
TU Clausthal Institut für Mathematik

Programme in Studien- und
Diplomarbeiten

Prof. Dr. M. Kolonko
Dipl.-Math. D.Wäsch

und
Dipl.-Math. B. Görder

Stand: 15. November 2007

1 Programmierrichtlinien

Im folgenden sind einige Regeln aufgestellt, die bei der Erstellung von Program-
men eingehalten werden sollten.

1.1 Kommentare im Quellcode

Alle Klassen, Funktionen und Methoden sollten mit einem einheitlichen Kopf
versehen sein, der durch automatische Dokumentationstools (wie Javadoc oder
Doxygen) verstanden wird. Javadoc ist speziell für Java-Programme und produ-
ziert eine HTML-Dokumentation, Doxygen kann für Java, C, C++ u. a. Program-
miersprachen benutzt werden und kann neben HTML und anderen auch LATEX-
Dokumentationen erzeugen.

Der Kopf einer Datei sollte folgende Gestalt haben (Bsp. für C++, in anderen Spra-
chen entsprechend, Metakommentare in Klammern

// ***
(55 mal ´*´)

// Dateiname: ...
//
// (Hier eine kurze Beschreibung des Inhalts der Datei

z.B. Auflistung aller hier eingeführten Klassen)
// ...
// ---

(55 mal ´-´)

// AUTOR/IN: (mit Datum)
// (Änderungsinformation)
// ***

(55 mal ´*´)

Die Festlegung erscheint vielleicht etwas kleinlich, insbesondere die Vorgabe der
Anzahlen von ´*´. Dies dient aber dem einheitlichen Erscheinungsbild auf ver-
schiedenen Medien (z.B. Editoren und Ausdruck), ohne ungewollten Zeilenum-
bruch. Die Zeilenlänge solltemaximal 80 Zeichen betragen.

Jede Funktion/Methodemuss einen Kopf der folgenden Gestalt tragen:

3

1 Programmierrichtlinien

Doxygen

// ===
(2 mal ’/’ und 55 mal ’=’)

/// (drei(!) ’/’ pro Zeile, gefolgt von der Beschreibung)
// ===

(2 mal ’/’ und 55 mal ’=’)

Javadoc

/***
(57 mal ’*’)

* (Beschreibung)
***/

(57 mal ’*’)

Die Beschreibung sollte die Funktionsweise incl. der Nebeneffekte und Besonder-
heiten beinhalten und möglichst knapp gefasst sein. Außerdem können in der
Beschreibung noch folgende Elemente zur automatischen Dokumentationserstel-
lung enthalten sein:

@brief <kurzbeschreibung>: Beschreibung in einer Zeile

@param <parametername> <beschreibung>: zur Erstellung einer Paramenterbe-
schreibung

@return <beschreibung>: Erklärung für den Rückgabewert

@see <methodenname>: erzeugt einen Eintrag „siehe auch“

Kurze Kommentare (z. B. solche zu Variablen) müssen in der Zeile direkt davor
stehen und mit einem /// (Doxygen) bzw. /** ...*/ (Javadoc) gekennzeichnet
werden. Mit Doxygen kann der Kommentar auch hinter dem Bezeichner stehen.
Dann muss der Kommentar aber mit ///< eingeleitet werden, damit klar ist, dass
sich der Text auf das vorangegangene bezieht.

Beispiel (Javadoc):

/** ein Integer */
int a;
/** ein double */
double b;
/** mein Objekt */
MeinObjekt c = new MeinObjekt();

4

1.2 Bezeichner

Beispiel (Doxygen):

int a; ///< ein Integer
int *b; ///< ein Pointer auf ein Integer
int &c=a; ///< eine Referenz auf a

1.2 Bezeichner

Eine besondere Bedeutung für die Verständlichkeit des Programmtextes kommt
der geschickten Wahl der Namen (Bezeichner) zu. Grundsätzlich sollten als Be-
zeichner deutsche Worte oder Abkürzungen benutzt werden. Dies ermöglicht auch
bei intensiver Benutzung externer Bibliotheken eine leichte Unterscheidung der
selbstdefinierten Größen von solchen des Systems. Dazu genügt es u.U., dass die
Bezeichner deutsche Bestandteile haben, z.B. HauptPanel.

Bei derWahl vonNamen fürwichtige, häufig auftretendeGrößen und Funktionen
sollte man versuchen, die Bedeutung möglichst präzise in dem Namen wiederzu-
geben (“selbsterklärend”). Z. B. sollte eine Variable, die die Länge eines Feldes an-
gibt Laenge heißen. Im Zweifelsfall sollten langeWorte oder Zusammensetzungen
benutzt werden, die insbesondere bei ihrem Aufruf ihreWirkung erklären.

Auch lokale Hilfsvariablen sollten intelligent benannt werden. Wird z. B. ein Feld
durchlaufen, so sollte die Laufvariable nicht i sondern (z. B.) pos oder idx (für Po-
sition oder Index) heißen. Wird das Feld an verschiedenen Stellen des Programms
immer wieder durchlaufen, so sollten immer wieder dieselben Bezeichner benutzt
werden (Kopieren von (fehlerfreien) Programmsegmenten).

Grundsätzlich sollte ein Bezeichner die Kategorie des Bezeichneten erkennen las-
sen (soweit dies möglich ist). Z. B. könnte ein Pointer auf eine Optimierungsproze-
dur OptimierungsProcPtr heißen, wird zusätzlich ein Typ für diese Pointer dekla-
riert, so sollte er OptimierungsProcPtrTyp heißen.

1.3 Klassen

Bei der Deklaration von Klassen sollten diemembers in folgender Reihenfolge ein-
geführt werden:

• zunächst die einfachen member-Variablen, sortiert nach private, protected,
public.

5

1 Programmierrichtlinien

• dann die Konstruktoren, Destruktor, eventl. Operatoren sowie weitere Me-
thoden, wieder sortiert nach Sichtbarkeit/Zugriffsrechten.

Klassen sollten so weit wie möglich gekapselt werden, d.h. auf die Deklaration
von public member-Variablen sollte möglichst vollständig verzichtet werden. Der
Zugriff auf member-Variablen sollte indirekt über so genannte Getter- und Setter-
Methoden erfolgen.

1.3.1 Klassen in C++

Bei der Implementierung in C++ sollte die Aufteilung in separat zu compilieren-
de Files (*.h und *.C , bitte nicht *.cc!) mit aussagekräftigen Namen erfolgen, die
Rückschlüsse auf die enthaltenen Klassen zulassen. Bei der Implementierung der
Klassen (in den .C-Dateien) sollte die Reihenfolge der Deklaration möglichst bei-
behalten werden.

Die im folgenden angegebenen Konstruktoren etc. können als Vorlage angesehen
werden, die in den Kopf einer Klassendeklaration zu kopieren ist. “XXXTyp” muss
dabei durch den Namen der Klasse ersetzt werden.

// ***
// Dateiname: klasseXXX.h
//
// ---
// AUTOR/IN: 4.1.2005, Dominic Wäsch
//
// ***

#ifndef _KLASSEXXX_H_
#define _KLASSEXXX_H_

// hier kommen nur die includes hin, die auch für dieses
// header-file wichtig sind! Die anderen includes gehören
// in die .C-Datei. Dies erhöht die Compile-Geschwindigkeit.

// ===
/// @brief Eine Beispielklasse.
/// Sie enthält nur die nötigsten Methoden, die jede etwas
/// kompliziertere Klasse haben sollte.
// ===
class XXXTyp

6

1.3 Klassen

{
// hier stehen die Member-Variablen, sortiert nach
// public, protected und private

public:

// ###
// Konstruktoren, Deskruktor und Zuweisung
// ###

// ===
/// Standard-Konstruktor
// ===
XXXTyp();

// ===
/// Copy-Konstruktor, benutzt copy()
/// @param rSeite was kopiert werden soll
/// @see copy(const XXXTyp& rSeite)
// ===
XXXTyp(const XXXTyp& rSeite)
{copy(rSeite);};

// ===
/// Destruktor, ruft dest() auf
/// @see dest()
// ===
~XXXTyp()
{dest();};

// ===
/// Zuweisung, benutzt im wesentlichen copy()
/// @param rSeite was kopiert werden soll
/// @see copy(const XXXTyp& rSeite)
// ===
XXXTyp& operator=(const XXXTyp& rSeite);

// ###
// öffentliche Methoden
// ###

// hier kommen die öffentlichen Methoden hin

7

1 Programmierrichtlinien

private:

// ###
// Hilfsmethoden
// ###

// ===
/// legt eine Kopie aller interner Strukturen an
/// wird im Copy-Konstruktor und im Zuweisungsoperator
/// verwendet
/// @param rSeite was kopiert werden soll
/// @see XXXTyp(const XXXTyp& rSeite) und
/// operator=(const XXXTyp& rSeite)
// ===
void copy(const XXXTyp& rSeite);

// ===
/// zerstoert die Skruktur; Methode ist abgesichert gegen den Fall,
/// dass noch keine Strukturen angelegt sind
// ===
void dest();
};

#endif

1.4 Programmierstil

Währenddie Festlegung für das äußere Erscheinungsbild eines Programmtextes re-
lativ einfach ist, ist die Vorschrift inhaltlicher Strukturen nur sehr allgemeinmög-
lich.

Grundsätzlich ist in allen Sprachen ein objektorientierter Stil mit möglichst stark
voneinander abgekapselten logischen und programmtechnischen Einheiten zu
benutzen. Die Schnittstellen zwischen den Einheiten sind so eng wie möglich zu
wählen (z.B.möglichst wenig „public“ in Klassenheadern). Globale Variablen soll-
ten vermieden werden, wo sie unumgänglich sind, ist dies zu begründen.

Besonders in C/C++ ist es möglich und üblich, wesentliche Schritte als Nebenef-
fekt von (u.U. unwesentlichen) Schritten zu programmieren. Z.B. könnenWertzu-
weisungen in Abfragen untergebracht (d.h. versteckt) werden:

8

1.5 Benutzung von Doxygen

if(a=b<c) {...}.

Dies ist in jedem Fall zu vermeiden! Übersichtlicher ist es hier, eine Zeile mehr zu
verwenden:

a = b;
if(b<c) {...}.

Gerade noch hinzunehmen sind Standardkonstruktionen wie:

while(datei.get(Zeichen))
{...}

In Zweifelsfällen geht Klarheit vor Effizienz. Nur in besonders laufzeit-kritischen
Teilen darf auf maschinennahe Effekte zurückgegriffen werden, welche gut zu
kommentieren sind. Fallunterscheidungen sind möglichst durch vollständige
if. . .else- oder switch-Konstrukte zu beschreiben, z. B. nicht:

Annahme = false;
if(BedingungErfüllt)

Annahme = true;
return Annahme;

sondern:

if(BedingungErfüllt)
return true;

else // hier ist Bedingung nicht erfüllt
return false;

1.5 Benutzung von Doxygen

Doxygen ist auf den Pool-Rechnern im Institut für Mathematik installiert. Die Be-
nutzung erfolgt imWesentlichen über die Konsole. Zunächst muss für das Projekt
ein Konfigurationsfile erstellt werden, in der dann alle nötigen Einstellungen ein-
getragen werden. Dies geschieht automatischmit

doxygen -g

Die erzeugte Datei heißt Doxyfile undmuss an das Projekt angepasst werden. Da-
zu wird sie mit einem Texteditor geöffnet. Mindestens geändert werden sollten

9

1 Programmierrichtlinien

PROJECT_NAME = <projektname>
OUTPUT_LANGUAGE = German

Für ein reines Java-Projekt sollte außerdemder Schalter OPTIMIZE_OUTPUT_JAVA auf
YES gesetzt werden. Statt die FILE_PATTERNS wie angegeben zu setzen kann auch
die Option INPUT angepasst werden.

Sollen auchprivate und rein statischeMethoden inderDokumentation aufgelistet
werden, müssen noch

EXTRACT_PRIVATE = YES
EXTRACT_STATIC = YES

gesetzt werden.

Um nun die Dokumentation zu erstellen, muss einfach nur

doxygen

eingetippt werden. Die Dokumentationen werden dann in Unterverzeichnissen
html, latex, . . . erstellt.

Eine genauere Beschreibung der Optionen und Möglichkeiten ist im Doxygen-
Manual http://www.stack.nl/~dimitri/doxygen/manual.html zu finden.

10

http://www.stack.nl/~dimitri/doxygen/manual.html

2 Anfertigung der Programmbeschreibung

2.1 Einführung

Wird im Rahmen einer Studien- und Diplomarbeit auch ein Programm geschrie-
ben, so gehört neben einer Beschreibung der Theorie im Normalfall auch eine Be-
schreibung des Programmes dazu. Dies hat unter anderen folgende Gründe:

1. Die Programmierung wird als Teil der Arbeit dokumentiert.

2. Der Programmcode wird durch eine sprachliche Umschreibung besser ver-
ständlich.

3. Die Fortentwicklung des Programms wird erleichtert, indem bestimmte
Tricks, Kniffe und Sackgassen bei der Implementierung erläutert werden.

4. Die Arbeit des Studierenden im Zusammenhang mit der Programmierung
kann besser beurteilt werden.

Dieses Dokument soll eine kurze Anleitung zu Struktur und Inhalt von solchen
Programmbeschreibungen dienen.

Absichtlichnicht erwähntwirdhier die Benutzungdes Programms imRahmender
Diplom- oder Studienarbeit.Wurde das Programmgeschrieben, um bestimmte Er-
gebnisse der Arbeit zu berechnen, so sind diese natürlich nicht innerhalb der Pro-
grammbeschreibung, sondern in anderen Teilen der Arbeit zu finden. In solchen
Arbeiten tritt die Programmbeschreibung vielleicht nur in einem Anhang auf.

2.2 Aufbau

Eine Programmbeschreibung sollte sich grob in vier Teile gliedern:

1. Überblick und Aufbau,

2. Beschreibung der Klassen undMethoden,

3. Bedienungsanleitung und

11

2 Anfertigung der Programmbeschreibung

4. Programmverhalten und Verifikation.

Im Folgenden wird genauer auf diese Punkte eingegangen.

2.3 Teil 1: Überblick und Aufbau

Zunächst soll in einem Überblick der grobe Aufbau beschrieben werden. Was ist
der Zweck des Programms? Was ist die Funktionalität (d. h. wie erreicht es den
Zweck)? Welche Programmiersprache wurde verwendet? Gibt es Programme oder
Bibliotheken die benutzt werden? Wie ist der grundsätzliche Programmablauf?
Welche Klassen gibt es?Welche zentralenObjekte werdenwann instanziiert?Wel-
che wichtigenMethodenaufrufe werden getätigt?

Dies dient vor allem der Orientierung des Lesers und dazu, nicht das Ziel aus den
Augen zu verlieren. Dabei helfen auch vor allem grafische Überblicke wie z. B.
UML-Diagramme, Ablaufschemata undGrafiken, die verdeutlichen, wannwelche
Methode aufgerufenwird. Aus der Zielstellung heraus ist klar, dass dieser Teil nicht
besonders lang und ausführlich, sondern kurz und prägnant sein sollte.

2.4 Teil 2: Beschreibung der Klassen und Methoden

Als nächstes folgen dann Beschreibungen der Klassen und Methoden. In diesem
größten und wichtigsten Teil sollte die Reihenfolge der Beschreibung möglichst
einer inneren Logik folgen. Es sollte (was nicht immer möglich ist) in einer Be-
schreibung keine Klasse bzw. Methode erwähnt werden, die nicht zuvor beschrie-
ben wurde.

Jede einzelne Klassenbeschreibung sollte ähnlich wie die gesamte Programmbe-
schreibung aufgebaut sein. Zunächst soll ein Zweck der Klasse angegeben wer-
den: Wozu dient die Klasse? Was passiert? Welches sind die wichtigen Member-
Variablen?

Zu jeder Klasse wird auf die nicht selbsterklärenden Methoden eingegangen. Da-
zu zählen nicht get- oder set-Methoden, sondern jede Methode, bei der nicht
direkt aus dem Namen ersichtlich ist, was passiert. (Dabei sollte auch noch ein-
mal überprüft werden, ob die Namen der Objekte, Methoden und Klassen gut ge-
wählt sind. Wird der Inhalt durch den Namen charakterisiert? Haben alle Namen
einen deutschen Anteil?) Dabei lohnt es sich, nicht nur den Methodennamen,
sondern auch die Parameter anzugeben. In der Beschreibung kann so auf diese Na-
men einfach Bezug genommen werden. Komplizierte Algorithmen sollten zusätz-
lich durch einen Pseudocode und/oder durch Grafiken veranschaulicht werden.

12

2.5 Teil 3: Bedienungsanleitung

Um Programmcode-Teile, wie z. B. Variablennamen kenntlich zu machen, sollten
sie durch eine andere Schriftart (beispielsweise Maschinenschrift) kenntlich ge-
macht werden.

Zuletzt soll ggf. noch auf die Benutzungder Klassen eingegangenwerden, d. h.wel-
che Methoden müssen in welcher Reihenfolge aufgerufen werden? Dies ist insbe-
sondere nötig, wenn nachfolgende Programmierer diese Programmteile weiter be-
nutzen sollen.

In den einzelnen Beschreibungen sollte auch immer durch Verweise ein Bezug zur
Theorie hergestellt werden.Wenn verschiedene Programmansätze unternommen
wurden,muss beschriebenwerden, welcher von diesen aus welchenGründen um-
gesetzt wurde. Warum sind die anderen Algorithmen/Datenstrukturen verworfen
worden?Wo liegen die Vor- und Nachteile?

Auch besondere Kniffe oder ungewöhnliche Programmiertechniken sollen hier er-
läutert werden, insbesondere, warum nicht der übliche Weg gewählt wurde. Dies
dient vor allem dazu, die Fortentwicklung des Programmes zu vereinfachen und
spätere Programmierer nicht in dieselben Fallen tappen zu lassen.

2.5 Teil 3: Bedienungsanleitung

Der dritte Punkt ist die Beschreibung der Bedienung. Hierbei sollte erklärt werden,
wie das Programmbenutztwird, d. h.welche Parameterwo eingestellt werden kön-
nen und wie der Aufruf erfolgt. Wie ist die Syntax der Parameterdatei? Wo kann
man das Programmergebnis ablesen?

Ist das Programm eine Bibliothek, so muss hier auf die zentralen Klassen und Me-
thoden eingegangenwerden:Wie kannwelcheAufgabemit der Bibliothek erledigt
werden?Was ist bei der Programmierung zu beachten? Vonwelchen Klassenmuss
abgeleitet werden?

2.6 Teil 4: Programmverhalten und Verifikation

Als letztes gehört auch noch eine Beschreibung des Programmverhaltens und eine
Verifikation dazu. Es sollten Laufzeiten bzw. Ergebnisse von Testläufen angegeben
werden. Anhand dieser Ergebnisse sollten algorithmisch kritische Stellen verifi-
ziert werden können – das Programm soll also anhand von “schwierigen” (aber
übersichtlichen) Eingabedaten die (verifizierbar) richtigen Ergebnisse liefern. Die
Testdaten sollten dabei so gewählt werden, dass eventuelle algorithmische Beson-
derheiten und Fallen überprüft werden können.

13

2 Anfertigung der Programmbeschreibung

Werden Laufzeiten angegeben, ist die Angabe der verwendeten Plattform und an-
derer Rahmenbedingungenwichtig:Welche Compiler-Version unter welchem Be-
triebssystem auf welcher Hardware wurde verwendet? Wie viele Versuche wurden
gemacht?Wie hoch war die Varianz der Laufzeiten?

2.7 Fazit und Ausblick

Grundsätzlich lässt sich sagen, dass obige Anleitung zur Programmbeschreibung
natürlich nur ein Vorschlag ist. Allerdings ist es ein Vorschlag, an dem sich jeder
andere Aufbau messen lassen muss. Bei vielen Programmierprojekten wird die be-
schriebene Struktur nicht ganz passend sein, die Teile werden vielleich fließend
ineinander übergehen oder von der Reihenfolge muss aus bestimmten Gründen
abgewichen werden.

14

Rückmeldungen und weitere Literatur

Sollten sich grobe Fehler in dieses Dokument eingeschlichen haben oder sollten
wir wichtige Punkte vergessen haben oder besser machen können, so bitten wir
um Rückmeldung per E-Mail an mailto:{kolonko,goerder}@math.tu-clausthal.
de. Dieses Dokument soll ja als Hilfe für zukünftige Arbeiten dienen und nicht zu
Schwierigkeiten führen.

Lesenswertes zur Programmierung im Internet:

C++ Richtlinien:

http://www.possibility.com/Cpp/CppCodingStandard.html

extreme programming:

http://www.frankwestphal.de/ExtremeProgramming.html

Doxygen manual:

http://www.stack.nl/~dimitri/doxygen/manual.html

Doc Comments for Javadoc:

http://java.sun.com/j2se/javadoc/writingdoccomments/

15

mailto:{kolonko,goerder}@math.tu-clausthal.de
mailto:{kolonko,goerder}@math.tu-clausthal.de
http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.frankwestphal.de/ExtremeProgramming.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://java.sun.com/j2se/javadoc/writingdoccomments/

	Programmierrichtlinien
	Kommentare im Quellcode
	Bezeichner
	Klassen
	Klassen in C++

	Programmierstil
	Benutzung von Doxygen

	Anfertigung der Programmbeschreibung
	Einführung
	Aufbau
	Teil 1: Überblick und Aufbau
	Teil 2: Beschreibung der Klassen und Methoden
	Teil 3: Bedienungsanleitung
	Teil 4: Programmverhalten und Verifikation
	Fazit und Ausblick

