...,—00),(x1,..., —k,...,zy)])
k—oo
=P ( ((7005 ’700)7(‘T1a aikv 73371)])
k=1
=P(@)=0 |
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11.5 Definition (mafldefinierende Funktion, Verteilungsfunktion):

Eine messbare Funktion F: R™ — R heifst mafdefinierende Funktion tiber R™, falls sie A-
monoton und rechisseitig stetig ist. Sie heifit Verteilungsfunktion iber R"™, falls sie auflerdem
normaiert ist.

11.6 Satz:
Zu jeder mafdefinierenden Funktion F dber R™ gibt es genau ein Maf pp auf (R™,B™) mit

pr((a, b)) = AYF Va,beR" mita<b.

Ist F eine Verteilungsfunktion iber R™, so ist pp ein Wahrscheinlichkeitsmaf iber (R™, B"),
das mit Pr bezeichnet wird.

Beweis:
7 zeigen sind:

1. Existenz von ur.
2. Ist F Verteilungsfunktion, so ist ur Wahrscheinlichkeitsmaf3.
Der Beweis folgt dabei der Argumentation wie im eindimensionalen Fall (vgl. Satz 7.2).

Zu 1.: Die A-Monotonie von F bedingt zunéichst, dass pup auf dem Semiring I™ der links offenen
und rechts abgeschlossenen Intervalle des R™ einen Inhalt definiert.

(a) Ist pp o—additiv und somit ein Priamafl, kann pp aufgrund des ersten Maffort-
setzungssatzes eindeutig zu einem Pramafl auf dem von I"™ erzeugten Ring SR(I™)
fortgesetzt werden.

Die o—Additivitdt folgt aus der rechtsseitigen Stetigkeit von F'.

(b) Ist up o—endlich, so existiert nach Aussage des zweiten Fortsetzungssatzes fiir Mafe
eine eindeutige Fortsetzung zu einem Maf3 auf der von I erzeugten o—Algebra
o(I") = B".

Die o—Endlichkeit folgt wegen

R" = | J (kK] x ... x (—k, k]
k=1 n-mal
und
P((=k,k] x ... x (=k,k]) =AF*F <00 VEeN,
n-mal
Zu 2.: Der Beweis verlduft analog zur entsprechenden Aussage von vgl. Satz 7.2. |

Offensichtlich kann aus einer Verteilungsfunktion £’ iiber R™ durch Einschrinkung auf eine
Komponente i € {1,...,n} vermoge

Fi(z) := Pr(R*! x (=00, 2] x R"™)
= lim F(x1,...,2i-1,Z,Tit1,--.,%n), xE R,

T}, —00

ki
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eine Verteilungsfunktion F; iiber R erzeugt werden, denn wegen Satz 11.4 ¢) gelten

lim Fj(x)=1 und lim Fj(z) =0.

L—00 T——00
Die iibrigen Eigenschaften einer Verteilungsfunktion folgen aus der A-Monotonie und der
rechtsseitigen Stetigkeit von F'.

11.7 Definition (Randverteilungsfunktion, Randverteilung):
Gegeben sei ein Wahrscheinlichkeitsmafi P diber (R™,B"™). Die zugehdrige n-dimensionale
Verteilungsfunktion sei F. Firi € {1,...,n} wird

Fi(z) := Pp(R! x (=00, 2] x R"™)
= lim F(z1,...,%i—1,%,Tit1,-..,Zn), T E R,
Ik*)oo

k£

die i—te Randverteilungsfunktion von F' bzw. P genannt. Das zugehorige Wahrscheinlichkeits-
maf iber (R,B) heifit i-te Randverteilung von P.

Aus der gemeinsamen Verteilung kann eindeutig auf ihre Randverteilungen geschlossen wer-
den. Die Umkehrung gilt jedoch nicht, wie das nachfolgende Beispiel zeigt.

11.8 Beispiel:
Es wird die zweidimensionale Verteilungsfunktion

betrachtet.

Abbildung 11.3: Verteilungfunktion F'(z,y) fir 2 =0,...,5und y =0,...,5.
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Abbildung 11.4: Randverteilung Fi(x) fir x =0,...,5.

Die zugehorigen Randverteilungsfunktionen lauten:

Fi(z) ;= lim F(z,y) =

Yy—oo

1—e2* >0
0 o <0

und

0 ,y < 0.

r—00

. l—e ¥ ,y>0
Ry o= i Flag) = { 177

Abbildung 11.5: Randverteilung Fy(y) fiir y =0,...,5.
Wie sich sofort nachpriifen liasst, besitzt die Verteilungsfunktion

~ [ Q=e)(1—-eY) ,2>0Ay>0
F(z,y) = { 0 , sonst

dieselben Randverteilungsfunktionen. Doch es ist F' # F.

Genauso wie im eindimensionalen Fall lassen sich auch im mehrdimensionalen Fall Vertei-
lungsfunktionen durch sogenannte Dichten erzeugen.

11.9 Definition (Dichte):
Eine integrierbare Funktion f: R™ — R (bzgl. des Lebesgue-Mafes \) heifit eine Dichte, wenn
gilt:

a) f(x) >0V zeR™,

b) [ fdr=1.
Rn
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Abbildung 11.6: Verteilungfunktion ﬁ’(x, y) firz=0,...,5und y =0,...,5.

11.10 Satz:
Es sei f: R™ — R eine Dichte, dann definiert

Fla) = / £ dr (11.2)
XD (—o0,;]
eine stetige Verteilungsfunktion F: R™ — R.

Beweis:
Es wird v¢(A) := [, f dX gesetzt und behauptet, dass vy ein Maf auf R"™ definiert.

(i) Wegen der Voraussetzung a) ist vs(A) >0V A € B".

(i) vy ist o-additiv, denn mit Hilfe des Satzes von der monotonen Konvergenz 9.42 folgt:

ve | U 4 :/ fdx

=~ ) T
= / FAD 14, | dr
R JEN
k
:khi?o/nzf Ia, dA
j=1
k
=1
kiIEoZ/RanAJ d\
7j=1
= Z vi(4;)
j=1
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9b
(iii) v ist normiert, denn wegen der Voraussetzung b) gilt: v¢(R"™) = [g. fdX MRy

n
Folglich definiert F'(x) = vy <>< (—o0, ;] | eine Verteilungsfunktion.

i=1
Die Stetigkeit von F' sieht man folgendermaflen: Seien z,z, € R", y := max(z,z) und
z = min(z, xg). Dann gilt unter Zuhilfenahme von Satz 6.7:

[F(x) = Fxo)| < (F(x) = F(2)) + (F(z0) — F(2))

<[ rar+ £ dx
/(va} /(vao]
< ve((zo,y]) +vr((z,20]) — 0,

T—x0
da (z,zo] und (xo,y] fiir x — z¢ monoton fallend gegen die leere Menge gehen. [
11.11 Beispiel (Zweidimensionale Normalverteilung):
Es sei

_ 1 1 (x—m)* , (@—p)y—p2)  (y—pa)’ 2
f(fl',y) L 271_0-10_2 1_ 92 exp ( 2(1 _ ‘92) ( 0.% 29 o109 + O% ) (x7y) € R )

fiir p1, 2 € R, 01,00 € RT und g € (—1,1). Wir zeigen, dass f eine Dichte ist. f heifit Dichte
der zweidimensionalen Normalverteilung. In diesem Zusammenhang ist die Beziehung

7 2
/exp <_g2cc) dxr = V2w

—00

von Bedeutung, die sich folgendermaflen beweisen lésst:

o) o] 2\ 2
2 2
/exp <_gc> dr = /exp (—;) dx

Il
N
\8
\8
@
i
T
/|\
&
Ll ]
+
8
[\ )
N———
ISH
8
—
ISH
s
no
(NI
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Wir integrieren zuerst nach y und dann nach z:

/°.° flz,y)dy

1

! ((zfm)2 o, E ) ) (y*;Lz)Q)) &y

0% 0102 o5

33
2
ol

N 27ro'10'2\/1 — 02

1

N 2#0102\/1 — 02

1 ((I—#1)2(1—92)+(z—u1)292 PN DI D (y—u2)2>> &y

2
o7 o102 o3

|
\8

o

%

<

8

1
27ro'10'2\/1 — 02

_pp @ —p2) (yfm)z)) v

o7 o102 a%

1@ —pm)? exp [ — 1 (y_‘uz_(z*ul)gffz)z dy
2 o'% 2(1792)05 o

_ L oxp (=L@ .fexp o (- (e B,
27ro'10'2\/1 — 02 2 0’% 2(1 — g2)0'§ 2 o1

8

1

Il Il
o] @
" %
T kel
e e e N N
|
N | =
0
|
=
=
-
S
|
—
/N
—
8
|
=
=
-
S
LS}
N

27rcrl<72\/1 — 02

8

Mit der Vereinbarung c; := o — % und der Substitution ¢t = y — ¢; wird hieraus

/OO f(z,y)dy

[e.o]

1 1(w—u1)2>/ ( L )
= exp| —=——— exp | —————t“ | dt
2mo1094/1 — 02 < 2 U% 2(1 - 92)03
—00
=4/27(1—02)02 s.o.

! BT —u1)2> -

= exp

V21 2mo1094/1 — 02 < 2 ‘7%
1 < 1(z— u1)2)

= exp | —=—5—"|.

2
2 o1

Damit wird

e}

oo 0 oo 1 (l»_ul)Q
dxd - S S VAN
/ /f(f':,y) xdy / B eXp< p x
2
201

=4/ 27ra% S.0.

t::gv_flu,l 1 / exp
V2moq

—0o0

11.12 Satz (Erzeugung von Zufallsvektoren):
Es sei (0, F, P) ein Wahrscheinlichkeitsraum. Sind X1,..., X, reellwertige Zufallsvariablen
iber (Q,F, P), so ist X = (X1,...,X,) eine R"-wertige Zufallsvariable bzw. ein n-dimen-
sionaler Zufallsvektor iber (Q,§, P) und umgekehrt.
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Beweis:
Aufgrund von Satz 8.11 gilt fiir alle i € {1,...,n}:

X; ist § — B-messbar & {w | X;j(w) <z} €§F Va; € R.

Da die Intervalle (—oo, 7], = (v1,...,7,) € R", ein Erzeugendensystem der o-Algebra
B" bilden, kann mit Hilfe von Satz 8.9 geschlossen werden:

Xfl({(—oo,x](n),x eR™") = {w|Xi(w) <z,..., Xp(w) <z}

— erp&w)gw}E&
=1

so dass X = (X1,...,Xy) § — B"-messbar ist.
Umgekehrt folgt aus der §-B"Messbarkeit von X mit B; € B! und X; *(B;) = X Y(R x
.. XRxB; xR x...xR)C3g, dass alle X; messbar sind. [

11.13 Definition (Verteilungsfunktion):

Es seien (Q,§, P) ein Wahrscheinlichkeitsraum, X := (X1,...,X,) ein n-dimensionaler re-
ellwertiger Zufallsvektor iber (Q,§,P) und Px das Bildmafl von P unter X. Dann heifit
FX: R"™ — R mit

Fx(z):=Fx,, . x,(@1,...,2n) = Px((—o0,z1] X ... X (—00,2y])
= PH{weQ| Xi(w) <z1,...,Xpn(w) <zn})
P(Xl le,...,Xn an)

die (n-dimensionale) Verteilungsfunktion von X. Das mit X korrespondierende Bildmaf3 Px
von P heifit Verteilung von X.

Angesichts Satz 11.12 lisst die i-te Randverteilung von F' folgende Interpretation zu:
Fi(y) = P((X1,...,Xs) € R x (—o0,y] x R"™) = P(X; <),

d.h. F; ist die Verteilungsfunktion der Zufallsvariablen X;. Falls F; eine Dichte f; besitzt,
nennt man f; i-te Randverteilungsdichte.

11.14 Beispiel (Dreifacher Miinzwurf):
Wir betrachten die Ereignisse ,,Zahl” (Z) und ,,Wappen” (W) und setzen

= {(Z7 Z7 Z)7 (Z7 Z’ W)7 (Z7 W7 Z)? (W/’ Z7 Z)7 (m Z’ W)’ (W7 M/’ Z)? (Z7 W/? W)7 (W7 W? W)}'
Auflerdem definieren wir:
X1: Q2 — O, Xy := Anzahl von ,,Zahl” (Z) bei 3 Wiirfen, Q] := {0,1,2,3}, X2: Q — Qo,

Xo := Absolutbetrag der Differenz zwischen der Anzahl von ,,Zahl” (Z) und der Anzahl von
,»Wappen” (W) bei 3 Wiirfen, Q2 := {1, 3}.

Wir wollen das gemeinsame Verhalten von X; und Xo studieren, d.h. wir sind an der (dis-
kreten) Zufallsvariablen (X1, X2) in ) x Q5 und ihrer Verteilung Py, x,) interessiert.
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2,2,2) (Z,LW) (ZW,2) (W,Z,Z) (W,Z,W) (WW,Z2) (Z,W,W) (W,W,W)

NN

(3,3) (3,3) (3,3) (3,3)
Damit erhalten wir fiir p;; := P((X1,X2) = (4,7)), i = 1,2,3, j = 1,3 die Werte:
X1
X, [0 1 2 3|Py,
1 0 3 3 0 5
3 Lo L2
8 8 8
Py, |5 § 5 s

Px, und Px, bezeichnen die zugehorigen Randverteilungen.

11.2 Unabhingigkeit von Zufallsvariablen

Nach Definition 11.7 kann in eindeutiger Weise von der gemeinsamen Verteilung mehrerer
Zufallsvariablen auf die Randverteilungen geschlossen werden. Wie in Beispiel 11.8 gezeigt
wurde, gilt die Umkehrung jedoch nicht immer. In diesem Abschnitt wird u.a. gezeigt, dass
die Umkehrung genau dann gilt, wenn die Zufallsvariablen unabhéngig sind.

11.15 Definition (stochastisch unabhingig):

Es bezeichne (2,5, P) einen Wahrscheinlichkeitsraum und es sei I eine nichtleere Indexmen-
ge. Die Familie der Mengensysteme (9;);c; mit M; C F heifft (stochastisch) unabhingig bzgl.
P genau dann, wenn fiir jede nichtleere, endliche Teilmenge J C I gilt:

P4 | =]]PA)) VA€M undjel.
jeJ JjeJ
11.16 Definition (erzeugte o-Algebra):
Es seien (0, §, P) ein Wahrscheinlichkeitsraum, (,§ ) ein Messraum und X : Q — Q' eine

F —§ -messbare Abbildung. Unter der von X erzeugten o-Algebra versteht man die o-Algebra
o(X) = X"4F).

11.17 Definition (Unabhingigkeit von Zufallsgréfien):
Die Zufallsvariablen X1, ..., X, heiffen stochastisch unabhdingig, wenn die von ihnen erzeug-
ten o—-Algebren unabhingig sind.

11.18 Satz:

Es seien X1, ..., X, Zufallsvariablen iber (Q,§, P) mit Werten in Messraumen (x;,2), i =
1,...,n. Ferner seien E1,...,E, durchschnittsstabile Erzeugendensysteme der o—Algebren
A, ..., Ay mit x; € E;, 1 =1,...,n. Dann gilt:

Die Zufallsvariablen X1,..., X, sind genau dann stochastisch unabhdingig, wenn die Mengen-
systeme El, e En mat

Ei={X7Y4) | AieE}, i=1,...,n,

unabhdngig sind.
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Beweis:

Da die Abbildung X; messbar ist, liegt das Mengensystem EZ in o(X;) und bildet somit ein
Erzeugendensystem von o(X;). Es soll gezeigt werden:

Mengensysteme Ei,...,E, unabhingig < Mengensysteme U(E’l), e ,U(En) unabhéngig.
Dazu wird zunéchst gezeigt:

Mengensysteme El, cee E, unabhéingig < Mengensysteme o(E;), Es. .. ,En) unabhéngig.

Dalfiir wird R N N
Dy :={A€o(Ey) | {A}, Es,..., E, unabhiingig }

betrachtet und gezeigt, dass Dy ein Dynkin—-System ist. Damit gilt dann mit El € D; auch

@(El) C Dy, wobei ®(E}) das von Ej erzeugte Dynkin-System ist.

Da E1 als durchschnittsstabil vorausgesetzt ist, folgt mit Hilfe von Satz 5.12, dass © LEl)
(El) und damit O'(El) C Dy ist. Damit ist gezeigt, dass die Mengensysteme O'(El) E,, ...,

E, unabhéngig sind. Analog kann geschlossen werden, dass El, . EZ 1,0 (El) Ez+1, B,

fir i = 2,...,n und damit auch O’(El) (Eg) O'(E ) unabhéngig sind.

Um zu zeigen, dass D; ein Dynkin—System 1st, miissen folgende Punkte nachgewiesen werden:

(i) Qe Dy,
(ii) fir A,B € D; mit A C B gilt B\ A € Dy,

(iii) fiir jede Folge (A, )nen paarweise disjunkter Mengen aus Dq ist auch J A, € Ds.
nelN

Zu (i): Da y; € Fy ist, ist Q € Ey. Fiir beliebige A; € Ey, i = 2, ..., n, gilt dann:

=2 =2 =2

d.h. Qe D,.
Zu (ii): Fir Mengen A, B € D; mit AC B

P (A N ﬁ Ai> = P(4)- f[P(Ai>
and i
P (B N ﬂ Ai) = P(B) - HP(AZ-).
Daraus ergibt sich -
P<(B\A)mﬁAi> = P(BmﬁAi\AmﬁAZ)
=2 =2 =2
— P(BmﬁAZ) - P <AmﬁAi>
=2 1=2

— p)-[[P() - P[] P(a)

— (P(B) - P(A)- ][ P(4) = P(B\ A)- ][ (4.
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Folglich ist auch B\ A € D;.
Zu (iii): Fiir eine Folge (By)nen paarweise fremder Mengen aus D; gilt weiter

P<<U Bm>mA2m...mAn> = P(U (BmmAgm...mAn)>

meN meN
= Z P(Bn,NAyN...NA,)

meN
meN =2
- (s pmo) TTrw
meN 1=2
= P ( U Bm> -ﬁP(Al)
meN =2
Folglich gilt |J By, € Ds. [

meN

11.19 Satz:

Es seien (Q,F, P) ein Wahrscheinlichkeitsraum und (2;,8),1 = 1,...,n, Messrdume. Die
n

Abbilundgen X;: Q — Q; sei § — Fi-messbar. Y : Q — >< Q; sei definiert durch Y(w) :=
=1

(X1(w),..., Xn(w)) Y w € Q. Dann gilt: Die Zufallsvariablen Xi,...X, sind genau dann

stochastisch unabhdngig, wenn

Py(Ay x ... x Ay) =[] Px.(A) VA €Fi=1..n (11.3)
=1

gilt.

Beweis:
(i) Es wird die Giiltigkeit von (11.3) angenommen. Dann gilt fiir alle 4; € §;:

Py(A; x...x A,) =PY 1A x ... x A))
=P ((n] Xil(Ai)> :
i=1

Da aber {X; !(4;) | A; € &} die von X; erzeugte o-Algebra darstellt, entspricht die
Beziehung

P (ﬁ Xﬂ%)) = lﬁ[P(Xfl(Ai))
i=1 i=1

der Unabhéngigkeit der Zufallsvariablen X1, ..., X,,.
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(ii) Sind die Zufallsvariablen X7, ..., X,, stochastisch unabhéngig, so gilt aufgrund der De-
finition 11.17 zunéchst

P (ﬂ Xil(Ai)> =[P (4) VA €Fii=1,...n
i=1 i=1
Mit
P (ﬂ X;l(Ai)) = P(Y"HA; x...x Ap)) = Py(A1 x ... x Ay)
=1
und . .
[TPGx; 7 (A) =] Px.(4)
=1 =1
folgt
Py(Ay x ... x Ay) = [[Px.(4) YV Ai€Fii=1,....n
=1

in Ubereinstimmung mit 11.3.

11.20 Satz:
Setzt man in Satz 11.19 (;,§;) := (R,B) firi=1,...,n, dann ist die Aussage aus Defini-
tion 11.3 dquivalent zu

FX(-le--,xn):HFXi(:Ui) Vo=(r,...,2,) € R",
=1

wobet Fx und Fyx, die Verteilungsfunktionen der Zufallsvariablen X und X; bezeichnen.

Beweis:
Ubung. |

11.21 Satz:
a) Es seien Xi,...,X, Zufallsvariablen dber (2,5, P) mit Werten in (R,B). Sind die
Zufallsvariablen X1, ..., X, stochastisch unabhdngig und stetig verteilt mit den Dichten
fx;,i=1,...,n, so besitzt auch X := (X1,...,Xy) eine Dichte und es gilt

n

fx(xi,...,zn) = foz(xl) Vo= (z1,...,2,) € R™
i=1

b) Ist umgekehrt X := (X1,...,X,) stetig verteilt mit einer Dichte fx von der Form
n
Ix(x1,...,zy) = ng(fﬁz) V.= (x1,...,2,) € R",
i=1

wobei gi(x;) > 0 und [ gi(zi)de; =1 firi=1,...,n gilt, dann sind die Zufallsvaria-
blen X1, ..., X, stochastisch unabhdingig und g; ist eine Dichte von X;, i =1,...,n.
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Beweis:
a) Satz 11.20 impliziert

T
n 7

FX(xh .. .,IL‘n) = HFXZ(':U'L) = H / sz(y’L)dyZ
i=1 =1
- [ nwa

X?:l (700,961'}

o [ D) T )

Da die unter dem Integral stehende Funktion das Produkt von Dichten ist, ist sie somit
Dichte von X = (X1,...,X,).

b) Da die Funktionen g; Dichten sind, sind die Funktionen G;(z;) = ff;o 9i(yi)dy;, i =

1,...,n, stetige Verteilungsfunktionen und es gilt:

Fx(xy,...,2p) = / fx(y)dy

n
Xi=1

= / ﬁ 9i(yi) dy

X?:1(7ooami] =

(—o0,x4]

Tn T
= /.../gl(yl)-._'-gn(yn)dyl--.dyn

T

/ 9i(yi) dy;

=[] Gi(xi).
=1

n

=1

Andererseits ist
Fx,(x;) = lim Fx(z1,...,2,) = Gi(zi).

T — 00

ki
Also gilt

n
Fx(x'l,...,xn) = HFXi(xi)7
=1

weshalb die Zufallsvariablen stochastisch unabhiingig sind (vergleiche Satz 11.20). W

11.22 Beispiel (Fortfiihrung Beispiel 11.11):
(X,Y) sei eine R2-wertige Zufallsvariable mit Dichte

1 1 (z — m)? (. — p1)(y — p2) (y—u2)2>> 2
y) = - -2 + , (z,y) € RY,
Jeew (@) 21024/ 1 — 02 P ( 2(1 — g2) < o2 e 0102 o2 @ y)
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11.2. Unabhéngigkeit von Zufallsvariablen

wobei 1,2 € R, 01,09 € RT und p € (—1,1) (Dichte der zweidimensionalen Normalvertei-
lung). Wir zeigen, dass X und Y stochastisch unabhéngig sind, wenn o = 0 gilt.
Fiir die Randverteilungsdichte gilt aufgrund von Beispiel 11.12

1 1(x—u1)2>
= _SET ) 2 eR,
0= oo, eXp( 2 4 )

und entsprechend

fr(y) = ! exp <_1(y—u1)2) , y€R.

2 O’%
Zu zeigen ist deshalb die Gleichung
1

20109/ 1 — 02

f(X,Y) (x,y) =

2 0 + 2
09 N~~~ 0102 05

1 2<(x—u1) o, o)y —pe) (Y —pe) ))

1 1 ((x—m)?  (y—p2)?
= eXp( <( ) ) +( 5 ) = fX(x)fY(y),
o1 P
die offensichtlich aber nur fiir ¢ = 0 zu erfiillen ist.
11.23 Satz:
Es seien (2,8, P;),i = 1,...,n, Wahrscheinlichkeitsraume. Dann existiert genau ein Wahr-
scheinlichkeitsmaf$ P auf @7, §; mit

P(Ar x ... x Ay) =[] Pi(A) YV Ai€gii=1,...,n

=1

Beweis:
Zunéchst wird der Fall n := 2 betrachtet. Die Menge der kartesischen Produkte

K :={A; x Ay | Ay € §1, A2 € Fa}

bildet einen Semiring, wobei der Beweis analog zum Fall I? (vgl. Kapitel 5.1) gefiihrt werden
kann (Ubung!). Betrachte

P(Al X Ag) = Pl(Al) . PQ(AQ) VAl x Ay € K.

Wenn P ein PrimaB und o—endlich ist, so kann mithilfe der MaBfortsetzungssitze 6.9 und 6.18
die Existenz einer eindeutigen Erweiterung von P zu einem MaB P auf der von K erzeugten
o—Algebra gefolgert werden.

Der allgemeine Fall ergibt sich durch vollsténdige Induktion nach n mit dem Schritt

PO (A x o x Apgq) = PP (AL X ..o x Ap) - Pop1(Angr).

Zu zeigen sind:
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Kapitel 11. Produktrdume und mehrdimensionale Zufallsvariable

(i) P ist nichtnegativ.

(ii) P ist o-additiv.

(iti) P ist o—endlich.

Zu (i):

Zu (ii):

Zu (iii):

(Nichtnegativitét)
Es ist P(A; x A2) >0 V A; x Ay € K und auerdem P(@) =0, da fiir 4; x Ay = &
entweder A; = @ oder Ay = @ ist (vgl. Satz 11.2).

(o—Additivitét)

Betrachte eine Folge (A1 1, X A2.m )men paarweise fremder Mengen A ,, x Az, € K, m €
o0

N, mit U Al,m X A27m = A1 X A2 € K. Es gﬂt:

m=1

IAl (wl) : IA2 (WQ) = IA1><A2 ((A)l,CUQ) = Z IAl’mXAQ,m (wlaw2>

m=1

oo
= Z IAl,m(wl) . IAQM(WQ) YV wi € Q1,wy € Q.
m=1

Fiir jedes w; € Q werden durch f: Qs — R mit f(ws) := I4,(w1) - Ta,(w2) und
fr: Q2 — R mit

k
fk(wQ) = Z IA1,m (wl) ) IAQ,m (w2>a k€N,
m=1

nichtnegative §o—B—messbare Elementarfunktionen definiert.
(fx)ken ist monoton nichtfallend mit klim frx = f. Mithilfe des Satzes von der monoto-
—0Q0

nen Konvergenz (9.42) gilt:

g(wi) = Ia,(w1)- P(A2) = /fdP2 = kh_?go/f’“dP?
- klin;o 9(1).
k
Dabei ist gk(wl) = Z IAl,m (wl) . PQ(AZm), k € N.
m=1

Fiir £ € N sind g und gj nichtnegative §1—B-messbare Elementarfunktionen. (gx)ren
ist monoton nichtfallend mit klim gx = g. Wie oben wird gefolgert:
—00

p(Al XAQ) = Pl(Al)PQ(AQ) —/gdpl = 1Lm /gde1

= hm Z P1 A1 m) PQ Agm Z Al,m X A27m).

m=

(0—Endlichkeit)
Seien (B1,m)meN und (B2m)men (disjunkte) Zerlegungen von € bzw. g, so gilt fiir
die Mengen Bi ,, X By p,m,n € N

U U(BlvaBQ’n U BlmXQQ =01 x Qo
m=1

m=1n=1
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11.2. Unabhéngigkeit von Zufallsvariablen

und

P(Bl,m X Bgm) = Pl(Bl,m) . PQ(BQ,n) < 0.
|

Satz 11.23 gilt in entsprechender Form auch fiir Maraume und o—endliche Mafle (siche Bauer,
Kapitel 8).

11.24 Satz:

Es seien (2, F, P) ein Wahrscheinlichkeitsraum und (£24,§;),i = 1,...,n, Messriume. Sind
die Zufallsvariablen X;: Q0 — €; stochastisch unabhingig, so sind auch die Zufallsvektoren
(X1,...,XT1), (Xr1+17~~7Xr2)7-~7(er_1+17-~7er)7 1 <r <re < ... <rym < n,
stochastisch unabhdngig.

Beweis:

O.B.d.A. geniigt es zu zeigen, dass Y := (X1,..., X;)und Z := (X, 41,..., X5),1 <r<s<n
stochastisch unabhéngig sind. Aufgrund der Voraussetzung und aufgrund von Definition 11.17
sind die Zufallsvariablen X1, ..., X, sowie X, 11, ..., X stochastisch unabhéngig. Es wird Satz
11.19 angewandt mit dem sich fiir alle A := C; X ... x Cp und B := Cpy1 X ... x Cg mit
C;€5;,i=1,2,..., s folgendes ergibt:

Py(A) =] Px.(Ci) und Pz(B)= [] Px,(Cy),
i=1 i=r+1

woraus

Py(A)-Pz(B) = [[Px.(Co)- [] Px.(C3)
=1 i=r+1
= P(Xl,.‘.,Xn)(Cl X ... x Oy X Qs-i—l X ... X Qn)

= P(Xl,.,.,XS)(Cl X ... X CS> = P(Y,Z)(A X B)

folgt, weshalb Y ~!1(E;) und Z71(Ep) mit By ;== {A=Cy x...xC, | C; € Fi,i=1,...,7}
und By :={B=Cr11 x...xCs |C; €F,i=7r+1,...,s} stochastisch unabhéngig sind. Da
F4 und Es durchschnittsstabil sind, folgt die Behauptung mit Satz 11.18. |

11.25 Satz:

Es sei (0, F, P) ein Wahrscheinlichkeitsraum und (£2;,§;) sowie (Q;,S;),z =1,...,n, seien
Messrdume. Die Abbildung X;: Q — Q; sei § — §;-messbar und g; : Q; — Q. sei Fi — Fs-
messbar. In diesem Fall folgt aus der Unabhingigkeit der Zufallsvariablen Xi,...,X, die
Unabhingigkeit der Zufallsvariablen g(Xi),...,g9(Xy).

Beweis:
Aufgrund der Voraussetzungen sind die o-Algebren X~ Y(§:),i =1,...,n, unabhiingig. Wegen
der Messbarkeit der g; gilt g; 1(3;) C §; und weiter

X Mo N @) = (g0 X)) THE) € XM Sa), i

1,...,n,

weswegen auch die o-Algebren (g; o X;)™!(§%) unabhingig sind. |

205



Kapitel 11. Produktrdume und mehrdimensionale Zufallsvariable

Fiihrt man die Sétze 11.23 und 11.24 zusammen, erhélt man den folgenden Satz:

11.26 Satz:
Es sei (Q,§,P) ein Wahrscheinlichkeitsraum und (£;,8:),1 < i < n, sowie (x;,2;),1 <

T T
Jj < m, seien Messriume. X;: } — Q; sei § — §;-messbar und g; : (é Q; — é Xi
i=7‘j,1+1 ’L'=T]‘,1+1
sei §; — A;—messbar fir 1 < j < m. Dann gilt: Sind X5, ..., X, stochastisch unabhdingig,
dann sind auch g1(X1,...,Xr), 92(Xri415-- X))y oo oy gm(Xr, 141y, Xr,,) stochastisch
unabhingig (1 <1 <rg<...<7pm <n).

11.27 Definition (Produktverteilung):

Es seien Py, ..., P,, n € N, Wahrscheinlichkeitsmafe auf B, der o-Algebra der Borelschen
Mengen diber R. Dann heif$t das gemadf§ Satz 11.23 eindeutig bestimmte Wahrscheinlichkeits-
mafs P auf B"™ das Produkitmajfl der Wahrscheinlichkeitsmafle Py, ..., P,.

Schreibweise: P := ®H =P®...0P,.
i=1

Es seien P, P, ..., P, wie in Definition 11.27 gew&hlt und F, F1, ..., F, die zugehtrigen Ver-
teilungsfunktionen, dann gilt:

n

P <>n< (—oo,xd> = [[P((—00,z:]) = [ Fi(=) .
=1

i=1 i=1
d.h.

11.3 Transformation von Zufallsvariablen (von stetigen Ver-
teilungen)
Zunichst soll folgendes einfithrendes Beispiel betrachtet werden:

11.28 Beispiel (Transformation einer Dichte, I):
Es seien (€, §, P) ein Wahrscheinlichkeitsraum und X : 2 — R eine Zufallsvariable mit Dichte

x, 0<z<1
fx(@)=<X2—2z, 1<z<2
0, sonst.

Es soll die Dichte der Zufallsvariablen Y := —2X 4 1 berechnet werden.
1. Schritt: Bestimmung der Verteilungsfunktion von X:

0, <0
’ 12 0<x<1
5L
Fx(z) = Hdt=<2"" -
x(@) /fX() —tx? 422 -1, 1<2<2
—00
1, x> 2.
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11.3. Transformation von Zufallsvariablen (von stetigen Verteilungen)

2. Schritt: Bestimmung der Verteilungsfunktion von Y:

Fy(y) = P(ng):P(—2X+1§y):P<X2

(1- y))

N | =

1 1
= 1—P<X< 2(1—y)> =1- Fy (2(1—y)—0)
0, y < —3
1 sy +3)7%, 3<y<-1
= 1—FX<2(1—?J)>: P
sy +2y+7), —1<y<l1
1, y > 1.
3. Schritt: Bestimmung der Dichte von Y:
Aus Fy(y) folgt durch Differentiation
1y +3), —3<y<-1
)= —-qy+i=101-y), -1<y<1
0, sonst.

Transformationen von Zufallsvariablen kommen nicht nur innermathematisch sondern auch
in vielen praktischen Anwendungen vor.

11.29 Satz (Transformationssatz fiir Dichten):

Es seien X = (X1,...,X;n), m € N, ein m—dimensionaler Zufallsvektor mit der Dichte fx
und G : R™ — R™,

G:(z1,...,2m) — (G1(z1,.. .y Tm)y -, G(T1, .. T))
eine Abbildung mit folgenden FEigenschaften:
(i) G ist injektiv und stetig differenzierbar auf R™,

(ii) die Funktionaldeterminante

8G1({B1,...,$m) 8G1(m1,...,xm)
oG, on O
det Oz = : :
7/ 1=i,j<m OG (1, ..., Tm) OG (1, ..., Tm)
8901 o 8xm
st entweder positiv oder negativ auf R™.
Dann gilt:
X; “yl’ ¥ i () € GERP)
‘det< y17 aym)))‘
fY(yb cee )ym -

0 sonst

ist die Dichte des Zufallsvektors Y = G(X).
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Beweis: Heuser, ,,Substitutionsregel fiir das Riemann-Integral”, Kapitel 205.2.

11.30 Beispiel (Transformation einer Dichte, II):
Die Zufallsgrofle X habe die Dichte

x, 0<z<1
fx(@)=¢2—2, 1<x<2
0, sonst.
Zu berechnen ist die Dichte von Y := —2X + 1 (vgl. Beispiel 11.28). Hier ist m = 1 und

G: R — R mit G(X) := —2X + 1. G ist offensichtlich injektiv, messbar und stetig differen-
zierbar mit G'(z) = -2 <0V z.

Gla)=-2z+1li=y<az= %(1 —y) =Gy, |GG )| =]-2/=2

Folglich gilt nach obigem Satz:

B 5 35(1—y), 0<i(l-y <1
G 1 1 1 2 2 2
i = PO S (50-9) = {he-ta-m). 1ha-y <2
0, sonst
-y, -1<y<1
= Jily+3), —3<y<-1
0 sonst.

11.31 Satz (Summe stetig verteilter Zufallsvektoren, Faltungssatz):
Es sei X := (X1,X2) ein stetig verteilter Zufallsvektor mit Dichte fx. Dann besitzt die
Zufallsvariable Y := X1 + X9 eine Dichte der Form

fr(y) = / fx(@,y — =) dv = / fx(@—y,y)dy, yeR.
Sind speziell X1, Xo unabhdngig, so ist

friy) = / fe(@) - fxo(y—2) dz, yER.

Beweis:
Es wird G(z1,22) = (21,21 + 22), 21,72 € R gesetzt. G ist injektiv, messbar und auf R?
stetig differenzierbar mit

o0 96,
0 0
det . 2 :det<1 0):1.
0Gy  0G, L
81‘1 (9:62
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(y1,92) = G(21,22) = (z1, 21 + 22)
= (21,72) = (Y1,92 — 1) = G (y1,2), y1,y2 € R.

Nach dem Transformationssatz hat der Zufallsvektor Z := G(X) = (X3, X1+ X3) eine Dichte
der Form

fz(y1,92) = fx(wi.y2 —v1),  yi,y2 € R
Die Verteilung von X7+ X5 ist nun die zweite Randverteilung von Z, die sich durch Integration

von fz nach y; ergibt. Damit erhélt man die erste Aussage des Satzes. Die zweite Aussage
folgt mit Satz 11.21 a). [

11.32 Beispiel:
Es seien X1, X2 beide N(0, 1)—verteilt, d.h.

1
le(HCl) = \/T : 6_%1%7 HATNS IR'v
T
1 1.2
fx,(x2) == —-€e2"2, a9 €R.

V2r

Sind X; und X5 stochastisch unabhéngig, so gilt fiir ihre gemeinsame Wahrscheinlichkeits-
dichte fx:

fx(@1,22) = fx,(21) - fxo(72), (21,72) € R

Y := Xy + X, hat demnach die Dichte
) = [ txew-odo= [ 1@ fuw-o d

e 3w g

[
. @ .
—_ >] .
Q\
[SI
EAgl\)
5~
3
[
I

—0oQ
o0
2 2
_ 1 el / RE e~ 3 (% —2zy+22%) g
V2 N
—0
o0
2 2
= e / \lf e~ 32 —eyta®) gy
T

\
8

(z—y/2)?

1
-e 2 /2 dx, yeRR.

S
ml
[
o

\»8

5l

Mit
1 % 1
vl R e
—00 —0oQ
JE
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((*) Substitution: ¢t =z — &, dx = dt) folgt

M

also ist Y N/ (0, ﬁ)—verteilt.

Anwendungen

11.33 Beispiel:

Zwei verschieden starke Bleche werden aufeinander geschweifit. Es mégen X; > 0 und X, >
0 die Dickenabweichungen der beiden Bleche vom Sollwert bezeichnen. Damit weicht die
Gesamtdicke um (maximal) X; + Xy vom Sollwert ab. Es seien X; und X» stochastisch
unabhéingig und A(0, 1)-verteilt. Dann ist Y := X; 4+ X, nach Beispiel 11.32 N'(0,v2)
verteilt.

11.34 Beispiel (Wartezeit an einem Postschalter):

Die aufeinanderfolgenden Bedienzeiten seien stochastisch unabhéingig und exponentiell ver-
teilt mit dem Parameter A > 0. Zum Zeitpunkt der Ankunft befinden sich genau n Kunden
im System.

Wie ist die Wartezeit des gerade ankommenden Kunden verteilt?

Zunéchst wird festgestellt, dass die Restbedienzeit des gerade im Bediener befindlichen Kun-
den aufgrund der Gedéchtnislosigkeit der Exponentialverteilung ebenfalls exponentiell verteilt
ist. Denn es gilt:

PXi>t+z,X1>t) P(X1>t+uw)
P >t+a]Xa>t) = P(X1>t) T P(X >t

efA(ter)

= er_AxZP(X1>x), t>0, x>0.

Zur Bestimmung der Verteilung der Wartezeit eines ankommenden Kunden wird der folgende
Satz betrachtet:

11.35 Satz:
FEs seien X1, ..., X, stochastisch unabhdingige Zufallsvariablen mit X; 4 Exp(\),i=1,...,n.
Dann ist Y = X1 + --- + X,, Erlang(n, \)—verteilt, d.h. es ist

)\nynflef)\y
friy)=q (-1 "7
0, y < 0.

y=>0
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Beweis (mit vollstindiger Induktion):
Fir n := 1 ist die Behauptung evident. Es wird von n — 1 auf n geschlossen:

Y

) = [ A Dfas(@) do
0
1 Y
_ (n - 2)' )\e—)\(y—z))\n—lxn—Qe—)\x dr
' 0
B )\ne—)\y /y oo g — )\ne—/\yyn—l -0
GRS TR

Zusammenfassend ergibt sich fiir Beispiel 11.34 das Ergebnis, dass die Wartezeit (inklusive
Bedienung) Erlang(n, \)—verteilt ist, wenn bei der Ankunft n Kunden im System verweilen.

11.4 Der Satz von Fubini und seine Anwendungen

Nicht immer ist man bei der Transformation von Zufallsvariablen an der Verteilung von
G(z) interessiert. Haufig geniigt die Kenntnis einer gewissen Kenngrofie von G(x) wie dem
Erwartungswert oder der Varianz. Eine besondere Bedeutung haben dabei Produkte und
Summen von Zufallsvariablen.

Im Falle diskreter und stochastisch unabhéngiger Zufallsvariablen X, Y ergibt sich mit den
Vereinbarungen P;; := P((X,Y) = (x;,y;)) sowie P;. := P(X = x;) und P; := P(Y = y;)

szy] z]—zxzy] P P
Zaz, . Zy]P =E[X]-E[Y].

Im Falle stetiger Zufallsvariablen ldsst sich analog schlieflen:

+00 +o0
B Y] = [ [ fx@) 5w dody
o —+o00
_ /x-fx(w)dx-/y-fy(y) dy = E[X] - E[Y].

Der allgemeine Fall kann mit Hilfe des Satzes von Fubini gelost werden. Er beinhaltet hinrei-
chende Bedingungen fiir die Vertauschbarkeit zweier Integrationen. Zunéchst miissen dafiir
ein paar Vorbereitungen getroffen werden:

Es seien (4, §i, 1i), @ = 1,2, zwei Mafirdume, p := pu1 Q) po das Produktmafl von pg und pog,
und X: Q; x Q3 — R eine §; R T —$B-messbare numerische Funktion. In diesem Fall stellt
sich die Frage, inwieweit man das Integral [ Xd(u; @ p2) auch in der iterierten Form

/ [X(wl, wg)dug} duy
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darstellen kann. Damit dies iiberhaupt eine sinnvolle Vorgehensweise wird, muss X (wy,ws) bei
festgehaltenem wy als Funktion von wo Fo—B—messbar und das p—Integral f X (w1, we)dus, als
Funktion von wi, 1B messbar sein. Die Beantwortung dieser Frage erfordert den Begriff
der Schnittbildung bei Mengen und Funktionen.

11.36 Definition (Schnitt von Mengen):
Ist A C Q1 x Qo eine beliebige Menge, so nennt man Ay, = {wy € Qo | (wi,ws) € A},
w1 €, den Schnitt von A an der Stelle wy. Entsprechend wird A, definiert.

¥

Abbildung 11.7: Veranschaulichung der Definition des Schnittes von Mengen

Die Schnittbildung von Mengen ist operationstreu in folgendem Sinn:

(A)wr = (Auy), (U Ai) = J(Ai)u,, (ﬂ A,-) = ((Ai)w,

i=1 i=1
Ist A:= Ay x Ay, A; C Q;, i=1,2, so gilt:

Ay, falls w1 € A
g , sonst.

(%) (A)y, = (A1 x Ag),, = {

11.37 Satz:
Fir A € §1 ®@ 82 gilt Aw, € 2.

Beweis:

Das Mengensystem § := {A C Q1 x Qo | Ay, € Fo} definiert eine o—Algebra. Wegen (x)
umfafit § die Rechteckmengen A; x As mit A; € §;, i = 1,2, und somit auch die von diesen
Mengen erzeugte o—Algebra §1 ® Fa. [ |

11.38 Definition (Schnitt von Funktionen):

Ist X eine Abbildung X : Q1 xQo — R, so nennt man die Funktion Xyt Qo — R, w € Q,
mit X, (w2) := X(w1,ws) den Schnitt von X an der Stelle wy € Q. Entsprechend definiert
man wieder X, .
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Die Schnittbildung von Funktionen ist linear und monoton. Insbesondere gilt:

(Z OziXZ) = Z a; (Xi)wl .
i=1 W i=1
Aus X,, /' X folgt (Xp)w, /" Xu,-

11.39 Satz: o B
Ist X 81 ® F2-B-messbar, so ist X, F2-B-messbar.

Beweis: B
Wegen X 1(B) € §1 ® §» fiir alle B € B gilt:

(X)) H(B) ={w2 € Qo | X, (w2) € B}
={wy € Dy | X(w1,w2) € B} = (X H(B))w, €F2 - u

Der Zusammenhang zwischen Schnittbildung und Funktionen ist gegeben durch:
(IA)wl = [(Auq) fiir A - Ql X QQ.

11.40 Satz (Produktmaflsatz):
Es seien (24,8, i), © = 1,2, zwei Mafirdume, p;, i = 1,2, o—endlich und A € § := §1 @ Fa.
Dann ist pa(Aw,) als Funktion von wi §1 B -messbar und es gilt

(11 ® pz)(A) = / pia( Ao Y.

Beweis:
Wir zeigen der Reihe nach:

(1) po(Ay,) ist F1—B-messbar,
wobei wir zunéchst ug als endlich (1. Fall) und dann als o-endlich (2. Fall) voraussetzen,

(2) (11 ® p2)(A) = [ p2(Aw, )du.

Zu 1.: 1. Fall: po(92) < oo.
Setze X a(w1) := po(Ay,) fir A € §. Betrachte

F = {A€F| X4 ist §1-Bmessbar} CF

und weise dieses als Dynkin-System nach. Setze anschliefend £ := {A; x Ay | A €
3'1 und A2 € SQ} Wegen /XA1><A2 = ,LLQ(AQ)IAI fir Al X A2 e & ist XA1><A2 %'1*%*
messbar und es gilt £ C §F C §. Da £ durchschnittsstabil ist, folgt mit Satz 5.12, dass
das von & erzeugte Dynkin—System mit der von & erzeugten o—Algebra zusammenfillt,
d.h. D(E) = o(€). Damit ist fiir jedes endliche o die F1—B-Messbarkeit von X 4(w;) =
p2( Ay, ) nachgewiesen.

Es bleibt zu zeigen, dass F ein Dynkin-System ist. Dazu

(a) QeF: B
Da Xq = p2(Q2) §1-B-messbar ist, gilt Q € §F'.
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Zu 2.

(b) Fiir A,Be§ mit AC Bgilt: B\Ae§.
Fiir jedes wy € 4 gilt:

XB\A(WI) = p2((B\ A)wy) = p2(Bu; \ Awy)-

Da o als endlich vorausgesetzt ist, gilt
XB\A(wl) = M2(BW1) - M2<Aw1)

und damit Xp\ 4 = Xp — X4, also B\ A€ §.

(¢) Fiir jede Folge (Ay)nen paarweise disjunkter Mengen aus § ist auch |J A, € § :
neN
Fiir alle n € N stellen deshalb die X 4, 1B messbare Funktionen dar. Dann ist

nach Satz 8.13 auch > X4, §1-B-messbar. Wegen X ) 4, = > Xy, folgt

nelN neN nelN
/
U 4, €5.
neN

Damit ist § als Dynkin-System nachgewiesen und folglich ist X Alwr) = pe(Ay,) F1—-
B-messbar fiir jedes endliche ys.

2. Fall: po o—endlich.
Dieser Fall kann auf den ersten Fall zuriickgefiithrt werden:

Es seien (O, )nen eine Folge von Elementen aus §omit C; CCy CC3C ..., | Cp = Qo
neN

und po(Cp) < 0o ¥ n € N. Fiir n € N sei v,: 2 — R definiert durch v, (4z) :=

pa(Ag N Cy) fiir Ay € §2. Dann ist v, ein endliches Maf} auf §o. Fiir beliebiges Acg

wird Xap: Q1 — R mit X4, (w1) = vp(Aw,), w1 € Qp definiert. Nach dem 1. Fall

sind die Funktionen X, §1—8B-messbar, weshalb auch sup X4, 1B messbar ist.
neN
Unter Ausnutzung der Monotonie erhédlt man:

sup Xan(wi) = sup vy (Aw,) = sup p2(Aw, NCp) = p2(As,).
nelN nelN nelN

Damit ist X4 &1 B messbar.

p(A) = (i @ p2)(A) = [ p2(Awy)dpn

Definiere p/: § — R mit M/(A) = [ Xadpy V A € F und zeige, dass ,u, ein Mafl auf §
ist. Betrachte anschlieBend die Menge der kartesischen Produkte & := {4; x Ay | 4; €
§1 und As € §2}. Nach Satz 11.23 ist das Produktmafl p = p; ® pg durch seine Werte
auf £ bereits eindeutig festgelegt und es gilt fiir alle A; x As € &:

f' (A x Ag) = /XA1><A2dH1 = /M2(A2)IA1 dpn = pa(Az) - pa(Ar).

Daher ist u = ul.
Es bleibt zu zeigen: 1 ist MaB auf §.

(a) p ist nichtnegativ:
Gilt nach Definition.
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(b) p ist o-additiv:
Fiir eine Folge (A, )nen paarweise fremder Mengen aus § gilt aufgrund von Satz
9.43:

n (U An) = [ Xy adm = / (Z XAn> dpy =) /XAnd/H =1 (An).
neN neN neN neN neN

11.41 Satz (Satz von Fubini):
Es seien (i, Fy, ;)1 = 1,2, 2zwei Mafrdume, p;, i = 1,2, o-endlich und X: Q1 x Qs — R
1 ® Fo-B-messbar. Gilt

a) X >0 oder

b) [1X|d(p1 ® p2) < oo,

/X d(p1 ® p2) = / [/leduz} dp.

(Siehe auch Lebensdaten von Fubini im Anhang D.)

dann st

Beweis:
Der Beweis folgt wieder dem Prinzip der sogenannten algebraischen Induktion:

(i) Zeige die Behauptung fiir Indikatorvariablen X = I4, A € §1 ® Fa.

n
(ii) Zeige die Behauptung fiir Elementarfunktionen X = ) oyl4,.
k=1

(iii) Zeige die Behauptung fiir nichtnegative, messbare numerische Funktionen X.

(iv) Zeige die Behauptung fiir allgemeine mefbare numerische Funktionen.

Zu (i): Die Behauptung folgt unmittelbar aus Satz 11.40.
Zu (ii): Folgt aus (i) und der Linearitit des Integrals.
Zu (iii): Folgt aus dem Satz von der monotonen Konvergenz (Satz 9.42).

Zu (iv): Im allgemeinen Fall sei wieder X = X — X~. Aufgrund von Voraussetzung b) gelten

/X+d(,u1 ® p2) < oo und /X_d(,ul ® p2) < oo.

Damit folgen

/ [/X:ld,ug} dpy < oo und / [/ ledug] dpy < oo.
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Insgesamt ergibt sich also

/X d(p1 ® p2) Z/Xer(/Jl ® pg) — /Xd(N1 ® p2)

://X;le,uz dp —//Xlldm dp
://led/,LQ d,ul.

Als eine Anwendung des Satzes von Fubini wird der Multiplikationssatz fiir Erwartungswerte
betrachtet:

11.42 Satz (Multiplikationssatz fiir Erwartungswerte):
Es seien X und Y zwei stochastisch unabhdngige Zufallsgrofien, die eine der beiden Bedin-
gungen

a) (X >0undY >0) oder
b) E[|X]] < 00 und E[|Y]] < o0

erfillen. Dann gilt: E[X - Y] = E[X] - E[Y].

Beweis:
Ist a) erfiillt, so gilt aufgrund der stochastischen Unabhéngigkeit von X und Y und dem Satz
von Fubini:

E[X -Y] :/:cy d(Px ® Py)

:/x</ydPY>dPX:/deX'/ydPY:E[X]'E[Y]'

Ist b) erfiillt, dann muss man auch noch E[|X - Y|] < oo nachweisen, um den Satz von Fubini
anwenden zu konnen. Da aber wegen |X| > 0 und |Y| > 0 gilt: E[|X|- |Y|] = E[|X]] - E[|Y]]
folgt aus Voraussetzung b) E[|X - Y] = E[|X]] - E[|Y]] < 0. [ |

11.43 Definition (Kovarianz, unkorreliert):
Es sei (X,Y) ein Zufallsvektor. Falls X und Y endliche Momente zweiter Ordnung besitzen,
bezeichnet man

COVIX,Y] :=E[(X — E[X])(Y — E[Y])] = E[X - Y] — E[X] - E[Y]

als Kovarianz von X und Y .

Ist COV[X,Y] = 0 bezeichnet man X und Y als unkorreliert. Fir unabhingige Zufallsva-
riablen X und Y ist stets COV[X,Y] = 0. Aus COV|X,Y] = 0 folgt im Allgemeinen jedoch
nicht, dass X und 'Y unabhdngig sind.
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11.44 Beispiel:
E[X - Y] = E[X]-E[Y] impliziert nicht, dass X und Y unabhingig sind. Es seien Z iy g
X :=sin(Z) und Y := cos(Z). Hieraus folgt:

(VB
SIE]

XY =sin(Z) - cos(Z) = %sin(QZ).

Hieraus folgen

E[X Y] = 2i /2 sin(2)dt = 0, also E[X - Y] = E[X] - E[Y] = 0.

™
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Kapitel 12

Schwaches und starkes Gesetz der
grofen Zahlen

Oftmals interessiert man sich fiir die Eigenschaften geeignet normierter Summen von Zufalls-
variablen. Beim Wiirfelspiel zum Beispiel werden die fiir ein bestimmtes Ereignis giinstigen
Versuchsausgéinge zusammengezahlt und anschlieend durch die Anzahl der Versuche divi-
diert, um zu einer Schitzung fiir die entsprechende Wahrscheinlichkeit zu gelangen. In diesem
Fall stellt sich die Frage, unter welchen Bedingungen und mit welcher Konvergenzgeschwin-
digkeit sich Ausdriicke dieser Form stabilisieren. Eine Antwort darauf geben das schwache
und starke Gesetz der grofien Zahlen.

Schliisselworter: Markovsche Ungleichung, Tschebyscheffsche Ungleichung, Sto-
chastische Konvergenz, i.i.d. Folge, Schwaches Gesetz der groflen Zahlen, Satz von
Bernoulli, fast sichere Konvergenz, Kolmogorovsche Ungleichung, Starkes Gesetz der
groflen Zahlen.
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12.1 Das schwache Gesetz der groflen Zahlen

Beim axiomatischen Aufbau der Wahrscheinlichkeitstheorie haben wir uns an den Eigenschaf-
ten der relativen Hiufigkeiten orientiert. Von besonderer Bedeutung war dabei die Beobach-
tung gewesen, dass sich die relativen Haufigkeiten fiir grofle Stichprobenumfinge stabilisieren.
Wir werden nun umgekehrt vorgehen, in dem wir den abstrakten Wahrscheinlichkeitsbegriff
von A. N. Kolmogorov zugrundelegen und zeigen, dass sich die relativen Haufigkeiten h,,(A)
eines Ereignisses A, die wir als spezielle Zufallsvariablen auffassen, fiir n — oo konvergieren.
Dabei kénnen verschiedene Konvergenzbegriffe zugrundegelegt werden. Wir beginnen mit dem
Begriff der stochastischen Konvergenz.

12.1 Definition (stochastische Konvergenz):
Es seien X, X1, Xo,... reellwertige Zufallsvariablen jeweils iiber demselben Wahrscheinlich-
keitsraum (2, §, P). Man sagt, dass die Folge (X,,)22  stochastisch gegen X konvergiert, kurz

n=1
X, 25 X, falls fir alle ¢ > 0 gilt:
P(|X, —X|>¢)—0.

12.2 Beispiel:

Es seien (Q,F, P) ein Wahrscheinlichkeitsraum und (X,,)5%; eine Folge von reellwertigen
Zufallsvariablen {iber (€, §, P) mit P(X,, = 1) := 1 und P(X,, =0):=1-1 firn=1,2,....
Dann gilt

PX,=1)=1  0<e<1

Als Grenzwert ergibt sich
lim P(|X,| >¢) =0,
n—oo

also X, N 0.

In der Regel kann die stochastische Konvergenz mit Hilfe der Ungleichungen von Markov und
Tschebyscheff nachgewiesen werden.

12.3 Satz (Markovsche Ungleichung):
Es sei X eine reellwertige Zufallsvariable iiber (Q,F, P) mit E[|X|"] < oo fiir r > 0. Dann
gilt fir alle e > 0:

1 T
P(X| > ) < LE[X].
(Siehe auch Lebensdaten von Markov im Anhang D.)

Beweis:
Es gilt

wam=/WXVdP=/\XVQWQMP+/|XVQM¥WP
Q Q Q

- / | X iz 2 ET/I{|X|2a}dP =P X| 2 e).
Q Q
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12.4 Satz (Tschebyscheffsche Ungleichung):
Es sei Y eine reellwertige Zufallsvariable mit Var[Y] < co. Dann gilt fir alle € > 0:
Var[Y]

g2

PY —E[Y][>¢) <

(Siehe auch Lebensdaten von Tschebyscheff im Anhang D.)

Beweis:
Die Aussage folgt mit Satz 12.3 mit X :=Y — E[Y] und r := 2. [ |

Die nachfolgenden Beispiele zeigen, dass die Markovsche Ungleichung fiir numerische Zwecke
ungeeignet ist.

12.5 Beispiel:
1. Es sei X < Exp()\). Damit ergibt sich: P(|X| > ¢) < 1IE[1X]]) = 4.
Fiir A := 1 und ¢ := 2 erhilt man damit P(|X|>2) < 3.
Andererseits gilt aber P(|X|>2)=P(X >2)=1—- Fx(2) =e 2 ~0.14.
2. Essei X £ N (0,0) und € := 30 gewihlt. Bei Anwendung der Tschebyscheffschen
Ungleichung ergibt sich:
1 1
P(|X|>30) < —= Var[X] = = = 0.11.
(1X| 2 30) € (5 5g VarlX] =
Den Tafeln der Normalverteilung entnimmt man jedoch:

P(IX| > 30) < 0.0L.

12.6 Definition (identisch verteilt, i.i.d. Folge):
a) Die Zufallsvariablen X1, Xs,... heiflen identisch verteilt, wenn X; 4 X fiir alle 1,5 €
N gilt.

b) Eine Folge (Xy)o2, von Zufallsvariablen, die stochastisch unabhdngig und identisch
verteilt sind, heifst eine i.i.d. Folge (i.i.d. = independent and identically distributed).

Mit diesen Vorbetrachtungen lassen sich die verschiedenen Versionen des schwaches der Ge-
setzes der groflen Zahlen formulieren und beweisen.

12.7 Satz (Schwaches Gesetz der groflen Zahlen):

Es sei (X;)ien eine Folge von identisch verteilten reellwertigen Zufallsvariablen, die paarweise

unkorreliert sind d.h. E[X; X;] = E[X;]-E[X;] Vi,j € N miti# j. Auferdem sei Var[X;] <

oo. Dann gilt fir alle e > 0:
1 n

P ( —> X - E[Xy]

n -
=1

1
> g> < — Var[X/].
ne

Insbesondere gilt

. 1 < P
1 — X; | — E[X;q].
nzaz<n2 ) [X1)

i=1
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Beweis:
Der Satz ist eine unmittelbare Konsequenz aus der Tschebyscheffschen Ungleichung und den
folgenden Beziehungen:

E[;ZX] = Lyoeixg = L) = B,

=1 =1

Var ;ZXZ] = %ZV&I‘[XZ] = %(n-Var[Xl]) _ VaI;E]Xl]'
=1 =1

Anwendung: Bernoulli-Folgen

Es sei (X;)ien eine Folge von stochastisch unabhingigen und B(1,p)-verteilten Zufallsva-

riablen tiber (2,3, P), d.h. P(X; = 1) := p und P(X; = 0) := 1 — p fiir alle i € N. Fir
n

n € N wird H,, := > X; gesetzt. Die Zufallsvariable H,, entspricht der absoluten Haufigkeit
i=1

des Ereignisses A := {X; = 1} in einer Versuchsreihe der Linge n. Entsprechend definiert

hy, == %Hn die relative Haufigkeit von A.

12.8 Satz (Satz von Bernoulli):
Es sei (X;)ien eine i.i.d. Folge mit P(X; = 1) := p und P(X; = 0) := 1 — p. Dann gilt fir

alle € > 0:

H (1= H

P( n—p' >5) Spi( 2p) bw. — L.

n n-e n
(Siehe auch Lebensdaten von Bernoulli im Anhang D.)
Beweis:
Der Satz ergibt sich durch Anwendung des schwachen Gesetzes der groflen Zahlen 12.7 mit
H, :=>", X;, E[X1] :=p und Var[X;] = E[(X1)?] — (E[X1])? :==p — p* = p(1 — p). [

Die Tschebyscheffsche Ungleichung ldsst geniigend Spielraum fiir geeignete Modifikationen
des schwachen Gesetzes der groflen Zahlen:

12.9 Satz (Schwaches Gesetz der groflen Zahlen, verallgemeinerte Version):
Es bezeichne (X;)ien eine Folge von reellwertigen Zufallsvariablen iber (2, §, P). Auflerdem
set mindestens eine der nachstehenden Bedingungen erfullt:

a) Var[zn: Xi] = o(n?) fiir n — oo.
i=1

b) COVIX;,X;]=0 Vi,jeN miti#j und i Var[X;] = o(n?) fir n — .
i=1

c) COVIX;, X;]=0 Vi,je Nmiti+#j, Fx,=Fx, Vi,j €N und Var[X;] < oc.

d) (Xi)ien ist eine i.i.d. Folge und Var[X1] < oo.
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Dann gilt:
1 < p 1 "
i=1 i=1
Bemerkung:
Es ist in obigem Satz mit o(n?) das wie folgt definierte Landau-Symbol gemeint:
f(n)
f(n) =o(g(n — lim —/—= =0
(n) = olg(n)) Jim 20
Beweis:

Die Voraussetzungen fiir ¢) und d) wurden bereits in Satz 12.7 behandelt. Da die Forderung
a) offensichtlich schwiicher ist als die Forderung b), geniigt es, diesen Fall zu betrachten. Lésst
sich die Aussage fiir den Fall, dass die Voraussetzungen unter a) erfiillt sind beweisen, so gilt
sie auch sofort fiir den Fall, dass die Voraussetzungen unter b) erfiillt sind. Es gilt:

:LZX] = %ZE[XZ-] und  Var ;ZX] = %Var ZX]
=1 =1 =1

=1

E

Damit folgt:
P (

12.10 Bemerkung:
Die stochastische Konvergenz macht nur eine Aussage iiber die Folge der Wahrscheinlichkeiten

— 0 fir n — oo.

e2.n2  g2.p2

>%<“ﬁé&] ofn?)

Y-S X
i=1 i=1

P(|X,— X| >¢),n=1,2,.... Uber die Konvergenz der zugrundeliegenden Zufallsvariablen
X, (w) als Funktionen von w wird keine Aussage getroffen. Mit Fragen dieser Art beschiftigt
sich der néchste Abschnitt.

12.2 Das starke Gesetz der groflen Zahlen

Im vorherigen Abschnitt konnte mittels der stochastischen Konvergenz das schwache Gesetz
der groflen Zahlen aufgestellt werden. Im Folgenden wird dieser Konvergenzbegriff verschérft
und das starke Gesetz der groflen Zahlen formuliert.

12.11 Definition (P—fast—sicher):
Man sagt, eine Folge (Xp)nen von Zufallsvariablen iber einem gemeinsamen Wahrschein-
lichkeitsraum (Q,§, P) strebt P—fast—sicher (P—f.s.) gegen die Zufallsvariable X, falls

P ( lim X, = X) —1  kurz Xp(w) — X(w) Pfs.

n—oo

gilt, d.h. es gibt eine Nullmenge N € § mit P(N) = 0, so dass lim X, (w) = X(w) Vw € N.

n—oo
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12.12 Satz (Zusammenhang zwischen stochastischer und P—fast—sicherer Konvergenz):
a) Konvergiert die Folge (Xp)nen P—f.5. gegen X, so auch stochastisch, d.h. es gilt:

X, — X P-fs. = X, - X firn— cc.

b) Konvergiert die Folge {sumen | X — X’}ne]N stochastisch gegen 0, so konvergiert die
Folge (X)nen P-fast-sicher gegen X, d.h. es gilt:

{sup|Xm—X}i>O = X, — X P-fs. firn— oo.

m>n

Beweis:
a) Fiir alle € > 0 gilt:

0 < limsup P(|X, —X|>¢)

< limsupP([j{]Xm—X\Za}>
= p(ﬂ U{\Xm—X]25}>
n=1m=n

= P(|X, — X| > ¢ fiir unendlich viele n)
< 143({ lim Xn:X}) =1-1=0 (daX,— X Pfs.).

n—oo

b) Es wird Y}, := sup | X,, — X| V n € N gesetzt. Offensichtlich ist
m>n
Y, = sup{|X,—X|,|Xn+1—X]|,... }
> Sup{|Xn+1—X|,|Xn+2—X|,...} = Yn+17

d.h. die Folge (Y},)nen ist monoton fallend. Da (Y,)nen nach unten durch 0 beschriankt
ist, konvergiert (Y, )nen f.s. gegen eine Zufallsvariable Y > 0. Zusammen mit Teil a)
folgt, dass (Y},)nen dann auch stochastisch gegen Y konvergiert. Wenn sich jetzt zeigen
ldsst, dass bei stochastischer Konvergenz der Grenzwert Y f.s. eindeutig bestimmt ist,
muss aufgrund der Voraussetzung Y = 0 f.s. gelten und damit X,, f.s. gegen X. Sei
deshalb Y’ eine weitere Zufallsvariable, fiir die nh_}rglo P(|Y,, —Y'| > ) = 0 gilt. Dann

wiirde aber folgen

P(lY =Y'| > ¢)

P(|(Y = Yn) — (Y = Y,)| =)

(= 5o nl=5))

P<{|Y—Yn\ > g}) —|—P<{‘Y’—Yn‘ > %}) — 0 fiir n — oo.

IN

IN

Aus P([Y| >¢) =0 Ve >0 folgt

1 . 1
P(m;AO):P(U |Y|2k> :k1L%P<|Y|2k> = 0.

keN

Wenn aber Y, — Y punktweise und Y = 0 P-f.s., so gilt Y, — 0 P-f.s. und somit
X, — X PAis. |

224



12.2. Das starke Gesetz der grofien Zahlen

12.13 Satz (Kolmogorovsche Ungleichung):
Es seien X1, ..., X, stochastisch unabhdingige Zufallsgrifien mit den Mittelwerten E[X;] und

m
den Varianzen Var|X;] firi=1,...,n. Die zugehorigen Partialsummen seien Sy, == > Xj,
i=1

m=1,...,n. Dann gilt fiir jedes € > 0

P ( maz |Sm — E[Sm]| > g> < Var[f”].
1<m< €
(Siehe auch Lebensdaten von Kolmogorov im Anhang D.)
Beweis:
0O.B.d.A. kann angenommen werden, dass E[X,,] =0 fiir m = 1,...,n gilt. Es wird
n n

A: {w €| 1I§nn%§n|5m| > 5} Ql{w €| S| >e} QlAm,
mit

A ={w e Q|51 <e,...,|Sm-1| <&, |Sm| > ¢} (m=1,...,n)

gesetzt. Man beachte, dass die Mengen Aq, Ao, ..., A, paarweise disjunkt sind.
Aus S, = S + S, — S, folgt

52 = 82 +2(S, — Sk)Sk + (Sn — Sk)>.
Damit wird

Varls,| = E[s2] - (E[s.)? = E[s2] = [s2ar
Q

v

/SgdP: Z/Sgdp
A

k=14,
n
= Z /(3,3 +2(S, — Sk)Sk + (Sp — Sk)?) dP.
k:lAk
Es wird zunéchst gezeigt, dass die Zufallsvariablen
[Sn — Sk = X1+ ...+ Xy und I, - Sk
stochastisch unabhéngig sind. Dazu wird Satz 11.26 angewandt mit

n
gi: R SR , (Tht 1y ey Ty) — Z T
i=k—1

k
g@: RF—R (3317-'-,$k)—>(Z%)f(fﬁl,m,xk),
=1

wobei gilt
f(.’L’l, e

) = 1, |z <e, ..., |zg_1] <e, |zk| > €
k) 0, sonst.

225



Kapitel 12. Schwaches und starkes Gesetz der grofien Zahlen

Damit folgt

/(sn —S)SkdP = E[(Sn—Sk) - La, - Si]

Ag,
E[S, — Sk] - E[14, - Sk]
= 0-E[l4,-Sk] = 0.
Somit ist
Var[S,] = Z/s,% dP+Z/(Sn — Sp)% dP
> Z/S,% dp > 252/ dP = ) - P(Ay) = - P(A)
bzw.
P< max |Sy,| > 5) < V&I‘[an]'
1<m<n &€

12.14 Satz (Starkes Gesetz der groflen Zahlen, 1. Fassung):
Es sei (X;)ien eine Folge stochastisch unabhingiger Zufallsvariablen tiber einem gemeinsamen
Wahrscheinlichkeitsraum (2, §, P) mit

E[X;|:=n Vi und Z Var|Xi] < 00

i=1

72
Dann gilt:

n—oo N n—oo N <

1 1 —
lim ~S, = lim — Y X,=p P-fs.
=1

Beweis:
Fiir den Beweis wird Satz 12.12 b) und die Kolmogorovsche Ungleichung benutzt. Es wird
gezeigt, dass

IS’m—,u‘25>:P<U {‘15’,,1—#’25}) — 0 fiir n — o0
m

P (sup
m2n | M nn

gilt. Da diese Folge von Wahrscheinlichkeiten monoton in n ist, geniigt es, sich beim Konver-
genznachweis auf eine Teilfolge zu beschrinken, etwa auf n:=2""! +1,r — oo.
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(0, ) - (0,0 (ko]

i=r  2i-lam<2

SRS

i=r 2i-1<m<2i
o
= 3Pl U 1180l = me}
i=r 2i-1<m<2i
oo

™
N

U 18w —mul = 27" ¢}

1=r 2i—1<mg2i

(]
\

U {1Sm —mul > 27" 2}

i=r 1<m<2t
e .
=y P ( max |S,, — E[Sp]| > 2”e>
— 1<m<28
00 00 20
Var[Syi] 4 1
< Z 2. 92(—-1) g2 Z 92i ZVar[Xj] :
=7 €2 € i=r j=1

(Kolmogorovsche Ungleichung) .

00 21
Die rechte Seite konvergiert fiir r — oo gegen 0, falls > 75 > Var[X;] < oo gilt.

i=1" j=1
i=1 j=1 j=1 20>
oo oo
Var[Xj] 1
< > 72 5ok
j=1 k=0
B i Var[X}] 1
- D) ’ 1
j=1 J I - 1
4 X Var[X;]
= § Z j2 < 00.
j=1

Ganz analog kann mit Hilfe der Kolmogorovschen Ungleichung der folgenden Satz bewiesen
werden:
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12.15 Satz (Starkes Gesetz der groflen Zahlen, 2. Fassung):
Es sei (X;)ien eine Folge von stochastisch unabhdngigen Zufallsgrifien iber (Q,§, P) mit

oo
Mittelwerten p; := E[X;] und Varianzen 0;? := Var[X;] Vi€ N. Ist } ‘71."22 < 00, so gilt
i=1

1< 1<
nz;Xi — nZ;“i P—f.s.
= =

Im Fall stochastisch unabhéngiger und identisch verteilter Zufallsvariablen X, Xs,... kann
auf die Existenz der Varianz fiir die Giiltigkeit des starken Gesetzes der roflien Zahlen sogar
verzichtet werden (sieche Bauer, Kapitel 6):

12.16 Satz (Starkes Gesetz der grofien Zahlen, 3. Fassung):
Es sei (X;)ien eine i.i.d. Folge mit E[|X1]] < co. Dann gilt

1L
nlLrgon;Xi_E[Xl] P-fs.

Das starke Gesetz der grofien Zahlen besagt, dass unter geeigneten Regularitdtsbedingungen
die Mittelwertbildung bei Zufallsvariablen zu einem Ausgleich der zufélligen Schwankungen
fithrt. Diese Tatsache gilt keineswegs allgemein, wie das nachfolgende Beispiel zeigt.

12.17 Beispiel:

Es sei (X;)ien eine Folge von stochastisch unabhéngigen und mit den Parametern X := 1 und
p = 0 identisch Cauchy-verteilten Zufallsvariablen, d.h.

1 1
(z) == —— € R, ieN.
le(x) T 1+:L_27 X 72
Man zeigt, dass das arithmetische Mittel der Zufallsvariablen X, Xo,... ebenfalls Cauchy-
verteilt ist mit den Parametern A := 1 und p := 0, weshalb die Mittelwertbildung zu keinem

Ausgleich von Schwankungen fiithrt. Andererseits ist aber wegen

¢z 1
——dz = ~In(1 + a*
/0 L 2n( +a”)

auch

B[lX,) = /}R ol £, (@) = = [ e — 4o,

7w Jg 1+ 22
so dass die Voraussetzungen des starken Gestzes der grofien Zahlen 12.16 auch nicht erfiillt
sind.
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Anhang A

Tabelle der

v>—Verteilung

F(z) Anzahl der Freiheitsgrade
1 2 3 4 5 6 7 8 9 10
0.001 0.00 0.00 0.02 0.09 0.21 0.38 0.60 0.86 1.15 1.48
0.005 0.00 0.01 0.07 0.21 0.41 0.68 0.99 1.34 1.73 2.16
0.01 0.00 0.02 0.11 0.30 0.55 0.87 1.24 1.65 2.09 2.56
0.025 0.00 0.05 0.22 0.48 0.83 1.24 1.69 2.18 2.70 3.25
0.05 0.00 0.10 0.35 0.71 1.15 1.64 2.17 2.73 3.33 3.94
0.1 0.02 0.21 0.58 1.06 1.61 2.20 2.83 3.49 4.17 4.87
0.25 0.10 0.58 1.21 1.92 2.67 3.45 4.25 5.07 5.90 6.74
0.5 0.45 1.39 2.37 3.36 4.35 5.35 6.35 7.34 8.34 9.34
0.75 1.32 2.77 4.11 5.39 6.63 7.84 9.04 | 10.22 | 11.39 | 12.55
0.9 2.71 4.61 6.25 7.78 9.24 | 10.64 | 12.02 | 13.36 | 14.68 | 15.99
0.95 3.84 5.99 7.81 9.49 | 11.07 | 12.59 | 14.07 | 15.51 | 16.92 | 18.31
0.975 5.02 7.38 9.35 | 11.14 | 12.83 | 14.45 | 16.01 | 17.53 | 19.02 | 20.48
0.99 6.63 9.21 | 11.35 | 13.28 | 15.09 | 16.81 | 18.48 | 20.09 | 21.67 | 23.21
0.995 7.88 | 10.69 | 12.84 | 14.86 | 16.75 | 18.55 | 20.28 | 21.96 | 23.59 | 25.19
0.999 | 10.83 | 13.82 | 16.27 | 18.47 | 20.52 | 22.46 | 24.32 | 26.13 | 27.88 | 29.59
F() Anzahl der Freiheitsgrade
11 12 13 14 15 16 17 18 19 20

0.001 1.83 2.21 2.62 3.04 3.48 3.94 4.42 4.90 5.41 5.92
0.005 2.60 3.07 3.57 4.07 4.60 5.14 5.70 6.26 6.84 7.43
0.01 3.05 3.57 4.11 4.66 5.23 5.81 6.41 7.01 7.63 8.26
0.025 3.82 4.40 5.01 5.63 6.26 6.91 7.56 8.23 8.91 9.59
0.05 4.57 5.23 5.89 6.57 7.26 7.96 8.67 9.39 | 10.12 | 10.85
0.1 5.58 6.30 7.04 7.79 8.55 9.31 | 10.09 | 10.86 | 11.65 | 12.44
0.25 7.58 8.44 9.30 | 10.17 | 11.04 | 11.91 12.79 | 13.68 | 14.56 | 15.45
0.5 10.34 | 11.34 | 12.34 | 13.34 | 14.34 | 15.34 | 16.34 | 17.34 | 18.34 | 19.34
0.75 13.70 | 14.85 | 15.98 | 17.12 | 18.25 | 19.37 | 20.49 | 21.60 | 22.72 | 23.83
0.9 17.28 | 18.55 | 19.81 | 21.06 | 22.31 | 23.54 | 24.77 | 25.99 | 27.20 | 28.41
0.95 19.68 | 21.03 | 22.36 | 23.68 | 25.00 | 26.30 | 27.59 | 28.87 | 30.14 | 31.41
0.975 | 21.92 | 23.34 | 24.74 | 26.12 | 27.49 | 28.85 | 30.19 | 31.53 | 32.85 | 34.17
0.99 24.73 | 26.22 | 27.69 | 29.14 | 30.58 | 32.00 | 33.41 | 34.81 | 36.19 | 37.57
0.995 | 26.76 | 28.30 | 29.82 | 31.32 | 32.80 | 34.27 | 35.72 | 37.16 | 38.58 | 40.00
0.999 | 31.26 | 32.91 | 34.53 | 36.12 | 37.70 | 39.25 | 40.79 | 42.31 | 43.82 | 45.32

Beispiel: Bei 3 Freiheitsgraden ist F' = 0.99 fiir x = 11.35.
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Flz) Anzahl der Freiheitsgrade
21 22 23 24 25 26 27 28 29 30
0001 | 64| 70| 75| 81| 87| 92| 98 | 10,4 | 11,0 | 116
0.005 8,0 8,6 9,3 9,9 | 10,5 | 11,2 | 11,8 | 12,5 | 13,1 | 13,8
0,01 8,9 9,5 | 10,2 | 10,9 | 11,5 | 12,2 | 12,9 | 13,6 | 14,3 | 15,0
0,025 | 10,3 | 11,0 | 11,7 | 12,4 | 13,1 | 13,8 | 14,6 | 15,3 | 16,0 | 16,8
0,05 11,6 | 12,3 | 13,1 | 13,8 | 14,6 | 154 | 16,2 | 16,9 | 17,7 | 18,5
0,1 13,2 | 14,0 | 14,8 | 15,7 | 16,5 | 17,3 | 18,1 | 18,9 | 19,8 | 20,6
0,25 6,3 | 17,2 | 18,1 | 19,0 | 19,9 | 20,8 | 21,7 | 22,7 | 23,6 | 24,5
0,5 20,3 | 21,3 | 22,3 | 23,3 | 24,3 | 25,3 | 26,3 | 27,3 | 28,3 | 29,3
0,75 24,9 | 26,0 | 27,1 | 28,2 | 29,3 | 30,4 | 31,5 | 32,6 | 33,7 | 34,8
0,9 29,6 | 30,8 | 32,0 | 33,2 | 34,4 | 35,6 | 36,7 | 37,9 | 39,1 | 40,3
0,95 32,7 | 33,9 | 35,2 | 36,4 | 37,7 | 38,9 | 40,1 | 41,3 | 42,6 | 43,8
0,975 | 35,5 | 36,8 | 38,1 | 39,4 | 40,6 | 41,9 | 43,2 | 44,5 | 45,7 | 47,0
0,99 38,9 | 40,3 | 41,6 | 43,0 | 44,3 | 45,6 | 47,0 | 48,3 | 49,6 | 50,9
0,995 | 41,4 | 42,8 | 44,2 | 45,6 | 46,9 | 48,3 | 49,6 | 51,0 | 52,3 | 53,7
0,999 | 46,8 | 48,3 | 49,7 | 51,2 | 52,6 | 54,1 | 55,5 | 56,9 | 58,3 | 59,7
Flz) Anzahl der Freiheitsgrade
40 50 60 70 80 90 100 > 100 (Néherung)
0,001 | 17,9 | 24,7 | 31,7 39,0 46,5 54,2 61,9 (h —3,09)%/2
0,005 | 20,7 | 28,0 | 35,5 43,3 51,2 59,2 67,3 (h —2,58)2/2
0,01 | 222|207 |375| 454 | 535 | 61,8 | 70,1 (h —2,33)2/2
0,025 | 24,4 | 32,4 | 40,5 48,8 57,2 65,6 74,2 (h —1,96)2/2
0,05 26,5 | 34,8 | 43,2 51,7 60,4 69,1 77,9 (h —1,64)2/2
0,1 29,1 | 37,7 | 46,5 55,3 64,3 73,3 82,4 (h —1,28)2/2
0,25 33,7 | 42,9 | 52,3 61,7 71,1 80,6 90,1 (h—0,67)2/2
0,5 39,3 | 49,3 | 59,3 69,3 79,3 89,3 99,3 h2/2
0,75 | 45,6 | 56,3 | 67,0 | 77,6 | 881 | 98,6 | 109,1 (h+0,67)2/2
0,9 51,8 | 63,2 | 744 85,5 96,6 | 107,6 | 118,5 (h+1,28)2/2
0,95 55,8 | 67,5 | 79,1 90,5 | 101,9 | 113,1 | 124,3 (h+1,64)2/2
0,975 | 59,3 | 71,4 | 83,3 95,0 | 106,6 | 118,1 | 129,6 (h+1,96)2/2
0,99 63,7 | 76,2 | 88,4 | 100,4 | 112,3 | 124,1 | 135,8 (h+2,33)2/2
0,995 | 66,8 | 79,5 | 92,0 | 104,2 | 116,3 | 128,3 | 140,2 (h+2,58)2/2
0,999 | 73,4 | 86,7 | 99,6 | 112,3 | 124,8 | 137,2 | 1494 (h+3,09)2/2

In der letzten Spalte ist h = v/2m — 1
(m = Anzahl der Freiheitsgerade)
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Anhang B

Zeichenerklarungen

N Menge der natiirlichen Zahlen
Q Menge der rationalen Zahlen
R Menge der reellen Zahlen
C Menge der komplexen Zahlen
M Menge der mafdefinierenden Funktionen auf R, die in (—o0,0) ver-
schwinden
B Menge der nichtnegativen reellen Funktionen, die auf jedem Intervall der
Form [0, t] beschrankt sind
JIKe Menge der links offenen und rechts abgeschlossenen Intervalle im R",
ne€N
B" :=o(I") “o—Algebra der Borelschen Mengen des R™”
R =R U{—00, 00}
B :={B,BU{—o00}, BU{+0}, BU{—00,+00}|B € B}
P(M) Potenzmenge von M
(a,b] = {z]a < x < b} “links offenes, rechts abgeschlossenes Intervall”
n! =n...(n—1)-----2-1 “Fakultét von n”
(N)p, = % =N-(N—1)----- (N —n+1) “n—te untere Faktorielle von N”
n!
(3) = =R “n iiber k”
F(a—0)  meint den linksseitigen Limes von F'(a)
T konvergiert von unten gegen
x4 Exp(A) X ist exponential-verteilt
x<ly X und Y sind identisch verteilt
R(x) Realteil der komplexen Zahl x
() Imaginérteil der komplexen Zahl z

O(n), o(n)  seien die Landau-Symbole.

233



Kapitel B. Zeichenerklidrungen

234



Anhang C

Literatur

Folgende Biicher werden als begleitende Literatur zu diesem Skript empfohlen:

e H. BAUER:
Maf$- und Integrationstheorie,
Walter de Gruyter, Berlin, 1990.
ISBN: 3110127725
Preis: 26.95 €
Kurzbeschreibung:
,,Viele Gebiete der Mathematik und ihrer Anwendungen |[...] erfordern solide Kenntnisse
aus der MaB- und Integrationstheorie. Das Lehrbuch [...] fithrt den Leser [...] schnell,
verlésslich und prézise zu den wichtigsten Ergebnissen der Maf- und Integrationstheo-
rie hin. [...] Zahlreiche Beispiele erldutern die Bedeutung der erzielten Ergebnisse.]...]
Ubungsaufgaben laden den Leser zum vertieften Eindringen in den behandelten Stoff

ein.”

e H. BAUER:
Wahrscheinlichkeitstheorie,
5. Auflage, Walter de Gruyter, Berlin, 2002.
ISBN: 3110172364
Preis: 36.95 €
Kurzbeschreibung:
,,Das vorliegende Buch soll dem Studierenden als Wegfiihrer in die Wahrscheinlichkeits-
theorie dienen. Der Leser soll dabei mit den wichtigsten Ideen, Methoden und Resultaten
dieser sich heute schnell entwickelnden und verzweigenden mathematischen Theorie be-
kanntgemacht werden. [...] Da heutzutage die Wahrscheinlichkeitstheorie unléslich mit
der Maf3- und Integrationstheorie verbunden ist, verfolgt das Buch zugleich aber auch
ein zweites Ziel, ndmlich den Leser mit den Grundziigen der Mafitheorie vertraut zu
machen. [...]”

e W. BEHNEN, G. NEUHAUS:
Grundkurs Stochastik,
3. Auflage, Teubner-Verlag, Stuttgart, 1995.
ISBN: 3930737698
Preis: 24.00 €
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Kurzbeschreibung:

,,Fine integrierte Einfithrung in die Wahrscheinlichkeitstheorie und Mathematische Sta-
tistik fiir Mathematiker, Wirtschaftsmathematiker, Informatiker und Physiker.

Es enthélt: Wahrscheinlichkeitsmodelle, Anwendungspostulat und statistische Tests;
mehrstufige Zufallsexperimente und grundlegende diskrete Modelle; Wahrscheinlich-
keitsmodelle iiber euklidischen Rdumen; Koppelung von allgemeinen Zufallsexperimen-
ten (Satz von Fubini); Parameterschitzung (auch in approximativen Modellen); Konfi-
denzbereiche fiir Modellparameter; das Testen von Hypothesen.”

M. A. BERGER:

An Introduction to Probability and Stochastic Processes,

Springer—Verlag, New York, 1992.

ISBN: 3540977848

Kurzbeschreibung:

,,This is a textbook which will provide students with a straightforward introduction
to the mathematical theory of probability. It is written with the aim of presenting the
central results and techniques of the subject in a complete and self-contained account.
[...] Any student who has a familiarity with calculus and basic algebra will be able to
use this text and throughout there are a wide variety of exercises to illustrate and to
develop ideas. [...]”

O. BEYER, H. HACKEL, V. PIEPER, J. TIEDGE:

Wahrscheinlichkeitsrechnung und mathematische Statistik,

7. Auflage, Teubner-Verlag, Stuttgart, 1995.

ISBN: 3-8154-2075-X

Kurzbeschreibung:

,,Die Reihe ,,Mathematik fiir Ingenieure, Naturwissenschaftler, Okonomen und Land-
wirte” umfasst den [...] Lehrstoff fiir die Mathematikausbildung der genannten Diszi-
plinen, bietet Moglichkeiten zur Vertiefung sowie Spezialisierung und unterstiitzt die
Individualisierung des Studiums. [...] Das Lehrwerk ist nach modernen fachlichen und
hochschulpidagogischen Prinzipien aufgebaut. |[...]”

P. BILLINGSLEY:

Probability and Measure,

2nd edition, John Wiley and Sons, New York, 1986.

ISBN: 0471007102

Preis: 102.90 €

Kurzbeschreibung:

,,Intertwines measure theory and modern probability: probability problems generate
an interest in measure theory and measure theory is then developed and applied to
probability. Illustrates the connections probability theory has with applied mathematics
on the one hand and with pure mathematics on the other.”

M. Fisz:

Wahrscheinlichkeitsrechnung und mathematische Statistik,
VEB, Deutscher Verlag der Wissenschaften 1989.

ISBN: 3326000790
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Kurzbeschreibung:
,,Dieses Buch ist in der Hauptsache fiir Mathematiker bestimmt; es diirfte aber auch
[...] solchen Lesern zugénglich sein, die [...] iber gewisse Kenntnisse in der héheren

Mathematik verfiigen und sich fiir die Anwendungen der Wahrscheinlichkeitsrechnung
interessieren. Der Leser findet in diesem Buch eine Einfithrung in die moderne Wahr-
scheinlichkeitsrechnung und die moderne mathematische Statistik. [...] Das Buch enthlt
zahlreiche Anwendungsbeispiele. |...]”

P. GANSSLER UND W. STUTE:

Wahrscheinlichkeitstheorie,

Springer—Verlag, Berlin, 1977.

ISBN: 3540084185

Kurzbeschreibung:

,,Fiir das Verstédndnis des vorliegenden Textes sind [...] Grundkenntnisse aus einer Vor-
lesung ,,Einfiihrung in die Wahrscheinlichkeitstheorie und Mathematische Statistik”
wiinschenswert. [...] Auf eine Diskusion diskreter Modelle ist deshalb bewusst verzich-
tet worden. Die [...] getroffene Stoffauswahl umfasst eine zweisemestrige Vorlesung iiber
Wahrscheinlichkeitstheorie. Neben der Vermittlung klassischer Grundlagen liegt der me-
thodische Schwerpunkt auf der Konstruktion stochastischer Modelle unter besonderer
Berticksichtigung einiger fiir die Anwendungen in der Mathematischen Statistik wichti-
gen Resultate. [...] 7

H. O. GEORaGII:

Stochastik,

2. Auflage, de Gruyter, 2004.
ISBN: 3110172356

M. GREINER/G. TINHOFER:

Stochastik fir Studienanfinger der Informatik,

Hanser, Miinchen, 1996.

ISBN: 3446186360

Kurzbeschreibung:

,,Dieses Lehrbuch bietet einen Grundstock an Lehrstoff aus Wahrscheinlichkeitstheorie
und Statistik, wie er in der Informatik benttigt wird und verbindet diesen Lehrstoff
mit der Begriffswelt, die Informatiker in ihrem Berufsalltag vorfinden. Hierbei wird be-
sonderes Gewicht auf die Aspekte Methodik und Modellierung gelegt. Der Leser soll
[...] zukiinftig in der Lage sein, Fragen aus seinem Berufsalltag in ein geeignetes sto-
chastisches Modell umzusetzen und die ermittelten Resultate anschliefend im Rahmen
der urspriinglichen Fragestellung zu interpretieren.]...] Mehr als hundert Beispiele, Auf-
gaben und deren Losungen sowie ein Kompromiss zwischen mathematischer Strenge
und ausgewogener textlicher Darstellung des Stoffes motivieren den Leser zur aktiven
Teilnahme an der Entwicklung und Losung von Problemen aus der Stochastik.”

E. HENZE:

Einfihrung in die MajfStheorie,
Bibl. Institut, Mannheim, 1971.
ISBN: 341100505X
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Kurzbeschreibung:

,,Bei dieser Einfithrung in die Ma$- und Integrationstheorie werden gleichzeitig die not-
wendigen Ergebnisse und Methoden fiir den Einstieg in die moderne Wahrscheinlich-
keitstheorie bereitgestellt. Das Buch wendet sich in erster Linie an Studenten der Ma-
thematik, der Informatik und der Physik, kann aber auch anderen interessierten Lesern
von Nutzen sein.”

E. HENZE:

Stochastik fir Einsteiger,

Bibl. Institut, Mannheim, 1997.

ISBN: 3528368942

Kurzbeschreibung:

»s[...] Dieses Buch soll dem Leser einen Einstieg in die Stochastik, die Kunst des ,,ge-
schickten Vermutens”, vermitteln und ihn in die Lage versetzen [...] kritisch und kom-
petent mitreden zu konnen. Es enthilt 160 Ubungsaufgaben mit Losungen. [...] Als
Lehrbuch zwischen gymnasialem Mathematikunterricht und Universitit wendet es sich
unter anderem an: [...] Studienanféinger an Universititen, Fachhochschulen und Berufs-
akademien; Quereinsteiger aus Industrie und Wirtschaft.”

H. HEUSER:

Lehrbuch der Analysis. Teil 2 Mathematische Leitfiden,

Teubner, Stuttgart, 2002.

ISBN: 3519522322

Kurzbeschreibung:

,,Bei der Abfassung des zweiten Bandes |[...] wollte ich die Theorie ausfiihrlich und
fasslich darstellen, ausgiebig motivieren und durch viele Beispiele und Ubungen zum si-
cheren Besitz des Lesers machen. Auflerdem wollte ich Briicken schlagen zu den Anwen-
dungen analytischer Methoden in den allerverschiedensten Wissenschaften. [...] Dabei
stehen diesmal im Vordergrund der Uberlegungen Funktionen, deren Argumente und
Werte Vektoren aus dem R? oder sogar Elemente aus noch viel allgemeineren Rdumen
sind. [...]”

K. HINDERER:

Grundbegriffe der Wahrscheinlichkeitstheorie,

Springer—Verlag, 1980.

ISBN: 3540073094

Kurzbeschreibung:

,,Das Buch [...] bietet eine solide, gut motivierte Darstellung mit einer Fiille konkre-
ter Beispiele, ergidnzt durch sorgfiltig ausgesuchte Aufgaben nach jedem Paragraphen.
Sowohl die historischen als auch die weiterfithrenden Bemerkungen geben eine gute
Ubersicht iiber Probleme und Fragestellungen aus der Wahrscheinlichkeitstheorie.”

G. HUBNER:

Stochastik. Fine Einfihrung fiir Mathematiker, Informatiker und Ingenieure.,
4. Auflage, Vieweg Verlag, 2003.

ISBN: 3528254432

Preis: 22.50 €

238



Kapitel C. Literatur

Kurzbeschreibung:

,,Dieses Buch soll Informatiker, Ingenieure und Mathematiker in die Lage versetzen,
konkrete Vorgénge mit Zufallseinfluss in den wesentlichen Aspekten zu verstehen, zu
modellieren und daraus Prognosen und Entscheidungshilfen abzuleiten. [...] Das Buch
[...] richtet sich [...] an [...] Informatiker, Ingenieure, Mathematiker und Mathematik—
Lehrer, die sich grundlegende Kenntnisse in stochastischer Modellierung und erste Ein-
blicke in Anwendungsbereiche verschaffen wollen. [...] Besonders auf die Belange der
Informatik zugeschnitten ist die Einbeziehung von Modellen und Bewertungen fiir Be-

dienungsprobleme und Kommunikationsnetze auf elementarem Niveau. [...]”

U. KRENGEL:

Einfiihrung in die Wahrscheinlichkeitstheorie und Statistik,

6. Auflage, Vieweg, 2002.

ISBN: 3528672595

Preis: 22.90 €

Kurzbeschreibung:

,,Dieses Buch wendet sich an alle, die [...] in die Ideenwelt der Stochastik eindringen
mochten. Stochastik ist die Mathematik des Zufalls. [...] Die beiden Hauptgebiete der
Stochastik sind Wahrscheinlichkeitstheorie und Statistik. In der Wahrscheinlichkeits-
theorie untersucht man zufillige Prozesse mit festen als bekannt angenommenen steu-
ernden Wahrscheinlichkeiten. [...] Dariiber hinaus liefert die Wahrscheinlichkeitstheorie
Grundlagen fiir die Statistik, in der aus beobachteten Daten Schliisse iiber unbekannte
Wahrscheinlichkeiten und iiber zweckméBiges Verhalten gezogen werden sollen. |...]”

K. KRICKEBERG/H. ZIEZOLD:

Stochastische Methoden,

4. Auflage, Springer—Verlag, Berlin, 1995.

ISBN: 3-540-57792-0

Kurzbeschreibung:

,,Jm Vordergrund [...] stehen die eigentlichen ,,stochastischen” Ideen und ihre prakti-
schen Anwendungen, insbesondere in der Statistik, ohne dass mathematische strenge
und Schénheit zu kurz kommen. Uber die {iblichen Grundlagen hinaus finden sich Kapi-
tel iiber Simulation, nichtparametrische Statistik und Regression- und Varianzanalyse.
[...] Besonderer Anziehungspunkt dieses Buches ist die ,,genetische” Entwicklung der
verschiedenen Typen von Wahrscheinlichkeitsverteilungen, ausgehend von der hyper-
geometrischen Verteilung. |...]”

J. LEEN/H. WEGMANN:

Einfiihrung in die Statistik,

4. Auflage, Teubner, 2004.

ISBN: 3519320711

Preis: 22.90 €

Kurzbeschreibung:

,,Fine elementare Darstellung statistischer Schitz— und Testverfahren einschliellich der
zugrundeliegenden Modellbildung fiir Mathematiker, Informatiker, Wirtschaftswissen-
schaftler, Naturwissenschaftler und Ingenieure.
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Es enthélt: Methoden der Beschreibenden Statistik; Zufallsvariablen und ihre Vertei-
lungen; Gesetze der Groflen Zahlen und ihre Eigenschaften; Tests bei Normalvertei-
lungsannahmen; x2-Tests und Kontingenztafeln; verteilungsunabhingige Tests; einfache
Varianzanalyse und Regression.”

e R. MATHAR/D. PFEIFFER:
Stochastik fir Informatiker,
Teubner, 1990.
ISBN: 3519022400
Kurzbeschreibung:
,,Das vorliegende Buch [...] wendet sich vor allem an Informatikstudenten und Mathe-
matikstudenten mit Nebenfach Informatik mit dem Ziel, stochastische Grundbegriffe
unter besonderer Beriicksichtigung Informatik—spezifischer Aspekte zu vermitteln. |...]
Ziel des Buches ist es daher, eine einheitliche und méglichst geschlossene Ubersicht
tiber die zum Versténdnis bendtigten Grundlagen zu geben. [...] Trotz des iberwiegen-
den Lehrbuchcharakters dieses Textes haben wir uns allerdings auch bemiiht, neuere
Entwicklungen, die z.T. bisher nur in Originalarbeiten vorliegen, mit einzubeziehen, um
dort, wo es im Rahmen unseres Zugangs moglich ist, Anschluss an Fragestellungen der
aktuellen Forschung zu erlangen. [...]”

e J. PFANZAGL:
Elementare Wahrscheinlichkeitsrechnunyg,
Gruyter, Berlin, 1988.
ISBN: 3110114194
Kurzbeschreibung:
,,Die vorliegende Einfithrung der Wahrscheinlichkeitsrechnung ist ,,elementar” in dem
Sinne, dass weder Kenntnisse aus der Mafitheorie noch aus der Funktionentheorie vor-

ausgesetzt werden. [...] Das Anliegen des Buches ist die Entwicklung anwendungsbe-
zogenen stochastischen Denkens. Diesem Ziel dient eine verhéltnisméflig grofie Anzahl
von Beispielen, die [...] zeigen sollen, dass es sich bei der Wahrscheinlichkeitsrechnung

um ein Teilgebiet der Mathematik handelt, das durch Anwendungen immer wieder neue
Facetten erhilt. [...]”

e P. P. SPIES:
Grundlagen stochastischer Modelle,
Hanser, Miinchen, 1982.
ISBN: 3446137114

Literatur speziell zu Kapitel 4

e J. BANKS:
Principles of Quality Control,
John Wiley and Sons, New York, 1989.
ISBN: 0471635510

e D.C. MONTGOMERY:
Introduction to Statistical Quality Control,
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2nd edition, John Wiley and Sons, New York, 1991.

ISBN: 0471656313

Kurzbeschreibung:

,, This book is about the use of modern statistical methods for quality control and im-
provement. It provides comprehensive coverage of the subject from basic principles to
state-of-art concepts and applications. The objective is to give the reader a sound under-
standing of the principles and the basis for applying them in a variety of both product
and nonproduct situations. While statistical techniques are emphasized throughout, the
book has a strong engineering and management orientation. [...] By presenting theory,
and supporting the theory with clear and relevant examples, Montgomery helps the
reader to understand the big picture of important concepts. [...]”

e H. RINNE UND H.-J. MITTAG:
Statistische Methoden der Qualitdtssicherung,
3. Auflage, Carl Hanser Verlag, Miinchen, 1995.
ISBN: 3446180060
Kurzbeschreibung:
,,Dieses Buch ist bewusst anwendungsorientiert geschrieben und zeichnet sich durch eine
besonders sorgfiltige didaktische Gestaltung aus. Es enthélt: Zahlreiche Abbildungen
und Fotos; mehr als 100 Ubungsaufgaben mit ausfiihrlichen Losungen; viele durchge-
rechnete Anwendungsbeispiele; verstindnisfordernde, zusammenfassende Ubersichten;
kommentierte Literaturangaben.”

e W. UHLMANN:
Statistische Qualitdtskontrolle,
2. Auflage, Teubner—Verlag, Stuttgart, 1982.
ISBN: 3519123061
Kurzbeschreibung:
,,Ein Lehrbuch fiir Statistiker, Mathematiker, Ingenieure und Wirtschaftswissenschaft-
ler. Es enthélt: Wahrscheinlichkeitstheoretische Grundlagen; statistische Grundlagen;
Eingangs- und Endkontrolle; kostenoptimale Priifpléne; sequentielle Tests; Kontrollkar-
ten; Kosten und Kontrollabstand; kontinuierliche Stichprobenpléne.”

Literatur speziell zu Kapitel 10

e I'. BEICHELT:
Zuverldssigkeits— und Instandhaltungstheorie,
Teubner, Stuttgart, 1993.
ISBN: 3519029855

Kurzbeschreibung:
,,Das Buch ist eine moderne Einfiihrung in die Zuverlédssigkeits— und Instandhaltungs-
theorie auf der Grundlage stochastischer Modellbildung.[...] Zahlreiche numerische Bei-

spiele erleichtern dainhaltliche Verstdndnis. Das Buch wendet sich an Praktiker und
Studierende mathematisch-naturwissenschaftlich-technischer Fachrichtungen. [...]”
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Anhang D

Historie

In der folgenden Auflistung werden einige fiir die Entwicklung der Stochastik bedeutende
Mathematiker mit ihren Lebensdaten und kurzen Beschreibungen ihrer Wirkungsfelder auf-
gefithrt. Die Liste erhebt keinen Anspruch auf Vollsténdigkeit. Insbesondere fehlen wichtige
Mathematiker, die nicht direkt im Bereich der Stochastik gewirkt haben, durch ihre Arbeiten
zur Maf3- oder Integrationstheorie die moderne Stochastik aber erst erméglichten.

e Thomas Bayes
(% 1702 in London, England; t 17. April 1761 in Tunbridge Wells, Kent, England)

Thomas Bayes studierte ab 1719 Theologie an der Universitdt in Edinburgh und be-
schiftige sich nebenbei mit Mathematik. 1733 wurde er Pfarrer der presbyterianischen
Kapelle in Tunbridge Wells, 35 Meilen siidostlich von London. 1742 ernannte man Bayes
zum Mitglied der Royal Society, obwohl er bis zu diesem Zeitpunkt noch keinerlei ma-
thematische Arbeiten veroffentlich hatte. Insgesamt publizierte Bayes selbst nur zwei
Arbeiten. Seine wichtigten Forschungsergebnisse, die unter anderem auch den spéter
als ,,Formel von Bayes” benannten Satz enthielten, wurden erst aus seinem Nachlass
bekannt.

o Familie Bernoulli
Die schweizer Gelehrtenfamilie Bernoulli hat iiber mehrere Generationen hinweg sehr
grofle Beitrdage zur Mathematik geleistet.

Im Folgenden werden nur die beiden Mitglieder der Bernoulli-Familie aufgefiithrt, die
sich wesentlich mit stochastischen Fragestellungen beschéftigt haben. Insbesondere wer-
den Jakob Bernoulli II, Johann Bernoulli I, Johann Bernoulli II, Johann Bernoulli III,
Niklaus Bernoulli I und Niklaus Bernoulli II, die allesamt bedeutende Mathematiker
waren, hier nicht ndher erwéihnt.

— Daniel Bernoulli
(x 8. Februar 1700 in Groningen; t 17. Mérz 1782 in Basel)

Daniel Bernoulli interessierte sich hauptséchlich fiir Anwendungen der Mathema-
tik. Er entwickelte das Prinzip zur Losung algebraischer Gleichungen mit Hilfe
von rekurrenten Reihen (,,Methode von Bernoulli”) und untersuchte Kettenbriiche.
AuBlerdem lieferte er wichtige Beitrige zur Wahrscheinlichkeitstheorie, die spéter
teilweise von Laplace in seine Theorie aufgenommen wurden.
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— Jakob Bernoulli I
(* 27. Dezember 1654 in Basel; 1 16. August 1705 in Basel)

Jakob Bernoulli 1 ist der erste Gelehrte in der Familie der Bernoullis und iiber-
haupt der erste bekannte Schweizer Mathematiker. Er befasste sich tiberwiegend
mit analytischen Fragestellungen (er stand u.a. mit Leibniz, der gerade eine In-
finitesimalmethoden aufgestellt hatte, in Kontakt), sowie mit stochastischen Pro-
blemen. Seine Arbeit baute auf den Ergebnissen von Huygens iiber das Gliicks-
spiel auf. In einer, erst nach seinem Tode durch seinen Neffen Niklaus Bernoulli
I veroffentlichten Arbeit, stellte Jakob Bernoulli I bereits das Gesetz der grofien
Zahlen auf und verallgemeinerte viele kombinatorische Ansétze von Huygens.

e Emile Borel

(* 7. Januar 1871 in Saint-Affrique; T 3. Februar 1956 in Paris)

Borel beschiéiftige sich zunéchst mit Funktionentheorie. Nach seiner Tétigkeit als For-
schungsbeirat im Kriegsministerium von 1914-1918 iibernahm er den Lehrstuhl fiir
Wahrscheinlichkeitsrechnung und mathematische Physik an der Sorbonne. Wéhrend
seiner Arbeit in der Funktionentheorie prigte Borel den Begriff des Maflies und der
{iberabzihlbaren Uberdeckung. Ab 1905 befasste sich Borel mit den Nutzungsmoglich-
keiten der MaBtheorie in der Wahrscheinlichkeitstheorie. Aulerdem ist Borel Mitbe-
griinder der Spieltheorie und bewies das Minimax-Theorem fiir 3 Spieler.

Constantin Caratheodory
(x 13. September 1873 Berlin; { 2. Februar 1950 in Miinchen)

Caratheodory stammt aus einer angesehenen griechischen Familie. Er arbeitete bis 1900
als Ingenieur im Dienste Englands an der Aufstauung des Nils mit und studierte im
Anschluss daran in Deutschland u.a. bei Schwarz, Frobenius, Plank, Hilbert und Min-
kowski Mathematik. 1909 erhielt er seinen ersten Ruf als Professor an die TH Hanno-
ver. Im Folgenden lehrte er an verschiedenen deutschen und griechischen Universitéten.
Caratheodory beschéftigte sich hauptsichlich mit Variationsrechnung, partiellen Diffe-
rentialgleichungen, Maf}- und Integrationstheorie sowie der Theorie reeller Funktionen.
Die von ihm bewiesenen Maffortsetzungssétze gehtren heute zu den Kernelementen der
Mafltheorie und die mittlerweile iibliche axiomatische Einfithrung des Mafibegriffs geht
in vielen Teilen auf ihn zuriick.

Guido Fubini
(* 19. Januar 1879 in Venedig; 6. Juni 1943 in New York)

Zu den wichtigsten Arbeiten Fubinis gehort der 1907 von ihm bewiesene und spéter nach
ihm benannte Satz. Dariiber hinaus befasste sich Fubini mit projektiver Differentialgeo-
metrie sowie der Theorie diskontinuierlicher Gruppen und automorpher Funktionen.

Andrej Nikolajewitsch Kolmogorov
(* 25. April 1903 in Tambow; 20. Oktober 1987 in Moskau)

Kolmogorov gilt als einer der bedeutensten Mathematiker der Gegenwart. Er befasste
sich vorwiegend mit Wahrscheinlichkeitstheorie, mathematischer Statistik und Logik,
Maf- und Integrationstheorie, Funktionnalanalysis sowie Informations- und Algorith-
mentheorie. Nebenbei entwarf er Lehrpléne und Schulbiicher fiir den Mathematikunter-
richt und prégte so zu groflien Teilen den Mathematikunterricht in der Sowjetunion.
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Mit seiner Arbeit ,,Grundbegriffe der Wahrscheinlichkeitsrechnung” aus dem Jahre 1933
16ste er das 6. Problem der berithmten 23 von Hilbert gestellten mathematischen Pro-
bleme.

Pierre Simon Marquis de Laplace
(x 28. Mérz 1749 in Beaumont-en-Auge; t 5. Mérz 1827 in Paris)

Laplace befasste sich vor allem mit partiellen Differential- und Differenzengleichungen.
Seine Entwicklung der Laplace-Transformation diente ihm dazu, Naturerscheinungen
analytisch zu erfassen. Neben Arbeiten zu physikalischen Themen befasste er sich auch
mit Themen der Wahrscheinlichkeitsrechnung. Seine 1812 erschienene Theorie beinhalte-
te bereits den mathematischen Begriff der Wahrscheinlichkeit und den des Erwartungs-
wertes. Zudem greift Laplace in seiner Arbeit das von J. Bernoulli gefundene Gesetz der
groflen Zahlen auf.

Auf Laplace geht auch die Idee zuriick, dass das Geschehen in einem physikaischen Sy-
stem exakt vorherbestimmbar sei, wenn nur alle Anfangszustéinde bekannt sind (,,La-
placescher Determinismus”).

Laplace war neben seiner Tétigkeit als Forscher ab 1794 Vorsitzender der Kommission
fiir Mafle und Gewichte und unter Napoleon Bonaparte Minister des Inneren.

Henri Lebesgue
(* 28. Juni 1875 in Beauvais (Frankreich); 1 26. Juli 1941 in Paris)

Lebesgue erkannte, dass viele zu seiner Zeit giiltigen Theorien fiir eine Reihe von Fra-
gestellungen unzureichend waren. 1902 verallgemeinerte er den Riemannschen Integral-
begriff zu dem wesentlich leistungsfahigeren Lebesgueschen Integralkalkiil. Lebesgues
Resultate wurden zunéchst nur zégernd aufgenommen, stellen heute aber die Grundla-
ge fiir die moderne Analysis dar.

Andrej Andrejewitch Markov
(% 14. Juni 1856 in Gouvernement Rjasan; 1 20. Juli 1922 in Petrograd)

Markov studierte von 1874-1878 unter anderem bei Tschebyscheff und beschéftigte sich
zunéchst hauptsétlich mit Fragestellungen der Zahlen— und Funktionentheorie. Spéter
befasste er sich iiberwiegend mit Wahrscheinlichkeitsrechnung. Dabei legte er wichtige
Grundlagen zur Entwicklung der Theorie der stochastischen Prozesse. Auflerdem ent-
wickelte Markov die Theorie der spéter nach ihm benannten Markovschen Prozesse bzw.
Ketten.

Pafnuti Lwowitch Tschebyscheff
(* 16. Mai 1821 in Okatowo; t 8. Dezember 1894 in Petersburg)

Tschebyscheff befasste sich zunéchst iiberwiegend mit Zahlentheorie. Unter anderem
wirkte er an der Herausgabe der zahlentheoretischen Manusskripte Eulers mit. Spéter
beschéftige er sich dann iiberwiegend mit wahrscheinlichkeitstheoretischen Fragestel-
lungen. Insbesondere erarbeitete er die GesetzméfBigkeiten von Summen unabhéngiger
Summanden. Er verdeutlichte die Wichtigkeit solcher Begriffe wie Zufallsgrofie oder Er-
wartungswert, verallgemeinerte das Gesetz der grofien Zahlen und vereinfachte dessen
Beweis erheblich.
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e Bernhard Georg Friedrich Riemann
(* 17. September 1826 in Breselenz bei Dannenberg; T 20. Juli 1866 in Selasca in Italien)

Riemann studierte ab 1846 an der Universitdt in Gottingen zunéchst Theologie und
Philosophie, wechselte dann aber bald zur Mathematik. In seiner 1854 vorgelegten Ha-
bilitationsschrift fithrte Riemann das spéter nach ihm benannte Riemann-Integral ein.
Neben der Integrationstheorie befasste er sich mit vielen weiteren mathematischen Ge-
bieten. So forschte Riemann u.a. auf dem Gebiet der partiellen Differentialgleichungen,
sowie in der Zahlentheorie und der nichteuklidischen Geometrie. Die Ideen Riemanns
sind bis heute von grofler Bedeutung: Die Riemannsche Hypothese iiber die Nullstellen
der (-Funktion wird in sehr vielen Sétzen der Zahlentheorie verwendet. Beweisen konnte
man die Riemannsche Hypothese allerdings bis heute nicht.

Weitere Informationen und diverse Biographien finden sich unter:

e S. GorTwALD, H.-J. ILGAUDS, K.-H. SCHLOTE:

Lexikon bedeutender Mathematiker,
Verlag Harri Deutsch, Thun, 1990.
ISBN: 3-8171-1164-9

e Turnbell Server, Biographies
http://www-groups.dcs.st-and.ac.uk/

o Mathematik.ch: Bedeutende Mathematiker
http://www.mathematik.ch/mathematiker/

e Wikipedia (Kategorie: Mathematiker)
http://de.wikipedia.org/wiki/Kategorie:Mathematiker
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Huygens begriindet mit seinem
Buch ,Uber das Wiirfelspiel” die

\

Wahrscheinlichkeitstheorie. Er >

fiihrt u.a. den Erwartungswert emj
“Gesetz der groRen Zahlen® (aus —1
Jakob Bernoullis Nachlass von 1705: —

seinem Neffen Niklaus Bernoulli |
veroffentlicht)

Formel von Bayes (aus Bayes
Nachlass veréffentlicht)

Laplace veroéffentlich seine Wahrscheinlichkeitstheorie. In
ihr wird der Begriff der Wahrscheinlichkeit exakt definiert,
aulerdem wird darin der Erwartungswert erortert.

)_’_,1761__

1812—f—
Riemann fiihrt den spater nach
ihm benannten Integralbegriff ein 1
schebyscheff befasst sich mit Summen unabhangiger
Zufallsvariablen und verallgemeinert das Gesetz der grofRen
Zahlen. Tschebyscheff versuchte die Wahrscheinlichkeits- 1854——
theorie so auszubauen, dass sich mit ihr ein groRer Teil der I
Vorgange der Wirklichkeit bescheiben lasst. —
Borel pragt den = =
Begriff des MaRes -1
Markov befasst sich mit stochastischen Prozessen und zeigt 1
dass das starke Gesetz der grofRen Zahlen und der zentrale 19001
Grenzwertsatz unter allgemeineren Voraussetzungen gelten 18823 —
ilbert formuliert seine 23 bedeutenden mathematischen 1917 —
Probleme, darunter als 6. Problem: Axiomatisierung der ]
ahrscheinlichkeitstheorie
1933—

G_ebesgue verallgemeinert den Integralberiff von Riemann

orel beschreibt Nutzungsmadglichkeiten der MaRtheorie fiir
die Wahrscheinlichkeitstheorie

Warteschlangentheorie (in seinem Fall zu Dimensionierung

rlang veroffentlich die erste Arbeit zur
on Fernsprechvermittiungenen)

olmogorov 16st mit seiner Arbeit ,,Grundbegriffe der
Wabhrscheinlichkeitsrechnung“ das 6. Problem von Hilbert

@aratheodory beweist die beiden MaRfortsetzungssatze

|

\

1625 * Christiaan Huygen

1654 * Jakob Bernoulli

1695  Christiaan Huygen
1700 * Daniel Bernoulli
1702 * Thomas Bayes
1705 t Jakob Bernoulli

1749 * Piere Simon Marquis de Laplace

1761 1+ Thomas Bayes

1782 1 Daniel Bernoulli

1821 * Pafnuti Lwowitsch Tschebyscheff
1826 * Bernhard Georg Friedrich Riemann
1827 t Piere Simon Marquis de Laplace

56 * Andrej Andrejewitsch Markov

62 * David Hilbert

66 T Bernhard Georg Friedrich Riemann
71

7

3 Constantln Caratheodory
75 * Henri Lebesgue
878 * Agner Krarup Erlang

8
8l
8l
8
8
8

1
1
1
1

1894 t Pafnuti Lwowitsch Tschebyscheff
1903 * Andrej Nikolajewitsch Kolmogorov

Andrej Andrejertsch Markov

1922 j{
Agner Krarup Erlang

1929

1941 1 Henri Lebesgue
1943 1 David Hilbert

1950 1 Constantin Caratheodory
1956 1 Emile Borel

1987 1 Andrej Nikolajewitsch Kolmogorov
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Normalverteilung, 115
n—te untere Faktorielle, 24
Null-Hypothese, 61
Nullmenge, 167

Operationscharakteristik, 62, 63
Operationspfade, 181
operationstreu, 126

paarweise stochastisch unabhéngig, 55
Poissonverteilung, 31
Erwartungswert, 38
Varianz, 38
Positiv—Teil, 145
Pramaf, 90
Produkt—-o—Algebra, 187
Produktmaf, 206

quasiintegrabel, 145

Randverteilung, 192
Randverteilungsdichte, 197
Randverteilungsfunktion, 192
Rechteckverteilung, 112
rechtsschief, 165
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Restriktion, 94 Urnenmodell, 23-28
Riemann, Bernhard Georg Friedrich, 246 von Polya, 53
Ring, 79, 84 Ziehen mit Zuriicklegen, 27
Ziehen ohne Zuriicklegen, 24
Satz
der monotonen Konvergenz, 169 Varianz, 36, 164
der totalen Wahrscheinlichkeit, 47 Varianz der Lebensdauer, 174
Faltungs-, 208 Variationskoeffizienten, 165
Transformationssatz fiir Dichten, 207 vereinigungsstabil, 76
Satz von Bernoulli, 222 Verfahren von Giinther, 63
Schiefe, 165 Verteilung, 33
Schnitt, 212 Verteilungsfunktion, 105, 106, 191, 197
schnittstabil, 76 mehrdimensionale, 188
Semiring, 76, 84 vollstédndig stochastisch unabhéingig, 56
separabel, 84
o—additiv, 90 Wahrscheinlichkeit, 15
o—Algebra, 14, 79 bedingte, 45
o Algebra, 81, 127 Satz von der totalen, 47
o—subadditiv, 90 Wahrscheinlichkeitsmaf, 16, 90, 106, 128
Spur-oAlgebra, 45 Wahrscheinlichkeitsraum, 16
Standard—Normalverteilung, 115 diskret, 22
Standardabweichung, 165 Lapla.ce"scher', 23
Standardnormalverteilung, 115 Wahrscheinlichkeitsvektor, 22
statistische Tests, 60 Wahrscheinlichkeitsverteilung
Steilheit, 68 Beta, 121
Stetigkeit von oben, 93 binomiale, 28-30
Stetigkeit von unten, 93 C2auchy, 117
Stichprobenmenge, 13 X, 120
Stichprobenplan Erlang, 120
(n—c), 67 Exponential, 113

Stichprobensystem der Firma Philips, 68 Varianz, 164
Stochastik, 12 Gamma, 118

stochastisch unabhingig, 54, 198 Gleichverteﬂu‘ng, 23, 112
Streuung, 165 hypergeometrische, 26, 29

subadditiv, 90 Laplace’sche, 23
Log. Normal, 117
Test zum Signifikanzniveau «, 62 Poisson, 31
Tschebyscheff, Pafnuti Lwowitch, 245 Rechteck, 112
Standardnormal, 115
unabhéngig Weibull, 115
paarwelsie stochastisch, 55 Weibull Verteilung, 115
stochastisch, 54
vollstdndig, 56 zentrales Moment, 36
Ungleichung, Kolmogorovsche, 225 Zufallsexperiment, 12
Ungleichung, Markovsche, 220 Zufallsgrofle, 128
Ungleichung, Tschebyscheffsche, 221 reelle, 128
unkorreliert, 216 Zufallsvariable, 33, 128
Urbild, 126 diskret, 33
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diskret reellwertig, 33
Zufallsvektor, 128
Zuverléssigkeitsfunktion, 174

251



	Vorwort
	Vorwort zur ersten Auflage
	Vorwort zur zweiten Auflage
	Auf Stochastik I aufbauende Vorlesungen

	1 Einführung und grundlegende Begriffe
	1.1 Zufallsexperiment
	1.2 Ergebnisraum
	1.3 Ereignisse
	1.4 Wahrscheinlichkeit
	Literaturverzeichnis

	2 Diskrete Wahrscheinlichkeitsverteilungen
	2.1 Konstruktion diskreter Wahrscheinlichkeitsmaße
	2.2 Laplacescher Wahrscheinlichkeitsraum
	2.3 Das Urnenmodell
	2.4 Beziehungen zwischen den Verteilungen
	2.5 Diskrete Zufallsvariable
	2.6 Kenngrößen einer diskreten Zufallsvariablen
	2.7 Erzeugende Funktion
	Literaturverzeichnis

	3 Bedingte Wahrscheinlichkeiten
	3.1 Begriffe und Zusammenhänge
	3.2 Stochastische Unabhängigkeit
	Literaturverzeichnis

	4 Statistische Methoden der Qualitätssicherung
	4.1 Hypothesentest
	4.2 Konstruktion von (n-c)-Stichprobenplänen
	4.3 Maximaler mittlerer Durchschlupf
	4.4 Mittlerer Prüfaufwand
	Literaturverzeichnis

	5 Mengensysteme
	5.1 Begriffe und Zusammenhänge
	5.2 Erzeugendensysteme
	5.3 Die --Algebra der Borelschen Mengen
	Literaturverzeichnis

	6 Mengenfunktionen
	6.1 Grundbegriffe
	6.2 Erster Maß--Fortsetzungssatz
	6.3 Zweiter Maß--Fortsetzungssatz
	Literaturverzeichnis

	7 Maßdefinierende Funktionen
	7.1 Korrespondenzsatz
	7.2 Rechenregeln für maßdefinierende Funktionen
	7.3 Beispiele für maßdefinierende Funktionen
	Literaturverzeichnis

	8 Messbare Abbildungen
	8.1 Messbare Abbildungen und Bildmaße
	8.2 Kriterien für Messbarkeit
	Literaturverzeichnis

	9 Integration
	9.1 Vorbemerkungen
	9.2 Das µ--Integral von Elementarfunktionen
	9.3 Das µ--Integral nichtnegativer messbarer numerischer Funktionen
	9.4 Das µ--Integral allgemeiner messbarer numerischer Funktionen
	9.5 Erwartungswert und Varianz einer reellwertigen Zufallsvariable
	9.6 Tabelle mit Kenngrößen verschiedener Verteilungen
	9.7 Weitere Hilfsmittel aus der Maß-- und Integrationstheorie
	Literaturverzeichnis

	10 Zuverlässigkeit
	10.1 Einführung und Grundbegriffe
	10.2 Zuverlässigkeit von zusammengesetzten Systemen
	Literaturverzeichnis

	11 Produkträume und mehrdimensionale Zufallsvariable
	11.1 Zufällige Vektoren
	11.2 Unabhängigkeit von Zufallsvariablen
	11.3 Transformation von Zufallsvariablen (von stetigen Verteilungen)
	11.4 Der Satz von Fubini und seine Anwendungen
	Literaturverzeichnis

	12 Schwaches und starkes Gesetz der großen Zahlen
	12.1 Das schwache Gesetz der großen Zahlen
	12.2 Das starke Gesetz der großen Zahlen
	Literaturverzeichnis

	A Tabelle der 2--Verteilung
	B Zeichenerklärungen
	C Literatur
	D Historie

