
Mathematik-Bericht 2010/4

Numerical Solution of Convection-

dominated Problems Using Isogeo-

metric Analysis

F. Freiberger

April 2010

Institut für Mathematik, TU Clausthal, Erzstraße 1, D-38678 Clausthal-Zellerfeld, Germany

Numerical Solution of Convection-dominated Problems

Using Isogeometric Analysis

Falk Freiberger

April 29, 2010

Contents

1 Introduction 2

2 Bézier-Curves and NURBS 2
2.1 Bézier Curves . 2
2.2 Bernstein Polynomials . 2
2.3 Derivatives of a Bézier Curve . 3
2.4 Degree Elevation and Reduction . 4
2.5 Spline Curves in Bézier Form . 4
2.6 Knot Sequences . 5
2.7 B-spline Curves and B-splines . 5
2.8 Rational Bézier and B-Spline Curves . 8

3 Streamline Diffusion Method 10

4 One-dimensional Model Problem 11
4.1 Solution of the Model Problem . 12

4.1.1 Knot Sequence . 12
4.1.2 Recursive Construction of the B-splines . 12
4.1.3 Representation of the Domain and Basis Functions 13
4.1.4 Application to the Model Problem . 13

4.2 Matlab Solution . 14
4.3 Choice of the Stabilization Parameter . 15

5 Two-dimensional Model Problem 17
5.1 The Model Problem . 17
5.2 Discretization of the Model Problem . 18
5.3 Matlab Solution . 19

5.3.1 Domain and Finite Elements . 19
5.3.2 The Stiffness Matrix . 19
5.3.3 Right-hand Side and Further Steps . 20

5.4 Stabilization and Results . 20

6 Model Problem with Variable Convection 22

7 Concluding Remarks 26

1

1 Introduction

In many fields of engineering science finding approximate solutions of partial differential equations
is a major task. Numerical solutions can be found using finite element methods (FEM). A rep-
resentative example is the stationary Stokes equation which can be derived from the well known
Navier-Stokes equation which is fundamental in fluid mechanics [Che05].

Partitioning and refinement of a non-rectangular domain Ω can be a serious problem. In
[HCB05] a finite element method called ”isogeometric analysis” is presented. It solves partial
differential equations numerically and provides an easier treatment of non-rectangular domains.
Domains are described using a basis of non-uniform rational B-splines (NURBS). The same set of
basis functions is used to give a representation of the numerical solution. With the help of NURBS
it becomes much easier to refine a given domain Ω.

The paper is organized as follows. First, a review of the theory of Bézier curves and NURBS is
given. As we apply isogeometric analysis to convection dominated diffusion-convection problems,
a stabilization of the numerical solution is necessary. Therefore, the streamline diffusion method
(sdFEM) is discussed in Section 3. Isogeometric analysis is tested in the one-dimensional (Sec-
tion 4) and two-dimensional (Section 5) cases. A more difficult numerical problem with variable
convection is considered in Section 6. We conclude with a summary in Section 7.

2 Bézier-Curves and NURBS

NURBS or rational B-spline curves are a generalization of B-spline curves. The use of these
functions is standard in CAD and CAM industries [FHK02]. Rational B-spline curves are defined
as the projection of a non-rational B-spline curve of R4 into a hyperplane [Far97].

2.1 Bézier Curves

A Bézier curve of degree n is a curve in R3 which is described by n + 1 control points or Bézier
points b0, . . . , bn ∈ R3. We calculate a point at the curve by means of the following algorithm:

Let t ∈ [0, 1]. Set b0i (t) = bi.
For r = 1, . . . , n

For i = 0, . . . , n− r
bri (t) = (1− t)br−1

i (t) + tbr−1
i+1 (t) ∈ R3.

This is the de Casteljau Algorithm, bn0 (t) is the point on the Bézier curve bn : [0, 1] → R3

for the parameter t. It is obvious that in the general case no Bézier points besides b0 and bn are
interpolated by the Bézier curve. Nevertheless every point bn(t) is situated inside the convex hull of
the control polygon b0, . . . , bn. A Bézier curve is invariant under affine parameter transformations.
Furthermore such a curve is symmetric, i.e.

n∑
j=0

bjB
n
j (t) =

n∑
j=0

bn−jB
n
j (1− t),

and invariant under barycentric combinations, i.e. for α+ β = 1 it holds
n∑

j=0

(αbj + βcj)Bn
j (t) = α

n∑
j=0

bjB
n
j (t) + β

n∑
j=0

cjB
n
j (t).

2.2 Bernstein Polynomials

Bernstein polynomials are used to derive an explicit representation of a Bézier curve. The i-th
Bernstein polynomial of degree n is defined by

Bn
i (t) =

(
n
i

)
ti(1 − t)n−i with

(
n
i

)
= 0, if 0 ≤ i ≤ n is violated.

2

Bernstein polynomials satisfy the recursion formula

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t)

with B0
0(t) ≡ 1 and Bn

j (t) ≡ 0 for j 6= {0, . . . , n}. For t ∈ [0, 1] these polynomials are nonnegative
and they form a partition of unity, i.e.

n∑
j=0

Bn
j (t) = 1.

We obtain two explicit representations of a Bézier curve bn

bn(t) =
n∑

i=0

bjB
n
j (t) =

n−r∑
i=0

bri (t)B
n−r
i (t) (1)

with the control points b0, . . . , bn and the intermediate points bri from the de Casteljau algorithm.

2.3 Derivatives of a Bézier Curve

Owing to the explicit representation (1) we can calculate all derivatives of a Bézier curve. We
define the forward difference operator ∆bj = bj+1 − bj and find

d

dt
bn(t) = n

n−1∑
j=0

∆bjBn−1
j (t).

So we see that the first derivative is nothing but a Bézier curve with control points ∆bj . Higher
derivatives can be found by iteration. We introduce the iterated forward difference operator
∆rbj = ∆r−1bj+1 −∆r−1bj . We find

∆rbi =
r∑

j=0

(
r
j

)
(−1)r−jbi+j

and the formula for the r-th derivative

dr

dtr
bn(t) =

n!
(n− r)!

n−r∑
j=0

∆rbjB
n−r
j (t) =

n!
(n− r)!∆

rbn−r
0 (t). (2)

Considering the special case t = 0 this formula yields

dr

dtr
bn(0) =

n!
(n− r)!∆

rb0,

i.e. the r-th derivative only depends on the control points b0, . . . , br. Hence the first derivative in
t = 0 is

d

dt
bn(0) = n(b1 − b0). (3)

An analogous formula can be derived in the case t = 1. In view of (2) we have the following two
possibilities of calculating the r-th derivative:

• Calculate the r-th forward differences and interpret the resulting points as control points of
a Bézier curve. This curve can be evaluated by means of the de Casteljau algorithm.

• Use the intermediate points from the de Casteljau algorithm and calculate the r-th forward
differences.

Because of
d

dt
bn(t) = n

(
bn−1
1 (t)− bn−1

0 (t)
)

for the first derivative, i.e. r = 1, the tangent in the point bn(t) only depends on the two interme-
diate points bn−1

0 (t) and bn−1
1 (t).

3

2.4 Degree Elevation and Reduction

Our aim is to add control points to an existing Bézier curve without changing the form of the
curve. This process is called degree elevation. Suppose that the control points b0, . . . , bn describe
a Bézier curve. We want to find control points b(1)0 , . . . , b

(1)
n+1 so that we still get the same Bézier

curve. These new points are given by

b
(1)
i =

i

n+ 1
bi−1 +

(
1− i

n+ 1

)
bi, i = 0, . . . , n+ 1.

This is a linear interpolation of the given control points. If we elevate the degree successively r
times new control points b(r)

0 , . . . , b
(r)
n+r have to be found. These points can be described by

b
(r)
i =

n∑
j=0

bj

(
n
j

) (r
i− j

)
(
n+ r
i

) .

In the limit r →∞ the points b(r)
0 , . . . , b

(r)
n+r converge towards the Bézier curve.

In general, it is not possible to describe a Bézier curve with less than the initial number of
control points. That means that there is no exact degree reduction. Therefore we search for the
best approximation of the curve. To do so we inverse the process of degree elevation. We start
again with control points b0, . . . , bn and try to find points b̂0, . . . , b̂n−1. We assume that the points
b0, . . . , bn have been calculated with the degree elevation formula from the points b̂0, . . . , b̂n−1.
This means

bi =
i

n
b̂i−1 +

n− i
n

b̂i, i = 0, . . . , n.

In the next step two recursion formulas can be obtained:

−→
b i =

nbi − i−→b i−1

n− i for i = 0, . . . , n− 1,

←−
b i =

nbi − (n− i)←−b i−1

i
for i = n, n− 1, . . . , 1.

Both approximations are bad in most cases. To improve them one could choose a linear combina-
tion of both approximations which leads to

b̂i = (1− λi)
−→
b i + λi

←−
b i, i = 0, . . . , n− 1.

The parameter λi has to be chosen appropriately, for example by using Chebychev polynomials.
We set

λi =
1

22n−1

i∑
j=0

(
2n
2j

)
.

The maximal deviation between the given Bézier curve and the new curve of lower degree is
||∆nb0||2−(2n−1). Unfortunately, this choice of λi can destroy the end point interpolation property
of a Bézier curve.

2.5 Spline Curves in Bézier Form

A spline curve s is a continuous map of a collection of intervals u0 < . . . < uL into R3, where
each interval [ui, ui+1] is mapped onto a polynomial curve segment. The set of the real numbers
ui is called a knot sequence. On the interval [ui, ui+1] we define a local variable t ∈ [0, 1]. We
introduce the notation ∆i := ui+1 − ui for the length of the interval [ui, ui+1] and set

t =
u− ui

ui+1 − ui
=
u− ui

∆i
for u ∈ [ui, ui+1].

4

The curve of the interval [ui, ui+1] is called si := s|[ui,ui+1]. We want the global curve to fulfil
certain global smoothness conditions. Let s1 : [u0, u1]→ R3 and s2 : [u1, u2] → R3 be two Bézier
curves defined by their control polygons b0, . . . , bn and bn, . . . , b2n. From (3) we conclude that the
spline curve formed by s1 and s2 is a C1-curve if and only if the points bn−1, bn and bn+1 are
collinear and the equation

u1 − u0

u2 − u1
=
||b1 − b0||
||b2 − b1||

holds. Additionally, C2 continuity can only be obtained in case the control points bn−2, bn−1,
bn and bn, bn+1, bn+2 describe the same quadratic polynomial. Hence, this polynomial can be
specified by a polygon bn−2, d, bn+2 with an unknown point d. From this polygon we can find the
other two polygons employing a subdivision process [Far97]. As a consequence we see

bn−1 = (1− t1)bn−2 + t1d and bn+1 = (1− t1)d+ t1bn+2

with t1 = u1−u0
u2−u0

. These two equations can be used to calculate two points d+ and d−. For d+ = d−

the curve is C2 continuous.
These differentiability conditions allow us to construct most of the well known quadratic and

cubic C1 and C2 spline curves. For example, the cubic C2 spline curve results from the following
construction: Let u0, . . . , uL be a set of L intervals and di auxiliary points with i = 0, . . . , L− 1.
The conditions for C1 and C2 continuity yield the representation

b3i =
∆i

∆i−1 + ∆i
b3i−1 +

∆i−1

∆i−1 + ∆i
b3i+1.

for the connection point b3i. The other points of the curve can be calculated by means of the
formulas

b3i−2 =
∆i−1 + ∆i

∆
di−1 +

∆i−2

∆
di and b3i−1 =

∆i

∆
di−1 +

∆i−2 + ∆i−1

∆
di

for i = 2, . . . , L− 1 with ∆ = ∆i−2 + ∆i−1 + ∆i. A modified formula has to be used to get the
boundary points.

The advantage of the cubic spline curves consists in their flexibility. Whereas quadratic curves
are piecewise planar the cubic ones are true space curves. Besides the convex hull property, affine
invariance, symmetry and endpoint interpolation locality is one of the main features of the spline
curves. That means that changing one Bézier point only has a local impact on the curve.

2.6 Knot Sequences

If only data points xi ∈ R3 are given there are several possibilities to find a parametrization. The
easiest approch is the uniform parametrization, i.e. ui = i. Other options include the chord length
parametrization where ui is chosen to fulfil

∆i

∆i+1
=
||∆xi||
||∆xi+1||

with u0 = 0, uL = 1 and the centripetal parametrization [Far97]

∆i

∆i+1
=
(||∆xi||
||∆xi+1||

) 1
2

.

2.7 B-spline Curves and B-splines

In this section we consider curves that can be obtained as the graph of a function f : R→ R. Let
n ∈ N be the degree of the B-spline curve and L ∈ N the maximal number of polynomial segments.
Let

u0 ≤ . . . ≤ uL+2n−2 with ui ∈ R,

5

be a knot sequence. For ui = . . . = ui+ri−1 the knot ui has multiplicity ri. In case ri = 1 the
knot ui is a simple knot, un−1, . . . , uL+n−1 are domain knots. Obviously

∑L+n−1
i=n−1 ri = L + 1

holds. The Greville abscissas are defined by

ξi =
1
n

(ui + . . . ui+n−1), i = 0, . . . , L+ n− 1.

If we assign to every Greville abscissa a de Boor ordinate di ∈ R then the points (ξi, di) with
i = 0, . . . , L+ n− 1 form a polygon P .

Now we want to insert a knot u ∈ [un−1, uL+n−1] into the existing knot sequence. As a
consequence we have to calculate new Greville abscissas ξu

i and de Boor ordinates du
i . This results

in a new polygon Pu. We evaluate P to find the new de Boor ordinates, i.e. du
i = P (ξu

i). Hence,
the formula

du
i =

ui+n−1 − u
ui+n−1 − ui−1

di−1 +
u− ui−1

ui+n−1 − ui−1
di, i = I − n+ 2, . . . , I + 1

for u ∈ [uI , uI+1] holds. Note that not all Greville abscissas have to be calculated, only a certain
number in a neighbourhood of the knot u change their value. For the implementation of the
algorithm it is expedient to store knot values and the multiplicities in separate vectors.

Once a knot u reaches multiplicity n further insertion of u into the knot sequence does not
change the polygon. We start with a knot sequence and the de Boor ordinates which form a
B-spline curve of degree n. Next we refine the knot sequence at the position u until u possesses
multiplicity n. Then the polygon vertice associated to u is nothing but the function value s(u).
We call BnP the B-spline curve of degree n with control polygon P . Due to the location of
the Greville abscissas this curve is only defined in the interval [un−1, ul+n−1]. Let

u ∈ [uI , uI+1) ⊂ [un−1, uL+n−1]

and
dk

i (u) =
ui+n−k − u

ui+n−k − ui−1
dk−1

i−1 (u) +
u− ui−1

ui+n−k − ui−1
dk−1

i (u) (4)

for k = 1, . . . , n− r und i = I − n+ k + 1, . . . , I − r + 1. This implies

s(u) = [BnP](u) = dn−r
I−r+1(u).

Here r is the initial multiplicity of the knot u and d0
i (u) = di. Repeated insertion of a knot u

into the knot sequence and application of (4) to derive a new polygon is called the de Boor
algorithm. In the special case

0 = u0 = u1 = . . . = un−1 < un = un+1 = . . . = u2n−1 = 1

both knots u0 and un are of multiplicity n. The Greville abscissas are

ξi =
1
n

i+n−1∑
j=i

uj =
i

n
, i = 0, . . . , n.

For 0 ≤ u ≤ 1 we conclude from the de Boor algorithm for I = n− 1

dk
i (u) = (1− u)dk−1

i−1 + udk−1
i , k = 1, . . . , n.

Due to i ≥ k and n ≥ i we see ui+n−k = 1, ui−1 = 0 for all i, k. So we found again the de Casteljau
algorithm. Now we summarize some consequences:

• Given two neighbouring knots of multiplicity n, the corresponding B spline curve is a Bézier
curve between these two knots. The B spline control polygon is identical to the Bézier
polygon, the Greville abscissas are equally spaced.

6

• After inserting u into the knot sequence as long as it reaches multiplicity n the initial Bézier
polygon is split into two Bézier polygons. These polygons describe the same curve as the
initial polygon. Hence, the de Casteljau algorithm subdivides Bézier curves.

• Now we refine a given knot sequence until every knot is of multiplicity n. The resulting B-
spline polygon is the piecewise Bézier polygon of the curve. So B-spline curves are piecewise
polynomial on the interval [un−1, uL+n−1].

• A B-spline curve is Cn−r in knots with multiplicity r.

Let u0, . . . , uk be a knot sequence. Given a set of piecewise defined polynomials of degree n.
We assume that in every knot ui all functions are Cn−ri . The dimension of the resulting vector
space is (n+ 1) +

∑k−1
i=1 ri which can be proven easily by counting the degrees of freedom.

We now consider B-spline curves that are piecewise polynomial on the interval [un−1, uL+n−1].
This is a vector space of dimension L + n which equals the number of the resulting Greville
abscissas. The de Boor ordinates di can be used to describe a basis of this vector space. Its
elements are called B-splines Nn

i (u):

di = 1 and dj = 0 for all j 6= i.

These functions Nn
i (u) possess several useful properties:

• They are piecewise polynomials on the interval [un−1, uL+n−1].

• They have a local support, i.e. Nn
i (u) 6= 0 only if u ∈ [ui−1, ui+n].

• They even have a minimal support: If there exists a piecewise polynomial with the same
differentiation properties like Nn

i (u) but smaller support then this function is zero function.

• They are linearly independent.

• They form a partition of unity.

Therefore, every piecewise polynomial s in the interval [un−1, uL+n−1] can be written uniquely in
the form

s(u) =
L+n−1∑

j=0

djN
n
j (u).

Useful recursion formulas for B-splines can be derived. Let û be a knot that is inserted into an
existing knot sequence. Assume that Nn

i are the B-splines of the old knot sequence and N̂n
i the

new ones. We obtain the Boehm recursion

Nn
l (u) =

û− ul−1

ul+n−1 − ul−1
N̂n

l (u) +
ul+n − û
ul+n − ul

N̂n
l+1(u)

and the Mansfield, de Boor or Cox recursion

Nn
l (u) =

u− ul−1

ul+n−1 − ul−1
Nn−1

l (u) +
ul+n − u
ul+n − ul

Nn−1
l+1 (u). (5)

Thus, a B-spline of degree n can be interpreted as a strict convex combination of two B-splines of
lower degree. Formula (5) is numerically stable. For the derivative we find

d

du
Nn

l (u) =
n

un+l−1 − ul−1
Nn−1

l (u)− n

ul+n − ul
Nn−1

l+1 (u). (6)

Given the polygon P , inserting r knots successively leads to the polygon P r. Now we insert
more knots until the set of the inserted knots is dense in the interval [un−1, uL+n−1]. Then

lim
r→∞P r = [BnP] (7)

7

holds. For a proof we observe that the polygon P r describes the same curve as the original
polygon P and we use the convex hull property. The convergence result (7) is applied in rendering
of B-spline curves. Knots are inserted until a certain precision level is reached.

Now we summarize some properties of B-spline curves:

• Linear precision: Let l(u) = au+ b be a straight line and ξi the Greville abscissas. Then∑
l(ξi)Nn

i (u) = l(u).

• Strong convex hull property: Every point on the curve is located inside the convex hull
of at most n+ 1 neighbouring control points.

• Variation diminishing property: The curve is not intersected by a straight line more
often than the polygon.

• Derivative: An explicit formula for the derivative of a B-spline curve s is given by

d

du
s(u) = n

L+n−1∑
i=1

∆di−1

un+i−1 − ui−1
Nn−1

i (u).

• Degree elevation:

Nn
i (u) =

1
n+ 1

n+i∑
j=i−1

Nn+1
i (u;uj).

Here the expression Nn+1
i (u;uj) means that we use the same knot sequence as before. Only

the multiplicity of the knot uj is augmented by 1.

2.8 Rational Bézier and B-Spline Curves

A conic section in R2 is the projection of a parabola of R3 into a plane. We identify a point(
x y

)T ∈ R2 with
(
x y 1

)T ∈ R3. Hence, the projection map is given byxy
z

 7→
x/zy/z

1

 .

Let c(t) ∈ R2 be a point of the conic section. Then real numbers w0, w1, w2 ∈ R and points b0,
b1, b2 ∈ R2 exist such that the equation

c(t) =
w0b0B

2
0(t) + w1b1B

2
1(t) + w2b2B

2
2(t)

w0B2
0(t) + w1B2

1(t) + w2B2
2(t)

holds. The polygon with the vertices bi ∈ R2 is the control polygon of the conic section c. The
real numbers wi are the weights of the corresponding vertices of the control polygon. In the case
that all weights are equal, c is a nonrational quadratic polynomial, a parabola.

This idea can be generalized. A rational Bézier curve x(t) of degree n in R3 is the projection
of a n-th degree Bézier curve in R4 into the hyperplane w = 1, let

(
x y z w

)T ∈ R4. In
complete analogy to the conic section case we find

x(t) =
w0b0B

n
0 (t) + . . .+ wnbnB

n
n(t)

w0Bn
0 (t) + . . .+ wnBn

n(t)
.

Again, wi ∈ R are weights, the points bi ∈ R3 form the control polygon. For w0 = . . . = wn the
curve x becomes a nonrational Bézier curve.

8

To evaluate a rational Bézier curve we could apply the de Casteljau algorithm first to the
numerator, second to the denominator and then calculate the quotient. If the absolute values of
the weights are of varying size the method is not numerically stable. Another possibility is to
apply the projection into the hyperplane w = 1 in every step of the de Casteljau algorithm. This
leads to the rational de Casteljau algorithm:

bri (t) = (1− t)w
r−1
i

wr
i

br−1
i + t

wr−1
i+1

wr
i

br−1
i+1 with wr

i (t) = (1− t)wr−1
i (t) + twr−1

i+1 (t).

An explcit formula is

bri (t) =

∑r
j=0 wi+jbi+jB

r
j (t)∑r

j=0 wi+jBr
j (t)

.

If all weights wi are positive the intermediate points bri are all located inside the convex hull of
the original points bi. Therefore the algorithm is numerically stable.

Even in the rational case it is possible to derive differentiability criteria. Given two rational
Bézier curves, one with control polygon b0, . . . , bn, weights w0, . . . , wn on the interval [u0, u1], the
other with control polygon bn, . . . , b2n, weights wn, . . . , w2n on the interval [u0, u1]. Both curves
form a C1-curve if

wn−1

∆0
∆bn−1 =

wn+1

∆1
∆bn

holds. Obviously the weight wn has no impact on the differentiability. We obtain a Cr-curve if

∆r(wn−rbn−r)
(∆0)r

=
∆r(wnbn)

(∆1)r

holds.
A cubic rational B-spline curve in R3 is the projection of a nonrational cubic B-spline

curve in R4 into the hyperplane w = 1. The control polygon of the rational B-spline curve is given
by the points d−1, . . . , dL+1, to every point di ∈ R3 a weight wi ∈ R is associated. A rational
B-spline curve possesses a piecewise rational cubic Bézier representation. This one can be obtained
by projecting the appropriate Bézier points in R4 into the hyperplane w = 1. This leads to

b3i−2 =
wi−1(1 − αi)di−1 + wiαidi

v3i−2
and b3i−1 =

wi−1βidi−1 + wi(1− βi)di

v3i−1

with points bj, dk ∈ R3, αi = 1
∆∆i−2 and βi = 1

∆∆i. The weights of these Bézier points are given
by

v3i−2 = wi−1(1− αi) + wiαi and v3i−1 = wi−1βi + wi(1− βi).

The connection points are

b3i =
γiv3i−1b3i−1 + (1− γi)v3i+1b3i+1

v3i

with
γi =

∆i

∆i−1 + ∆i
and v3i = γiv3i−1 + (1− γi)v3i+1.

Here v3i is the weight of the point b3i.
Alternatively, the piecewise rational Bézier polygon is the result of the following procedure:

Start with the control polygon
(
widi wi

)T ∈ R4, derive its Bézier representation and divide it
by the Bézier weights.

9

3 Streamline Diffusion Method

Standard finite element methods are not suitable to solve convection dominated convection dif-
fusion problems because the numerical solution exhibits unphysical oscillations. This shows the
need for a stabilization of the finite element method which can be done by modifying the method
appropriately [KA03].

Let Ω ⊂ Rd be a bounded Lipschitz domain. Consider the stationary problem

−ǫ∆u+ c · ∇u+ ru = f in Ω
u = 0 on ∂Ω (8)

with ǫ > 0, f : Ω → R, c : Ω → Rd and r : Ω → R sufficiently smooth. We assume that for some
r0 > 0 the inequality r − 1

2∇ · c ≥ r0 holds. We define the forms

a(u, v) := ǫ(∇u,∇v) + (c · ∇u, v) + (ru, v)
〈f, v〉0 := (f, v)

with (u, v) :=
∫
Ω u ·v dx to transform (8) into the weak form. Let Vh be the discrete finite element

space and K ∈ Th an element of the triangulation Th of the domain Ω. Now we define for vh ∈ Vh

the modified forms

ah(u, vh) := a(u, vh) +
∑

K∈Th

δK(−ǫ∆u+ c · ∇u+ ru, τ(vh))K

〈f, vh〉h := 〈f, vh〉0 +
∑

K∈Th

δK(f, τ(vh))K

with (u, v)K =
∫

K
u · v dx, a map τ : Vh → L2(Ω) and local stabilizing parameters δK ∈ R. We

consider the problem: Find uh ∈ Vh such that

ah(uh, vh) = 〈f, vh〉h ∀vh ∈ Vh . (9)

For the choice τ(vh) = c · ∇vh problem (9) is called streamline diffusion method (sdFEM).
The Galerkin/least squares finite element method uses τ(vh) := −ǫ∆vh + c · ∇vh + rvh. Another
option is the ”bubble stabilized” sdFEM which is described in [MS] for one spatial dimension. In
this method further weights that are bubble functions are added.

Let
||v||ǫ :=

(
ǫ|v|21 + ||v||20

) 1
2

be the ǫ-weighted H1-norm. For a standard finite element method the error estimate

||u− uh||ǫ ≤ Ch|u|2
holds [KA03]. For the sdFEM we define the sd norm

||v||sd :=

(
ǫ|v|21 + r0||v||20 +

∑
k∈Th

δk||c · ∇v||20,K

) 1
2

.

This leads in the case of linear continuous elements to the error estimate

||u− uh||sd ≤ Ch 3
2 |u|2.

Hence, the asymptotic behaviour of the sdFEM is better. Note that the sd norm is stronger than
the ǫ-norm because the estimate

min{1,√r0}||v||ǫ ≤ ||v||sd ∀v ∈ H1
0 (Ω)

10

holds. The sdFEM is easy to implement. If a standard finite element code is already available
only a few lines have to be added.

One major disadvantage is the need to choose the stabilizing parameter empirically. As a
consequence it is difficult to automate the sdFEM. Furthermore no inverse monotonicity can be
proven.

It is also possible to include sdFEM in a hp-method [MS] and [SS96]. Here the solution is
decomposed like in a multi scale approach. More details on sdFEM can be found in [Wah91].

4 One-dimensional Model Problem

In this section the ideas of isogeometric analysis [HCB05] are applied to the one-dimensional model
problem

−ǫ(x)u′′ + c(x)u′ + r(x)u = f in Ω
u = g on ∂Ω (10)

with Ω = (0, 1) and g ∈ L2(∂Ω). For 0 < ǫ ≪ 1 and |c| ≈ 1 the problem (10) is a convection
dominated convection-diffusion problem. Therefore the resulting finite element method has to be
stabilized. We apply the streamline diffusion method discussed in Section 3.

To find weak solutions u ∈ C1(Ω) problem (10) is transformed into a variational problem.
Given w ∈ C1(Ω) with w(0) = g(0) and w(1) = g(1), i.e. w|∂Ω = g. We introduce the spaces

V := {v ∈ C1(Ω) : v|∂Ω ≡ 0}
Ṽ := {v ∈ C1(Ω) : v|∂Ω ≡ g} = {v ∈ C1(Ω) : v − w ∈ V }.

For u ∈ C2(Ω) und v ∈ C1(Ω) the equations (10) yield

−
∫ 1

0

ǫ(x)u′′v dx+
∫ 1

0

c(x)u′v dx+
∫ 1

0

r(x)uv dx =
∫ 1

0

fv dx.

Partial integration eliminates the second derivative. For u ∈ Ṽ and v ∈ V it follows∫ 1

0

ǫ(x)u′v′ dx+
∫ 1

0

c(x)u′v dx+
∫ 1

0

r(x)uv dx =
∫ 1

0

fv dx.

With

a(u, v) :=
∫ 1

0

u′ (ǫ(x)v′ + c(x)v) dx+
∫ 1

0

r(x)uv dx

b(v) :=
∫ 1

0

fv dx

we derive from (10): Find ũ ∈ Ṽ
a(ũ, v) = b(v) ∀v ∈ V.

Unfortunately, Ṽ is not a vector space. With the setting ũ := u+ w the equation

a(u, v) = a(ũ− w, v) = a(ũ, v)− a(w, v) = b(v)− a(w, v) ∀v ∈ V
is satisfied. Thus we arrive at the following variational formulation of (10): Find u ∈ V such that

a(u, v) = b̃(v) ∀v ∈ V (11)

with b̃(v) := b(v)− a(w, v). Formulation (11) serves as the basis for the finite element method we
use.

11

For the choice

ǫ(x) = 10−4, c(x) = 1, r(x) = 0, f(x) = 0, g(0) = 0, g(1) = 1, (12)

the exact solution u of (10) is given by

u(x) =
1− exp(x/ǫ)
1− exp(1/ǫ)

(13)

[KA03].

4.1 Solution of the Model Problem

4.1.1 Knot Sequence

In [HCB05] a knot sequence is defined slightly different compared to [Far97] and this paper. We
have to add the left and right knot one time to be consistent with [HCB05]. Additionally, the
numbering is different.

We choose L and n (cf. Section 2.7) and a knot sequence

[x0 x1 . . . xL+2n−2]

with domain knots xn−1, . . . , xL+n−1. Suppose that the boundary knots x0 and xL+2n−2 are of
multiplicity n, these knots are called open knots. We assume that x0 = . . . = xn−1 = 0 and
xL+n−1 = . . . = xL+2n−2 = 1. If the domain Ω cannot be represented by a one dimensional knot
sequence then a d-dimensional knot sequence as described in [BBdVC+06] can be chosen. Note
that the restriction to the interval [0, 1] is not mandatory.

4.1.2 Recursive Construction of the B-splines

Given the knot sequence

[x0 x1 x2 x3 x4 x5] = [0 0
3
10

4
5

1 1],

i.e. n = 2 and L = 3. The multiplicity of the knots 0 and 1 is n. As a consequence every B-
spline curve will interpolate the points associated to the knots 0 and 1. The domain knots are
[x1 x2 x3 x4]. There exist n + L = 5 basis functions Nn

i = N2
i for i = 0, . . . , n + L − 1.

According to (5), the B-splines are calculated recursively. We define the B-splines of degree zero:

N0
i (x) =

{
1 for xi−1 ≤ x < xi

0 else
.

Due to the multiplicity of the knots 0 and 1 we find N0
0 = N0

1 = N0
5 = N0

6 = 0. In Figure 1 the
results of the recursion process are illustrated, e.g.

N2
2 (x) =


25
6 x

2 for 0 ≤ x < 3
10

1
10 (4 − 5x)2 for 3

10 ≤ x < 4
5

50
7 (x − 1)2 for 4

5 ≤ x < 1
.

Obviously the set of B-splines forms a partition of unity. Every B-spline has a local support
(cf. Section 2.7), i.e.

Nn
i (x) 6= 0 only for x ∈ [xi−1, xi+n]. (14)

That is the reason why B-splines can be used easily in a finite element method. B-spline curves
are Cn−r at domain knots with multiplicity r ≥ 1.

12

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Quadratic B-splines for the knot sequence [0 0 3
10

4
5 1 1]

4.1.3 Representation of the Domain and Basis Functions

By the help of rational B-spline curves it is possible to model various complex geometries in Rd

with only a few control points. This is done by means of an invertible push forward operator F
that maps the parametric domain [0, 1]d into the physical space Ω ⊂ Rd. The parametric domain
consists of the d-dimensional knot sequences. Given a set of basis functions Nn,d

i in [0, 1]d. We
construct via Nn,d

i ◦ F−1 a set of basis functions in Ω.

4.1.4 Application to the Model Problem

Given a knot sequence on Ω = (0, 1) with open boundary knots. In this case the map F introduced
in 4.1.3 is nothing but the identity. We want to find solutions of the model problem (10) in the
finite dimensional space

Sh := {v(x) =
L+n−1∑

i=0

miN
n
i (x), mi ∈ R, v|∂Ω = 0}.

We see m0 = mL+n−1 = 0. To simplify the discretization process we assume that the coeffi-
cient functions ǫ(x), c(x) und r(x) are constant in every finite element. Hence, the variational
formulation of the discrete problem reads as follows: Find uh =

∑L+n−2
i=1 miN

n
i (x) ∈ Sh with

a(uh, v) = b̃(v) for v ∈ Sh.

We establish the stiffness matrix A and the right-hand side b. The variational problem is solved
by the system Am = b with m =

(
m1 m2 . . . mn+L−2

)T . The entries of A are

(A)ji = a(Nn
i , N

n
j) =

∫
Ω

[
ǫ(x)(Nn

i)′ (Nn
j)′ + c(x)(Nn

i)′ (Nn
j) + r(x)(Nn

i) (Nn
j)
]
dx

for i, j = 1, . . . , L+n− 2. The integrals over the domain Ω are interpreted as integrals over [0, 1]d

using the transformation formula. The derivatives of the B-splines can be calculated by means of
the recursion formula (6). Even so it is more efficient to use the polynomial representation of the
B-splines. The stiffness matrix is assembled from local element matrices Aloc,k. Due to (14) only

13

the basis functions Nn
k+1−n, . . . , N

n
k+1 are non-zero in the element Ek = [uk, uk+1]. That shows

Aloc,k =

aloc,k(Nn
k+1−n, N

n
k+1−n) . . . aloc,k(Nn

k+1−n, N
n
k+1)

...
. . .

...
aloc,k(Nn

k+1, N
n
k+1−n) . . . aloc,k(Nn

k+1, N
n
k+1)


with

aloc,k(u, v) =
∫

Ek

ǫu′v′ + cu′v + ruv dx.

As the basis functions are piecewise polynomials all values can be determined exactly. For the
right-hand side b we apply the same ideas. Because of the boundary condition g(0) = 0 and
g(1) = 1 we choose w = Nn

L+n−1. The j-th equation of the system is

a(uh, N
n
j) =

L+n−2∑
i=1

dia(Nn
i , N

n
j) =

∫
Ω

f(x)Nn
j (x) dx− a(Nn

l+n−1, N
n
j) = b̃(Nn

j).

Therefore

(b)j =
∫

Ω

f(x)Nn
j (x) dx − a(Nn

l+n−1, N
n
j) =

j+n∑
k=j−1

∫
Ek

f(x)Nn
j (x) dx − a(Nn

l+n−1, N
n
j)

for j = 1, . . . , L+n−2. In Figure 2 we see how the local element matrix is inserted into the global
stiffness matrix.

k + 1

k + 1− n

L+ n− 1

0 k + 1− n k + 1 L+ n− 1

alok,k(. . .)

a(Nn
i , N

n
j)

Figure 2: Inserting the element matrix into the stiffness matrix

4.2 Matlab Solution

We use Matlab and its Spline Toolbox [dB08] to find a numerical solution. Given n,L ∈ N.
Assume that all domain knots are simple. Without considering the index shift that is necessary
in Matlab we use:

• Knot sequence [x0 x1 . . . xL+2n−2].

• Domain knots xn−1, xn, . . . , xL+n−1.

• B-splines Nn
i , i = 0, . . . , L+ n− 1, i.e. L+ n basis functions of polynomial degree n.

• Elements Ek = [xk, xk+1], k = n− 1, . . . , L+ n− 2. There are L intervals.

• B-Splines with non-vanishing support on Ek are Nn
k+1−n, . . . , N

n
k+1, i.e. n+1 functions. Thus

the element matrix is a (n+ 1)× (n+ 1) matrix.

14

• The stiffness matrix is formally a (L+ n)× (L+ n) matrix. Due to the boundary condition
first and last row as well as first and last column can be deleted.

In Matlab we have to be aware of some index shifts:

• In the knot sequence we identify i→ i+2. In Matlab, vectors start with index 1. Moreover,
the open left knot appears n+ 1 times in the knot sequence.

• The degree of the polynomial is n, whereas n+ 1 is the order of the polynomial.

• In the Spline Toolbox, bspline(1) describes Nn
0 .

In the start sequence all knots appear only once, i.e. [x1, . . . , xL]. We derive the appropriate
knot sequence in the Matlab notation [x̃1, . . . , x̃L+2n+1]. Note, that the open knots appear n+ 1
times. There are two ways of describing the elements Ek, the B-form: Ek = [x̃k+2, x̃(k+1)+2] with
k = n− 1, . . . , L+ n− 2 and the pp-Form Ek = [xk, xk+1] with k = 1, . . . , L.

In Matlab, the polynomial representation of a B-spline curve always refers to the point of origin.
The polynomial vector needed in the integration process can be calculated using a generalization
of the Horner scheme, cf. [Ang]. Note that the right-hand side can only be integrated exactly if
the function f is polynomial.

4.3 Choice of the Stabilization Parameter

We stabilize the solution by means of sdFEM, cf. Section 3. In [HCB05] no information on the
appropriate choice of the stabilization parameter is given. It should depend on the polynomial
degree and the mesh width. For polynomial basis functions [MS] proposes

δk = δ1 · hi · 1
2
√

3n2

with suitable δ1. The length of the i-th interval is denoted by hi. During our numerical experiments
we realized that this approach is not applicable to the isogeometric analysis context. To solve model
problem (10) we propose: Let δ1 = 1.3 and set

δk = δ1 · h · 1
n

= δ1 · 1
L
· 1
n

(15)

with the number of equidistant intervals L whose length is h.
In all numerical tests we solved (10) with the parameters (12). For comparative purposes the

exact solution (13) appears in all figures. We consider L = 100. In Figure 3 we plot the solution for
n = 2 and in Figure 4 for n = 5. The unstabilized solution is always oscillatory. The stabilization
terms remove these oscillations. Hence, formula (15) is suitable for a moderate polynomial degree.

A more detailed analysis reveals that (15) works reliably up to polynomial degree 16. The
boundary layer is becoming smaller. Nevertheless, for n = 20 any choice of the stabilization
parameter leads to an oscillatory solution. Table 1 shows how the stabilization parameter δk
depends on the polynomial degree n.

n 1 2 3 4 5 6 7 8
δk 0.013 0.0065 0.00433 0.00325 0.0026 0.002166 0.0018571 0.001625

n 9 10 12 16
δk 0.001444 0.0013 0.0010833 0.0008125

Table 1: Stabilization parameter δk according to (15) for L = 100

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No stabilization

Numerical solution
Exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

With stabilization

Numerical solution
Exact solution

Figure 3: Numerical solution of (12) with ǫ = 10−4, n = 2 and L = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No stabilization

Numerical solution
Exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

With stabilization

Numerical solution
Exact solution

Figure 4: Numerical solution of (12) with ǫ = 10−4, n = 5 and L = 100

16

5 Two-dimensional Model Problem

5.1 The Model Problem

Let Ω = (0, 1)2 ⊂ R2 be a bounded Lipschitz-domain. We consider the boundary value problem

−∇ · (K(x)∇u) + a(x) · ∇u+ r(x)u = f for x ∈ Ω

with
K : Ω→ R2×2, a : Ω→ R2, r, f : Ω→ R.

To be more specific, let κ > 0 and θ ∈ [0, 2π]:

κ(x) =
(
κ 0
0 κ

)
, a(x) =

(
cos θ
sin θ

)
, r ≡ 0 und f ≡ 0. (16)

The problem simplifies to

−κ∆u+ a · ∇u = 0 in Ω
u = g on ∂Ω (17)

with a suitable function g ∈ L2(∂Ω). For the model problem we choose, cf. [HCB05],

g(x) = 0 for x ∈ {1} × [0, 1] ∪ [0, 1]× {1} ∪ {0} × (0.2, 1] ,
g(x) = 1 for x ∈ [0, 1)× {0} ∪ {0} × [0, 0.2] .

(18)

To find a solution of the problem described by (16), (17) and (18) isogeometric analysis [HCB05]
is used. First, we derive the weak formulation of (17). Let w ∈ H1(Ω) such that w|∂Ω = g and

V = {v ∈ H1(Ω) : v|∂Ω ≡ 0},
Ṽ = {v ∈ H1(Ω) : v|∂Ω ≡ g} = {v ∈ H1(Ω) : v − w ∈ V }.

Partial integration∫
Ω

κ∇u1 · ∇u2 dx = −
∫

Ω

(κ∆u1)u2 dx+
∫

∂Ω

κ (∇u1 · ν) u2 dσ

with u1 ∈ H2(Ω) and u2 ∈ H1(Ω) yields for v ∈ H1(Ω), u ∈ H2(Ω) and f ≡ 0

−
∫

Ω

(κ∆u) v dx+
∫

Ω

(a · ∇u) v dx =
∫

Ω

fv dx

⇔
∫

Ω

κ∇u · ∇v dx−
∫

∂Ω

κ(∇u · ν)v dσ +
∫

Ω

(a · ∇u)v dx =
∫

Ω

fv dx .

The weak formulation of (17) is: Find ũ ∈ Ṽ with

a(ũ, v) = b(v) for all v ∈ V.
As in Section 4 we transform the formulation to be able to find a solution in a vector space. Let
ũ := u+ w with w ∈ Ṽ , w|∂Ω ≡ g and u ∈ V . This leads to

a(u, v) = a(ũ− w, v) = a(ũ, v)− a(w, v) = b(v)− a(w, v) for all v ∈ V.

With b̃(v) := b(v)− a(w, v) the second weak formulation reads as: Find u ∈ V with

a(u, v) = b̃(v) for all v ∈ V. (19)

The assumptions (16) ensure that the assumptions of the Lax-Milgram lemma are satisfied.

17

5.2 Discretization of the Model Problem

Considering the two-dimensional domain Ω as tensor product Ω = Ω1 ×Ω2 with Ω1 = Ω2 = (0, 1)
allows us to apply the same methods as in Section 4. The space of basis functions is the tensor
product of one-dimensional B-splines. Given the polynomial degrees of the ansatz functions n1

on the x-axis resp. n2 on the y-axis and the number of intervals in case of simple knots L1 on the
x-axis resp. L2 on the y-axis. We consider the knot sequences

[x(1)
0 x

(1)
1 . . . x

(1)
L1+2n1−2]

on the x-axis with x(1)
0 = 0, x(1)

L1+2n1−2 = 1 and

[x(2)
0 x

(2)
1 . . . x

(2)
L2+2n2−2]

on the y-axis with x
(2)
0 = 0, x(2)

L2+2n2−2 = 1. Note that the polynomial degrees in the two spatial

dimensions may be different. The end knots x(i)
0 and x(i)

Li+2ni−2 are supposed to be of multiplicity
ni for i ∈ {1, 2}. The x-axis resp. y-axis is denominated Ω1 = (0, 1) resp. Ω2 = (0, 1). Let Nn1

i

with i = 0, . . . , L1 + n1 − 1 be the L1 + n1 B-splines on Ω1 and Mn2
j with j = 0, . . . , L2 + n2 − 1

the L2 + n2 B-splines on Ω2. A basis function Nn1n2
ij on Ω is the tensor product

Nn1n2
ij (x) := Nn1

i (x1) ·Mn2
j (x2), x = (x1, x2)T , x1 ∈ Ω1, x2 ∈ Ω2

with i = 0, . . . , L1 + n1 − 1 and j = 0, . . . , L2 + n2 − 1. Hence, on Ω we have (L1 + n1) · (L2 + n2)
basis functions. The discrete space Sh of the ansatz functions is

Sh :=

v(x) =
L1+n1−1∑

i=0

L2+n2−1∑
j=0

mijN
n1
i (x1)Mn2

j (x2)

 .

A function v ∈ Sh is uniquely described by a matrix M = (mij) ∈ Mat(L1 + n1, L2 + n2,R), so
dimSh = (L1 + n1) · (L2 + n2). The discrete space S0

h of such functions from Sh that vanish on
the boundary of Ω is

S0
h :=

v(x) =
L1+n1−2∑

i=1

L2+n2−2∑
j=1

mijN
n1
i (x1)Mn2

j (x2)

 .

We suppose that the function w ∈ Sh fulfils approximately the boundary condition (17). Now we
can formulate the discrete version of (19): Find u ∈ S0

h with

a(u, v) = b̃(v) = −a(w, v) for all v ∈ S0
h.

We calculate the stiffness matrix A and the right side b. In a first step we compute Ã and b̃
without taking the boundary conditions into consideration. We renumber the functions in Sh, i.e.

Sh =

v(x) =
(L1+n1)(L2+n2)∑

s=1

msN
n1n2
s

 .

So we project the rectangle [0, L1+n1−1]× [0, L2+n2−1] onto the interval [1, (L1+n1)·(L2+n2)]
via

(i, j) 7→ s := i+ j(L1 + n1) + 1 .

Table 2 gives an example for n1 + L1 = 5 and n2 + L2 = 4. We identify Nn1n2
s = Nn1n2

ij and
ms = mij . The entries of the stiffness matrix Ã are

Ãrt = a(Nn1n2
t , Nn1n2

r) for r, t = 1, . . . , (L1 + n1)(L2 + n2),

18

i →
0 1 2 3 4

j ↓ 0 1 2 3 4 5
1 6 7 8 9 10
2 11 12 13 14 15
3 16 17 18 19 20

Table 2: Projection of a rectangle onto the straight line

with the numbers r and t calculated by means of the projection map introduced. To find A we
delete from the matrix Ã rows and columns that result from basis functions that are included in
Sh but not in S0

h. The same procedure applies to the vector b. We first calculate b̃, a vector of
length (L1 + n1)(L2 + n2):

b̃r = −a(w,Nn1n2
r).

Then we derive b by erasing some entries of b̃. Due to the structure of the function w we can easily
compute the vector b̃ by copying appropriate entries of the matrix Ã.

5.3 Matlab Solution

5.3.1 Domain and Finite Elements

The representation of the domain Ω = (0, 1)2 as a tensor product of one-dimensional B-splines is
trivial. The entries of the global stiffness matrix are computed element by element. We consider
the element Ekl = [x(1)

k , x
(1)
k+1]× [x(2)

l , x
(2)
l+1]. Here k and l are indices of the knot sequences of the

x and y spatial dimensions with

k ∈ {(n1 − 1), . . . , (L1 + n1 − 2)} and l ∈ {(n2 − 1), . . . , (L2 + n2 − 2)}.

An example of the domain decomposition is visualized in Figure 5. In the two-dimensional case

6

-

Ekl

x
(2)
l+1

x
(2)
l

x
(1)
k x

(1)
k+1

��	

Figure 5: Decomposition of Ω using two knot sequences

we do not provide local element matrices. We insert the element contribution directly into the
global stiffness matrix.

5.3.2 The Stiffness Matrix

The B-splines Nn1
k+1−n1

, . . . , Nn1
k+1 are non-vanishing on the interval [x(1)

k , x
(1)
k+1]. On the interval

[x(2)
l , x

(2)
l+1] the B-splines Mn2

l+1−n2
, . . . ,Mn2

l+1 are non-vanishing. Hence, on the element Ekl the

19

basis functions

Nn1n2
ij with

{
i = k + 1− n1, . . . , k + 1
j = l + 1− n2, . . . , l + 1

are non-vanishing, at all these are (n1 + 1)(n2 + 1) functions.
Given the two functions

u = Nn1n2
i1i2

= Nn1
i1
Mn2

i2
and v = Mn1n2

i1i2
= Nn1

j1
Mn2

j2
.

We compute a(v|Ekl
, u|Ekl

). Therefore, we need

∇u = ∇Nn1n2
i1i2

=

((
Nn1

i1
(x1)

)′
Mn2

i2
(x2)

Nn1
i1

(x1)
(
Mn2

i2
(x2)

)′) and ∇v = ∇Nn1n2
j1j2

=

((
Nn1

j1
(x1)

)′
Mn2

j2
(x2)

Nn1
j1

(x1)
(
Mn2

j2
(x2)

)′) .
Now, we derive

a(v|Ekl
, u|Ekl

) =
∫

Ekl

κ (∇v · ∇u) dx+
∫

Ekl

(a · ∇v) u dx

=

(∫ x
(1)
k+1

x
(1)
k

Nn1
i1

(x1)Nn1
j1

(x1) dx1

)(∫ x
(2)
l+1

x
(2)
l

(
Mn2

j2
(x2)

)′ (
κ
(
Mn2

i2
(x2)

)′ + (sin θ)Mn2
i2

(x2)
)
dx2

)

+

(∫ x
(2)
l+1

x
(2)
l

Mn2
j2

(x2)Mn2
i2

(x2) dx2

)(∫ x
(1)
k+1

x
(1)
k

(
Nn1

j1
(x1)

)′ (
κ
(
Nn1

i1
(x1)

)′ + (cos θ)Nn1
i1

(x1)
)
dx1

)
.

After computing the local value we need to apply the projection described in Section 5.2. To do so
we reconstruct from the local two-dimensional numbering the global two-dimensional numbering
and project it onto the one-dimensional numbering.

5.3.3 Right-hand Side and Further Steps

From the stiffness matrix Ã we can extract the values of the vector b̃. We represent the boundary
condition by a function w ∈ Sh with

w =
∑∑

ai1i2N
n1n2
i1i2

=
∑

ψsN
n1n2
s . (20)

The coefficients ai1i2 ensure that w fulfils the boundary condition (18) which is discontinuous.
Hence, this condition cannot be represented exactly as a linear combination of B-splines, see
figure 6.

The entries of the vector b̃ ∈ R(L1+n1)(L2+n2) are nothing but −a(w, v) for all basis functions
v = Nn1n2

j1j2
∈ Sh. We compute b̃ by multiplying the stiffness matrix Ã with a vector −Ψ where

(Ψ)s = ψs. We also use Ψ to identify all rows and columns of Ã that have to be erased from the
matrix. Likewise, the vector b̃ is treated. Now the linear system can be solved numerically.

5.4 Stabilization and Results

The streamline diffusion method, cf. Section 3, adds local stabilization terms to the stiffness
matrix. We give an explicit representation of the term

δk〈−κ∆v + a · ∇v + rv, a · ∇u〉Ekl

with the stabilzation parameter δk. Given the element Ekl = [x(1)
k , x

(1)
k+1]× [x(2)

l , x
(2)
l+1] and the two

functions
u = Nn1n2

i1i2
= Nn1

i1
Mn2

i2
und v = Nn1n2

j1j2
= Nn1

j1
Mn2

j2
.

20

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

x
y

Figure 6: Boundary condition for n1 = n2 = 8 and L1 = L2 = 8

We find

∆v =
∂2

∂x2
v +

∂2

∂y2
v =

(
Nn1

j1
(x1)

)′′
Mn2

j2
(x2) +Nn1

j1
(x1)

(
Mn2

j2
(x2)

)′′
,

∆u =
∂2

∂x2
u+

∂2

∂y2
u =

(
Nn1

i1
(x1)

)′′
Mn2

i2
(x2) +Nn1

i1
(x1)

(
Mn2

i2
(x2)

)′′
.

For
〈−κ∆v, a · ∇u〉Ekl

= r1 + r2

we have

r1 =−
∫

Ekl

κ
(
Nn1

j1
(x1)

)′′
Mn2

j2
(x2)

(
(cos θ)

(
Nn1

i1
(x1)

)′
Mn2

i2
(x2) + (sin θ)Nn1

i1
(x1)

(
Mn2

i2
(x2)

)′)
dx

=− κ cos θ
∫ x

(1)
k+1

x
(1)
k

(
Nn1

j1
(x1)

)′′ (
Nn1

i1
(x1)

)′
dx1

∫ x
(2)
l+1

x
(2)
l

Mn2
j2

(x2)Mn2
i2

(x2) dx2

− κ sin θ
∫ x

(1)
k+1

x
(1)
k

(
Nn1

j1
(x1)

)′′
Nn1

i1
(x1) dx1

∫ x
(2)
l+1

x
(2)
l

Mn2
j2

(x2)
(
Mn2

i2
(x2)

)′
dx2

and

r2 =−
∫

Ekl

κNn1
j1

(x1)
(
Mn2

j2
(x2)

)′′ ((cos θ)
(
Nn1

i1
(x1)

)′
Mn2

i2
(x2) + (sin θ)Nn1

i1
(x1)

(
Mn2

i2
(x2)

)′)
dx

=− κ cos θ
∫ x

(1)
k+1

x
(1)
k

Nn1
j1

(x1)
(
Nn1

i1
(x1)

)′
dx1

∫ x
(2)
l+1

x
(2)
l

(
Mn2

j2
(x2)

)′′
Mn2

i2
(x2) dx2

− κ sin θ
∫ x

(1)
k+1

x
(1)
k

Nn1
j1

(x1)Nn1
i1

(x1) dx1

∫ x
(2)
l+1

x
(2)
l

(
Mn2

j2
(x2)

)′′ (
Mn2

i2
(x2)

)′
dx2 .

For the second stabilization term

〈a · ∇v, a · ∇u〉Ekl
= r3

21

we find

r3 =
∫

Ekl

(
(cos θ)

(
Nn1

j1
(x1)

)′
Mn2

j2
(x2) + (sin θ)Nn1

j1
(x1)

(
Mn2

j2
(x2)

)′) · . . .
. . . ·

(
(cos θ)

(
Nn1

i1
(x1)

)′
Mn2

i2
(x2) + (sin θ)Nn1

i1
(x1)

(
Mn2

i2
(x2)

)′)
dx

=(cos θ)2
∫ x

(1)
k+1

x
(1)
k

(
Nn1

j1
(x1)

)′ (
Nn1

i1
(x1)

)′
dx1

∫ x
(2)
l+1

x
(2)
l

Mn2
j2

(x2)Mn2
i2

(x2) dx2

+ sin θ cos θ
∫ x

(1)
k+1

x
(1)
k

(
Nn1

j1
(x1)

)′
Nn1

i1
(x1) dx1

∫ x
(2)
l+1

x
(2)
l

Mn2
j2

(x2)
(
Mn2

i2
(x2)

)′
dx2

+ sin θ cos θ
∫ x

(1)
k+1

x
(1)
k

Nn1
j1

(x1)
(
Nn1

i1
(x1)

)′
dx1

∫ x
(2)
l+1

x
(2)
l

(
Mn2

j2
(x2)

)′
Mn2

i2
(x2) dx2

+ (sin θ)2
∫ x

(1)
k+1

x
(1)
k

Nn1
j1

(x1)Nn1
i1

(x1) dx1

∫ x
(2)
l+1

x
(2)
l

(
Mn2

j2
(x2)

)′ (
Mn2

i2
(x2)

)′
dx2 .

For the streamline diffusion method the article [HCB05] proposes to choose

δk =
ha

2|a| with ha =
h

max{cos θ, sin θ} .

Here h is the mesh width, θ the angle which appears in the convection term a. If we choose uniform
spacing in both spatial dimensions with L1 = L2 = 20 intervals we find h = 1

L1
= 1

L2
= 1

20 . In the
cases θ = π

4 resp. θ = arctan(2) the stabilization terms are

δk =
1

20 · sin (π
4

) · 2 =
1

20 · √2
≈ 0.035355 resp. δk =

1
20 · sin(arctan(2)) · 2 ≈ 0.02795.

In Figures 7 to 16 numerical solutions of the model problem from [HCB05] are visualized. For
comparison we always give a 21 × 21 plot with linear interpolation, too. Table 3 shows the
computing times for different dimensions n of the B-splines.

n Running time [seconds]
Test 1 Test 2

1 21.33 20.95
2 112.15 100.65
3 313.04 313.03
4 794.15 729.38
8 7830.86 7921.55

Table 3: Running time on Intel(R) Pentium(R) 4 CPU 3.06GHz with 768 MB RAM

6 Model Problem with Variable Convection

In this section the more complex model problem from [Ang95] with variable convection is solved
using isogeometric analysis. Given the domain Ω = (0, 1)2 ⊂ R2. The problem is

−∇ · (K(x)∇u) + a(x) · ∇u(x) + r(x)u = f for x ∈ Ω

with
K : Ω→ R2×2, a : Ω→ R2, r, f : Ω→ R.

22

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 7: θ = π
4 , n = 1

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 8: θ = π
4 , n = 2

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 9: θ = π
4 , n = 3

23

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 10: θ = π
4 , n = 4

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 11: θ = π
4 , n = 8

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 12: θ = arctan 2, n = 1

24

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 13: θ = arctan 2, n = 2

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 14: θ = arctan 2, n = 3

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 15: θ = arctan 2, n = 4

25

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

xy

Figure 16: θ = arctan 2, n = 8

For κ > 0 and x = (x1, x2)T ∈ R2 we define

κ(x) =
(
κ 0
0 κ

)
, a(x) =

(
c1x1 + c2x2 + c3
d1x1 + d2x2 + d3

)
, r ≡ 0 and f ≡ 0.

In the model we set

c1 = 9.975, c2 = −19.22, c3 = 9.61, d1 = 6.41, d2 = −9.975, d3 = 4.9875.

The boundary conditions are given by the function g(x) with

g(x1, x2) = 1 for x1 = 0, x2 ∈ [
1
4
,

9
20

] and g(x1, x2) = 0 otherwise.

The solution needs the same steps as in Section 5. Only two adaptions are necessary. Of course,
the boundary condition has to be changed. Furthermore, the integrals of the convection terms
have to be re-computed.

In Figures 17 to 24 numerical solutions are visualized. The stabilization parameter is only
roughly estimated. In this paper it is only revealed whether isogeometric analysis is suitable to
solve such problems. In the examples is n1 = n2 and L1 = L2. It is obvious that the boundary
condition blurs when using higher dimensional B-splines.

In Figure 17 we show a test computation without stabilization with κ = 10−2. All the other
tests include the stabilization terms. In Figures 18 and 19 the cases κ = 10−3 and κ = 10−6 can
be compared.

In the subsequent tests we choose n1 = 1, L1 = 20, κ = 10−6 and different stabilization
parameters δk = 0.02 (Figure 19), δk = 0.01 (Figure 20), δk = 0.005 (Figure 21).

For n1 = 2 we used L1 = 50 intervals, we visualize the two cases δk = 0.02 (Figure 22) and
δk = 0.01 (Figure 23).

Concluding, we treat a high-dimensional example n1 = 8 in Figure 24.

7 Concluding Remarks

Isogeometric analysis can be used to solve convection dominated convection-diffusion problems.
The numerical solution of the problem presented in Section 5 is of good quality. On the other
hand, the more challenging problem in Section 6 shows the limits of the method.

26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 17: n1 = n2 = 3, L1 = L2 = 50, κ = 10−2, no stabilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 18: n1 = n2 = 1, L1 = L2 = 20, κ = 10−3, δk = 0.02

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 19: n1 = n2 = 1, L1 = L2 = 20, κ = 10−6, δk = 0.02

27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 20: n1 = n2 = 1, L1 = L2 = 20, κ = 10−6, δk = 0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 21: n1 = n2 = 1, L1 = L2 = 20, κ = 10−6, δk = 0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 22: n1 = n2 = 2, L1 = L2 = 50, κ = 10−6, δk = 0.02

28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 23: n1 = n2 = 2, L1 = L2 = 50, κ = 10−6, δk = 0.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 24: n1 = n2 = 8, L1 = L2 = 20, κ = 10−6, δk = 0.01

29

References

[Ang] Lutz Angermann. Numerische Mathematik I, Vorlesungsskriptum, Institut für Ma-
thematik, Technische Universität Clausthal, 2005.

[Ang95] Lutz Angermann. Error estimates for the finite-element solution of an elliptic sin-
gularly perturbed problem. IMA J. Numer. Anal., 15(2):161–196, 1995.

[BBdVC+06] Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli.
Isogeometric analysis: approximation, stability and error estimates for h-refined
meshes. Math. Models Methods Appl. Sci., 16(7):1031–1090, 2006.

[Che05] Zhangxin Chen. Finite Element Methods and Their Applications. Springer Verlag,
Berlin, Heidelberg, New York, 2005.

[dB08] Carl de Boor. Matlab Spline Toolbox (TM) 3 User’s Guide. The MathWorks, Octo-
ber 2008.

[Far97] Gerald Farin. Curves and Surfaces for Computer-Aided Geometric Design: A Prac-
tical Guide. Academic Press, San Diego, London, 4th edition, 1997.

[FHK02] Gerald Farin, Josef Hoschek, and Myung-Soo Kim. Handbook of Computer Aided
Geometric Design. Elsevier Science, Amsterdam, 2002.

[HCB05] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.
Mech. Engrg., 194(39-41):4135–4195, 2005.

[KA03] Peter Knabner and Lutz Angermann. Numerical Methods for Elliptic and Parabolic
Partial Differential Equations. Springer Verlag, New York, 2003.

[MS] J. M. Melenk and C. Schwab. The hp streamline diffusion finite element method for
convection dominated problems in one space dimension. Research Report No. 98 10
(October 1998), Seminar für Angewandte Mathematik, Eidgenössische Technische
Hochschule, Zürich.

[SS96] Christoph Schwab and Manil Suri. The p and hp versions of the finite element
method for problems with boundary layers. Math. Comp., 65(216):1403–1429, 1996.

[Wah91] Lars B. Wahlbin. Local behavior in finite element methods. In Handbook of nu-
merical analysis, Vol. II, Handb. Numer. Anal., II, pages 353–522. North-Holland,
Amsterdam, 1991.

30

