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Abstract

Radial Basis Functions Neural Network
(RBFNN) [1] as the outcome of recent research
provides a simple model for complex net-
works. This is achieved by employing the Ra-
dial Basis Function (RBF) in the network as pat-
tern. The optimal properties of the RBFs pave
the way for stable approximation. However, it
is generally rather difficult to determine the lo-
cations of the centers and the shape parameter.
An evolutionary algorithm has been applied
to learn the parameters. The approach is based
on genetic algorithms.

Radial Basis Function
Neural Networks

RBFNN has been applied successfully in
many fields, including function approxima-
tion, chaotic time-series modeling [2], and data
fusion. RBFNN can be introduced as a two-
layer feedforward network, where the hidden

neuron activation functions are RBFs.
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RBF is a multivariate function ® : R® — R, such
that

D(x,x) = P(r - llx = xY); ¢ 2 [0,00) > R
where x° is the center point and r is the radius.
RBFs reach their maximum value when ap-
plied to their center points, and decline when
applied to points far away from the center
points. The shape parameter controls how dis-

tance affects the decrements; left r = 1 and right
r=1/3
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The main goal is to minimize the point-wise
estimation error, by Power Function(PF) [3] on
centers X = {x{,...,x{} € Q which result in
lo(x) = y()| < Po x()IYlIng(), VX € Q,
N
Py x(x) = [|D(x, x) — Z ()X, X)||No(2)
=1
the error bound measures the smoothness of
the data and the Power function value which
is dependent on the distribution of the data set.

Main Objectives

The number and placement of the hidden neu-

rons, centers, and also the value of the radius

critically affects the results.

= Selection of the center points (number and
value):

e many centers = model not suitable for
prediction (overfitting), complexities and
ill-conditioning.

e few centers = poor approximation re-
sults.

= Selection of the radius:

o small radius = overfitting.

e wider radius = loose information and
poor results.

Search Algorithm

= Phasel: Learn the number of center points by an iterative deterministic Greedy Search based

on the Power Function [4];

= Phasell: Learn the center points x{ and the radius 7 by a Genetic Algorithm;

= Phaselll: Calculate the weights in output o(x)

and radius by Least Square Error (LSE).
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Results

The algorithm provides 20 centers, and com-
pares PF and Cross Validation(CV) in order to
select the centers. The best radius will be se-
lected for every generation.

Case Max error MS error Mean Radii Optimal Radii
PF Scaled Radius  2.4¢ — 02 6.4¢ — 03 6.79 7.89
Cross Validation  3.3¢ — 02 1.1e - 02 225 -

The estimation evaluation based on PF pro-
vides better results compared to CV. Obvi-
ously, PF evaluation with fixed random radius
is not consistent. The error evaluation based on
PF(Best and with fixed radius) and CV by best
parameters found in algorithm after 5 trials.
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Forecasting based on RBFNNs highly depends
on the efficient pruning of the parameters.
Focusing on objective parameters scenario,
genetic algorithm provides a better search
strategy based on the new fitness function
“Power function”.
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