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METAPLECTIC OPERATORS FOR FINITE ABELIAN GROUPS AND Rd

NORBERT KAIBLINGER1,∗ AND MARKUS NEUHAUSER2

Abstract. The Segal–Shale–Weil representation associates to a symplectic transformation
of the Heisenberg group an intertwining operator, called metaplectic operator. We develop
an explicit construction of metaplectic operators for the Heisenberg group H(G) of a finite
abelian group G, an important setting in finite time-frequency analysis. Our approach also
yields a simple construction for the multivariate Euclidean case G = Rd.

Introduction

Denote by Zn = Z/nZ the cyclic group of order n ≥ 2. Let G be a finite abelian group,
given in generic form

G = Zn1 × · · · × Znd
, where n1 | n2 | · · · | nd .

Finite abelian groups are self-dual, that is, G is isomorphic to its dual group Ĝ consisting of
the homomorphisms into the circle group T = {τ ∈ C : |τ | = 1}. Specifically, we identify a

character χ ∈ Ĝ with an element m ∈ G by writing χ : k 7→ 〈m, k〉 in terms of the bicharacter

〈m, k〉 = exp(2πi ·m>N−1k) , k,m ∈ G,
where

N = diag(n1, . . . , nd).

Given λ ∈ G2, the time-frequency shift operator π(λ) is defined for a complex-valued
function v on G, that is for an n1 × · · · × nd hypermatrix v, by

π(λ) v(k) = 〈m, k〉 v(k − l), λ = (l,m) ∈ G2.

The Heisenberg group H(G) is the group of operators

H(G) := {τ π(λ) : λ ∈ G2, τ ∈ T},
where T = {τ ∈ C : |τ | = 1} is the circle group.
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Weil’s celebrated theory of the metaplectic representation [33] is concerned with a class
of automorphisms of the Heisenberg group H(G) for an arbitrary self-dual locally compact
abelian group G, see [5]. Especially it contains generalizations of fundamental results that
are initially formulated for the case G = Rd, such as the Stone–von Neumann theorem [30].
One of the key results of Weil’s theory is the existence of metaplectic operators and applied
to the case of the finite abelian group G it is outlined as follows.

By Md,d(Z) denote the set of d × d matrices with coefficients in Z. We describe the
endomorphisms of G by equivalence classes of integer matrices. A representative [A] = (ar,s)
of A must satisfy the condition that

nr

ns

divides ar,s if s < r, r, s = 1, . . . , d,

and the entries of any other representative (a′r,s) for A satisfy

a′r,s = ar,s mod nr, r, s = 1, . . . , d.

The endomorphism ring structure is thus given by the usual matrix operations. This de-
scription of End(G) is standard when G is of prime power order [21]. Our approach does
not a priori split G into p-groups, with the advantage that the operators used in the main
result need not be factorized.

For A ∈ End(G) with representative [A] ∈Md,d(Z), the matrix

[A]∗ = N [A]>N−1

belongs to Md,d(Z) and it is a representative for the adjoint A∗ ∈ End(G), so that indeed

〈m,Ak〉 = exp(2πi ·m>N−1Ak)

= exp
(
2πi · (NA>N−1m)>N−1 k

)
= 〈A∗m, k〉, k,m ∈ G.

Notice that the latter formula does not depend on the choice of the representative [A] and
in such a situation we usually do not distinguish between A ∈ End(G) and a specific repre-
sentative [A] ∈Md,d(Z).

Let S be an element of the symplectic group Sp(G) described by 2d×2d matrices in block
form

S =

(
A B
C D

)
, A,B,C,D ∈ End(G),

such that A∗C = C∗A, B∗D = D∗B, and A∗D − C∗B = I, with I ∈ End(G) the identity,
for which the d× d identity matrix is a representative. For our approach it is preferable to
use the equivalent conditions

AB∗ = BA∗, CD∗ = DC∗, and AD∗ −BC∗ = I,

that follow since S ∈ Sp(G) implies that S is invertible with S−1 =
(

D∗ −B∗
−C∗ A∗

) ∈ Sp(G).
Then the fundamental result mentioned above reads that there exists a unitary operator U
on Cn1···nd , called a metaplectic operator for S, such that

Uπ(λ)U−1 = ψ(λ)π(Sλ), λ ∈ G2,(1)

with some scalar function ψ : G2 → T.
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We describe an explicit construction of metaplectic operators for the case of finite abelian
groups G. The finite setting is important in time-frequency analysis [7, 14, 24, 31], particu-
larly for the finite approximation of multivariate Gabor frames [23].

The literature on metaplectic operators in this setting is rich, we mention [1, 2, 4, 8, 11, 13,
19, 20, 25, 27] and the extensive list of references in [32]. On the other hand, the previously
known constructions of metaplectic operators in a finite setting are formulated with various
restrictions. Typical limitations are the focus on finite fields or strong conditions on S, such
as one of its blocks being invertible. Such a restriction on S covers the general case only
indirectly, for example by a counting argument in [27], formulated for the finite field setting.
A general construction for metaplectic operators for finite cyclic groups is obtained in [13].
The present results cover the case of arbitrary finite abelian groups and we do not impose
any restriction on S. Our approach to the finite case also implies a simple construction for
the multivariate continuous-time case G = Rd, discussed in a separate section.

The main theorem is stated in Section 1 and proved in Section 3, based on preliminary
results which can be found in Section 2. The construction for the continuous-time case
G = Rd is presented in Section 4.

1. Main result

We use the following unitary operators acting on n1 × · · · × nd hypermatrices v ∈ Cn1···nd ,
viewed as functions on G. By Aut(G) ⊂ End(G) denote the group of automorphisms of G.

Let A ∈ Aut(G) and C ∈ End(G) with C = C∗, given in the form of an integer matrix
representative [C] ∈ Md,d(Z) satisfying [C] = N [C]>N−1. Define the Fourier transform F ,
the dilation LA, and the multiplication operator R[C] by

• Fv(k) =
1√

detN

∑
m∈G

exp(−2πi · k>N−1m)︸ ︷︷ ︸
〈k,m〉

v(m), k ∈ G,

• LAv(k) = v(A−1 k), k ∈ G,

• R[C]v(k) = ψ[C](k) v(k), k ∈ G,
where the function ψ[C] on G is defined by

ψ[C](k) = exp
(
πi · k>(I +N−1) [C] (I +N) k

)
, k ∈ G.

We remark that the careful definition of ψ[C] is one of the crucial steps of our approach, it
is shown in Lemma 2 below that ψ[C] is a second degree character for C. Second degree
characters are a fundamental notion in Weil’s theory of the metaplectic representation [33],
we refer to [29]; see also [13]. It is important to note that the seemingly more natural
assignment f(k) = exp(πi · k>N−1 [C] k) does not work, cf. [6, 13]; while f may not be
well defined on G, we will show that ψ[C](k) = f

(
(I + N)k

)
works. We also note that

the general construction of second degree characters in [3, p. 308] or [29, p. 37], based on
Mackey’s technique of induced representation, does not directly yield explicit formulas.
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The next theorem is our main result and it describes the explicit construction of meta-
plectic operators U for general finite abelian groups. Denote by R(A) the image of a given
homomorphism A.

Theorem 1. Let G = Zn1 ×· · ·×Znd
such that n1 | n2 | · · · | nd and let S = ( A B

C D ) ∈ Sp(G).
For each prime p dividing the group order |G|, define Θ(p) ∈Md,d(Z) by the following steps.
First, split N into blocks determined by distinct maximal powers of p dividing the diagonal
elements,

N = diag(n1, . . . , nd) = diag(pα1Q1, . . . , p
αuQu︸ ︷︷ ︸

u≤d blocks

), α1 < α2 < · · · < αu,

such that each Qj is diagonal and invertible modulo p. Then the matrix (A mod p) ∈Md,d(Zp)
is block triangular of the form

(A mod p) =


A1

A2
∗

0
. . .

Au

,
such that Aj has the same size as Qj, for j = 1, . . . , u. Next, for each diagonal block Aj,
denote by σj a set of indices such that the respective columns of Aj form a basis for R(Aj).
Denote by Θj the diagonal matrix of the same size as Aj whose diagonal is 0 at the positions
indexed by σj and 1 otherwise. Finally, let

Θ(p) = diag
(
Θ1, . . . ,Θu

)
.

With Θ(p) obtained in this way for each prime p dividing |G|, define Θ ∈ End(G) diagonal
by

Θ =
∑

p prime,
p|ν

ν

p
Θ(p),

where ν denotes the product of all primes p dividing |G|. Let A0 = A+BΘ and C0 = C+DΘ.
Then A0 is invertible and the operator U = US given by

U := R[C0 A−1
0 ] · LA0 ·F−1 ·R[−A−1

0 B] ·F ·R[−Θ]

is unitary and satisfies (1), for λ ∈ G2 and some scalar function ψ : G2 → T.

Remark 1. (i) If in an actual computation some block triangular structure of (A mod p) is
observed that is finer than the one described in the theorem, it can be used as well. By
contrast, a coarser block triangular strucure may not be used, as shown by the following
example. Let G = Zp × Zp2 , for some prime p, and let S =

(
A I
−I 0

)
with A =

(
0 1
p 0

)
. Notice

that A∗ = NA>N−1 = A and hence S ∈ Sp(G). Writing (A mod p) = ( 0 1
0 0 ) =

(
A1 1
0 A2

)
we

correctly obtain σ1 = σ2 = ∅ and Θ = Θ(p) = I, indeed A0 = A+ BΘ =
(

1 1
p 1

)
is invertible.

On the other hand, incorrectly viewing (A mod p) as one single block A1 yields σ1 = {2}
and thus Θ = Θ(p) = ( 1 0

0 0 ), which does not work, since A+BΘ =
(

1 1
p 0

)
is not invertible.

(ii) The scalar function ψ in the intertwining identity (1) depends on the particular choice
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of the metaplectic operator U . It is always a second degree character on G2, see [29, 33] for
the details. In this paper we frequently make use of the second degree character ψ[C] on G,
notice that in contrast ψ is a function on G2.

(iii) The construction of Θ in terms of the matrices Θ(p) is an application of the Chinese
remainder theorem so to obtain (Θ mod p) = (ν/p) Θ(p). Aiming at the plain relations
(Θ mod p) = Θ(p) works as well yet our approach is favorable since the formula for Θ
is especially simple. Generally, the theorem also works for other choices of Θ such as Θ
multiplied by an any Σ ∈ Aut(G) in diagonal form.

(iv) We remark that our results also relate to finite Heisenberg groups. Indeed, while H(G) is
infinite, with finite time-frequency plane G2, it is a central extension of the finite Heisenberg
group H0(G) generated by the time-frequency shifts π(λ), λ ∈ G2,

H0(G) = {τ π(λ) : λ ∈ G2, τ ∈ Tn},
where n = nd and Tn ⊂ T consists of the nth roots of unity.

Specifically for n1 = · · · = nd = p prime, where G = Zd
p is a homocyclic p-group, the finite

Heisenberg group H0(Zd
p) identifies with the extraspecial group p1+2d

+ of order p1+2d and plus
type, with the notation of [9, Sec. 5.2]. Theorem 1 thus relates to the automorphisms of a
class of extraspecial groups, whose structure is analyzed in [34]. See also [17].

2. Preliminary results

For a self-contained presentation of the material, we recall the general decomposition
paradigm for metaplectic operators.

Lemma 1. If U = U1 and U = U2 satisfy (1) for S = S1 and S = S2, respectively, then
U = U1U2 satisfies (1) for S = S1S2.

Proof. We have U1U2π(λ)U−1
2 U−1

1 = ψ2(λ)U1π(S2λ)U−1
1 = ψ1(S2λ)ψ2(λ)︸ ︷︷ ︸

=: ψ(λ)

π(S1S2λ). �

The preparatory material is based on suitable generalizations of the technical steps devel-
oped for cyclic groups in [13]. As a key step we verify that ψ[C] is well-defined and that it is
indeed a second degree character for C ∈ End(G).

Lemma 2. Let C ∈ End(G) with C = C∗ be given in the form of an integer matrix repre-
sentative [C] ∈Md,d(Z) satisfying [C] = N [C]>N−1.

(i) ψ[C] is well-defined on G, that is, the function does not depend on the choice of the multi-
integer representative for the argument k ∈ G.

(ii) ψ[C] is a second degree character for C, that is, it satisfies the identity

ψ[C](k + k′) = ψ[C](k)ψ[C](k
′) 〈k, Ck′〉, k, k′ ∈ G.

Proof. First we notice that (I +N−1)[C](I +N) is symmetric since N−1[C] = [C]>N−1.

(i) Let k ∈ G be given in the form of some representative [k] ∈ Zd. Then any other
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representative of k is of the form [k] + Nz, for some z ∈ Zd, and we need to verify that
ψ[C]([k] +Nz) = ψ[C]([k]). Indeed we have

ψ[C]([k] +Nz)

= exp
(
πi · ([k] +Nz)>(I +N−1) [C] (I +N) ([k] +Nz)

)
= exp

(
πi · [k]>(I +N−1) [C] (I +N) [k]

)︸ ︷︷ ︸
= ψ[C]([k])

· exp
(
πi · z>(N + I) [C]

even entries︷ ︸︸ ︷
(I +N)N z

)︸ ︷︷ ︸
= 1

·

× exp
(
2πi · z>(N + I) [C] (I +N) [k]

)︸ ︷︷ ︸
= 1

= ψ[C]([k]) .

(ii) For k, k′ ∈ G, we have

ψ[C](k + k′)

= exp
(
πi · (k + k′)> (I +N−1) [C] (I +N) (k + k′)

)
= exp

(
πi · k> (I +N−1) [C] (I +N) k

)︸ ︷︷ ︸
= ψ[C](k)

· exp
(
πi · k′> (I +N−1) [C] (I +N) k′

)︸ ︷︷ ︸
= ψ[C](k

′)

·

× exp
(
2πi · k> (I +N−1) [C] (I +N) k′

)
= ψ[C](k)ψ[C](k

′) exp
(
2πi · k>N−1[C]k′

)︸ ︷︷ ︸
= 〈k, Ck′〉

· exp
(
2πi · k>(

integer entries︷ ︸︸ ︷
[C] +N−1[C]N + [C]N) k′

)︸ ︷︷ ︸
= 1

= ψ[C](k)ψ[C](k
′) 〈k, Ck′〉,

where we recall that 〈k, [C]k′〉 = 〈k, Ck′〉 does not depend on the choice of a representative [C]
for C. �

Remark 2. (i) If nd is odd, then all nj are odd and ψ[C] is uniquely determined by C,
independent on the choice of the representative [C].

(ii) If n1 is even, then all nj are even and there are 2d possible vectors ψ[C], depending on
the choice of [C]. Two such vectors ψ[C]1 6= ψ[C]2 differ by some modulation of the form of a
multiplication with ±1 entries.

Lemma 3. Let A ∈ Aut(G) and C ∈ End(G) with C = C∗, given in the form of an integer
matrix representative [C] ∈ Md,d(Z) satisfying [C] = N [C]>N−1. The operators U1 = F ,
U2 = LA, and U3 = R[C] satisfy (1) for

S1 =

(
0 I
−I 0

)
, S2 =

(
A 0
0 (A∗)−1

)
, and S3 =

(
I 0
C I

)
,
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respectively. More precisely, we have

F π(l,m) F−1 = exp(2πi ·m>N−1l)︸ ︷︷ ︸
〈m, l〉

π(m,−l), l,m ∈ G,(i)

LA π(l,m)L−1
A = π

(
Al, (A∗)−1m

)
, l,m ∈ G,(ii)

R[C] π(l,m)R−1
[C] = exp

(− πi · l>(I +N−1) [C] (I +N) l
)︸ ︷︷ ︸

ψ[C](l)

π(l, Cl +m), l,m ∈ G.(iii)

Proof. (i) Use elementary properties of the Fourier transform, first Fπ(0,m) = π(m, 0)F ,
secondly FFv(k) = v(−k), and note that π(l,m)π(−l,−m) = 〈m, l〉.
(ii) Notice that LAπ(l, 0) = π(Al, 0)LA and π(0,m)LA = LAπ(0, A∗m), indeed

π(0,m)LA v(k) = 〈m, k〉 v(A−1k)

= 〈A∗m,A−1k〉 v(A−1k)

= LA π(0, A∗m) v(k) .

(iii) Observe that R[C]π(0,m) = π(0,m)R[C] and R[C]π(l, 0) = ψ[C](l)π(l, Cl)R[C], indeed

R[C] π(l, 0) v(k) = ψ[C](k) v(k − l)

= ψ[C]

(
l + (k − l)

)
v(k − l)

= ψ[C](l)ψ[C](k − l) 〈l, C(k − l)〉 v(k − l)

= ψ[C](l) 〈Cl, k − l〉ψ[C](k − l) v(k − l)

= ψ[C](l)π(l, Cl)R[C]v(k),

as follows from Lemma 2(ii) and the fact that ψ[C](l) 〈Cl,−l〉 = ψ[C](l). �

3. Proof of Theorem 1

We prepare the matrix block structure used in Theorem 1.

Lemma 4. Given a prime p dividing |G|, split N = diag(n1, . . . , nd). into blocks

N = diag(pα1Q1, . . . , p
αuQu), α1 < α2 < · · · < αu,

with u ≤ d, such that each Qj is invertible modulo p.

(i) For A ∈ End(G), the matrix (A mod p) has a block triangular form

(A mod p) =


A1

A2
∗

0
. . .

Au

,
such that Aj has the same size as Qj, for j = 1, . . . , u.
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(ii) (A mod p) is invertible if and only if all diagonal blocks Aj are invertible.

(iii) The matrix (A∗ mod p) has a corresponding block triangular structure, with diagonal
blocks determined as follows,

(A∗ mod p) =


Q1A

>
1 Q

−1
1

Q2A
>
2 Q

−1
2

∗
0

. . .

QuA
>
uQ

−1
u


modulo p, where Q−1

j is the inverse of Qj modulo p.

(iv) If AB∗ = BA∗ and AD∗ − BC∗ = I, then the respective diagonal blocks of (A mod
p), (B mod p), (C mod p), and (D mod p) satisfy AjQjB

>
j = BjQjA

>
j and AjQjD

>
j −

BjQjC
>
j = Qj, for j = 1, . . . , u.

Proof. (i) Write A = (ar,s). Suppose s < r. If the greatest power of p dividing nr coincides
with the greatest power of p dividing ns, then the indices r and s designate the same diagonal
block. Otherwise we have that p divides nr/ns and thus ar,s mod p = 0, which yields the
zero blocks.

(ii) The reduction to the diagonal blocks follows from the block triangular form observed
in (i).

(iii) Since A∗ ∈ End(G) the observation in (i) also applies to A∗. Next, the diagonal blocks
of (A∗ mod p) correspond to those parts of A∗ = NA>N−1 where the following cancellation
of powers of p is in effect, (A∗)j = (NA>N−1)j = QjA

>
j Q

−1
j .

(iv) Notice that both (A mod p) and (B∗ mod p) have the same block triangular structure
and thus

(AB∗ mod p) = (A mod p)(B∗ mod p)

=


A1Q1B

>
1 Q

−1
1

A2Q2B
>
2 Q

−1
2

∗
0

. . .

AuQuB
>
u Q

−1
u


modulo p, which verifies the first claim, and the second claim follows similarly. �

The next lemma is the final preparation for the proof of Theorem 1. Given A, B ∈Md,d(Zp)
such that R(A)+R(B) = Zd

p there always exists Θ ∈Md,d(Zp) such that A+BΘ is invertible.

The lemma is a specific construction with Θ diagonal, that works if AB> is symmetric.

Lemma 5. Given A ∈ Md,d(Zp), define σ ⊆ {1, . . . , d} such that the jth columns of A with
j ∈ σ form a basis for R(A). Let Φ ∈Md,d(Zp) be a diagonal matrix whose diagonal consists
of zeros at σ and invertible elements at the complementary set of indices {σ = {1, . . . , d}\σ.
Then for any B ∈ Md,d(Zp) such that R(A) + R(B) = Zd

p and AB> = BA>, we have that
the matrix A0 := A+BΦ is invertible.
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Proof. For a d × d matrix A, and an index set σ ⊆ {1, . . . , d}, let Aσ denote the d × |σ|
matrix formed of those columns of A indexed by σ.

Since σ and {σ are complementary index sets, we have

(2) BA> = BσA
>
σ +B{σA

>
{σ.

Since Aσ is injective, A>
σ is surjective and thus

(3) R(Bσ) = R(BσA
>
σ ).

From (2), (3), and the condition AB> = BA> we obtain the inclusion

R(Bσ) = R(BσA
>
σ ) = R(BA> −B{σA

>
{σ)

⊆ R(BA>) + R(B{σA
>
{σ)

⊆ R(AB>) + R(B{σA
>
{σ)

⊆ R(A) + R(B{σ)

(4)

Since the columns of Aσ are a basis for R(A) we have

(5) R(A{σ) ⊆ R(A) = R(Aσ).

Noticing that R(B{σ) = R((BΦ){σ) and making use of (4) and (5) we observe that

R(A) + R(B) = R(A) + R(Bσ) + R(B{σ)

⊆ R(A) + R(B{σ)

= R(A) + R
(
(BΦ){σ

)
= R(A) + R

(
A{σ + (BΦ){σ

)
= R(Aσ) + R

(
A{σ + (BΦ){σ

)
= R(A+BΦ).

Hence, A+BΦ is surjective and thus it is invertible. �

Proof of Theorem 1. Since S is symplectic we have by Lemma 4(iv) that the corresponding
diagonal blocks of (A mod p), (B mod p), (C mod p), and (D mod p) satisfy

AjQjB
>
j = BjQjA

>
j , and

AjQjD
>
j −BjQjC

>
j = Qj,

for j = 1, . . . , u.

Since the latter of these identities implies R(Aj)+R(BjQj) is maximal, the assumptions of
Lemma 5 are verified with A given by Aj, with B given by BjQj, and with

Φ =
ν

p
Q−1

j Θj.

Note that the number ν/p is invertible modulo p and the matrix Qj is invertible modulo p
with inverse Q−1

j . Therefore, by Lemma 5, Aj + Bj(
ν
p
Θj) is invertible, for any j = 1, . . . , u.
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By Lemma 4(ii) we obtain that (A mod p) + (B mod p)(ν
p
Θ(p)) is invertible. For each prime

p dividing |G|, we have

A0 mod p = (A+BΘ) mod p = (A mod p) + (B mod p) (ν
p
Θ(p)),

whence (A0 mod p) is invertible in Md,d(Zp). By deducing in this way the invertibility of
(A0 mod p) in Md,d(Zp), for all prime factors p of |G|, we conclude that A0 is invertible in
End(G).

Next, since A = A0 −BΘ and C = C0 −DΘ we have

(6)

(
A B
C D

)
=

(
A0 B
C0 D

) (
I 0
−Θ I

)
.

Since Θ is symmetric, the second factor of the given matrix product is symplectic. Since
S ∈ Sp(G), it implies also that the first factor of the product is symplectic. Since we have
verified that A0 is invertible, we thus can make use of the Weil decomposition of a symplectic
matrix with invertible upper left block,

(7)

(
A0 B
C0 D

)
=

(
I 0

C0A
−1
0 I

) (
A0 0
0 (A∗

0)
−1

) (
0 −I
I 0

) (
I 0

−A−1
0 B I

) (
0 I
−I 0

)
.

Combining (6) and (7) and making use of Lemma 1 and Lemma 3 implies the desired
intertwining identity (1). �

4. The continuous case

Our approach also implies a simple explicit formula for the multivariate continuous-time
case G = Rd. The continuous-time theory is described in detail in [15] and it is of in-
creasing interest for example in time-frequency analysis, symplectic geometry, and (pseu-
do-)differential operators, we mention [10, 12, 16, 18]. An explicit formula for metaplectic
operators without splitting into simple operators is given in [26], see also [28]. A construction
by splitting into simple operators can be obtained by [15, Chapter 4] in conjunction with [22,
Section I.6]. Here we obtain a simple, direct construction.

Given λ ∈ R2d, the time-frequency shift operator π(λ) is defined by

π(λ)f(t) = exp(2πi · ω>t) f(t− x), λ = (x, ω) ∈ R2d, t ∈ Rd .

Let A ∈ Md,d(R) invertible and let C ∈ Md,d(R) such that C = C>. The Fourier transform
F , the dilation operator LA, and a suitable second degree character multiplication RC are
defined for Schwartz functions on Rd by

• Ff(t) =

∫
Rd

exp(−2πi · t>η) f(η) dη, t ∈ Rd,

• LAf(t) = |detA|−1/2f(A−1t), t ∈ Rd,

• RCf(t) = exp(πi · t>Ct) f(t), t ∈ Rd,
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respectively, and they satisfy (see [15], with a slightly different notation)

F π(x, ω)F−1 = exp(2πi · ω>x)π(ω,−x), x, ω ∈ Rd,(i)

LA π(x, ω)L−1
A = π

(
Ax, (A>)−1ω

)
, x, ω ∈ Rd,(ii)

RC π(x, ω)R−1
C = exp(−πi · x>C x)π(x,Cx+ ω), x, ω ∈ Rd.(iii)

The symplectic group Sp(Rd) consists of the real 2d× 2d matrices in block form

S =

(
A B
C D

)
, A,B,C,D ∈Md,d(R),

such that A>C = C>A, B>D = D>B, and A>D − C>B = I, with I the d × d identity
matrix. We obtain the following construction of metaplectic operators for the continuous
case. The result follows from the analogy to the special case G = Zd

p of the finite abelian
group setting discussed in this paper.

Theorem 2. Let S = ( A B
C D ) ∈ Sp(Rd). Define σ ⊆ {1, . . . , d} such that the columns of

A indexed by σ form a basis for R(A). Denote by Θ ∈ Md,d(Z) the diagonal matrix whose
diagonal is 0 at σ and 1 at the complementary set of indices {σ = {1, . . . , d} \ σ. Let
A0 = A+BΘ and C0 = C +DΘ. Then A0 is invertible and the operator U = US defined by

U := RC0 A−1
0
· LA0 · F−1 · R−A−1

0 B · F · R−Θ .

is unitary and satisfies

Uπ(λ)U−1 = ψ(λ)π(Sλ), λ ∈ R2d,

with some scalar function ψ : R2d → T.
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[18] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
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