TU Clausthal Institut fir Mathematik

Programme in Studien- und
Diplomarbeiten

Prof. Dr. M. Kolonko
Dipl.-Math. D. Wasch
und
Dipl.-Math. B. Gorder

Stand: 15. November 2007

1 Programmierrichtlinien

Im folgenden sind einige Regeln aufgestellt, die bei der Erstellung von Program-
men eingehalten werden sollten.

1.1 Kommentare im Quellcode

Alle Klassen, Funktionen und Methoden sollten mit einem einheitlichen Kopf
versehen sein, der durch automatische Dokumentationstools (wie Javadoc oder
Doxygen) verstanden wird. Javadoc ist speziell fiir Java-Programme und produ-
ziert eine HTML-Dokumentation, Doxygen kann fir Java, C, C++ u.a. Program-
miersprachen benutzt werden und kann neben HTML und anderen auch KIEX-
Dokumentationen erzeugen.

Der Kopf einer Datei sollte folgende Gestalt haben (Bsp. fiir C++, in anderen Spra-
chen entsprechend, Metakommentare in Klammern

/ / B T R R R R R I T I R A A T PR P P P SR R M P
HH RN AR TR AAN T TR ARTNTRAARTTRTRAATTRARNTTRARTTRTRRAARTRTRTRARATTRARTRRARNRR

(55 mal "*7)
// Dateiname:

//

// (Hier eine kurze Beschreibung des Inhalts der Datei
z.B. Auflistung aller hier eingefiihrten Klassen)

/] ...

/] =
(55 mal "-7)

// AUTOR/IN: (mit Datum)

// (Anderungsinformation)

/ / B A R ke b bt b b e A A bt bt b e L e A e A T bt e b L b L e A e T b S L]
(55 mal "*7)

Die Festlegung erscheint vielleicht etwas kleinlich, insbesondere die Vorgabe der
Anzahlen von “*". Dies dient aber dem einheitlichen Erscheinungsbild auf ver-
schiedenen Medien (z.B. Editoren und Ausdruck), ohne ungewollten Zeilenum-
bruch. Die Zeilenldnge sollte maximal 80 Zeichen betragen.

Jede Funktion/Methode muss einen Kopf der folgenden Gestalt tragen:

1 Programmierrichtlinien

Doxygen
//

(2 mal ’/’ und 55 mal ’=’)
/// (drei(!) ’/’ pro Zeile, gefolgt von der Beschreibung)
//

(2 mal '/’ und 55 mal ’=")

RO A SRR R NI R R ORI I P SN OSBRI FIR SRR R RN SR SRR M K SRR ORI P PR SRR ORI R SR S R R R R R R R SR OO R AR RORORON
e e T L A A b 1o e 1 A 1 T i i i T T A A R R A A e 1o o i A T T A A b T Tl i A A T e i A A T i i A Tl T A g A e 1Y

(57 mal ’*7)
* (Beschreibung)

B e S S A SR R A T SR S A A PR SRR MK PR PR RO MK R S OORE /
L e A T A A e T e e i e T i i i Tl e i e A Tl e e e e e A £ KA Ak T i e A T e A e T i e A L T e i A 1

(57 mal ’*")

Die Beschreibung sollte die Funktionsweise incl. der Nebeneffekte und Besonder-
heiten beinhalten und moglichst knapp gefasst sein. Auflerdem konnen in der
Beschreibung noch folgende Elemente zur automatischen Dokumentationserstel-
lung enthalten sein:

@brief <kurzbeschreibung>: Beschreibung in einer Zeile

@param <parametername> <beschreibung>: zur Erstellung einer Paramenterbe-
schreibung

@return <beschreibung>: Erklarung fiir den Riickgabewert

@see <methodenname>: erzeugt einen Eintrag ,,sieche auch“

Kurze Kommentare (z.B. solche zu Variablen) miissen in der Zeile direkt davor
stehen und mit einem /// (Doxygen) bzw. /** ...*/ (Javadoc) gekennzeichnet
werden. Mit Doxygen kann der Kommentar auch hinter dem Bezeichner stehen.
Dann muss der Kommentar aber mit ///< eingeleitet werden, damit klar ist, dass
sich der Text auf das vorangegangene bezieht.

Beispiel (Javadoc):

/** ein Integer */

int a;
/** ein double */
double b;

/** mein Objekt */
MeinObjekt c¢ = new MeinObjekt();

1.2 Bezeichner

Beispiel (Doxygen):

int a; ///< ein Integer
int *b; ///< ein Pointer auf ein Integer
int &c=a; ///< eine Referenz auf a

1.2 Bezeichner

Eine besondere Bedeutung fiir die Verstindlichkeit des Programmtextes kommt
der geschickten Wahl der Namen (Bezeichner) zu. Grundsatzlich sollten als Be-
zeichner deutsche Worte oder Abkiirzungen benutzt werden. Dies ermoglicht auch
bei intensiver Benutzung externer Bibliotheken eine leichte Unterscheidung der
selbstdefinierten Groflen von solchen des Systems. Dazu gentigt es u. U., dass die
Bezeichner deutsche Bestandteile haben, z.B. HauptPanel.

Bei der Wahl von Namen fiir wichtige, haufig auftretende Grofien und Funktionen
sollte man versuchen, die Bedeutung moglichst prazise in dem Namen wiederzu-
geben (“selbsterkldrend”). Z. B. sollte eine Variable, die die Lange eines Feldes an-
gibt Laenge heifden. Im Zweifelsfall sollten lange Worte oder Zusammensetzungen
benutzt werden, die insbesondere bei ihrem Aufruf ihre Wirkung erkldren.

Auch lokale Hilfsvariablen sollten intelligent benannt werden. Wird z. B. ein Feld
durchlaufen, so sollte die Laufvariable nicht i sondern (z. B.) pos oder idx (fiir Po-
sition oder Index) heifden. Wird das Feld an verschiedenen Stellen des Programms
immer wieder durchlaufen, so sollten immer wieder dieselben Bezeichner benutzt
werden (Kopieren von (fehlerfreien) Programmsegmenten).

Grundsitzlich sollte ein Bezeichner die Kategorie des Bezeichneten erkennen las-
sen (soweit dies moglich ist). Z. B. konnte ein Pointer auf eine Optimierungsproze-
dur OptimierungsProcPtr heifden, wird zusatzlich ein Typ fiir diese Pointer dekla-
riert, so sollte er OptimierungsProcPtrTyp heifen.

1.3 Klassen

Bei der Deklaration von Klassen sollten die members in folgender Reihenfolge ein-
gefiihrt werden:

» zundchst die einfachen member-Variablen, sortiert nach private, protected,
public.

1 Programmierrichtlinien

* dann die Konstruktoren, Destruktor, eventl. Operatoren sowie weitere Me-
thoden, wieder sortiert nach Sichtbarkeit/Zugriffsrechten.

Klassen sollten so weit wie moglich gekapselt werden, d.h. auf die Deklaration
von public member-Variablen sollte moglichst vollstindig verzichtet werden. Der
Zugriff auf member-Variablen sollte indirekt tiber so genannte Getter- und Setter-
Methoden erfolgen.

1.3.1 Klassen in C++

Bei der Implementierung in C++ sollte die Aufteilung in separat zu compilieren-
de Files (*.h und *.C, bitte nicht *.cc!) mit aussagekraftigen Namen erfolgen, die
Rickschliisse auf die enthaltenen Klassen zulassen. Bei der Implementierung der
Klassen (in den .C-Dateien) sollte die Reihenfolge der Deklaration moglichst bei-
behalten werden.

Die im folgenden angegebenen Konstruktoren etc. konnen als Vorlage angesehen
werden, die in den Kopf einer Klassendeklaration zu kopieren ist. “XXXTyp” muss
dabei durch den Namen der Klasse ersetzt werden.

// Tedddedededhddededehddededehddede TNl deNhddede NNl deNhddede NNl de NNl Nhh
// Dateiname: klasseXXX.h

//

/] =
// AUTOR/IN: 4.1.2005, Dominic Wasch

/7

o al ol fa sla ala ale ol ol ola ala ae ol ol ol ol ala ale ol sl sla sl ale ol ol slo st ale ol ol sla ala ale ale ol ola ala ale ale ol ol ala ala ale ol ol sla sl ale ol ofa sl sl st ol
// RN dedeRNddedefehdddedehddedehddedeNNhddedeRhddedeNNhddede NN hdededdk

#ifndef _KLASSEXXX_H_
#define _KLASSEXXX_ H_

// hier kommen nur die includes hin, die auch fir dieses
// header-file wichtig sind! Die anderen includes gehéren
// in die .C-Datei. Dies erhoht die Compile-Geschwindigkeit.

//
/// @rief Eine Beispielklasse.

/// Sie enthdlt nur die notigsten Methoden, die jede etwas
/// kompliziertere Klasse haben sollte.

//
class XXXTyp

{
// hier stehen die Member-Variablen, sortiert nach
// public, protected und private

public:
[/ HRERRHHHHARAR AR RBHHHRRRRRRA AR AR BB HH#

// Konstruktoren, Deskruktor und Zuweisung
/] BHEBRHBBHBRARBAHBAHB AR B HHBHHBRHBRHBRHRRHBRHH R AR BAH R AR B

//
/// Standard-Konstruktor

//
XXXTyp Q) ;

//
/// Copy-Konstruktor, benutzt copy()
/// @param rSeite was kopiert werden soll
/// @see copy(const XXXTyp& rSeite)
//
XXXTyp(const XXXTyp& rSeite)

{copy(rSeite);};

//
/// Destruktor, ruft dest() auf

/// @see dest()

//
~XXXTyp O

{dest();1};

//
/// Zuweisung, benutzt im wesentlichen copy()
/// @param rSeite was kopiert werden soll

/// @see copy(const XXXTyp& rSeite)

//
XXXTyp& operator=(const XXXTyp& rSeite);

/] HERHBBHHBBHBREHRBHBRBH BB BRBH BB HRBH BB R BB B RBHBRHHRRHY
// o6ffentliche Methoden
/] BHEBRHBBHRBAHBAH BB AR BHHBLHBRHBBH BB R AR BB AR B HH BB

// hier kommen die 6ffentlichen Methoden hin

1.3 Klassen

1 Programmierrichtlinien

private:

/] HERBHBHHBHBHRRBRB R B BHBHRBR BB HH BB HBHR BB BB BHBHBHR R BB Y
// Hilfsmethoden
/] BEHHHHBBBHBRRRRHH R HHRR BB R R H R H RS

//
/// legt eine Kopie aller interner Strukturen an

/// wird im Copy-Konstruktor und im Zuweisungsoperator
/// verwendet

/// @param rSeite was kopiert werden soll

/// @see XXXTyp(const XXXTyp& rSeite) und

/// operator=(const XXXTyp& rSeite)

//
void copy(const XXXTyp& rSeite);

//
/// zerstoert die Skruktur; Methode ist abgesichert gegen den Fall,
/// dass noch keine Strukturen angelegt sind

//
void dest();

}s

#endif

1.4 Programmierstil

Wiahrend die Festlegung fiir das duflere Erscheinungsbild eines Programmtextes re-
lativ einfach ist, ist die Vorschrift inhaltlicher Strukturen nur sehr allgemein mog-
lich.

Grundsatzlich ist in allen Sprachen ein objektorientierter Stil mit moglichst stark
voneinander abgekapselten logischen und programmtechnischen Einheiten zu
benutzen. Die Schnittstellen zwischen den Einheiten sind so eng wie moglich zu
wahlen (z.B. moglichst wenig ,,public” in Klassenheadern). Globale Variablen soll-
ten vermieden werden, wo sie unumganglich sind, ist dies zu begriinden.

Besonders in C/C++ ist es moglich und tiblich, wesentliche Schritte als Nebenef-
fekt von (u.U. unwesentlichen) Schritten zu programmieren. Z.B. konnen Wertzu-
weisungen in Abfragen untergebracht (d.h. versteckt) werden:

1.5 Benutzung von Doxygen

if(a=b<c) {...}.

Dies ist in jedem Fall zu vermeiden! Ubersichtlicher ist es hier, eine Zeile mehr zu
verwenden:

a =b;
if(b<c) {...}.

Gerade noch hinzunehmen sind Standardkonstruktionen wie:

while(datei.get(Zeichen))
{...}

In Zweifelsfillen geht Klarheit vor Effizienz. Nur in besonders laufzeit-kritischen
Teilen darf auf maschinennahe Effekte zuriickgegriffen werden, welche gut zu
kommentieren sind. Fallunterscheidungen sind moglichst durch vollstandige
if...else- oder switch-Konstrukte zu beschreiben, z. B. nicht:

Annahme = false;

if(BedingungErfullt)
Annahme = true;

return Annahme;

sondern:

if(BedingungErfullt)
return true;

else // hier ist Bedingung nicht erfuillt
return false;

1.5 Benutzung von Doxygen

Doxygen ist auf den Pool-Rechnern im Institut fiir Mathematik installiert. Die Be-
nutzung erfolgt im Wesentlichen tiber die Konsole. Zundchst muss fiir das Projekt
ein Konfigurationsfile erstellt werden, in der dann alle notigen Einstellungen ein-
getragen werden. Dies geschieht automatisch mit

doxygen -g

Die erzeugte Datei heifst Doxyfile und muss an das Projekt angepasst werden. Da-
zu wird sie mit einem Texteditor geoffnet. Mindestens gedndert werden sollten

1 Programmierrichtlinien

PROJECT_NAME <projektname>
OUTPUT_LANGUAGE = German

Fir ein reines Java-Projekt sollte auflerdem der Schalter OPTIMIZE_OUTPUT_JAVA auf
YES gesetzt werden. Statt die FILE_PATTERNS wie angegeben zu setzen kann auch
die Option INPUT angepasst werden.

Sollen auch private und rein statische Methoden in der Dokumentation aufgelistet
werden, miissen noch

EXTRACT_PRIVATE
EXTRACT_STATIC

YES
YES

gesetzt werden.

Um nun die Dokumentation zu erstellen, muss einfach nur
doxygen

eingetippt werden. Die Dokumentationen werden dann in Unterverzeichnissen
html, latex, ...erstellt.

Eine genauere Beschreibung der Optionen und Moglichkeiten ist im Doxygen-
Manual http://www.stack.nl/~dimitri/doxygen/manual .html zu finden.

10

http://www.stack.nl/~dimitri/doxygen/manual.html

2 Anfertigung der Programmbeschreibung

2.1 Einfuhrung

Wird im Rahmen einer Studien- und Diplomarbeit auch ein Programm geschrie-
ben, so gehort neben einer Beschreibung der Theorie im Normalfall auch eine Be-
schreibung des Programmes dazu. Dies hat unter anderen folgende Griinde:

1. Die Programmierung wird als Teil der Arbeit dokumentiert.

2. Der Programmcode wird durch eine sprachliche Umschreibung besser ver-
standlich.

3. Die Fortentwicklung des Programms wird erleichtert, indem bestimmte
Tricks, Kniffe und Sackgassen bei der Implementierung erldutert werden.

4. Die Arbeit des Studierenden im Zusammenhang mit der Programmierung
kann besser beurteilt werden.

Dieses Dokument soll eine kurze Anleitung zu Struktur und Inhalt von solchen
Programmbeschreibungen dienen.

Absichtlich nicht erwahnt wird hier die Benutzung des Programms im Rahmen der
Diplom- oder Studienarbeit. Wurde das Programm geschrieben, um bestimmte Er-
gebnisse der Arbeit zu berechnen, so sind diese nattirlich nicht innerhalb der Pro-
grammbeschreibung, sondern in anderen Teilen der Arbeit zu finden. In solchen
Arbeiten tritt die Programmbeschreibung vielleicht nur in einem Anhang auf.

2.2 Aufbau

Eine Programmbeschreibung sollte sich grob in vier Teile gliedern:

1. Uberblick und Aufbau,
2. Beschreibung der Klassen und Methoden,

3. Bedienungsanleitung und

11

2 Anfertigung der Programmbeschreibung

4. Programmverhalten und Verifikation.

Im Folgenden wird genauer auf diese Punkte eingegangen.

2.3 Teil 1: Uberblick und Aufbau

Zunichst soll in einem Uberblick der grobe Aufbau beschrieben werden. Was ist
der Zweck des Programms? Was ist die Funktionalitat (d.h. wie erreicht es den
Zweck)? Welche Programmiersprache wurde verwendet? Gibt es Programme oder
Bibliotheken die benutzt werden? Wie ist der grundsatzliche Programmablauf?
Welche Klassen gibt es? Welche zentralen Objekte werden wann instanziiert? Wel-
che wichtigen Methodenaufrufe werden getatigt?

Dies dient vor allem der Orientierung des Lesers und dazu, nicht das Ziel aus den
Augen zu verlieren. Dabei helfen auch vor allem grafische Uberblicke wie z.B.
UML-Diagramme, Ablaufschemata und Grafiken, die verdeutlichen, wann welche
Methode aufgerufen wird. Aus der Zielstellung heraus ist klar, dass dieser Teil nicht
besonders lang und ausfiihrlich, sondern kurz und pragnant sein sollte.

2.4 Teil 2: Beschreibung der Klassen und Methoden

Als nachstes folgen dann Beschreibungen der Klassen und Methoden. In diesem
grofiten und wichtigsten Teil sollte die Reihenfolge der Beschreibung moglichst
einer inneren Logik folgen. Es sollte (was nicht immer moglich ist) in einer Be-
schreibung keine Klasse bzw. Methode erwdhnt werden, die nicht zuvor beschrie-
ben wurde.

Jede einzelne Klassenbeschreibung sollte ahnlich wie die gesamte Programmbe-
schreibung aufgebaut sein. Zundchst soll ein Zweck der Klasse angegeben wer-
den: Wozu dient die Klasse? Was passiert? Welches sind die wichtigen Member-
Variablen?

Zu jeder Klasse wird auf die nicht selbsterklirenden Methoden eingegangen. Da-
zu zahlen nicht get- oder set-Methoden, sondern jede Methode, bei der nicht
direkt aus dem Namen ersichtlich ist, was passiert. (Dabei sollte auch noch ein-
mal tiberpriift werden, ob die Namen der Objekte, Methoden und Klassen gut ge-
wahlt sind. Wird der Inhalt durch den Namen charakterisiert? Haben alle Namen
einen deutschen Anteil?) Dabei lohnt es sich, nicht nur den Methodennamen,
sondern auch die Parameter anzugeben. In der Beschreibung kann so auf diese Na-
men einfach Bezug genommen werden. Komplizierte Algorithmen sollten zusitz-
lich durch einen Pseudocode und/oder durch Grafiken veranschaulicht werden.

12

2.5 Teil 3: Bedienungsanleitung

Um Programmcode-Teile, wie z. B. Variablennamen kenntlich zu machen, sollten
sie durch eine andere Schriftart (beispielsweise Maschinenschrift) kenntlich ge-
macht werden.

Zuletzt soll ggf. noch auf die Benutzung der Klassen eingegangen werden, d. h. wel-
che Methoden miissen in welcher Reihenfolge aufgerufen werden? Dies ist insbe-
sondere notig, wenn nachfolgende Programmierer diese Programmteile weiter be-
nutzen sollen.

In den einzelnen Beschreibungen sollte auch immer durch Verweise ein Bezug zur
Theorie hergestellt werden. Wenn verschiedene Programmansétze unternommen
wurden, muss beschrieben werden, welcher von diesen aus welchen Griinden um-
gesetzt wurde. Warum sind die anderen Algorithmen/Datenstrukturen verworfen
worden? Wo liegen die Vor- und Nachteile?

Auch besondere Kniffe oder ungewohnliche Programmiertechniken sollen hier er-
lautert werden, insbesondere, warum nicht der iibliche Weg gewahlt wurde. Dies
dient vor allem dazu, die Fortentwicklung des Programmes zu vereinfachen und
spatere Programmierer nicht in dieselben Fallen tappen zu lassen.

2.5 Teil 3: Bedienungsanleitung

Der dritte Punkt ist die Beschreibung der Bedienung. Hierbei sollte erklart werden,
wie das Programm benutzt wird, d. h. welche Parameter wo eingestellt werden kon-
nen und wie der Aufruf erfolgt. Wie ist die Syntax der Parameterdatei? Wo kann
man das Programmergebnis ablesen?

Ist das Programm eine Bibliothek, so muss hier auf die zentralen Klassen und Me-
thoden eingegangen werden: Wie kann welche Aufgabe mit der Bibliothek erledigt
werden? Was ist bei der Programmierung zu beachten? Von welchen Klassen muss
abgeleitet werden?

2.6 Teil 4: Programmverhalten und Verifikation

Als letztes gehort auch noch eine Beschreibung des Programmverhaltens und eine
Verifikation dazu. Es sollten Laufzeiten bzw. Ergebnisse von Testlaufen angegeben
werden. Anhand dieser Ergebnisse sollten algorithmisch kritische Stellen verifi-
ziert werden konnen - das Programm soll also anhand von “schwierigen” (aber
ubersichtlichen) Eingabedaten die (verifizierbar) richtigen Ergebnisse liefern. Die
Testdaten sollten dabei so gewdhlt werden, dass eventuelle algorithmische Beson-
derheiten und Fallen tiberpriift werden konnen.

13

2 Anfertigung der Programmbeschreibung

Werden Laufzeiten angegeben, ist die Angabe der verwendeten Plattform und an-
derer Rahmenbedingungen wichtig: Welche Compiler-Version unter welchem Be-
triebssystem auf welcher Hardware wurde verwendet? Wie viele Versuche wurden
gemacht? Wie hoch war die Varianz der Laufzeiten?

2.7 Fazit und Ausblick

Grundsatzlich lasst sich sagen, dass obige Anleitung zur Programmbeschreibung
natirlich nur ein Vorschlag ist. Allerdings ist es ein Vorschlag, an dem sich jeder
andere Aufbau messen lassen muss. Bei vielen Programmierprojekten wird die be-
schriebene Struktur nicht ganz passend sein, die Teile werden vielleich flieRend
ineinander tibergehen oder von der Reihenfolge muss aus bestimmten Griinden
abgewichen werden.

14

Rickmeldungen und weitere Literatur

Sollten sich grobe Fehler in dieses Dokument eingeschlichen haben oder sollten
wir wichtige Punkte vergessen haben oder besser machen konnen, so bitten wir
um Riickmeldung per E-Mail anmailto: {kolonko, goerder}@math.tu-clausthal.
de. Dieses Dokument soll ja als Hilfe fiir zukiinftige Arbeiten dienen und nicht zu

Schwierigkeiten fithren.

Lesenswertes zur Programmierung im Internet:

C++ Richtlinien:
http://www.possibility.com/Cpp/CppCodingStandard.html

extreme programming:
http://www. frankwestphal.de/ExtremeProgramming.html

Doxygen manual:
http://www.stack.nl/~dimitri/doxygen/manual .html

Doc Comments for Javadoc:

http://java.sun.com/j2se/javadoc/writingdoccomments/

15

mailto:{kolonko,goerder}@math.tu-clausthal.de
mailto:{kolonko,goerder}@math.tu-clausthal.de
http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.frankwestphal.de/ExtremeProgramming.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://java.sun.com/j2se/javadoc/writingdoccomments/

	Programmierrichtlinien
	Kommentare im Quellcode
	Bezeichner
	Klassen
	Klassen in C++

	Programmierstil
	Benutzung von Doxygen

	Anfertigung der Programmbeschreibung
	Einführung
	Aufbau
	Teil 1: Überblick und Aufbau
	Teil 2: Beschreibung der Klassen und Methoden
	Teil 3: Bedienungsanleitung
	Teil 4: Programmverhalten und Verifikation
	Fazit und Ausblick

