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L*>°(L*>°)-BOUNDEDNESS OF DG(p)-SOLUTIONS FOR NONLINEAR
CONSERVATION LAWS WITH BOUNDARY CONDITIONS

LUTZ ANGERMANN AND CHRISTIAN HENKE

ABSTRACT. We prove the L°° (L )-boundedness of a higher-order shock-cap-
turing streamline-diffusion DG-method based on polynomials of degree p > 0
for general scalar conservation laws. The estimate is given for the case of several
space dimensions and for conservation laws with initial and boundary conditions.

1. INTRODUCTION

In this paper we extend the analysis of a shock-capturing streamline-diffusion
DG-method for hyperbolic conservation laws in several space dimensions which
goes back to [JJS95]. The original DG-method from [JJS95] is based on polyno-
mials of maximal degree p > 0 (DG(p)-method) and is applied to a pure Cauchy
problem. Here we formulate the method for scalar conservation laws with initial
and boundary conditions. To describe the further features of the method, we recall
the following sufficient conditions for convergence of a sequence of approximate
solutions [Sze89b, Remark 1.2]:

(1) uniform boundedness in the L°°(L°)-norm, i.e. L in time and L* in
space,

(2) weak consistency with all entropy inequalities,

(3) strong consistency with the initial condition.

In the case of an unbounded domain, the condition (1) can be replaced by the
(1*%) uniform boundedness in the L°°(L?)-norm,

which was done in [JJS95]. To the best of our knowledge, the only attempt to
prove the L°°(L*°)-boundedness without using a finer auxiliary triangulation is
given in [JSH90] for the case p = 1. This proof can be extended for p > 1 if the
shock-capturing terms are defined on finer triangulations [Sze91]. Thanks to (1*)
this is not necessary for the DG(p)-method in [JJS95]. Our result presented here
uses the skeleton of the proof from [Sze91], which is based on choosing the test
functions v = I} (U 9=1) with a large even number ¢, where I} is the Lagrange
interpolation operator and U denotes the approximate solution. Within this proof
we use a new algebraic argument to verify the coercivity of the shock-capturing
term when v = IP(U71).

Let us recall the key points of the DG(p)-method. First, we have to choose
the numerical flux on the element boundaries. In contrast to [JJS95], where a
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strictly monotone numerical flux is necessary, we may also use monotone nu-
merical fluxes such as Engquist-Osher fluxes. Second, there are two stabiliza-
tion mechanisms. The DG(p)-method from the last mentioned reference contains
a streamline-diffusion term and a residual-based shock-capturing term. The first
term adds an anisotropic artificial viscosity and the second one introduces some
isotropic artificial viscosity locally where the solution is nonsmooth.

The paper is organized as follows: In Section 2, we prepare some basic material
on scalar hyperbolic conservation laws with initial and boundary conditions. Then,
in Section 3 we introduce the DG(p)-method under consideration, and in Section 4
the condition (1%¥) is verified. After this we present our main Theorem 5.1 which
is proved in Sections 5 and 6. Here we give some background material on spatial
and algebraic numerical ranges and extend the condition (1) to the case p > 1.

The entropy consistency and the consistency with the initial condition will be
proved in a forthcoming paper.

2. HYPERBOLIC CONSERVATION LAWS WITH BOUNDARY CONDITIONS

Let Qr = (0,T) x Q C R T > 0, d € N, be an open time-space domain
with boundary X7 = (0,7") x I', I = 02 and with outward unit normal 7. In this
time-space domain a point with position x = (1,2, ...,24)7 at time t = x( has
the coordinates X = (g, z)”. Standard notation is used for the space of functions
of bounded variations BV (Q7), Lebesgues spaces L4(Qr) and Sobolev spaces
Whi(Qr), 1 €N, 1 < ¢ < 0.

We consider for u : Q7 — R the initial-boundary value problem

L(u) =V -F(u) =0in Qr, (2.1)
u(0,-) = ug on €, (2.2)
with the following boundary condition: For all k € R,r € X

(sign(yu(r) — k) — sign(gn(r) — k) (f(u(r)) — f(k)) -n(r) 2 0,  (23)

where F = (-, /)T : R — R ug: Q — R, gp : 7 — R are given smooth
functions and v : Q7 — X7 denotes a trace operator. The function sign : R — R

is defined by
| zflel, @ A0,
sign(z) =
gn() {m z=0.
Due to the hyperbolic nature of (2.1), a boundary condition of the form u = gp on
Y7 usually over-determines the problem. The generalization of the inflow bound-
ary condition (where f'(gp)-n < 0) for nonlinear f also leads to a problem that is
not well-posed. This difficulty does not occur in (2.1) — (2.3), because the solution
Uue of
—eAue + L(ue) = 0in Qr,
Ue = gep ON X, 24)
ue(0,+) = ue onf,
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converges a.e. to a function u € BV (Qr) as € — 0, which satisfies (2.1) — (2.3)
[BIRN79, Theorem 1]. Moreover, we can use this vanishing-viscosity method even
in the space L>°(Qr). It is possible to define a well-posed initial-boundary value
problem, which admits a unique weak entropy solution u € L>(Q7) [MNRRY6,
Definition 7.2, Theorems 7.28, 8.20].

Let us shortly recall the concept of entropy pairs. We say that Q = (1, ¢1, ..., qq)
is an entropy pair if n : R — R is continuous and convex, the entropy flux
gj : R — R is continuous and 7,q1, ..., qq satisfy for all u € R the compati-
bility condition

' (u) fj () = gj(u). (2.5)

For scalar conservation laws this is trivially fulfilled if the entropy flux is defined
as .

s = [ dOfedn 1< 2.6

9p

3. FORMULATION OF THE DG(p)-METHOD

In this section we introduce the DG(p)-method. To discretize (2.1) — (2.3), let
Qnnt+1 = (tn, tnt1) X Q, Qn = {tn} x Q for the sequence of discrete time levels
0=ty <t < - <tyny,N €N, be a time-space decomposition of Q7. The
boundary is defined by ¥,, .11 = (tn, tnt1) x ['and X, = {t,} x T

Consider an affine decomposition 7, of @, ,,+1 belonging to a family of quasi-
uniform, admissible decompositions of @, ,,+1, cf. [EG04, Definition 1.49, 1.53,
1.140] into simplices or quadrilaterals 7" and write 7, = |J,,~( Z;,"- Let hr be the
diameter of 7" and h the maximal diameter of all T € T}*.

Set
Wy = {w € L2(Qn,n+1) cw|p € Pp(T) VI € 7;1”} , Wh= H Wi, G.1)
n>0
where

P,(T)= span {X%}, XeT
aENg'H, la|<p
is the space of polynomials of maximal degree p defined on 7.

We are now ready to define the DG(p)-method and introduce by Rﬁm 1 R! the
set of all interior faces of @, n+1, @n and by Ay, 11, A, the set of all boundary
faces. We further set ), 41 = Rfl’nﬂ UApnt1and R, = R! UA,,. In order to be
able to describe discontinuous functions, we denote by 7 the common face shared
by the elements 7" = T and T~ . We also define the normal vectors np = n} and
np on 7. Then we introduce the notation
+ ( n

v (z) = ulirﬁov(x —un®), V(x) = v(t, £ 0,21, ..., 24) (3.2)

and

{v} = %(v+ +v7), [en]=vTnt+uvnT, []=0v"—-v. (3.3)
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If v is a function on A,, 41 or A, we write v~ = gp. By C' we will denote a
positive constant independent of h, not necessary the same at each occurrence.
Introducing the bivariate form

a(v,w):NZ:l > {/TL(v)de—i—/

(ﬁ(v) — Fw) -nMw™ ds} ,
n=0 TG’Th" or

(3.4)
the DG(p)-method for (2.1) — (2.3) can be formulated now: Find U € W}, such
that forn =0,1,--- ,N,U =Ug, ,,, € W' andforallv € W}

aUv)+ 3 {(5L(U),]—"’(U) V) 4+ E(VU, Vv)oyT} —0, (3.5
TETN
where

5 =3(U) = Cuhr (|F(W)]12) ",

¢ = &(U) = max (CthR(U), Cgth/Z) L0<B< %

1
ROl =g (L)) + - (e (L)1) + e Cr 111D
OIT={x€dT :x ¢ Rpt1}
and C1, Cy, C3 > 0. As mentioned in the introduction, (3.5) contains a streamline-
diffusion term and a residual-based shock-capturing term. Due to the h-dependency
of this term, the DG-method can be interpreted as a discrete vanishing-viscosity
method. .
The numerical flux F(U) is given by

FU) ={FU)}-nt +Cp(U, U, n")[U] (3.6)
and
nt = +(1,0,...,0),
Cr(vt,v™,nt) = C(?Q > fol |F'(v™ + s[v]) -nt|ds v = gp,

Cc§ > %fol |F'(v™ + s[v])-nT|ds  otherwise.

D=

(3.7)
Within this framework there are the following well-known numerical fluxes:
The Engquist-Osher flux if f(0) = 0:
_ 0 = (M7 (v= + s[v]) - nt|ds v~ = gp,
Cr(wt, o™, nt) =470 1f08|Q ( [o]) -] ID> (3.8
Cy = 5C% otherwise.
The Lax-Friedrichs flux:
CI = sup |F'(2) -nt| vT = gp,
Cr(vt,v™,n") = z€fotw] (3.9)

C§l = 108 otherwise.
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Further Cj is a positive constant satisfying

Co > | F 0,002 = glggl!ﬁ@llza (3.10)

and

cde, O < O, (3.11)

4. PRELIMINARIES

In this section we want to verify the uniform L°°(L?)-bound (1*) which is based
n [JJS95]. As a byproduct of the study of this technical result, we introduce
some notation and prepare the basic material for the L°°(L°°)-bound presented in
Section 5. To make this precise, we choose (U) = U?/2, p = Land v = 1/ (U ).
The main theorem of this paper can be obtained by applying the test function v =
IP(n (U)y), where n(U) = U?/q, ¢ = 1 and I¥ : C(Qr) — W), is the Lagrange
interpolation operator. Here, due to the fact that '(U) ¢ W), an interpolation
or projection operator is necessary. Notice that in this case we get an additional
difficulty to estimate terms which contain the difference 1'(U)p — I} (0 (U)¢).
By the definition of the bivariate form

N-1
b(v,w) = a(v,w) + Z Z (6(v)L(v), F'(v) - Vw)OjT “4.1)

n=0 TeT,;"

we have, for w = n’(U)gp and an entropy pair (7, ¢) satisfying (2.5) and (2.6), that

=3 3 {6000, 70 V00,0

n=0 TeT®
1 V)n]n’ (v)v ds oI (0o ds 4.2)
+/6T2[[f( i () d +/8TCT[[ I (o) ds
+ [ Q@ npds— [ Q) vedr.

orT [0,tN]%x2

As usual in DG-methods we consider the different behaviour of inner and boundary
faces

b(o, 7' (v)p) = /Q (o) d /Q n(v2)¢® da
B /[om Qlv) - Vipd 4.3)

5
+ZE’i(f7nvv790) _F(f7n707¢)7
=0

where

fv n,v, 90 Z Z f/(U) ’ V(U’(“)‘P))ggw 4.4)
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N-1

Er(f,n,v,¢) = /Q (™) = n@h) —n' (1) (" —v})) " dz,  (4.5)
o

Ey(f,n,0,0) = > — [Fm] {n'(v)}) ¢ds, (4.6)
n=0 TGRn nt1
N-1 1

By(f.n,0,0) = }j c%{é o'+ rl)dro]2eds, @)
n=0 TGR

Efmoe) =Y ¥ /up<mn ()l {1/(@)}) pds,  @.8)
1

/dﬁ/n%@+ﬂmwwwwm, 49)
0

Flfmog) =— Y 2) (uf>ﬂ+%Wﬂ)<www
B (4.10)

Next, we will show the nonnegativity of Zi’ Ei(f,n,v,p). By the convexity of 7,
this is true for E;. In order to treat F5, we consider the expression

<Q(v+) - Q(v7) — % (Fot) = F()) (f (") + "7/(?1_))> ot
- </:+ (Q’ —}"/77/) dr + /J”Jr F (77/ _ % (n/(v+) +77/(U))> dr> ot

! (0~ ry— 1 , ;o
(;)/0 F (v~ +s[v]) -n* (77 (v +8[[Uﬂ)_§(77 (W) + 17 (v ))) [o] ds.

By the properties of convex functions, it follows that
(n' (0™ +s[vl) =n'(v7)) [v] 2 0
and
(' (0™ +s[vl) = 0" (")) [l = (' (0" = (1 = $)[v]) =7/ (vT)) [v] < 0.

Then we have
(4D — 5 (/) /() ) B
'(2((v-+ﬂﬂ> 707 + 5 07 b - () ) [

|67 -+ sleD) = 7/ 07) [ + 5 | (0 + o) — (o)) o]

l\.')\r—t
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(/o + sTe]) o 0)) = (0™ + 5Bo]) — /(0")) [e]
1 1
W@ =a @)l =5 [ 00 oD P,

—

which immediately implies that

() = 00) = § (F0) = () () 407 ) -

1
< /0 P (0™ + s[o]) -t <n'<v+suvn>—§(n’<v+>+n’<v>>) [*]) ds
1 1
g;/ ‘f/(vﬂﬂv]]).nﬂ/o o' (v~ + r[o]) dr[v]? ds
1

1
/ |7/ (v~ + s[v]) - n| ds/ 0 (v™ 4 r[v]) drv]?.
0
Finally, having in mind the fact that ”” > 0, we can use the definitions (4.7) and

(3.7)
Es(fm,0,0)+E3(fn,0,0)

> Z /( / |F' (v™+€[[v])- +‘d§> (/1 (v_+r[[v]])dr> [v]%eds

@.11)

where we have used nonnegative test functions . The same arguments as before
lead to E4(f7 n,, (70) + E5(fa 1,0, (10) > 0.

Remark 4.1. The local condition (3.7)
Q 1 / +
Ccyl - \f v 4+ £[v]) - nt| dE >0

for (4.11) allows a smaller constant C§} than [JJS95, Remark 2.5]

fo Jo " (™ +r[]) + 7" (vt —r[v])) drds >0
fo 0 (v + rv])dr -

1
S1F o e

Thus, the corresponding numerical flux F (U) is a monotone flux function (U™
F (U)is 1ncreasmg and U™ — F (U) is decreasing). As mentioned in [JJS95], the
requirement that (U is a strictly monotone numerical flux, e.g.

Q 1 ! (o — +
C0—2/0 | F (v™ +&]) -nt| dE > € >0,



L>(L°)-boundedness of DG(p)-solutions 8

is necessary for (2). More precisely, the condition

Y5 [ clufig

n=0 T€T"
has to be fulfilled.

Let us now consider the equation (3.5) with v = 7/(U)¢:

b(U +Z > ) (VU VI (U)9) o 1
n=0 TeT"
:/n(UiV)goNdx—/ UO 1% d%—i-z Z VUV <U> ))O,T
Q n=0 Te7®

5
_/[Ot | QQ(U)'VSOdXJFZEi(fﬂ?,U,so)—F(f,n,U,(p):0.

1=0

(4.12)
Therefore, in the case 7(U) = U?/2 and ¢ = 1, we obtain
/ (UNY? dz + Z > &) (VU, VU p
n=0 TeT," @.13)

5
+ ZE’L(f7 U2/27U71) = ;/(’U,O)2d$+F(f, U2/27U7 1)7
i=0 Q

where we have used U° = ug. By the help of Young’s inequality we see that

N—-1
F(f,U%/2,0,1)< > Y /CS’Q[[U]]QJF —C9g% ds
O (4.14)

= Fl(f) U2/27U51) +F2(fyg%)/2ugD71))

thus we arrive at E4(f,U?/2,U,1) + E5(f,U?/2,U,1) — Fy(f,U?/2,U,1) > 0
and

*||UNH029‘|'Z > @) L)l

n=0 TeT,"

(4.15)
Finally, using for t 1 <t <ty and ¢ € N the identity

tn
|wmw@ﬂzww%m—qlLémlwwmwfwmmmmu
(4.16)
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Young’s inequality yields

Va0 < 1VY 20+ 557 i = / 1)l 20

4.17)
+2 Z [6(U 1/2L )HO,Z,T
TeT,N !
and a Gronwall argument estimates the right-hand side of (4.17) by means of the
left-hand side of (4.15). The quasi-uniformity of {ThN -1 }h , ensures the bound-
>
edness of the Gronwall constant and the following theorem results.
Theorem 4.2. Let Q2 be a domain with a Lipschitz boundary and {1y}, be a
quasi-uniform family of decompositions of (0,T") x 2. Let U be a solution of (3.5)

satisfying the assumptions (3.10) and (3.11). Then there exists a constant C' > 0
independent of h, such that, for allt € (tn_1,tN),

U, )]lo2,0 < C( ). (4.18)

5. L°°(L*°)-BOUNDEDNESS OF DG(p)-SOLUTIONS

As announced above, in this section we prove that ||U|p 0, is uniformly
bounded. The main idea is to control the interpolation error U4~ — [P(U471) in
the second argument of the bivariate form by the aid of the special shock-capturing
term. At the end of this section we formulate two corollaries which are conse-
quences of the limiting process h — 0 and of the special case p = 0, respectively.
Our main result is the following.

Theorem 5.1. Let Q2 be a domain with a Lipschitz boundary and {1},},,, be a
quasi-uniform family of decompositions of (0, T) x 2. Let U be a solution of (3.5)
satisfying the assumptions (3.10) and (3.11). Then there exists a constant C' > 0
independent of h such that

U lo,00,07 < C'( +1). (5.1)

The proof is based on the next lemma which contains the extension of [Sze91,
Lemma 3.3] and [Sze89a, Lemma 4.2] for p > 1 and which is proved in the last
section.

Lemma 5.2. For Lagrange finite elements with a shape regular family of meshes
{7,7} o thereis a constant C > 0 independent of q and h such that for allv € W},
and q =2m, m € N :

(Vo, VIP(v?1) >C’/ HVUHZQHU”OOOTCZX VT €T, (5.2)
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Proof of Theorem 5.1. Setting v = I7 (1 (U)y) in (3.5) with n(v) = v?/q, ¢ =1
and ¢ > 2 an even natural number, we obtain

5
o 0" o B0 0,0 ) = U o )
q.J P

N-—1
£35S @) (VU VR, = 1/ (o) dz + F(f,U"/q, U, 1).

n=0 T€T" T dJa
(5.3)

Here the key point is that the interpolation error is bounded by the isotropic shock-
capturing term. To see this, a careful consideration of the interpolation operator I }IZ
is necessary.

By

/R %[[f(U)n]] + Cp[U] da = 0,

we express the interpolation error as

(b(U UH) —b(U, I(UTY)))

Z > /v FU) Ut = 2(UIT)) dx

n=0 TeT"

/5 FU)- (VU =vIZ(UTY) dx (5.4)

+/8*T SIF@)n] (U = L (UY) ds

N—-1 4
+ [ orul (Ut = PueY) ds} DI I

0T n=0 T€T,, i=1

Since Ulr € P,(T), we deduce that |U|p41,00,7 = 0. Arguing as in [Sze91][p.
765], we may write for ¢ > 3

U i1 00 < CqP TR p+1||VU||OooT||UH0c>oT (5.5)

Together with a standard interpolation error, we thus conclude from the first term
of (5.4) that

|A7|

IN

(T = 1)U o oo / V- F(U)|dx
T

AN

CHEFUT 1 sorr / V- F(U)|dx

ot
A
o

cp“hT|rVU||oooT||U||0mT/ V- F(U)]dX

< qu“hZT/ |
TA{U|>1}

(
F(U)|dx




L*°(L*°)-boundedness of DG(p)-solutions 11

L O / IVUI2 o 7|V - F(U)| dX
TN{|U|<1} o

—2
< (I - FODITIEr [ 19U o i

+ CqP % mj@x(|v . f(U)D/ HVUHg,oo,T dx.
T

By the quasi-uniformity of {7,"} >0 and an inverse inequality, we obtain that

[ 19l pax <c [ [voliaz. 56)
Thus we have, by Lemma 5.2,
[AF] < Cq" W max ()Y - FO) { (VU VIZOT) yp + VU IR o1 }

In a similar fashion, we can estimate the complete right-hand side of (5.4). Conse-
quently, by (4.15) we conclude that

| (b(U, U1) = b(U, I(U1)) |

N-1
<Cq"t YT DT WERRU) (VU VIUTY), o+ Chig?™ . (5.7)
n=0 TeT,

Inserting this into (5.3) we obtain

N-1
[ @) a3 i) (V0RO
n=0 T€Ty,

N-1
+a > Y {U) (VUVIUTY) o+ (BU)LWU), FU)VUTY),
n=0 TeT

5
S B, Ug,U,1) < /Q (uo)? dz + gF(f,U%/q,U, 1) + ChEq*2,
1=4
(5.8)

To proceed with the treatment of interpolation error, it is necessary to require that
CqP™? < h™8, where 0 < 3 < 1/2. The upper limit of 3 is introduced due to
convergence reasons, cf. [JJS95, Lemma 3.2]. However, this restriction on ¢ does
not prevent us to finish this proof by letting ¢ — oo.

Moreover, we have

N-1
[ a0y S GOILOLF@VO),
@ n=0 T€T;"
5 (5.9)
+ BV U < [ (w)de+ P (£.U1/a.U1) +C.
=4



L*°(L*°)-boundedness of DG(p)-solutions 12

Note that
Ey(f,U%/q,U,1) + Es(f,U%/q,U, 1)
N-1 1
D3P [ (e =5 [ 17 + o - wt ) e 1gotas.
and thus, by Young’s inequality,
F(f,U%/q,U,1)

N-1 1
> / (; /0 |f'<gD+5uUﬂ>-n+\ds+c§“) [U]g% " ds

n=0 7€A, nt1 T

IN

N-1

1 - 1 . _4a __ga g2
EIOIEDY / SO0 U MU ds + SC3%(q — 1)g~ 778512071 gy ds
: n=0 TEAn,n+1 T

= KI(f.U%q,U1) + Fx(f.9p/a: 9p; 1) (5.10)
So we obtain
Ey(f,U%/q,U,1) + E5(f,U/q,U, 1) = F1(f,U%/q,U,1) > 0.
Altogether we get that

N—-1
/Q (U dr+q Y S (LW, FOVUTY), .

n=0 TeT®

_ 1 _q
< /Q (o) dz + Colg — 1) (20) 77 32T g, +C.
(5.11)

By repeating the arguments given at the end of the previous section, we summarize
that

1 1 1 1
sup|U(t o < €7 (uolloge +377 (Coa)e lgpllogs, +0t)  (5.12)
>

_B_
for 4 < ¢ < Ch™ »+2. Finally, using an inverse inequality we have that

d
d 1B \4q
Ul < (Cah™) T suplU(t: Y lagn < (CH7752) " supllU(t, oo
>0 20
d _ _
=Cq exp (Cdg ' In (h71)) St1>lISHU(t» Mo.g.0-
5
Setting ¢ = C'h™ »+2 we get

HU’ 0.00.01 < thﬂ/(p+2) exp (thﬁ/(}?—i-?) In (h—1)> sup||U(t, ')HO,Q,Q
£20 (5.13)

< Csup|[U(t,-)lo.q.0
>0

in the case of h < 1, which concludes the proof. O



L*°(L*°)-boundedness of DG(p)-solutions 13

Corollary 5.3. Under the assumptions of Theorem 5.1, the estimate

1Ullo.c0.@r < lluollocen + lgDll0c0 57 +1 (5.14)
holds for h — 0.

Proof. Using (5.12) and (5.13) with h = Cq~®*2)/8 — 0, the statement imme-
diately follows. U

Remark 5.4. The L°°(L*°)-boundedness of DG(p)-solutions with p > 1 was also
considered in [Sze91]. However, since an inequality of the form (5.2) was proved
only for the case p = 1, the shock-capturing term was realized on finer auxiliary
triangulations using polynomials of first degree. Hence, the bound C9¢gP*2 < h=°
is necessary, which is true for ¢ < C'ln(1/h), cf. [Sze91, (3.16)]. This gives

1Ullo,00,@z < Csup||U(Z;-)[l0,¢.0,
>0

for h — 0, where C # 1.
Corollary 5.5. Under the assumptions of Theorem 5.1, the estimate
1Ulomo@r < luollomos + l90llom0my VR >0 (5.15)
holds for p = 0.
Proof. Let p = 0. Then we get (b(U,U?"') — b(U, I} (U971))) = 0. Conse-

quently, there is no need for the bound ¢ < Ch™ »+2, and we can conclude with
letting ¢ — oo in (5.12) and (5.13). O

6. PROOF OF LEMMA 5.2

Until now there is no proof of an inequality like (5.2) for ¢ # 2. To the best of
our knowledge only special cases for linear ansatz functions on triangles respec-
tively tetrahedrons are available, cf. [Sze89a, Lemma 4.2] and [Sze91, Lemma
3.3]. Moreover, the constant in these references depends on q.

Using the theory of numerical ranges for bounded linear operators in Banach
spaces, we are able to prove this inequality under rather weak assumptions. More
precisely, the local stiffness matrix of the shock-capturing term has to be symmetric
positively definite and an eigenvector (1, --- ,1)7 with an unique eigenvalue zero.

First of all we need some further notation and definitions about the numerical
range.

Definition 6.1. Let (X, ||-||) be a normed vector space, let S(X) be the unit sphere
and denote by X’ the dual space of X. For each bounded linear operator A on X

WA, |- 1) = {f(Az) : (z, f) € T} (6.1)

with IT = {(z, f) € S(X) x S(X’) : f(x) =1} is called the spatial numerical
range.
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Remark 6.2.
(1) Note that the following definition is equivalent to (6.1):

WA, |- 1I) = {f(Az) : f(z) = [lz[[| f[l = 1}, (6.2)
since
£l = sup [f(2)] < [If] [l=] = 1.
1 —~

x|l=
Jal ~-

(2) In contrast to the spectrum o (A), the spatial numerical range W (A, | - ||)
depends on the norm || - ||.

(3) Let [%(n) = (R™,|| - ||;a1) be the normed vector space. Due to f(z) =
S xif(e;) = aTyy and 192(n) for 1/q1 + 1/g2 = 1, which is norm-
isomorphic to 19 (n)’, the identity || f|| = ||yf||;e2 is valid. Therefore we
get

W(A, |- llm) = {aT Ays = 2Tys = |z)lm llysllie = 1}, (6.3)

which is the identity case of Holder’s inequality, cf. [Bau62]. In the case
q =2, W(A, || -|l;2) = W(A) is the numerical range in a Hilbert space
due to Toeplitz [Toel8].

(4) Unlike to W (A), the spatial numerical range is not necessary convex, cf.
[NS64, S. 357].

If we interpret the Matrix A as an element of a normed algebra A with an identity
element, we can define a second numerical range. For further details we refer to
[BD71, S. 15].

Definition 6.3. Let A be a normed algebra, S(A) = {z € A: ||z| = 1} the unit
sphere and A’ the dual space of A. For z € A let

D(Az)={fe A flx)=1=]Ifl} (6.4)
We define the algebraic numerical range by
Vala, || - ) = U{Vala, z,[| - []) : 2 € S(A)}, (6.5)
where
Vala,z,|| - ||) = {f(azx) : f € D(A,z)}. (6.6)

Notice that for the algebraic numerical range it is sufficient to consider only the
identity element.

Lemma 6.4.
V_A(CL, || ’ H) = VA(CL, ]-7 H ) ”)) ac A

Proof. [BD71, Lemma 2.2]. ]

Next, we recall two well-known results about numerical ranges and the connec-
tion to the spectrum o (A).

Lemma 6.5.
conv W(A, | ) = Vala, | - ) (6.7)

Proof. [BD71, S. 84]. O
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Theorem 6.6 (Vidav). Let a € A be a Hermitian element, i.e., V(a,| -|) C R.
Then we have
convo(a) = Va(a,| - |)- (6.8)

Proof. [BD71, Corollary 5.11]. Il
Further we have a corollary which will help us to prove Lemma 5.2.

Corollary 6.7. Let A be a symmetric, positively semidefinite matrix. Then we have
WA [) € [0, Amax(A)], (6.9)
where Amax(A) denotes the largest eigenvalue of A.

Proof of Lemma 5.2. First, consider (5.2) on the reference element. Obviously, the
inequality is valid for v = const . Let v # const be given. Consider a decomposi-
tion of Q,(7) = VO(T) & V(T') with

VOT) = {v € Qy(T) : v = const}
={ve Qp(T) : / Vw-Vodzr =0, w € QP(T)},
T

Let Vjy and VJQ,, V/?/ @ V) = R™of be the coefficient spaces. Therefore, due to the
definition of Lagrange finite elements we have that

VY =span{(1,..., )T}, dim V= 1. (6.10)
Let NV denote the Lagrange nodes and ngof the number of degrees of freedom.
Moreover, defining Voo = (Vir,...,Von )l ov = (v(2))zen, vj]\fl

= (v 1(2))zenr, We have that

(Vo VI ) gz o dug!
1

T 4,471
= = vy Av
q - N
loarllfa vﬁv}’v N
if v}f/vj{fl = 1. Notice that, due to the homogeneity of the quotient, such a norming
is always possible. Using the fact that A is a symmetric, positively semidefinite

matrix and 1 = vf/vjv_l = ||UN||lq||vf\/_1||lq/(q—1), we obtain

U%AUXFI € W(Aa || ' qu) c [Oa )\max(A)}'
(6.9)

Now, it is natural to ask whether v}(}flvf{[_l is bounded from zero independent of q.
To see this, let us suppose that the eigenvalues are ordered in increasing manner

0= <A< "'§>‘ndnf'
Since Vj{)/ is the eigenspace of A1, we have
Vi L Vi, (6.11)

and we can write A in terms of a sum of dyadic products of eigenvectors &;, 1 <
< Ndof

Ndof Ndof Ndof

T 4,91 T T,qg—1 T T,9—1 T T,q—-1
v vl = ol Y NG =) el ol =D ksl ol
=1 =1 =2
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Again, the inclusion (6.9) yields v%.&;¢) vj{[_l € [0, 1]. On the other hand, suppos-
ing vpr # const, we obtain

v/\/,vjzv_l 1 span{& 1} = V_/(\)/’. (6.12)

Then, the boundedness of Uf/Avf\/_l, ie.
Ndof
7 g1 -1 -1 -1
v}(;Avffv > Ay Z vfffifiva\/ — Aa v%}fl flij]\/ > )\Qvf/v/qv ,
i=1 ™
=0
implies that
D(,q—1
(Vv, VI (v ))O,T
loarll7s
Now, standard estimates give the proof for the reference element

> X9, v # const. (6.13)

o112 2 A19012 5 5 < A A) 072, o
< A (A) Ay [ |92 o 12
< )‘maX<A) pHUNHq_QHUNHlQ2

< (naor) ™" Aax (A) Ay lforc[

Amax(4)

< ndOfTAp (V’U, Vlﬁ(vqfl))oj R

where Ap, = || Y279 |4 l,00,7 18 the Lebesgue constant.
Finally, we want to show the result for an affine decomposition {7}, _, with

Fr:T3@w—Jri+br=0€T VT €{T\}h0

and therefore

Vu(z) = J;TVa(z), 4=wuo Fr. (6.14)
Due to the spectral decomposition of
d
-1
K= J1Jr)" =Y mbwf,
=1

we have that

/Vv-VIﬁ(vq_l)dx = vk (/ V(pj~Vg0idm> vf\/_l
T T .5

)

= o ([ e RSl el ) ot

17.7

Z'hj

> | det(JT)],ummvNAvN
(6.9)

= | det(Jp)|||Jrll p*v-Avg

d
| det(Jr)| vaﬁ (/A(Wﬁj)T”t/Jﬂsz@@ dﬂ?) v

1
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and

Vof2 > | det () [ LI 2 Vel o

Now, the shape regularity property
17l ll I3 ]2 < ©
completes the proof. U

7. SUMMARY

In this paper, we considered a DG-method based on polynomials of degree p > 0
for hyperbolic scalar conservation laws. This method was introduced for the pure
Cauchy problem in [JJS95]. We extended the formulation for hyperbolic conser-
vation laws with initial and boundary conditions. Moreover, we presented a proof
of the uniform boundedness of the discrete solution in the L°°(L°)-norm. The
analysis is based on arguments demonstrated in [Sze91] which are valid for p = 1.
It turned out that the use of numerical ranges for bounded linear operators in Ba-
nach spaces allows to generalize this result to the case p > 1. Future work will
be devoted to the convergence of the DG-method for the initial-boundary value
problem.
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