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Chapter 1

Introduction

Online Routing and Scheduling

The success of each enterprise depends fundamentally on how efficiently the

own operating facilities are used. That applies to a factory, in which cars are

produced, exactly the same way as to a hotel chain or a shipping company.

The production processes in the factory must be arranged in such a way that

they are as economical as possible. Additionally, a multitude of dependencies

between the single processes have to be taken into account. Also deadlines and

limited capacities play a role. The same applies to the shipping company. Here,

the planner must employ his truck fleet in a way, that the profit earned is as

high as possible. Apart from the deadlines that have to be met and the distances

which have to be driven there are a lot of further important restrictions. Even

the owner of some cottages wants to operate his “facilities” at full capacity, and

must provide a strategy which helps him to achieve this goal.

Plenty of problems, which focus on the optimal assignment of activities to

scarce resources over time, can be tackled with techniques from Scheduling

theory. This theory deals with the optimal assignment of jobs to machines. In

doing so, there is a multitude of restrictions which can be taken into account.

Jobs might have to wait for the completion of others, they might be allowed

to be interrupted and continued later on. A job’s processing time can depend

on the machine it is processed on, and jobs can have deadlines, which mark

the final time when they are allowed to be finished. Furthermore, “optimality”

can be defined in different ways. One could possibly ask to minimize the com-

pletion time of the last job (the makespan) or the maximum amount of jobs to

be finished on time. There is a huge variety of possibilities how a scheduling

problem might look like, and researchers examined many of them. They found
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efficient algorithms for some of them and showed that others are unlikely to

be solvable in reasonable time.

In classical scheduling the planner knows the complete problem. He knows

all jobs and all machines, with all their properties and requirements. In prac-

tice, however, decisions often have to be made without knowing all these cir-

cumstances. For example, consider the owner of some cottages, who is asked

to rent one of the cottages for a specific time to a customer. As he does not

know, what offers are coming up in the future, he has to decide with incom-

plete knowledge about this request.

Problems of this kind, where decisions have to be made without complete

knowledge of the input data, are called online problems. In this thesis, we

examine some online scheduling and vehicle routing problems. We develop

algorithms for them, estimate their quality and make statements how good

algorithms of that kind can be.

Outline and Main Results

This section is intended to give an overview of this thesis and to provide an

outline of how the material is organized. In Chapter 2, we start with some basic

terminology used throughout this thesis and provide a formal introduction to

Online Optimization.

We start our analysis in Chapter 3, in which we consider the problem of

scheduling a maximum profit selection of jobs on m identical machines. Jobs

arrive online one by one and each job is specified by its start and end time. The

goal is to determine a non-preemptive schedule which maximizes the profit of

the scheduled jobs, where the profit of a job is equal to its length. Upon arrival

of a new job, an online algorithm must decide whether to accept the job or

not. If the job is accepted, the online algorithm must be able to reorganize its

already existing schedule such that the new job can be processed together with

all previously admitted jobs, however, the algorithm need not specify on which

machine the job will eventually be run. We provide competitive algorithms

and lower bounds on the competitive ratio for deterministic and randomized

algorithms against an oblivious adversary. Our lower bound results essentially

match (up to small constants factors) the competitive ratios achieved by our

algorithms. As the greedy algorithm showed to have the best empirical perfor-

mance, we analyzed its worst case behavior and calculated lower bounds on its

average case competitivity.
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In Chapter 4 we are given m identical machines which are available for a

planning horizon from [0, T ] and a set of n orders J = {j1, . . . , jn}. Each order ji
is characterized by its release time ri ∈ [0, T ], its processing time bi ≥ 0, the

time slack δi ≥ 0, and the profit pi ≥ 0 which is obtained, if the order is

accepted and produced. The time slack δi indicates the latest time ri + δi at

which ji can be started such that it is done until its deadline ri + bi + δi when

the product must be manufactured.

In Chapter 5 one is given a finite ground set F of different types of items. The

items can be ordered in boxes each of which have capacity m at cost m. Then,

requests arrive. A request r is can be satisfied by up to k different multisets of

(not necessarily different) items. The goal is, to choose these multisets in a way,

that the total number of boxes ordered is minimum. We discuss approaches for

the offline problem, and compare their performance on randomly generated

data. We give a lower bound for deterministic online algorithms and propose

an easy algorithm matching this bound.

In Chapter 6 we consider the problem of scheduling jobs on m related ma-

chines with precedence constraints such that the makespan is minimized. We

focus on the case, where each machine is represented by an agent, who tells

us the (not necessarily correct) speed of his machine. Based on these data,

we have to generate a schedule and have to pay the agent according to some

payment scheme. The goal is to provide a payment scheme, such that it is the

best choice for each agent to tell the truth, and additionally that the sched-

ule obtained this way is best possible. For this special version of makespan

optimization, we propose a O(m2/3)-approximation.

In Chapter 7 we investigate a real-world large-scale vehicle dispatching

problem with strict real-time requirements, posed by our cooperation partner,

the German Automobile Association (ADAC). Service units starting at their cur-

rent positions are to serve at most k requests without returning to their home

positions, where k is a given number. As Krumke et al. showed that this prob-

lem is NP-complete, even for k = 2 (see [KSVWar]), we present the polyno-

mial time (2k − 1)-approximation algorithm MATCHDISPATCH, where again k

denotes the maximal number of requests served by a single service unit. For

the special case, where k equals the total number of requests, we provide a

(2− 1/k)-approximation which works similar to the Double-Tree-Algorithm for

the metric TSP. In order to get a notion of the average case performance of

MATCHDISPATCH, we compare its solutions with the exact optimal solutions,

which we obtained by deploying an integer programming formulation. This

way, we see that the solutions found by MATCHDISPATCH are circa 17% more

expensive than the optimal solutions. When we apply 2-Opt to the solutions ob-

tained by MATCHDISPATCH we find even better solutions which cost about 5%
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more than the optimum. Generally speaking, for those instances for which it is

computationally too demanding to compute the optimal solution, MATCHDIS-

PATCH with 2-Opt provides an attractive alternative to get a hand on almost

optimal solutions in very short time.

In Chapter 8 we consider the online problem k-CTP, which is the problem to

guide a vehicle from some site s to some site t on a road map given by a graph

G = (V, E) in which up to k (unknown) edges are blocked by avalanches. An

online algorithm learns from a blocked edge when reaching one of its end-

points. Thus, it might have to change its route to the target t up to k times.

We show that no deterministic online algorithm can achieve a competitive ratio

smaller than 2k+1 and give an easy algorithm which matches this lower bound.

Furthermore, we show that randomization can not improve the competitive ra-

tio substantially, by establishing a lower bound of k + 1 for the competitivity of

randomized online algorithms against an oblivious adversary.

In Chapter 9 we consider k-server routing problems (also known as “dial-a-

ride-problems”), where k servers move in a metric space and must visit speci-

fied points or carry objects from sources to destinations. In the online version

requests arrive online while the servers are traveling. Two classical objective

functions are to minimize the makespan, i.e., the time when the last server has

completed its tour, (k-Traveling Salesman Problem, k-TSP) and to minimize the

sum of completion times (k-Traveling Repairman Problem, k-TRP). We reduce

a number of gaps between the obtained competitive ratios and the correspond-

ing lower bounds by providing new lower bounds for randomized algorithms.

The most dramatic improvement is in the lower bound of 4e−5
2e−3

≈ 2.4104 for

k-DARP (the k-TRP when objects need to be carried) to 3 which is currently also

the best lower bound for deterministic algorithms.
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Chapter 2

Preliminaries

In this chapter, we outline based on [KN05] and [KV00] some basic definitions

used throughout this thesis. We describe some graph theory, network flows,

and some basic definitions considering online optimization. We assume some

basic knowledge of complexity theory and linear optimization. For these fun-

damentals the reader is referred to [GJ79], [Chv83], and especially regarding

integer programming to [Sch86] and [NW88].

2.1 Basic notation

We will denote by R (Q, Z) the real (rational, integer) numbers. The sets

R+ (Q+, Z+) stand for the non-negative real (rational, integer) numbers. We

denote the set of positive integer numbers without zero by N = Z+\{0}. For

some n ∈ N, we define by Kn the set of vectors with n components from K.

The transposition of a vector x is xT. With loga we denote the logarithm to

the basis of a. For a = 2 we omit the basis, and by ln, we denote the natural

logarithm.

2.2 Graph Theory

Formally, a directed graph is a quadruple G = (V, A, α, ω) consisting of a

nonempty set V, called the nodes (or vertices), a set A, called the arcs, and

two relations of incidence α : A → V and ω : A → V that associate with each

arc a ∈ A its tail α(a) and its head ω(a). Usually we just write G = (V, A) and

assume that the incidence relation is given implicitly in A. For a given graph G,

6
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define V(G) and A(G) the corresponding sets of vertices resp. arcs. In order to

abbreviate the notation we define n := |V(G)| and m := |A(G)|. In this thesis,

we assume all graphs to have finite sets of vertices and arcs.

An arc a ∈ A is called a loop, if α(a) = ω(a). Two arcs a, a ′ ∈ A are called

parallel, if α(a) = α(a ′) and ω(a) = ω(a ′). A graph G is called simple, if it

does not contain any loops or parallel arcs. For v ∈ V the set of outgoing arcs

is denoted as δ+(v) := {a ∈ A : α(a) = v}, whereas δ−(v) := {a ∈ A : ω(a) = v}

describes the set of ingoing arcs of v. The indegree and the outdegree of a node

v is defined as g−(v) := |δ−(v)| resp. g+(v) := |δ+(v)|. The nodes u, v ∈ V are

called adjacent (neighbors), if there is some a ∈ A such that u = α(a) and

v = ω(a).

A path in G is a finite sequence P = (v0, a1, v1, ..., ak, vk) of nodes v0, ..., vk ∈
V and arcs a1, ..., ak ∈ A such that α(ai) = vi−1 and ω(ai) = vi for i = 1, . . . , k.

The length of P corresponds to the number k of arcs in P. If v0 = vk and k ≥ 1

we call P a cycle. The nodes α(P) := v0 and ω(P) := vk are named the tail resp.

the head of P.

With tr(P) := (v0, v1, . . . , vk) we denote the trace of the path P. A path is

called simple if ai 6= aj for i 6= j. If it is simple and none of the nodes appears

more than once - apart from the case that the first and the last vertex coincide-,

it is called elementary.

A graph G̃ = (Ṽ, Ã) is a subgraph of G = (V, A) if Ṽ ⊆ V and Ã ⊆ A. A

graph G = (V, A) is said to be connected if there is a path between any two

nodes. A tree is a connected subgraph with no cycles. A spanning tree of G is a

subgraph of G which has the same set of nodes as G and is a tree.

A cut (X, Y) in a graph G = (V, A) is a partition of the vertices in nonempty

subsets such that V = X ∪ Y, X ∩ Y = ∅, X 6= ∅, and Y 6= ∅.

An undirected graph is a triple G = (V, E, γ) consisting of a nonempty set

of nodes V, a set of edges E and a relation of incidence γ : E → V × V that

associates with each edge one or two nodes, called its ends. Usually we just

write G = (V, E) and assume that the incidence relation is given implicitly in

E. The definitions stated above for directed graphs carry over to undirected

graphs.

A clique is a subgraph of an undirected graph G = (V, E), in which all pairs

of vertices are connected by an edge. A graph G whose vertex set forms a

clique is said to be complete. A clique of maximum cardinality in G is called a

maximum clique. A set of nodes in a graph G is said to be an independent set if

there is no edge connecting any of its nodes. An independent set of maximum

cardinality is denoted as maximum independent set.
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Network Flows

We have a digraph G = (V, A) with edge capacities u : E(G) → R+, two

specified vertices s (the source) and t (the sink). The quadruple (G, u, s, t) is

called a network. A flow is a function f : E(G) → R+ with f(e) ≤ u(e) for all

e ∈ E(G). We say that f satisfies the flow conservation rule at vertex v if

∑

e∈δ−(v)

f(e) =
∑

e∈δ+(v)

f(e)

For a given network (G, u, s, t), an s-t-flow is a flow satisfying the flow con-

servation rule at all vertices except s and t. We define the value of an s− t-flow

f by

value(f) :=
∑

e∈δ+(s)

f(e) −
∑

e∈δ−(s)

f(e)

Given a digraph G = (V, A) with edge capacities u : E(G) → R+, and values

b : V(G) → R with
∑

v∈V(G) b(v) = 0, a b-flow in (G, u) is a function f : E(G) →
R+ with f(e) ≤ u(e) for all e ∈ E(G) and

∑
e∈δ+(v) f(e) −

∑
e∈δ−(v) f(e) = b(v)

for all v ∈ V(G). b(v) is called the balance of vertex v. |b(v)| is called the supply

if b(v) > 0 resp. the demand of v otherwise. Vertices v with b(v) > 0 are called

sources, those with b(v) < 0 sinks.

The MINIMUM COST FLOW PROBLEM is defined as the problem of finding

for a given digraph G with edge capacities u : E(G) → R+, and numbers

b : V(G) → R a b-flow with minimum weight respective to a weight function

c : E(G) → R such that c(f) :=
∑

e∈E(G) f(e)c(e) is minimum or to decide that

no b-flow exists.

2.3 Optimization Problems

In this section, we settle some basic definitions and notation about optimization

problems and their approximability.

Definition 2.1 (Optimization Problem) An instance of an optimization prob-

lem is given by a set of feasible solutions X and a cost function c : X → R.

A solution x∗ ∈ X is an optimal solution to the corresponding minimization

problem if and only if c(x∗) ≤ c(x) for all x ∈ X. Analogously, it solves the
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corresponding maximization problem optimally for the case that c(x∗) ≥ c(x)

for all x ∈ X.

Let I be an instance of a given optimization problem. The minimum possible

length of a reasonable binary representation of I is called its encoding length.

An algorithm which finds an optimal solution for each instance I in time poly-

nomial in its encoding length is termed a polynomial time algorithm. It is also

said to be efficient.

For most of the problems we deal with in this thesis, there exist no effi-

cient algorithms unless P = NP. In this case, we look for polynomial time

approximations of the optimum:

Definition 2.2 An polynomial time algorithm ALG for a minimization prob-

lem is called a c-approximation, if it obtains a solution with objective value

ALG (I) for every instance I of the problem, such that

ALG (I) ≤ c · OPT (I),

with OPT (I) being the objective value of an optimal solution of I. Analogously,

a c-approximation for a maximization problem provides a solution with

c · ALG (I) ≥ OPT (I).

2.4 Online Optimization

In general, traditional optimization techniques assume complete knowledge

of all data of a problem instance. However, in reality it is unlikely that all

information necessary to define a problem instance is available beforehand.

Decisions may have to be made before complete information is available. This

observation has motivated the research on online optimization. An algorithm

is called online if it makes a decision (computes a partial solution) whenever a

new piece of data requests an action.

In online optimization the input is modeled as a finite request sequence

σ = (r1, r2, . . . ) which must be served and which is revealed step by step to

an online algorithm. How this is done exactly, depends on the specific online

paradigm. For the scope of this thesis we will use the so called sequence model.

Let ALG be an online algorithm. In the sequence model requests must be

served in the order of their occurrence. More precisely, when serving request rj,

ALG does not have any knowledge of requests ri with i > j (or the total number
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of requests). When request rj is presented it must be served by ALG according

to the specific rules of the problem. The decision by ALG of how to serve rj

is irrevocable. Only after rj has been served, the next request rj+1 becomes

known to ALG . The profit obtained by ALG is denoted as ALG (σ), whereas

OPT (σ) is the objective value of the optimal solution.

A deterministic online algorithm ALG has to behave the same way on in-

stances which look identical. This means that if the first k requests of two

instances are identical, it has to make the same decisions on both of these

instances for the first k requests.

Competitive analysis has become a standard way of measuring the quality

of online algorithms. Here, the objective value of the solutions obtained by an

online algorithm is compared with the best possible solutions. The competitiv-

ity asks, how much profit is lost in the worst case due to the online algorithm’s

restricted knowledge of the input data. A precise definition of competitivity for

minimization problems is given within the following definition:

Definition 2.3 (Competitivity for Deterministic Algorithms) A determinis-

tic online algorithm ALG is said to be c-competitive, if there exists some con-

stant α such that for every request sequence σ:

ALG (σ) ≤ c · OPT (σ) + α

For α = 0, ALG is said to be strictly c-competitive. The competitivity of ALG is

the infimum over all c, such that ALG is c-competitive.

This measure can be seen as the value of a game between an online player

trying to choose the best algorithm and a malicious adversary, who selects se-

quences, on which the chosen algorithm performs poorly. In the case of deter-

ministic online algorithms, the adversary knows all of the algorithm’s decisions

in advance and explois this knowledge to find sequences on which the chosen

algorithm performs worst.

In order to be less predictable, the online player could base its decisions

on random events. For example, consider the cottage problem, introduced in

Chapter 1. The owner of the cottages, could toss a coin whenever being asked

to rent one of his empty houses to someone. Such a randomized online algo-

rithm RALG is a probability distribution over deterministic online algorithms

ALG x (x may be thought of as the coin tosses of the algorithm RALG ). We

cannot compute the competitive ratio as above, as the outcome ALG (σ) is a

random variable depending on the coin tosses. Thus, we need a different mea-

sure for the quality of randomized online algorithms. How good a randomized
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algorithm can be, depends on how much the adversary knows about the ac-

tions performed by the online algorithm when processing a sequence, and how

much he can react to them. In this thesis we only consider the oblivious adver-

sary, which knows the probability distribution used by the randomized online

algorithm. Based on this knowledge it chooses the entire request sequence in

advance.

Definition 2.4 (Competitivity for Randomized Algorithms) A randomized

online algorithm RALG is said to be c-competitive against an oblivious adver-

sary, if there exists some constant α such that for every request sequence σ:

E [RALG (σ)] ≤ c · OPT (σ) + α

For α = 0, RALG is said to be strictly c-competitive

To obtain a lower bound on the competitiveness of any randomized on-

line algorithm, we must provide for each algorithm a worst case sequence and

compute the expected cost of the algorithm on that instance. This proves to be

much more difficult for randomized than for deterministic online algorithms.

For this reason, we apply a variant of Yao’s Principle [Yao77] from game theory

to make the construction of randomized lower bounds easier.

Let X be a probability distribution over input sequences Σ = { σx : x ∈ X }.

We denote the expected cost of the deterministic algorithm ALG according to

the distribution X on Σ by EX [ALG (σx)]. Yao’s principle can now be stated as

follows.

Theorem 2.5 (Yao’s principle) Let { ALG y : y ∈ Y } denote the set of determin-

istic online algorithms for an online minimization problem. If X is a distribution

over input sequences { σx : x ∈ X } such that

inf
y∈Y

EX [ALG y(σx)] ≥ c̄ EX [OPT (σx)]

for some real number c̄ ≥ 1, then c̄ is a lower bound on the competitive ratio of

any randomized algorithm against an oblivious adversary.

Proof. See [BEY98, MR95]). �

These definitions and theorems carry over to maximization problems anal-

ogously.



Chapter 3

An Online Job Admission Problem

We consider the problem of scheduling a maximum profit selection of jobs on

m identical machines. Jobs arrive online one by one and each job is specified

by its start and end time. The goal is to determine a non-preemptive schedule

which maximizes the profit of the scheduled jobs, where the profit of a job is

equal to its length. Upon arrival of a new job, an online algorithm must decide

whether to accept the job (“admit the job”) or not. If the job is accepted,

the online algorithm must be able to reorganize its already existing schedule

such that the new job can be processed together with all previously admitted

jobs, however, the algorithm need not specify on which machine the job will

eventually be run.

We provide competitive algorithms and lower bounds on the competitive

ratio for deterministic and randomized algorithms against an oblivious adver-

sary. Our lower bound results essentially match (up to small constants factors)

the competitive ratios achieved by our algorithms.

3.1 Introduction

A situation which many of us know: You try to book a cottage in your favorite

holiday location for the weekend but the overly friendly person on the phone

tells you that they simply can not satisfy your request. If you had called just five

minutes earlier, everything would have been fine, but now there is allegedly

nothing available. You doubt that this is true. Are they just rejecting your

booking request because you just wanted to stay three days and not four? How

do they work at all? Better: How should they organize their bookings? This

must be some easy piece of mathematics!

12
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0 T

1

2

Figure 3.1: Empty booking table for the cottage-rental problem with two (iden-

tical) cottages.

1

2

0 T1 2

r2

r1

Figure 3.2: The first two customers have been booked into the plan.

You sit down and put yourself in the position of the owner of two identical

cottages. The holiday season (which we assume without loss of generality to be

the time interval [0, T ] where T ≫ 1) is still in the future and you are awaiting

for people to make reservations (Figure 3.1). Naturally, we can assume that

the profit you make for a request of length l is l units of money.

A few moments later, the first customer r1 calls and requests a cottage for

the time interval [0, 1]. Clearly, we can promise her cottage 1 which gives us a

profit of 1−0 = 1. The next customer r2 requests a cottage in the interval [1, 2].

Both cottages are available then, so we accept the booking request and sched-

ule cottage 2 for her (Figure 3.2). This increases our profit again by one unit.

Then, the next customer calls and wishes to get a cottage from 0 to 2. Yikes,

we do not have a cottage available during that whole period!

But, let us think one moment. Both cottages are essentially identical and we

have not promised r2 a specific cottage, but only a cottage. So, we can simply

move his booking from cottage 2 to cottage 1 and we can accommodate the

request from r3 (Figure 3.2). That was not too difficult, after all, was it? And

our total profit has risen to 1 + 1 + 2 = 4.

While we sit back relaxed and content, two more customers call each of

which wants to book a cottage for the whole holiday season [0, T ]. These could

be called “ideal customers” in the sense that each of them allows us to fully

rent out a cottage at maximum profit. But what is this? No matter how we

reorganize our schedule, we can not accept any of them. If we only had known

earlier that they would call, we could have rejected the requests of r1, r2 and
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r3

r3

1

2

0 T1 2

1

2

0 T1 2

r2

r2

r1

r1

Figure 3.3: By moving customer r2 from cottage 2 to cottage 1 the new cus-

tomer r3 can still be scheduled.

r3 and made a profit of 2T by accepting the “ideal customers” which book the

whole season instead of a lousy 4 units. On the other hand, if we reject r1,

r2 and r3 and the two “ideal customers” do not call then we have an empty

schedule and no profit which is worse than the profit of 4 that we wince at

right now. Maybe the cottage rental problem is not so easy?

We have just discovered the online aspect of the cottage rental problem.

We are facing incomplete information, and even if every time a new request

becomes known we compute a new “optimal” schedule this does not necessarily

lead to an overall optimal solution.

The remainder of this paper is intended to shed some light onto the online

cottage rental and related problems.

3.2 Problem Definition and Preliminaries

The cottage rental problem is a special case of the job admission problem, de-

noted by OJA, studied in this chapter. We are given m machines, a time horizon

of T time units, and a sequence of jobs σ = r1, . . . , rn, which are released one

by one. Each of these jobs rj has a fixed start time aj and end time bj > aj, and

each job needs to be accepted or rejected before we move to the next one. We

assume that time has been scaled in such a way that minj(bj − aj) = 1. This

assumption is justified for instance in the cottage rental application where the
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minimum rental period is a single day (our algorithms still work if minj(bj−aj)

or a positive lower bound for this quantity is known in advance). The goal is to

select jobs to be processed such that the sum of the lengths of the accepted jobs

is maximized and there exists a feasible non-preemptive assignment of jobs to

machines, i.e., such that at any moment in time each machine processes at

most one job.

3.2.1 Our Results

In Section 3.4 we develop a general lower bound for the competitive ratio of

randomized algorithms for the job admission problem (OJA). Specifically, we

give a lower bound of 1
2
(log T + 2) on the competitive ratio of any randomized

algorithm against an oblivious adversary, where T is the time horizon.

In Section 3.5.1 we present a first simple greedy-type deterministic 2∆σ+1-

competitive algorithm GREEDY, where ∆σ = maxri,rj∈σ
bi−ai

bj−aj
= maxri∈σ(bi − ai)

is the maximum ratio of the profit of two jobs.1 This simple algorithm forms the

basis of the improved algorithm C-GREEDY which we present in the following

Section 3.5.3. The main competitiveness result is given in Section 3.5.3, where

we give a deterministic algorithm C-GREEDY that matches our lower bound

from Section 3.4 up to constant factors for the case m ≥ ⌈log T⌉. Moreover,

we show that for m ≤ ⌈log T⌉ our algorithm C-GREEDY provides a competitive

ratio of 2m(
m
√

T + 1) ≤ 2 log T(
m
√

T + 1), which is also optimal up to a constant

factor.

3.2.2 Previous Work

Several variations on the online job admission problem studied in this chap-

ter have been considered in the literature. OJA is related to the problem of

scheduling equal-length jobs on parallel machines, where the jobs have release

times and deadlines and the goal is to maximize the number of jobs completed.

Baruah et al. [BHS01] showed that a greedy-type algorithm is 2-competitive for

this problem (where jobs arrive over time), a lower bound of 4/3 for the com-

petitive ratio of randomized algorithms was given by Goldman et al. [GPS00].

Chrobak et al. [CJST04] provided a barely random algorithm with competi-

tive ratio 5/3. The corresponding offline problem can be solved in polynomial

time [Bap99] (see also notes in [CJST04]).

1Recall that time has been scaled in such a way that minj(bj − aj) = 1.
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Van Stee and La Poutré [SP01] considered the problem of partial servicing

of online jobs. Here, jobs arrive over time to be rejected or accepted, after

which they must start immediately. The algorithm can choose to serve some

jobs only partially, and the goal is as here to maximize the profit. The problem

is different from ours in its notion of time (new requests cannot appear in the

past) and because of the option of serving jobs partially. However, it turns out

that several ideas from [SP01] can be used also to give good algorithms for the

current problem.

The problem OJA in this chapter can also be seen as a generalized ver-

sion of online interval scheduling [LT94], where only one machine is avail-

able. However, in the paper [LT94], jobs arrive over time instead of one by

one. Also, there is no pre-specified time horizon. As mentioned at the begin-

ning, another similar problem which has been studied is seat reservations on

trains [BL99, BKN04]. Here passengers arrive online, specifying their desired

connection, and need to be assigned a seat immediately. Differences to that

paper are that in making seat reservations, it is assumed that an algorithm is

not allowed to reject any passenger for whom there is still room in the train,

and they furthermore assume that the seat (in our case: machine) has to be

assigned immediately upon request. (The paper [BKN04] considers a slightly

relaxed case where each passenger may change seats a fixed number of times

during the trip.)

Finally, OJA can also be seen as a call admission problem in an optical net-

work [AAF+01, GK05, KP02]. In our case the network is simply a line. The

main difference to optical call-admission on the line is the profit model. For

call-admission one assumes that each job has a uniform value2, independent

of its length. It seems that this changes the flavor of the problem substantially,

since rejecting a large job does not lose you more than rejecting a short job,

and generally short jobs are easier to schedule.

3.3 The Offline Problem

In this section we show briefly how the offline problem corresponding to OJA

can be solved efficiently. Given a set of jobs J consider a directed graph G =

(V, A) with the following nodes: a source s, a sink t and for every job rj =

[aj, bj] ∈ J two nodes uj, vj. Thus, V := ∪rj∈J{uj, vj} ∪ {s, t}.

2The value may depend on the bandwidth of the call but not on its length, which is the path

used to route the call.
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Figure 3.4: A graph G corresponding to a set of jobs J = {r1, . . . , r4} with

a1 < a2 < b2 < a3 < b1 < a4 < b3 < b4
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Figure 3.5: Each set of jobs assigned to a single machine in a feasible solution

corresponds to an s-t-path in the network G.

For all rj ∈ J we have an arc (uj, vj) with cost aj − bj, and the arcs (s, uj)

and (vj, t) with cost 0. The arc (uj, vj) corresponds to the situation where job rj

is accepted. For all ri, rj ∈ J with bi ≤ aj we introduce an additional arc (vi, uj)

with cost 0 representing the possibility that rj can be scheduled directly after

ri on the same machine. All arcs have unit capacity. An example for such a

network is shown in Figure 3.4.

Let f be an integral minimum cost flow of value m in G from s to t. Such

a flow can be computed efficiently by standard techniques, see e.g. [AMO93].

We claim that an optimal solution of the job admission problem is given by

accepting job rj if and only if the flow value f(uj, vj) on arc (uj, vj) is nonzero

(that is, it is one by our choice of the capacities).
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In fact, every feasible schedule of jobs on m machines gives rise to m edge-

disjoint paths in G from s to t, one for each machine (cf. Figure 3.5). The profit

obtained on the machine equals the negative of the cost of the corresponding

path.

Conversely, by flow decomposition [AMO93] we can decompose every s-t-

flow of value m in G into m disjoint s-t-paths (since the graph G is acyclic, there

can not be cycles in the flow decomposition). Since every s-t-path corresponds

to a set of jobs which can be scheduled on a single machine, these paths specify

an assignment of the jobs to the specific machines.

3.4 Lower Bounds

Let us first consider the question how well a deterministic algorithm can per-

form in terms of competitiveness. We first start with deterministic algorithms.

To this end, let us consider the situation we had in the introduction once more:

we scheduled three small jobs but then could not accommodate the two long

jobs (which span the whole interval [0, T ]) any more.

We are given m machines and the time interval [0, T ] for scheduling jobs.

The basic idea of our lower bound construction is the following. Let ALG be

some arbitrary deterministic online algorithm. We first present m small jobs of

length 1 each for the interval [0, 1]. If the online algorithm accepts all of the

jobs, it gets a profit of m · 1 = m and we will then present m large jobs of

length T each for the interval [0, T ]. Thus, the optimal profit is mT and we can

force a ratio of T between the optimal and the online profit. What makes the

argument slightly more complicated is the fact that ALG need not accept all of

the jobs of length 1, so it might have some empty space on the machines which

can be used to accommodate the long jobs.

Theorem 3.1 No deterministic algorithm can achieve a competitive ratio smaller

than 1
2
(log T + 2) for the OJA.

Proof. Assume that ALG is a c-competitive algorithm for the OJA. The first

part σ0 of the adversial sequence consists of m jobs of unit size starting at

time 0 and ending at time 1. Let q(0) be the number of requests from σ0

accepted by ALG . Since OPT (σ0) = m and ALG is c-competitive, we must have

that q(0) ≥ m/c.

We will now continue to present blocks of m requests each of length 2i for

i = 1, . . . , 2log T. Each request starts at time 0. Let σi denote the subsequence

formed by the requests of length 2i. Our total input sequence σ is thus σ =
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1
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m

phase 2
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phase 3

0 4

blocked by job of size 1

Figure 3.6: Once a job is accepted, it blocks a machine for all future requests.

σ0σ1 . . . σ2log T . Observe that each accepted request blocks a machine for future

requests (cf. Figure 3.6).

As we have seen before after σ0 the online algorithm must have accepted

q(0) ≥ m/c jobs and thus blocked q(0) machines for future requests. Once the

requests in σ1 have been presented, the optimal solution is to reject all request

in σ0 and accept all the jobs from σ1 of size 2. Thus, we have OPT (σ0σ1) = 2m.

In order to achieve a competitive ratio of c the profit obtained by ALG must

satisfy:

q(0) · 1 + q(1) · 2 ≥ OPT (σ0σ1)

c
=

2m

c
, (3.1)

where q(1) denotes the number of requests accepted by ALG from the subse-

quence σ1. We have seen above that q(0) ≥ m/c. Since all requests from σi for

i ≥ 1 give more profit than the unit size jobs from σ0 we can assume that ALG

accepts exactly m/c jobs from σ0. Using q(0) = m/c in (3.1) results in

q(1) ≥ 1

2
(
2m

c
−

m

c
) =

m

2c
.

By the same argument as above we can assume that q(1) = m
2c

, since this

leaves ALG with more space for future jobs which are more profitable than the

small ones already seen. We will now show by induction on i that in fact the

number q(i) of jobs accepted by ALG from σi satisfies q(i) = m
2c

for i ≥ 1. The

claim has already been established for i = 1. Let us assume that we know that

q(0) = m/c and q(1) = · · · = q(i − 1) = m/2c. We have OPT (σ0 . . . σi) = m2i.
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By the fact that ALG is assumed to be c-competitive we have:

OPT (σ0 . . . σi)

c
=

2im

c
≤
( i−1∑

j=0

2j · q(j)

)

+ 2i · q(i)

=
m

c
+

( i−1∑

j=1

2j · m

2c

)

+ 2i · q(i)

=
m

c
(1 + 2i−1 − 1) + 2i · q(i)

=
2i−1m

c
+ 2i · q(i)

Solving for q(i) yields q(i) ≥ m
2c

and by the now familiar argument from above

we get that q(i) = m
2c

. This completes the inductive step.

We are now in the position to establish the lower bound on the competi-

tiveness c of ALG . Observe that the total number of machines blocked by ALG

after phase i is
∑i

j=0 q(i). Since the total number of machines is m we get

m ≥
log T∑

j=0

q(j) = q(0) +

log T∑

j=1

q(j) =
m

c
+

m

2c
log T =

1

c
m(1 +

1

2
log T).

This gives us c ≥ 1 + 1
2

log T = 1
2
(log T + 2) as claimed. �

We now extend our lower bound result to randomized algorithms against

an oblivious adversary. The difficulty lies in the fact that it is not clear how

a generic randomized algorithm RALG looks like. Using the same line of argu-

ments as in Theorem 3.1 we see that RALG only needs to accept m/c unit size

jobs on expectation and not with probability one. Thus, in order to establish

our bound, we make use of the following version of Yao’s principle:

Theorem 3.2 (Yao’s Principle) Let G be an online optimization problem, let

ALG be any online randomized algorithm for G and let cALG be the competitive ra-

tio of ALG against an oblivious adversary. Let p(i) be any probability distribution

over request sequences. Then

cALG ≥ max




min
j

Ep(i) [OPT (σi)]

Ep(i) [ALG j(σi)]
, min

j

1

Ep(i)

[

ALG j(σi)

OPT (σi)

]




 . (3.2)

Proof. See [BEY98, BEY99]. �
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Theorem 3.3 Any randomized algorithm for OJA has a competitive ratio no

smaller than 1
2
(log T + 2) against an oblivious adversary.

Proof. For i = 0, . . . , log T , consider the sequence σi which for each 0 ≤ j ≤ i

contains m jobs of length 2j (thus, σi specifies a total of (i+1)m jobs). The jobs

in σi will be given in increasing order of length, and all requests have a start

time of 0. Clearly, for each machine at most one of these jobs can be contained

in any schedule and we have OPT (σi) = m2i.

We make use of the second bound in (3.2) to derive the lower bound on

the competitive ratio of randomized algorithms against an oblivious adversary.

Specifically, we give a distribution p(i) over the request sequences σi such that

for any deterministic algorithm ALG we have

Ep(i)

[

ALG (σi)

OPT (σi)

]

≤ 2

log T + 2
.

Using Yao’s principle from Theorem 3.2 above then yields the desired lower

bound of 1/( 2
log T+2

) = 1
2
(log T + 2).

Let q(j) be the number of jobs of length 2j accepted by a given deterministic

algorithm ALG , when given any sequence σi where i ≥ j. Since until the point

in time when the requests of length 2j are given these σi are identical, ALG has

to make the same decision, how many of these jobs to accept and therefore

q(j) has to be identical for all those σi.

Thus, when processing σi the ratio of the profits by ALG and OPT is

ALG (σi)

OPT (σi)
=

∑i

j=0 q(j) · 2j

m · 2i
. (3.3)

We now derive a probability distribution p over the sequences σi such that for

each deterministic algorithm ALG we have

Ep(j)

[∑i
j=0 q(j) · 2j

m · 2i

]

≤ 2

log T + 2
.

As afore mentioned by using Yao’s principle the bound then follows.

Let p(i) to be the probability that σi occurs. Then, the expected value of the

profit ratio can be computed by:

Ep(i)

[

ALG (σi)

OPT (σi)

]

=

log(T)∑

i=0

p(i) · ALG (σi)

OPT (σi)
=

log T∑

i=0

p(i) ·
∑i

j=0 q(j) · 2j

m · 2i

=

log T∑

i=0

p(i)

i∑

j=0

2j−i

m
· q(j) =

log T∑

j=0

log T∑

i=j

2j−ip(i)

m
· q(j)
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Observe that, given a distribution p(i) on the instances σi, all deterministic

algorithms only differ in the number of jobs they accept of each of the given

length classes of jobs. Thus, we can find the deterministic algorithm with the

largest expected profit ratio by solving the following integer linear program:

(IP1) max

log T∑

j=0

log T∑

i=j

2j−ip(i)

m
q(j)

s.t.

log T∑

j=0

q(j) ≤ m

q(j) ≥ 0, q(j) ∈ Z for all j = 0, . . . , log T

To obtain an upper bound for the optimal solution of this problem it suffices

to find a feasible solution of the dual of its linear relaxation, which is given by:

(LP1) min m · y

s.t. y ≥
log T∑

i=j

2j−ip(i)

m
for all j = 0, . . . , log T

y ≥ 0

Observe that the dual (LP1) has only a single variable. Thus, we can easily

compute its optimal solution:

min{my : y ≥
log T∑

i=j

2j−ip(i)

m
, j = 0, . . . , log T }

= max
j=0,...,log T

{m ·
log T∑

i=j

2j−ip(i)

m
} = max

j=0,...,log T
{

log T∑

i=j

2j−ip(i)}.

The quality of the bound obtained this way depends on the applied distri-

bution p. The distribution which yields the best bound can be found by solving
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another linear program:

(LP2) min y

s.t.

log T∑

i=j

2j−ip(i) ≤ y for all j = 0, . . . , log T

log T∑

i=0

p(i) = 1

p(i) ≥ 0 for all i = 0, . . . , log T

y ≥ 0

The optimum is attained for p(i) := 1
log T+2

for i = 0, . . . , log T − 1 and

p(log T) = 2
log T+2

, which can be easily seen by using the Fundamental Theorem

of Linear Programming (see e.g. [Chv83]) and the fact that p as given above is

a basic solution. Thus, we have

max
j=0,...,log T

{

log T∑

i=j

2j−ip(i)} = max
j=0,...,log T

{

( log T∑

i=j

2j−i

log T + 2

)

+
2j−log T

log T + 2
}

= max
j=0,...,log T

{
1

log T + 2

(

2j

T
+

log T∑

i=j

2j−i

)

}

= max
j=0,...,log T

{
1

log T + 2

(

2j

T
+ 2j

log T∑

i=j

1

2i

)

}

= max
j=0,...,log T

{
1

log T + 2

(

2j

T
+ 2j · 2 ·

(

1

2j
−

1

2log T+1

))

}

= max
j=0,...,log T

{
1

log T + 2

(

2j

T
+ 2 −

2j

T

)

} =
2

log T + 2

This completes the proof. �

3.5 Competitive Algorithms

In this section we present competitive algorithms for the OJA. The basis of

our algorithms is provided by a simple greedy-type algorithm GREEDY which

we analyze in Section 3.5.1. This algorithm works acceptably well if all jobs
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have approximately the same length. In Section 3.5.2 we show how to use ran-

domization in order to turn GREEDY into a competitive algorithm CRS-GREEDY

for jobs of substantially different sizes. In Section 3.5.3 we essentially deran-

domize CRS-GREEDY and obtain the same competitiveness bounds by means of

deterministic algorithms.

3.5.1 A Greedy-Type Deterministic Algorithm

Let GREEDY be the algorithm, which accepts a new job rj as long as there exists

a schedule which contains all previously accepted jobs and rj. For a given input

sequence σ, define its length ratio as ∆σ := maxri,rj∈σ
bi−ai

bj−aj
= maxri∈σ(bi − ai),

i.e., the maximum ratio of two job durations in σ. The algorithm GREEDY does

not require that minj(bj − aj) = 1. Our first goal is to establish that GREEDY is

2∆σ + 1-competitive. In the remainder of this section, we will consider a fixed

input sequence σ and simply write ∆ for ∆σ.

Let σG be the set of jobs, which are accepted by GREEDY and σOPT be the

set of jobs, which are accepted by an optimal offline algorithm. We denote

by X := σG ∩ σOPT be the set of jobs which are accepted by both of these

algorithms, Y := σG\σOPT be the set of all the jobs accepted only by GREEDY and

Z := σOPT \ σG the set of jobs only accepted by the optimal offline-algorithm.

Consider the schedule that GREEDY outputs. Consider the machines one by

one, and on each machine, consider the jobs on it from left to right. Denote the

jobs on machine j by 1, . . . , ij, their start times by ai and finish times by bi (i =

1, . . . , ij). Whenever ai+1 − bi > 2∆, we say that the interval [bi + ∆, ai+1 − ∆]

is a gap. If this happens on machine j, we say that the gap is of type j.

Lemma 3.4 Every job in Z has an empty intersection with every gap.

Proof. Suppose there is a job in Z that has nonzero intersection with some gap

of type j. This job could be placed entirely on the machine j, without over-

lapping the existing jobs on that machine, by the definition of a gap (since its

length is at most ∆). So GREEDY would have accepted this job, a contradiction.

�

Theorem 3.5 For an input sequence σ with length ratio ∆, GREEDY achieves a

competitive ratio of 2∆ + 1.

Proof. Take a machine j. Consider an interval between two gaps of type j (or

an interval until the first gap / after the last gap / the entire interval [0, T ], if
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Figure 3.7: An example schedule of GREEDY for an input where ∆ = 3. There

are five machines, time is on the horizontal axis. All the jobs served by OPT

that GREEDY does not serve must be within the shaded areas. Since there is

a gap on machine 4, the jobs between the large shaded areas are either both

served by GREEDY and OPT , or only by GREEDY.

there are no gaps on machine j). Call such an interval a non-gap-interval. On

machine j, there can be at most ∆ idle time at the start and at the end of a non-

gap-interval. If this is not true, the gap would have been defined differently.

Thus on machine j, some job starts within time ∆ of any gap, and after that job

finishes, each time within time 2∆ a new job starts, until the next gap appears

(at most ∆ after the last job completes) or the end of the schedule is reached.

Since each job has length at least 1, this means that on machine j, within each

non-gap-interval, at least 1/(1 + 2∆) of the time some job is running in the

schedule of GREEDY. This reasoning holds for any machine j = 1, . . . , m. For

future calculations, we now say simply that GREEDY is running a job of density

(“height”) 1/(1 + 2∆) at all times within each non-gap-interval. This does not

increase the overall profit of GREEDY and simplifies the comparison to OPT .

On the other hand, in an optimal solution, by Lemma 3.4 no jobs in Z can be

running at any time during gaps. Now consider the intervals between two gaps

of any type in order of increasing starting time. Call these intervals “allowed

intervals”. We find that all jobs in Z are run only during allowed intervals.

However, on each machine, an allowed interval I is a subinterval of a non-

gap-interval, so on each machine GREEDY earns (running this job of density

1/(1 + 2∆)) at least 1/(1 + 2∆) of the length of I. So in total, during I it earns

at least m/(1 + 2∆) times the length of I, and of course OPT earns at most m

times the length of I during I.

Finally, consider a gap G. The only jobs that OPT has accepted and that

overlap (partially) with G are the jobs in X that GREEDY is also running, by

Lemma 3.4. However, we have modified the GREEDY-schedule by spreading

each job out over a non-gap-interval. Thus for a job that runs for t units of

time during a gap G, we have that GREEDY earns at least t/(1 + 2∆) during G,

and OPT clearly earns at most t during G.

This concludes the proof. An illustration is given in Figure 3.7. �
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3.5.2 An Algorithm Based on Classify and Randomly Select

In this section we show that the GREEDY algorithm from above can be used to

obtain a randomized algorithm CRS-GREEDY with competitive ratio 5⌈log(T)⌉
by applying the classify and randomly select-paradigm [ABFR94].

Assume again that the minimum length of an interval is minrj∈σ(bj − aj) =

1. We divide the possible input requests into N := ⌈log T⌉ disjoint classes

C1, . . . , CN, with j ∈ Ci if and only if 2i−1 ≤ bj − aj < 2i. The algorithm

CRS-GREEDY chooses class Ci with probability 1
N

. Then, when processing a

sequence σ the algorithm ignores all requests not in class Ci and uses GREEDY

to process the requests in class Ci.

For i = 1, . . . , N let σi := σ ∩ Ci and OPT i denote the total profit of jobs

from class Ci accepted by OPT . If GREEDY processes σi for some i, it achieves

a competitive ratio of 5, since ∆σi
≤ 2i

2i−1 = 2. Since there is a probability

of 1
N

that the algorithm picks the class which contributes the biggest part to

the optimal solution we can estimate the expected value of the machine time

obtained by CRS-GREEDY as follows:

E [CRS-GREEDY(σ)] =

N∑

i=1

1

N
· GREEDY(σi) ≥

1

N

N∑

i=1

1

2∆σi
+ 1

OPT (σi)

≥ 1

5N

N∑

i=1

OPT (σi) ≥
1

5N

N∑

i=1

OPT i =
1

5N
OPT (σ).

Thus, CRS-GREEDY achieves a competitive ratio of 5N = 5⌈log T⌉.
We remark here that the above algorithm can be modified easily for the case

that minj(bj−aj) = ε 6= 1 is known in advance and then provides a competitive

ratio of 5⌈log T/ε⌉.

3.5.3 An Improved Deterministic Algorithm

We will now use GREEDY and ideas from the classify-and-select paradigm to

obtain a deterministic algorithm which achieves an improved competitiveness.

As in the previous section we first assume that minj(bj − aj) = 1.

Lemma 3.6 Suppose that we are given a sequence of jobs σ. For 1 ≤ k ≤ m let

OPT (k)(σ) denote the optimal offline profit achievable using k machines (so that

OPT (σ) = OPT (m)(σ)). Then,

k

m
· OPT

(m)(σ) ≤ OPT
(k)(σ) ≤ OPT

(m)(σ).
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Proof. Given an optimal solution for m machines, a feasible solution can be

obtained by accepting the jobs scheduled on the k machines with the highest

profits. Thus, OPT (k)(σ) ≥ k
m

OPT (m)(σ). The second inequality is trivial. �

Similar to the randomized algorithm CRS-GREEDY, the improved determinis-

tic algorithm C-GREEDY divides the jobs into classes. How this is done, depends

on the specific relation between the number m of machines and the time hori-

zon T .

Instances with m ≥ ⌈log T⌉

In order to simplify the presentation, we first assume that the time horizon

T = 2k is a power of two. In this case, C-GREEDY reserves exactly ⌊m/ log T⌋
machines for each of the classes Ci. For each of the k = log T classes it uses an

instantiation of GREEDY to process the jobs.

Lemma 3.7 If T = 2k and m = k · t for some k, t ∈ Z+, then C-GREEDY is 5 log T

competitive.

Proof. Similar as in Lemma 3.6 let OPT (t) and GREEDY(t) be the respective

algorithms which schedule jobs on t = m/ log T machines instead of on m

machines. Let OPT i be the profit of OPT obtained by jobs in class Ci. Then

OPT (σ) =

log T∑

i=1

OPT i ≤
log T∑

i=1

OPT
(m)(σi)

Lemma 3.6

≤
log T∑

i=1

log T · OPT
(t)(σi) (3.4)

Theorem 3.5

≤ log T

log T∑

i=1

(2∆Ji
+ 1)GREEDY

(t)(σi)

∆Ci
≤2

≤ 5 log T

log T∑

i=1

GREEDY
(t)(σi) = 5 log T · C-GREEDY(σ).

�

Lemma 3.8 If T = 2k and m ≥ log T for some k ∈ Z+, then C-GREEDY is 10 log T

competitive.
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Proof. For m ≥ log T we have 2⌊ m
log T

⌋ ≥ m
log T

. Thus, we get

OPT (σi) ≤
m

⌊ m
log T

⌋OPT
(t)(σi) ≤ 2 log T · OPT

(t)(σi). (3.5)

Using the computation from Lemma 3.7, but applying (3.5) instead of Lemma

3.6 in (3.4) gives the desired bound on the competitive ratio. �

We finally extend our result to the general case where T is not a power of

two and m is not an integer multiple of log T .

If T is not a power of two, then C-GREEDY simply rounds up T to the next

power 2k ≥ T of two, so that 2k−1 ≤ T < 2k. Since every instance with given T

can be seen as an instance with time horizon 2k we obtain the following result

by applying Lemma 3.8:

Theorem 3.9 For m ≥ ⌈log T⌉, the algorithm C-GREEDY is 10(⌈log T⌉) ≤
10(log T + 1)-competitive. �

Instances with m < ⌈log T⌉

If m < ⌈log T⌉, then C-GREEDY uses a different partition of the machines by

using a different classification of the jobs. For j = 1, . . . , m machine j is only

allowed to accept jobs with length between T
j−1
m and T

j
m . This way we ob-

tain m classes where for each class i the ratio of the longest and the smallest

possible jobs is ∆i =
m
√

T .

Theorem 3.10 For m ≤ ⌈log T⌉, C-GREEDY has a competitive ratio of 2m(
m
√

T +

1).
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Proof. Analogously to the two preceding proofs, we can upper bound the opti-

mal offline profit as:

OPT (σ) ≤
m∑

i=1

OPT
(m)(σi)

Lemma 3.6

≤ m

m∑

i=1

OPT
(1)(σi)

Theorem 3.5

≤ m

m∑

i=1

2(∆i + 1)GREEDY
(1)(σi)

∆
i
≤ m√

T

≤ m · 2(
m
√

T + 1)

m∑

i=1

GREEDY
(1)(σi)

= m · 2(
m
√

T + 1) · C-GREEDY(σ).

�

The input sequence from Lemma 4 of [SP01] can be adapted for the current

problem by letting all jobs have the same starting time (since jobs no longer

arrive over time but in a list). This gives a lower bound of m(
m
√

T − 1) for any

online algorithm. This means that the algorithm C-GREEDY is optimal up to a

factor of slightly more than 2.

We note that the deterministic algorithm C-GREEDY can be modified to han-

dle that case that minrj∈σ(bj − aj) 6= 1 but this quantity (or a lower bound

ε > 0 for it) is known in advance. In this case in all competitiveness bounds T

is replaced by T/ε in the expressions.

3.6 Semi-Online with non-increasing job sizes

In this section, we examine the competitive ratios which can be achieved by

randomized and deterministic algorithms, if there is some more knowledge

given about future jobs. A common way to do so, is to assume that the jobs

arrive in order of non-increasing job lengths ([SSW98], [EF01]).

3.6.1 Lower Bounds for Deterministic Algorithms

Let ALG be a deterministic c-competitive algorithm. Then, when being pre-

sented σ1, which contains m jobs of length 1 starting at time 1, it has to accept
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at least m
c

jobs. Thus, when being presented σ2, containing all of the jobs of

σ1 and m additional jobs of length 1 starting at time ǫ/2, m jobs of length 1,

starting at time 2−ǫ/2 and m jobs of length 1−ǫ, starting at time 1+ǫ/2, the

algorithm can make a profit of at most

m

c
· 1 +

(

m −
m

c

)

· (3 − ǫ).

whereas the optimal algorithm achieves a profit (3 − ǫ) ·m. Since the algo-

rithm is c-competitive, it must hold that

m
c
· 1 +

(

m − m
c

)

· (3 − ǫ)

(3 − ǫ) · m ≥ 1

c
resp. c ≥ 5 − 2ǫ

3 − ǫ

Since ǫ can be chosen arbitrarily small, there is no deterministic algorithm

with competitivity less than 5/3. Randomization cannot help here, as the fol-

lowing theorem shows.

Theorem 3.11 Any randomized algorithm for OJA with non-increasing job

lengths has a competitive ratio no smaller than 5/3.

Proof. We show this bound by applying Yao. Let σ1, σ2 be defined as in the

proof for the deterministic bound above, p be the probability that the examined

sequence σ equals σ1 and let 1−p be the probability that σ equals σ2. It suffices

to consider the deterministic algorithms, which accept k jobs from σ1 and then

as many as possible from σ2 \ σ1. Figure 3.8 shows such a scheduling.

m1

m2

m3

m4

m5

Figure 3.8: Example for five machines with k = 3

The expected value of the competitivity of ALG
(k) is:
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E

[

c(ALG (k)(σ))

c(OPT (σ))

]

= p · c(ALG (k)(σ1))

c(OPT (σ1))
+ (1 − p) · c(ALG (k)(σ2))

c(OPT (σ2))

= p · k

m
+ (1 − p) · k + (3 − ǫ) · (m − k)

(3 − ǫ) · m

= p · k

m
+ (1 − p) ·

(

k

(3 − ǫ) · m + 1 −
k

m

)

= p · k

m
+

(

k

(3 − ǫ) · m + 1 −
k

m

)

− p ·
(

k

(3 − ǫ) · m + 1 −
k

m

)

=
k

(3 − ǫ) · m + 1 −
k

m
−

(

k

(3 − ǫ) · m + 1 −
2k

m

)

· p

=
k

(3 − ǫ) · m + 1 −
k

m
−

pk

(3 − ǫ) · m − p +
2pk

m

= 1 − p +

(

1

(3 − ǫ) · m −
1

m
−

p

(3 − ǫ) · m +
2p

m

)

· k

Since the expected value is a linear function of k, the maximum is attained

for k = 0 if the slope is negative and for k = m if the slope is positive. Thus, it

suffices to consider the competitivities of ALG (0) and ALG (k) which are given by

E

[

c(ALG (0)(σ))

c(OPT (σ))

]

= 1 − p

and

E

[

c(ALG (m)(σ))

c(OPT (σ))

]

= 1 − p +

(

1

(3 − ǫ) · m −
1

m
−

p

(3 − ǫ) · m +
2p

m

)

· m

= 1 − p +

(

1

3 − ǫ
− 1 −

p

3 − ǫ
+ 2p

)

=
1 − p + (3 − ǫ)p

3 − ǫ
=

1 + (2 − ǫ)p

3 − ǫ
.

So, for given p and ǫ we have a lower bound of max{1 − p,
1+(2−ǫ)p

3−ǫ
}. The

minimum is attained for
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1 − p =
1 + (2 − ǫ)p

3 − ǫ

3 − ǫ − (3 − ǫ)p = 1 + (2 − ǫ)p

2 − ǫ = (5 − 2ǫ)p

p =
2 − ǫ

5 − 2ǫ

The expected value for this p is

1 − p = 1 −
2 − ǫ

5 − 2ǫ
=

5 − 2ǫ − 2 + ǫ

5 − 2ǫ
=

3 − ǫ

5 − 2ǫ

ǫ→0

ց 0.6

Since ǫ can be chosen arbitrarily small, we have a lower bound of 5
3

on the

competitivity of every randomized algorithm. �

3.6.2 Deterministic Algorithms

First of all, we have a look at the Greedy algorithm. Because of the non-

increasing job lengths it cannot be fooled as easily as before, since it is not

possible anymore, to block jobs which have a higher profit.

Theorem 3.12 On every sequence σ of jobs with non-increasing job lengths, the

Greedy algorithm is 3-competitive.

Proof. This can be seen by comparing a schedule obtained by Greedy with an

optimal schedule. As every job accepted by Greedy can block at most three jobs

and since these cannot yield a higher profit, the ratio of 3 follows. �

We try to find a better algorithm than greedy, which means that we want

the competitivity to be less than 3. Therefore, we consider the Algorithm 1

which accepts a job as long as for a time period not longer than a fraction of c

of its running time, there are more than half of the machines occupied. In the

following, we derive lower bounds for different values of c.

Lemma 3.13 GREEDY − c is at least 2 + c-competitive.

Proof. Consider the sequence σ = {j1, . . . , j5m} with

• aji = 1 ,bji = 2 for i = 1, . . .m,
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Algorithm 1 Greedy-c

1: Input: a sequence σ = (j1, . . . , jn), c with 0 ≤ c ≤ 1

2: Output: a subset J ⊆ {j1, . . . , jn}

3: J := ∅
4: for i := 1 to n do

5: Let I := {t ∈ [aji , bji ] : |{k ∈ J : ak ≤ t ≤ bk}| ≥ m/2}

6: if |I| ≤ c · (bji − aji) then
7: J := J ∪ {ji}

8: end if
9: end for

10: Return J

• aji = c ,bji = 1 + c for i = m + 1, . . . 2m,

• aji = ǫ ,bji = 1 + ǫ for i = 2m + 1, . . . 3m,

• aji = 1 + c − ǫ ,bji = 2 + c − ǫ for i = 3m + 1, . . . 4m,

• aji = 1 + ǫ ,bji = 1 + c − ǫ for i = 4m + 1, . . . 5m,

The optimal algorithm chooses j2m+1, . . . , j5m whereas GREEDY − c accepts

j1, . . . , j⌈m/2⌉ and jm+1, . . . , jm+⌊m/2⌋ as one can see in Figure 3.9.

m1

m2

m3

m4

1 2c 1 + c

GREEDY − c

m1

m2

m3

m4

1 2 + c1 + c

OPT

Figure 3.9: Solution of GREEDY − c resp. OPT

Thus, the competitivity on σ is

OPT

GREEDY − c
=

m · (1 + c − 2ǫ + 1)

m
= 2 + c − 2ǫ.

Since ǫ can be chosen arbitrarily small, the competitivity cannot be better

than 2 + c. �
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Lemma 3.14 For c ≤ 1
2

GREEDY − c is not better than 6 − 4c-competitive.

Proof. Consider m to be even and the sequence σ = {j1, . . . , j4m} with

• aji = 1 ,bji = 2 for i = 1, . . .m,

• aji = c + ǫ ,bji = 1 + c for i = m + 1, . . . 2m,

• aji = 2 − c ,bji = 3 − c − ǫ for i = 2m + 1, . . . 3m,

• aji = 1 + c ,bji = 2 − c for i = 3m + 1, . . . 4m.

The optimal algorithm chooses jm+1, . . . , j4m whereas GREEDY − 1
2

accepts

j1, . . . , jm/2 as one can see in Figure 3.10.

m1

m2

m3

m4

1 2

GREEDY − c

m1

m2

m3

m4

c 1 + c 2 − c 3 − c

OPT

Figure 3.10: Solution of GREEDY − c resp. OPT

Thus the competitivity on σ is

OPT

GREEDY − c
=

m · (3 − 2c − 2ǫ)

m/2
= 6 − 4c − 4ǫ

for ǫ arbitrarily small. �

Lemma 3.15 For c > 1
2

GREEDY − c is not better than 2/c-competitive.

Proof. Consider m to be even and the sequence σ = {j1, . . . , j3m} with

• aji = 1 ,bji = 2 for i = 1, . . .m,

• aji = 1.5 − 0.5/c + ǫ ,bji = 1.5 for i = m + 1, . . . 2m,

• aji = 1.5 ,bji = 1.5 + 0.5/c − ǫ for i = 2m + 1, . . . 3m,
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m1

m2

m3

m4

1 2

GREEDY − c

m1

m2

m3

m4

1 2

OPT

Figure 3.11: Solution of GREEDY − c resp. OPT

The optimal algorithm chooses jm+1, . . . , j3m whereas GREEDY − 1
2

accepts

j1, . . . , jm/2 as one can see in Figure 3.11.

Thus the competitivity on σ is

OPT

GREEDY − c
=

m · (0.5/c + 0.5/c − 2ǫ

m/2
= 2/c − 4ǫ

for ǫ arbitrarily small. �

The minimum possible competitivity ratios derived from the three preced-

ing lemmas are plotted in Figure 3.12. One can see that GREEDY − c is worse

than GREEDY for c < 2/3 and cannot have a performance ratio better than

1 +
√

3 > 2, 73 in general.

3.7 Experimental Results

In order to get a feeling for the practical quality of the algorithms presented,

we implemented them and tested their competitivity for different numbers of

jobs n, machines m, machine times T and maximal job lengths maxl. The jobs’

start- and end-times were chosen by first sampling the length l of each job

uniformly from the integers between 1 and maxl and choosing the start time

uniformly from the integers between 0 and T − l afterwards.

In Table 3.1 we present the simulation results with each row representing

1000 randomly generated instances. The left part states the parameter setting,

whilst in the right half the average-case competitivities achieved by GREEDY ,

CRS-GREEDY , C-GREEDY and GREEDY on semi-online instances are given with

the corresponding sample standard deviations.
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Figure 3.12: Minimum possible competitivity for GREEDY − c compared to

GREEDY

Iter. n m T maxl cG[%] E [cCRS] [%] cclass[%] cGs[%]

1000 50 2 64 10 74.3 ± 5.7 24.5 ± 1.7 69.4 ± 6.8 89.9 ± 3.9

1000 50 2 64 30 73 ± 8 27.9 ± 2.5 60.1 ± 7.6 91 ± 4.5

1000 50 2 64 50 75.1 ± 9.5 34.9 ± 3 55 ± 8.1 88.2 ± 4.9

1000 50 2 64 64 74.5 ± 11 32.9 ± 3.4 51.6 ± 8.8 99.6 ± 1

1000 50 5 64 10 76.4 ± 4.8 18.5 ± 0.9 40.7 ± 4.4 93.6 ± 2.8

1000 50 5 64 30 69.5 ± 5.6 22.5 ± 1.6 46.3 ± 5.1 91.1 ± 3.3

1000 50 5 64 50 73.1 ± 7.1 29.5 ± 2 43.5 ± 4.8 89.3 ± 3.6

1000 50 5 64 64 72.8 ± 8.5 27.5 ± 2.3 40.6 ± 5.4 98.9 ± 1.3

1000 50 10 64 10 93.7 ± 4 16.7 ± 0.1 40.2 ± 4.7 99.6 ± 0.9

1000 50 10 64 30 68.5 ± 4.9 18.2 ± 1.2 22.7 ± 2.5 91.7 ± 2.4

1000 50 10 64 50 71.6 ± 6.1 26.2 ± 1.4 26.1 ± 2.9 91.6 ± 2.9

1000 50 10 64 64 71.2 ± 7.1 23.8 ± 1.6 23.4 ± 2.9 97.7 ± 1.6

1000 50 15 64 10 99.6 ± 1.3 16.7 ± 0 64.1 ± 5.9 100 ± 0

1000 50 15 64 30 70.9 ± 4.6 16.6 ± 0.9 30.2 ± 3.3 92.7 ± 2.3

1000 50 15 64 50 71.5 ± 5.5 24.2 ± 1.3 33 ± 2.8 93.4 ± 2.3

1000 50 15 64 64 71.3 ± 6.1 21.8 ± 1.6 28.9 ± 3 97.1 ± 1.6

1000 100 2 64 10 75.7 ± 4.6 29.6 ± 1.6 71.9 ± 5.4 89.4 ± 3

1000 100 2 64 30 76.3 ± 6.7 33 ± 2.3 67.2 ± 6.2 91.9 ± 3.2

1000 100 2 64 50 77.3 ± 7.6 39.2 ± 2.7 62 ± 7.4 88.8 ± 4.8

1000 100 2 64 64 78.5 ± 8.9 38.5 ± 3 59.6 ± 7.6 99.7 ± 0.6

1000 100 5 64 10 70.4 ± 3.6 22.6 ± 0.9 38.3 ± 2.7 88.5 ± 2.1

1000 100 5 64 30 72 ± 5 26.8 ± 1.4 51.1 ± 5 92 ± 2.4

1000 100 5 64 50 74.3 ± 5.8 33.7 ± 1.8 47.9 ± 4.4 88.2 ± 3.3

1000 100 5 64 64 75.9 ± 7.3 32.5 ± 2.1 46.3 ± 5.2 99.4 ± 0.7
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Iter. n m T maxl cG[%] E [cCRS] [%] cclass[%] cGs[%]

1000 100 10 64 10 73.2 ± 3.2 17.7 ± 0.5 27.6 ± 2.3 92.7 ± 2.3

1000 100 10 64 30 68.3 ± 4 22.4 ± 1.1 23.9 ± 2.1 92 ± 1.8

1000 100 10 64 50 71.7 ± 4.9 29.2 ± 1.4 27.7 ± 2.4 88.4 ± 2.5

1000 100 10 64 64 73.4 ± 5.7 27.7 ± 1.6 26.1 ± 2.6 98.6 ± 1

1000 100 15 64 10 85.8 ± 3.4 16.7 ± 0.1 43.4 ± 3.4 98.7 ± 1.4

1000 100 15 64 30 66.7 ± 3.5 19.7 ± 1 29.5 ± 2 91.7 ± 1.6

1000 100 15 64 50 70.6 ± 4.4 26.9 ± 1.1 34.6 ± 2.4 89.2 ± 2.2

1000 100 15 64 64 72 ± 5.1 25.3 ± 1.2 32 ± 2.7 97.9 ± 1.2

1000 50 2 128 10 79.3 ± 5.2 17.7 ± 1.1 45.3 ± 4.2 93.9 ± 3.2

1000 50 2 128 30 71.9 ± 7.1 20.1 ± 1.6 63.2 ± 6.6 89 ± 4.4

1000 50 2 128 50 71.6 ± 7.9 25.2 ± 2 56.3 ± 7.2 89.5 ± 4.8

1000 50 2 128 70 72.3 ± 8.9 30.7 ± 2.5 52.5 ± 7.5 88.8 ± 6.3

1000 50 2 128 90 73 ± 9.1 30.2 ± 2.5 49.9 ± 7.4 87.1 ± 6.2

1000 50 5 128 10 91.7 ± 3.9 14.5 ± 0.3 54.7 ± 5.4 98.8 ± 1.4

1000 50 5 128 30 69.2 ± 5.1 15.5 ± 1.1 37.4 ± 3.9 89.5 ± 3

1000 50 5 128 50 68.5 ± 5.7 20.4 ± 1.3 37.2 ± 6.1 90.1 ± 3.3

1000 50 5 128 70 69.4 ± 6.4 24.6 ± 2.5 40.1 ± 5.2 89.8 ± 5

1000 50 5 128 90 70.9 ± 7 25.8 ± 1.7 38.3 ± 4.7 87.4 ± 4.3

1000 50 10 128 10 99.9 ± 0.7 14.3 ± 0 57.6 ± 5.8 100 ± 0

1000 50 10 128 30 77.8 ± 4.9 14 ± 0.5 26.1 ± 3.4 95.7 ± 2.7

1000 50 10 128 50 68.2 ± 4.8 16.3 ± 0.9 25 ± 2.8 90.7 ± 2.4

1000 50 10 128 70 68 ± 5.4 18.6 ± 1.7 28 ± 2.8 91.7 ± 3.3

1000 50 10 128 90 70.1 ± 5.7 22.9 ± 1.2 26.9 ± 2.8 90 ± 3.2

1000 50 15 128 10 100 ± 0 14.3 ± 0 83.4 ± 5.4 100 ± 0

1000 50 15 128 30 92.7 ± 4.2 14.2 ± 0.2 42.1 ± 5.3 99.8 ± 0.8

1000 50 15 128 50 73.7 ± 4.5 14.6 ± 0.5 34.9 ± 3.8 93.6 ± 2.8

1000 50 15 128 70 69.3 ± 4.7 16.1 ± 1.2 36.9 ± 3.3 93.6 ± 2.1

1000 50 15 128 90 70.7 ± 5.3 20.7 ± 1.3 34.6 ± 2.9 93.4 ± 2.5

1000 100 2 128 10 74.1 ± 4.1 21 ± 1 40.1 ± 2.8 89.7 ± 2.7

1000 100 2 128 30 72.8 ± 5.7 23.8 ± 1.5 67.7 ± 5.7 89.4 ± 3.4

1000 100 2 128 50 74.2 ± 6.3 29.6 ± 1.9 63 ± 5.9 90.4 ± 4

1000 100 2 128 70 74.9 ± 7.2 34.9 ± 2.1 59.5 ± 6.5 90.9 ± 4.1

1000 100 2 128 90 75.9 ± 7.8 34.2 ± 2.3 56.8 ± 6.7 89.2 ± 5.1

1000 100 5 128 10 76.5 ± 3.4 15.7 ± 0.5 42.1 ± 3.1 93.6 ± 2

1000 100 5 128 30 68.3 ± 4.1 18.5 ± 0.9 38.4 ± 3 88.1 ± 2.2

1000 100 5 128 50 70.1 ± 4.7 24.2 ± 1.2 42.6 ± 5 90.2 ± 2.7

1000 100 5 128 70 71.4 ± 5.4 29.8 ± 1.5 44.3 ± 5.1 91.1 ± 3.4

1000 100 5 128 90 72.5 ± 5.8 29.3 ± 1.6 41.8 ± 4.4 87.6 ± 4.1

1000 100 10 128 10 94.1 ± 2.8 14.3 ± 0.1 40.5 ± 3.4 99.6 ± 0.6

1000 100 10 128 30 66 ± 3.3 14.8 ± 0.7 21.8 ± 1.8 87.4 ± 1.9

1000 100 10 128 50 66.7 ± 3.7 20.2 ± 0.9 25.2 ± 2.1 90 ± 2

1000 100 10 128 70 68.1 ± 4.4 24.8 ± 1.8 28.8 ± 2.2 91.1 ± 3
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Iter. n m T maxl cG[%] E [cCRS] [%] cclass[%] cGs[%]

1000 100 10 128 90 70 ± 4.7 25.5 ± 1.2 28.1 ± 2.3 87.2 ± 3.1

1000 100 15 128 10 99.7 ± 0.8 14.3 ± 0 64.6 ± 4.3 100 ± 0

1000 100 15 128 30 68.9 ± 3.1 13.6 ± 0.5 29.2 ± 2.4 90.4 ± 2.4

1000 100 15 128 50 65.8 ± 3.4 17.8 ± 0.7 31.6 ± 2.1 89.4 ± 1.6

1000 100 15 128 70 66.8 ± 3.9 20.6 ± 1.6 36.1 ± 2.3 91.4 ± 2.7

1000 100 15 128 90 68.8 ± 4.3 23.4 ± 0.9 35.1 ± 2.3 87.6 ± 2.6

Table 3.1: Competitivity of the given algorithms under uni-

formly distributed job lengths

Regardless of the different parameter settings, the greedy algorithm per-

formed best. It achieved on average a competitivity of 74.76 %, while the ex-

pected value of CRS-GREEDY was 23.12 % and C-GREEDY could make 42.68 %

of the optimal solutions’ profit. The last column shows the effect of ordering

the jobs within the sequences in non-increasing order of their size. Due to The-

orem 3.12 we know that GREEDY is 3-competitive on instances of that kind. In

fact, its average case competitiveness seems to be much better than that, as it

achieved on average 92.49 % of the profit of the optimal solutions. Although,

we have seen that its worst case behavior is poor, we have to admit that it

seems to be a good choice for practice.

3.8 Preliminary Conclusions

Going back to our initial story, we have discovered organizing the bookings

for cottages is not a trivial task, at least not, if booking requests arrive online.

The competitive algorithms presented in this chapter all work by classifying

customers according to the length of the desired booking interval and then

treating each “customer class” separately. In fact, the lower bounds tell us that

such a classification makes sense if we want to handle worst case scenarios.

So, if your holiday location works in a competitive way, the initial suspicion

that our request was rejected just because we asked for three days instead of

four may be justified. On the other hand the theoretical lower bounds are

somewhat discouraging. Even randomization does not help.

Even more discouraging are the simulation results presented in Section 3.7.

They show that the proposed algorithms do not provide a good capacity utiliza-

tion in the average case, whereas the T -competitive greedy algorithm seems to

reveal an average-case competitiveness of circa 75 %. As a matter of fact, they
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show that despite the worst case behavior we should focus on the average-case

as well.

3.9 Average Case Analysis

In this section, we analyze the expected average-case performance of the algo-

rithms presented in the preceding sections and we compare them. We restrict

ourselves to two special cases. In Subsection 3.9.1 we take a look at instances

where all jobs start at the same time. We will see that under the given distri-

bution the average-case performance of the algorithms differs completely from

their worst case behavior, which matches the simulation results presented in

Section 3.7. As these results confirm the suspicion that the greedy algorithm is

a good choice, we examine its expected performance for one machine in Sub-

section 3.9.2 more closely and compute bounds for up to 15 jobs. Observe that

these expected values also imply bounds for instances with n jobs and m > 1

machines, as their expected load is at least as high as the expected load of

greedy when processing ⌊n/m⌋ jobs on one machine.

3.9.1 Equal Start Times

We restrict ourselves on instances where all the jobs are starting at time 0. This

means that exactly one job can be scheduled on each machine. The job lengths

Xi are uniformly distributed random variables between 0 and T . Since the

greedy algorithm is always optimal for instances with n ≤ m we only consider

instances with n > m.

Definition 3.16 If X1, ..., Xn is a random sample from an absolutely continu-

ous population. X1:n ≤ X2:n ≤ · · · ≤ Xn:n is called the order statistic obtained

by arranging the preceding random sample in increasing order of magnitude.

Theorem 3.17 If X1, ..., Xn is an i.i.d. sample from the uniform distribution on

the interval [0, T ], the expected value of Xk:n is

E [Xk:n] =
k · T
n + 1

Proof. see [ABN92] �

Due to the fact that the optimal algorithm chooses the jobs corresponding

to Xn−m+1:n, . . . , Xn:n, the expected profit of the optimal algorithm is:
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E [OPT ] = E

[

n∑

i=n−m+1

Xi:n

]

=

n∑

i=n−m+1

E [Xi:n] =

n∑

i=n−m+1

i · T
n + 1

=
T

n + 1

n∑

i=n−m+1

i =
T

n + 1
· m · 2n − m + 1

2
=

mT(2n − m + 1)

2(n + 1)

The profit of the greedy algorithm is:

E [GREEDY ] = E

[

m∑

i=1

Xi

]

=

m∑

i=1

E [Xi] =

m∑

i=1

T

2
=

mT

2

For the expected profit achieved by

E [OPT ]

E [GREEDY ]
=

mT(2n−m+1)

2(n+1)

mT
2

=
2n − m + 1

n + 1
= 1 +

n − m

n + 1

= 1 +
n + 1 − 1 − m

n + 1
= 2 −

m + 1

n + 1

n>m
< 2 − α−1

with α := n/m being the average load on each machine.

Consider the algorithm C-GREEDYpresented in Section 3.5.3. Recall that this

algorithm reserves m
log T

machines for each of the classes of jobs J1, . . . , Jlog T with

j ∈ Ji if and only if 2i−1 ≤ bj − aj < 2i. Since the job lengths are uniformly

distributed, the expected length of a job in class Ji is 2i−1+2i

2
= 3 · 2i−2. We

can derive an upper bound on the profit of C-GREEDYby assuming that after

processing the sequence all machines are occupied. This means that for each

class Ji we have m
log T

machines processing jobs with an expected length of 3·2i−2.

So, the expected profit achieved by this algorithm can be estimated by

E [C-GREEDY] ≤
log T∑

j=1

(

m

log T
· 3 · 2j−2

)

=
3m

2 log T
·

log T−1∑

j=0

2j

=
3m

2 log T
· (2log T − 1) =

3m

2 log T
· (T − 1)
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This means that the comparison of C-GREEDYand GREEDY reads as follows:

E [GREEDY ]

E [C-GREEDY]
≥ m · (1 + T

2
)

3m
2 log T

· (T − 1)
=

2 log T(1 + T
2
)

3 · (T − 1)

=
log T(2 + T)

3 · (T − 1)
>

log T

3

When only considering instances with all jobs starting at the same time,

we see that the average profit obtained by C-GREEDYis much worse than the

average profit obtained by GREEDY even though it works much better in the

worst case.

3.9.2 The Average Case Performance of Greedy

We consider the case of one machine with operating time 1 and assume that

the job lengths li for all jobs i = 1, . . . n are uniformly distributed between 0

and 1. As the operating time of the machine is 1 and thus [ai, bi] ⊆ [0, 1] for all

i = 1, . . . , n , ai has to be within [0, 1 − li]. We chose ai uniformly from this

interval.

li

ai

1

1 li

ai

a1

a1

a1 + l1

1

1

Figure 3.13: Set of possible jobs for i = 1 and for i = 2
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After the first job has been accepted, there is only room remaining for ad-

ditional jobs in the intervals [0, a1] and [b1, 1]. In Figure 3.13 there is an illus-

tration of the feasible jobs for i = 1, 2. Here, every possible job corresponds

to a point in the triangle with side length 1. The regions of this triangle which

correspond to jobs which fit into a current schedule are shaded. At the begin-

ning, there is no job in the schedule which might block future jobs, which is the

reason that all jobs are admissible and thus the whole triangle is shaded. After

the acceptance of the first job r1, the feasible region reduces to two smaller

triangles. Observe that in the case of a1 = 0 or a1+ l1 = 1 one of the remaining

triangles has side length 0. Analogously, after having accepted k jobs the set of

feasible solutions corresponds to up to k + 1 shaded triangles (see for example

Figure 3.14).

li

ai

1−L
k+1

1

1

Figure 3.14: Set of admissible jobs after having accepted k jobs with total

length L

In the following, we focus on one of those small triangles which emerge

during the execution of greedy, and we compute the probability that future

requests which correspond to points in this triangle do fit into the schedule

after the acceptance of the first of these requests (which is admitted, as our

algorithm is greedy). This probability will be used to state a formulation of

the expected value of all these requests, which come up and can be scheduled

in this triangle. As a special case, we derive the expected value for the whole

interval [0, 1].

Let the triangle we choose from have side length b and let (a, l) be the start

point and the length of the first job. Like mentioned above, after the acceptance

of this job, there are two new triangles describing the requests which do not
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block this first request. Let p1 and p2 be the probabilities that a job chosen in

the future is within the triangle below a respectively the triangle above a + l.

p1 =

∫a

0

a − x

b − x
dx =

∫a

0

1 −
b − a

b − x
dx = [x + (b − a) ln(b − x)]

a
0

= a + (b − a)(ln(b − a) − ln(b)) = a + (b − a) ln(1 −
a

b
)

p2 =

∫b−a−l

0

b − a − l − x

b − x
dx =

∫b−a−l

0

1 −
a + l

b − x
dx

= [x + (a + l) ln(b − x)]
b−a−l

0 = b − a − l + (a + l)(ln(a + l) − ln(b))

Since a is chosen uniformly between 0 and b − l, these probabilities itself

are random variables with density functions p1(x, l) and p2(x, l).

p1(x, l) = a + (b − a)(ln(b − a) − ln(b))

= (b − l)x + (b − (b − l)x)(ln(b − (b − l)x) − ln(b)) ∀x, l ∈ [0, 1]

p2(x, l) = 1 − (1 − l)x − l + ((1 − l)x + l) ln((1 − l)x + l) ∀x, l ∈ [0, 1]

Due to the way the start- and endpoints are sampled and for algebraic rea-

sons we know that

p1(x, l) = p2(1 − x, l) ∀x, l ∈ [0, 1]. (3.6)

Let E(n, b) be the expected value of the greedy algorithm when processing

n requests in a triangle with side length b. In the following, we abbreviate

p1(x, l) and p2(x, l) by p1 resp. p2.

Lemma 3.18 For all l ∈ (0, 1) we have E(i, l) = E(i, 1) · l

Proof. When regarding a triangle with side length l instead of 1, all lengths and

starting-points are scaled down by a factor of l. For this reason, the expected

value is just reduced by the same factor. �
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E(n, 1) =
1

2
+

∫1

0

∫1

0

∑

i,j:i+j<n

(

(

n − 1

i

)(

n − 1 − i

j

)

pi
1 · pj

2 · (1 − p1 − p2)
n−1−i−j

· (E(i, (1 − l) · x) + E(j, (1 − l) · x + l))

)

dx dl

=
1

2
+

∫1

0

∫1

0

n−1∑

i=0

(

(

n − 1

i

)

pi
1 · E(i, (1 − l) · x)

·
n−1−i∑

j=0

((

n − 1 − i

j

)

· pj
2 · (1 − p1 − p2)

n−1−i−j

)

)

dx dl

+

∫1

0

∫1

0

n−1∑

j=0

(

(

n − 1

j

)

p
j
2 · E(j, (1 − l) · x + l)

·
n−1−j∑

i=0

(

n − 1 − j

i

)

pi
1 · (1 − p1 − p2)

n−1−i−j

)

dx dl

=
1

2
+

∫1

0

∫1

0

n−1∑

i=0

((

n − 1

i

)

pi
1(1 − p1)

n−1−i · E(i, (1 − l) · x)

)

dx dl

(3.7)

+

∫1

0

∫1

0

n−1∑

j=0

((

n − 1

j

)

p
j
2 · (1 − p2)

n−1−j · E(j, (1 − l) · x + l)

)

dx dl

(3.8)

The integrand in (3.7) gives the value of the expected load which will be

achieved in the lower triangle for given l and x. Thus, the integral gives the

expected load within this triangle. Analogously, (3.8) gives the expected load

within the upper triangle. Due to the way start- and endpoints are sampled

these expected values coincide. This is also implied by Equation (3.6). The

integral in (3.7) can be simplified by



An Online Job Admission Problem 45

∫1

0

∫1

0

n−1∑

i=0

((

n − 1

i

)

pi
1(1 − p1)

n−1−i · E(i, (1 − l) · x)

)

dx dl

Lem.3.18
=

∫1

0

∫1

0

n−1∑

i=0

((

n − 1

i

)

pi
1(1 − p1)

n−1−i · (1 − l) · x · E(i, 1)

)

dx dl

=

n−1∑

i=0

((

n − 1

i

)

E(i, 1)

∫1

0

∫1

0

pi
1(1 − p1)

n−1−i · (1 − l) · xdx dl

)

=

n−1∑

i=0

(

(

n − 1

i

)

E(i, 1)

∫1

0

∫1

0

((1 − l)x + (1 − (1 − l)x) ln(1 − (1 − l)x))
i

(1 − ((1 − l)x + (1 − (1 − l)x) ln(1 − (1 − l)x)))n−1−i · (1 − l) · xdx dl)

a:=(1−l)x
=

n−1∑

i=0

(

(

n − 1

i

)

E(i, 1)

∫1

0

∫1

0

(a + (1 − a) ln(1 − a))
i
(1 − (a + (1 − a) ln(1 − a)))n−1−i · a

1 − l
da dl

︸ ︷︷ ︸
=:h(i,n)

)

Thus, we derive a recursive formulation for n > 0 by

E(n, 1) =
1

2
+ 2 ·

n−1∑

i=0

(

E(i, 1)

(

n − 1

i

)

· h(i, n)

)

.

For n ∈ {0, . . . 15}, this gives the expected load as displayed in Table 3.2.

As the optimal algorithm cannot attain a higher load than 1, we can also use

E(n, 1) as a lower bound for the expected competitivity of the greedy algo-

rithm. In order to check the quality of this bound, we have obtained approxi-

mate average competitive ratios by sampling instances according to the given

distribution and computing the loads achieved by the optimal algorithm and

the greedy algorithm. Every row in Table 3.2 corresponds to 1000 samples. Ob-

serve that the expected values E(n, 1) approximate the simulation results quite

well.

Moreover, these expected values also imply bounds for instances with n jobs

and m > 1 machines, as their expected load is at least as high as the expected

load of greedy when processing ⌊n/m⌋ jobs on one machine.
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n E(n, 1) load derived by Simulation

0 0.000 1

1 0.500 0.807

2 0.543 0.722

3 0.572 0.706

4 0.593 0.689

5 0.611 0.713

6 0.625 0.689

7 0.636 0.689

8 0.647 0.689

9 0.656 0.693

10 0.663 0.686

11 0.670 0.705

12 0.677 0.697

13 0.683 0.709

14 0.688 0.716

15 0.693 0.704

Table 3.2: Expected competitivity of greedy algorithm on one machine under

uniformly distributed job length
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3.9.3 An Algorithm which Performs Good in the Average

Case if the Number of Jobs is known Beforehand

Even though we have seen in the preceding subsections that the greedy algo-

rithm reveals a good average-case behavior, it does not seem to be clever to

accept a low-profit job when it is reasonable that plenty of even better jobs are

about to come up. If the algorithm expects a high number n of jobs to arrive,

it makes sense, only to accept high profit requests, whereas a lower threshold

is more suitable if the number of unpublished jobs is low, too. Hence, if n is

known beforehand, the greedy algorithm should accept only jobs which incur

at least a certain profit of α, for some properly chosen α.

In this section, we analyze the average-case performance of this modified

greedy algorithm which we call GREEDY−α and propose such a threshold which

depends on n and is close to optimal. Thereby, we assume the same distribution

on the lengths and starting-points of the jobs as in Subsection 3.9.2.

Theorem 3.19 (Chernoff-Bound) Let X1, X2, . . . , Xn be a sequence of n inde-

pendent Bernoulli-trials with Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p. Then pn is

the expected number of successes (Xi = 1) of the experiment.

For all δ ∈ [0, 1]

Pr
[∑

Xi ≤ (1 − δ) · pn
]

≤ exp

(

−
δ2

2
pn

)

(3.9)

Proof. See for example [MU05] �

We consider the greedy algorithm which skips all jobs of length < α and

schedules all the other jobs greedily. So, every job accepted, has an expected

length of α +
(1−α)

2
=

(1+α)

2
.

Lemma 3.20 For α ∈ [0, n−m+1
n

] we can estimate the expected profit of GREEDY −

α by:

E [GREEDY − α] ≥
(

1 − exp

(

−
((1 − α)n − m + 1)

2

2(1 − α)n

))

· m · (1 + α)

2

Proof. We want to find an upper bound on the probability that less than m jobs

have the desired length of at least α and are accepted. Observe that every set

of m jobs can be scheduled at the same time as they can be put on different

machines.
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For i = 1, . . .n let Yi = 1 if the length of job i is greater or equal α and

Yi = 0 otherwise. Hence, Pr [Yi = 1] = 1 − α and E [
∑n

i=1 Yi] = n(1 − α).

For

δ := 1 −
m − 1

(1 − α)n

m≥1

≤ 1

we can restate the probability that less than m jobs are accepted by

Pr
[∑

Yi ≤ m − 1
]

= Pr
[∑

Yi ≤ (1 − δ) · (1 − α)n
]

As δ ≥ 0 iff α ≤ 1 − m−1
n

, we can apply (3.9) for all α ≤ 1 − m−1
n

Pr
[∑

Yi ≤ m − 1
]

= Pr
[∑

Yi ≤ (1 − δ) · (1 − α)n
]

≤ exp






−

(

1 − m−1
(1−α)n

)2

2
(1 − α)n







= exp






−

(

(1−α)n−m+1

(1−α)n

)2

2
(1 − α)n







= exp

(

−
((1 − α)n − m + 1)

2

2(1 − α)n

)

We can estimate the expected profit by:

E [GREEDY − α] ≥
(

1 − Pr
[∑

Yi ≤ m − 1
])

· m · (1 + α)

2

≥
(

1 − exp

(

−
((1 − α)n − m + 1)

2

2(1 − α)n

))

· m · (1 + α)

2

=

(

1 − exp

(

−
n

2
+

n

2
α + m − 1 −

(m − 1)2

2(1 − α)n

))

· m · (1 + α)

2

�

We choose α ′ in dependence of m and estimate its expected profit:
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α ′ :=
2

n

(

ln

(

2n

n2 − 4(m − 1)2 + 2n

)

− (m − 1) +
n

2
+

(m − 1)2

2n

)

. (3.10)

For this specific choice of α, we can estimate the terms from the expected

values lower bound by:

(

1 − exp

(

ln

(

2n

n2 − 4(m − 1)2 + 2n

)

+
(m − 1)2

2n
−

(m − 1)2

2(1 − α ′)n

))

α′>0
>

(

1 − exp

(

ln

(

2n

n2 − 4(m − 1)2 + 2n

)

+
(m − 1)2

2n
−

(m − 1)2

2n

))

=

(

1 −
2n

n2 − 4(m − 1)2 + 2n

)

and

(1 + α ′)

2
=

(1 + 2
n

(

ln
(

2n
n2−4(m−1)2+2n

)

− (m − 1) + n
2

+
(m−1)2

2n

)

)

2

=

(

1 + 2
n

ln
(

2n
n2−4(m−1)2+2n

)

− 2
n
(m − 1) + 1 + 2

n

(m−1)2

2n

)

2

=

(

1 +
1

n
ln

(

2n

n2 − 4(m − 1)2 + 2n

)

−
m − 1

n
+

(m − 1)2

2n2

)

.

As the optimal algorithm cannot have a capacity utilization better than one

on each machine we have E [OPT ] ≤ m. Together with the estimations stated

above, we can now estimate the ratio of the expected value of GREEDY − α ′ as

E [GREEDY − α ′]

E [OPT ]
≥
(

1 −
2n

n2 − 4(m − 1)2 + 2n

)

·
(

1 +
1

n
ln

(

2n

n2 − 4(m − 1)2 + 2n

)

−
m − 1

n
+

(m − 1)2

2n2

)

Figures 3.15, 3.16 and 3.17 illustrate the quality of this bound. For higher

numbers of jobs we see that the algorithm almost works as good as the optimal

algorithm. This intuition is settled by the following lemma:
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Lemma 3.21 The expected competitivity of GREEDY − α ′ converges to one for

n → ∞.

Proof.

lim
n→∞

E [GREEDY − α ′]

E [OPT ]
≥ (1 − 0) · (1 + 0 − 0 + 0) = 1

�
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Figure 3.15: Lower bound for expected competitivities of Greedy-α ′ and

Greedy on one machine
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Figure 3.16: Lower bound for expected competitivities of Greedy-α ′ and

Greedy on ten machines
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Figure 3.17: Lower bound for expected competitivities of Greedy-α ′ and

Greedy on 50 machines



Chapter 4

Revenue Management for

Scheduling Problems

4.1 Introduction

In this chapter we consider a problem which is similar to the one discussed in

the preceding chapter. Here, the jobs are not committed to a given start time,

but can be started within a time interval beginning with the release time of the

job. Moreover, we allow arbitrary profits which do not depend on the lengths

of the jobs anymore.

We are given m identical machines which are available for a planning hori-

zon from [0, T ] and a set of n orders J = {j1, . . . , jn}. Each order ji is charac-

terized by its release time ri ∈ [0, T ], its processing time bi ≥ 0, a time slack

δi ≥ 0, and the profit pi ≥ 0 which is obtained, if the order is accepted and

produced. The time slack δi indicates the latest time ri + δi at which ji can be

started such that it is done until its deadline ri +bi +δi when the product must

be manufactured.

Each order ji which is accepted must be scheduled without preemption on

one of the m machines. In the offline version of the problem, all orders are

known at time 0. In the practically more relevant online version at time t

only orders with release time at most t are known to an online algorithm.

Upon release of a new order ji at time ri an online algorithm must decide

immediately whether to accept or to reject the order. If the order is accepted,

the algorithm must provide a feasible schedule for all accepted orders which is

consistent with previous decisions, that is, at all times t ′ < t, the new schedule

must coincide with all previously computed schedules.

52
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The problem is a generalization of the problem of scheduling equal-length

jobs on parallel machines, where the jobs have release times and deadlines

and the goal is to maximize the number of jobs completed in time. Baruah

et al. [BHS01] showed that a greedy-type algorithm is 2-competitive for this

problem with m = 1, equal profits and nondecreasing absolute deadlines for

slacks over time (i.e. ri + bi + δi ≤ rk + bk + δk for all ji, jk with ri < rk).

For m = 1, equal job lengths and equal profits, Goldman et al. [GPS00]

give a lower bounds of 4/3 for the competitive ratio of randomized algorithms.

They also show that no deterministic algorithm can better than 2-competitive

in this setting and show that the greedy algorithm matches this bound. We

generalize this result in Theorem 4.7 by showing that the greedy algorithm is

(1 + pmax/pmin)-competitive for pmax and pmin being upper resp. lower bounds

for the profits of the jobs.

Ball and Queyranne analyzed the problem of online booking [BQ06] and

found lower bounds and competitive algorithms for the problem with different

kinds of profits. As two jobs which do not block each other can be processed

on the same machine, our problem is a generalization of the problem studied

by Ball and Queyranne.

In Section 4.2 we consider the hardness of the offline problem and propose

an integer linear programming approach to find optimal solutions. Focusing on

the case where all jobs have the same length, we derive competitive determin-

istic and randomized algorithms in Section 4.3 for the online problem with all

jobs having the same length. For these algorithms and their analysis in Subsec-

tions 4.3.2 and 4.3.3, we reuse some of the ideas which were already applied

in Subsections 3.5.2 and 3.5.3. Finally, we evaluate the empirical performance

of the proposed algorithms in Section 4.4.

4.2 The Offline Problem

If δi = 0 for each order ji, the problem can be solved optimally by network

flow techniques, as this problem is equivalent to the job-admission problem

from the previous chapter. In general, this problem is NP-hard, as we show in

Subsection 4.2.1. In Section 4.2.2 we provide an integer linear programming

formulation, which can be applied to all of the other cases for which there are

optimal algorithms with polynomial running time not available.
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4.2.1 Hardness

Lemma 4.1 The problem of computing an optimal subset of jobs to be accepted

is NP-hard for each fixed m ∈ N.

Proof. We first consider the case m = 2 which we handle by a reduc-

tion from the PARTITION-Problem. Given an instance of PARTITION specified by

n items with sizes s1, . . . , sn and B =
∑n

i=1 si/2 we proceed as follows: We set

T = B and for each item i we build an order ji with ri = 0, bi = si ,pi = si, and

δi = B − si. So each item has a deadline of T = B and we can accept all jobs

if and only if we can partition the items into two sets where the sizes of all the

items in each set sum up to B.

The case m = 1 is handled by the following idea: For a given instance of

MAXIMUMSUBSETSUM specified by n numbers with sizes s1, . . . , sn and B ∈ N,

we have T = B and for each of the n items i we introduce n orders j1, . . . , jn
analogously to the case m = 2. This way an optimal subset of jobs corresponds

to an optimal solution of the given SUBSETSUM problem.

Analogously, we can show NP-hardness for m ≥ 3 by reduction from BIN-

PACKING. In this case, every machine corresponds to a bin, and the question

whether all items fit into m bins boils down to the question whether the corre-

sponding jobs can be scheduled on m machines. �

As preemption does not matter in the above constructions, we conclude that

the problem would still be NP-hard even if we allowed preemption.

4.2.2 An Integer Linear Programming Approach

As the offline algorithm knows all the requests beforehand, he can choose an

appropriate discretization of [0, T ] such that the offline problem can be solved

by the following time-indexed integer linear program:
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max

n∑

i=1

piyi

n∑

i=1

xi,t ≤ m, t ∈ [0, T ] (4.1a)

T∑

t=0

xi,t = yibi, ji ∈ J (4.1b)

xi,t ≥ xi,t−1 − zi,t, ji ∈ J, t ∈ [0, T ] (4.1c)

T∑

t=0

zi,t ≤ yi, ji ∈ J (4.1d)

xi,t = 0 ji ∈ J, t /∈ [ri, ri + bi + δi − 1] (4.1e)

xi,t, zi,t ∈ {0, 1}, ji ∈ J, t ∈ [0, T ]

yi ∈ {0, 1}, ji ∈ J

Here, the binary variable yi = 1 if and only if order ji is accepted and

xi,t = 1 if and only if job ji is being processed at time t. zi,t = 1 indicates that

time t is the last time job ji is being worked at.

Condition (4.1a) ensures that at any time at most m jobs are being pro-

cessed, equality (4.1b) states that an accepted order ji needs to be processed

for exactly bi units of time. Conditions (4.1c) and (4.1d) ensure that the time

slot reserved for an accepted job is in fact an interval and (4.1e) guarantees

that a job is processed neither before its release time nor after its deadline.

Lemma 4.2 Any feasible solution (x, y, z) for the IP (4.1) corresponds to a feasi-

ble schedule which can be computed from (x, y, z) in linear time.

Proof. We have seen that for each accepted order ji the feasible solu-

tion (x, y, z) provides an interval Ii = [αi, βi] in which ji is being processed.

We consider the interval graph G with vertex set consisting of all intervals of

accepted jobs. By condition (4.1a) the maximum clique size of G is at most m

which by perfectness of interval graphs implies that G can be colored (in linear

time) by at most m colors. Clearly, each such coloring of the intervals with

at most m colors corresponds to an assignment of the jobs to machines which

together with the intervals gives a feasible schedule. �
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Cutting Planes

In order to improve the formulation stated above, we give some cutting planes.

When a job i is processed at some time t, then due to its length bi, it must be

done by time t + bi, thus:

xi,t + xi,t+bi
≤ 1 ji ∈ J, t ∈ [ri, ri + δi] (4.2)

In order to show, that this valid inequality is a cutting plane, we consider

an instance consisting of two machines and three jobs j1, j2, j3, with ri = 0,

δi = 1, pi = 1, and bi = 2 for i = 1, 2, 3. We choose T = 3 and {1, 2, 3} as a

discretization of [0, 3]. This means that xi,t is supposed to be 1 if ji is processed

during the whole interval [t − 1, t]. As we cannot schedule more than one job

on a machine, and we have two machines available, the optimal solution can

be achieved by scheduling one job on each machine, obtaining a profit of 2.

Consider the feasible fractional solution of (4.1a)-(4.1e) with yi = 1 and

xi,t = 2/3 for i, t = 1, 2, 3, which yields a profit of 3 and is thus an optimal

solution of the linear relaxation of the given IP. Due to xi,1 + xi,3 = 4/3 > 1,

this solution violates (4.2) and we can call Inequality (4.2) a cutting plane, as

it cuts of this solution.

As zi,t = 1 if and only if t is the last time slot of ji’s processing time, we

know that xi,t = 1 for the last bi time slots before. This is expressed by the

following valid inequality:

xi,t′ ≥ zi,t ji ∈ J, t ′ ∈ [t − bi + 1, t]. (4.3)

On the other hand, xi,t = 0 for all other t, which is enforced by the following

valid inequality:

xi,t′ ≤ 1 − zi,t ji ∈ J, t ′ /∈ [t − bi + 1, t] (4.4)

According to (4.1a)-(4.1e) and (4.2), a job j1 of length 2 can be processed in

[0, 4] in a way such that x1,1 = x1,4 = 2/3 and x1,2 = x1,3 = 1/3. Since z1,3 = 2/3

and x1,1 = 2/3 this solution violates (4.4), and it disobeys (4.3), due to x1,2 =

x1,3 = 1/3 < 2/3 = z1,3. For this reason we can call the valid inequalities (4.3)

and (4.4) cutting planes for the polyhedron defined by (4.1a)-(4.1e) and (4.2).

These cutting planes proved to be useful in the computational experiments

presented in Section 4.4, as they decreased the time spent on solving the offline

problems drastically.
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4.3 Online Algorithms

We only consider online algorithms for the case that all of the jobs have unit

size.

For seat reservation problems, which came up in the airline industry (see

e.g. [MR99]), algorithms based on Partitioned Protection Level Policies and

Nested Protection Level Policies proved to be useful. Both of these approaches

are based on the idea of dividing the jobs into classes C1, . . . , Ck such that all

of the elements of Ci have a higher profit than the elements of Ck for i > k and

assigning the resources to the classes. Protection Level Policies try to allocate

the requests to a resource of the same class. If this is not possible, Partitioned

Protection Level Policies reject the request, while a Nested Protection Level

Policies tries to assign the request to one of the resources meant for jobs with

less profit. Inspired by the randomized algorithm CRS-GREEDY which is based

on the classify and randomly select-paradigm [ABFR94], we adopt Protection

Level Policies in Subsection 4.3.3 and 4.3.4 to our problem and derive the al-

gorithms C-GREEDYand NESTED-GREEDY, which apply a greedy algorithm as a

subroutine.

In order to obtain a lower bound for the competitive ratio of online algo-

rithms, we refer to Chapter 3:

Theorem 4.3 If all jobs have unit size, any randomized algorithm has a compet-

itive ratio no smaller than 1
2
(log(pmax/pmin) + 2) against an oblivious adversary.

Proof. The proof of Theorem 3.3 carries directly over to this problem, as the

instances considered there can be implemented in our setting. For this reason,

we need to define for each job in the instances considered in the proof of The-

orem 3.3 a job j with rj = 0, δj = 0, and the profit attaining the value of the

job’s length in the instance of OJA. This way, we have the same property that

each machine can process at most one job and the profits obtained are identi-

cal. Since pmax = T and pmin = 1, the proof of the claimed lower bound can be

given along the same lines. �

4.3.1 The Greedy algorithm

In this subsection we analyze the competitivity of a greedy-type algorithm,

which schedules all jobs as early as possible, and rejects those for which it is

not possible to find a feasible schedule containing them.

For a given solution J̃ ⊆ J and ji ∈ J̃ define ti to be the starting time of ji.
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Lemma 4.4 If all jobs have unit size and the same slack δ, then there exists an

optimal solution J̃ ⊆ J, such that ti ≤ tk for all ji, jk ∈ J̃ with ri ≤ rk.

Proof. We establish the claim by proving that two jobs ji, jk with ti ≤ tk

and ri > rk are allowed to change places (see Figure 4.1).

As tk ≥ ti ≥ ri and tk ≤ rk + δ ≤ ri + δ, it is allowed to schedule job ji at

time tk. On the other hand job jk can take the place of ji, since ti ≥ ri > rk and

ti ≤ tk ≤ rk + δ.
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Figure 4.1: Jobs ji and jk are allowed to change their start times

By applying these swaps one by one an optimal solution with the desired

property can be created. �

Theorem 4.5 If all jobs have unit size and the same slack δ and profit p, then

scheduling jobs greedily in the order of increasing release times gives an optimal

solution.

Proof. For a given sequence of jobs σ let OPT = (j1, j2, . . . jk) be the jobs

scheduled by the optimal algorithm and GREEDY = (i1, i2, . . . , ih) be the jobs

scheduled by the greedy algorithm, with both sequences ordered by the release

times of their elements. For j ∈ OPT let to
j be the start time of j in the schedule

of OPT and define tg
j the start time of j in the schedule obtained by the greedy

algorithm for all j ∈ GREEDY . Let p := min{l : jl 6= il or to
jl
6= t

g
il
} be the index

of the first job which is not treated by both algorithms in the same way.

Because of Lemma 4.4 we can assume that the optimal solution starts its

accepted jobs in order of their release times. Observe that GREEDY has the

same property. Additionally, we choose OPT to be an optimal solution with

maximum p.

Case 1: Suppose jp = ip but the job is started by the algorithms at different

times. Then, because of the way the greedy algorithm works, we know that

t
g
ip

< to
jp

. In this case, we obtain another optimal solution OPT ′ , by starting

ip earlier. With to
jp

:= t
g
ip

the latter jobs jp+1, . . . , jk can still be scheduled and,

as this start time fits to the greedy solution, it fits for the first p − 1 jobs of the

optimal solution as well. As OPT ′ still schedules with increasing release times,
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we have found a solution with higher p. This contradicts the maximality of

OPT with respect to p.

Case 2: Suppose jp 6= ip. As OPT is optimal, there is a conflict between ip

and jp. We claim that the optimal solution can schedule ip at time t
g
ip

instead

of jp. This way we obtain a schedule OPT ′ which contradicts the maximality of

OPT with respect to p.

As we have rip ≤ rjp and thus t
g
ip

≤ to
jp

(GREEDY always starts as soon as

possible), the optimal algorithm could have started ip instead of jp at time t
g
ip

.

It remains to show that it is not possible that the optimal algorithm accepted ip

but started it later. In this case there was some l > p such that jl = ip and as

nondecreasing release times imply nondecreasing start times in OPT , we have:

to
ip

= to
jl
≥ to

jl−1
≥ · · · ≥ to

jp

Since the greedy algorithm accepted ip, we have rip ≤ rjp , thus to
ip

≤ to
jp

and consequently

to
ip

= to
jl

= to
jl−1

= · · · = to
jp

So, all of these jobs start at the same time, which means that ip can be seen

as the next job that the optimal algorithm accepts, which means that jp = ip.

This case is treated above as Case 1. �

Lemma 4.6 If all jobs have unit size, arbitrary slacks δi and profits between pmin

and pmax, then scheduling jobs greedily in the order of increasing release times is

not better than 1 + pmax

pmin
.

Proof. Consider the sequence consisting of m low-profit jobs with release

time 0 and δ = 1.5 and m high-profit jobs with release time 0.5 and δ = 0.

Greedy accepts all of the low-profit jobs and starts them immediately at time 0,

while the optimal algorithm starts all of them at time 1.5. This way all of the

high-profit jobs can be scheduled and the optimal algorithm achieves a profit

of m ·pmax + m ·pmin, while greedy makes a profit of m ·pmin. The lower bound

obtained reads

m · pmax + m · pmin

m · pmin

= 1 +
pmax

pmin

�

Theorem 4.7 If all jobs have unit size, arbitrary slacks δi and profits between

pmin and pmax, then scheduling jobs greedily in order of increasing release times is

1 + pmax

pmin
-competitive.
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Proof. For a given sequence of jobs σ let OPT be the set of jobs scheduled by

the optimal algorithm and GREEDY be the set of jobs scheduled by the greedy

algorithm. For j ∈ OPT let to
j be the start time of j in the schedule of OPT and

define t
g
j the start time of j in the schedule obtained by the greedy algorithm

for all j ∈ GREEDY . Consider the mapping g : GREEDY → OPT which is defined

by Algorithm 2

Algorithm 2 mapping

1: Input: GREEDY , OPT

2: Output: a function g mapping GREEDY on OPT

3: for all j ∈ GREEDY do
4: if j ∈ OPT then

5: g(j) := {j}

6: OPT := OPT \ {j}

7: else

8: g(j) := ∅
9: end if

10: end for
11: for all j ∈ GREEDY do
12: Choose k ∈ OPT with to

k minimal from all jobs in OPT overlapping j

13: if k exists then
14: g(j) := g(j) ∪ {k}

15: OPT := OPT \ {k}

16: end if
17: end for

18: return g

We claim that every j ∈ OPT is mapped by g. For this reason, suppose

there was j ∈ OPT which is not the picture of any l ∈ GREEDY . Then, there

are m jobs j1, . . . jm ∈ GREEDY which block every possible start time of j.

Otherwise, GREEDY would have accepted j. This means tji < rj and tji >

rj + δ − 1. We can assume that δj < 1 as there cannot exist a job with tji < rj

and tji > rj + δ − 1 ≥ rj. As j /∈ g(ji) for all i = 1, . . . , m there have to be m

jobs k1, . . . , km ∈ OPT \ GREEDY which start not later than j. If one of them

started later, g would have mapped j to one of the ji instead. Thus, tki
≤ tj for

i = 1, . . . , m and consequently tkl
≤ tj − 1 ≤ rj + δ − 1 < rj for some l.

Now, we can apply the same argumentation to kl as to j. There have to be m

jobs p1, . . . , pm ∈ GREEDY which blocked the acceptance of kl. So, all of these

jobs start before rkl
and end after rkl

+ δ. It is important to mention that these

jobs are different from the jobs which block j. Suppose there was a job j̃ which
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blocks j and kl, then it has to be started before the release time of kl and it ends

after the last possible start time of j. So, we need tj̃ < rkl
≤ tkl

≤ tj − 1 ≤ rj

and tj̃ > rj + δ which is contradiction. So, as all of the pi are not mapped to

kl, there have to m more jobs in OPT which start not later than kl. Like above,

one of them starts not later than tkl
− 1 and so on.

This way we obtain an endless sequence of jobs, which contradicts the fact

that the input sequence in finite. Thus, all elements of OPT are mapped by

g and we have OPT = ∪j∈GREEDY g(j). Now, we can estimate the value of the

optimal solution.

∑

j∈OPT

pj =
∑

j∈GREEDY

f(g(j))

≤
∑

j∈GREEDY

pj +
pmax

pmin

pj

=
∑

j∈GREEDY

pj

(

1 +
pmax

pmin

)

=

(

1 +
pmax

pmin

) ∑

j∈GREEDY

pj

�

4.3.2 An Algorithm Based on Classify and Randomly Select

Assume now we are given a lower and an upper bound bound pmin and pmax

for the profits of the elements of σ. Given some ∆ > 1, we divide the possible

input requests into N := ⌈log∆ T⌉ disjoint classes C1, . . . , CN, with j ∈ Ci if and

only if pmin · ∆i−1 ≤ pj < pmin · ∆i for i = 1, . . . , N. The algorithm CRS-GREEDY

chooses class Ci with probability 1
N

Then, when processing a sequence σ the

algorithm ignores all requests not in class Ci and uses GREEDY to process the

requests in class Ci.

For i = 1, . . . , N let σi := σ ∩ Ci and OPT i denote the total profit of jobs

from class Ci accepted by OPT . If GREEDY processes σi for some i, it achieves

a competitive ratio of 1 + ∆ by Theorem 4.7, since ∆σi
≤ ∆i/∆i−1 = ∆. Since

there is a probability of 1
N

that the algorithm picks the class which contributes

the biggest part to the optimal solution we can estimate the expected value of
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the profit obtained by CRS-GREEDY as follows:

E [CRS-GREEDY(σ)] =

N∑

i=1

1

N
· GREEDY (σi) ≥

1

N

N∑

i=1

1

1 + ∆
OPT (σi)

≥ 1

(1 + ∆)N

N∑

i=1

OPT (σi) ≥
1

(1 + ∆)N

N∑

i=1

OPT i

=
1

(1 + ∆)N
OPT (σ).

Thus, CRS-GREEDY achieves a competitive ratio of

(1 + ∆)N = (1 + ∆)

⌈

log∆

pmax

pmin

⌉

≤ (1 + ∆)

(

log∆

pmax

pmin

+ 1

)

=
1 + ∆

ln ∆

(

ln
pmax

pmin

+ ln ∆

)

The first term is smallest for the ∆ ′ which minimizes

1 + ∆

ln ∆

Looking at the derivatives, we see that

1 + 1/∆ ′ = ln ∆ ′ and equivalently ∆ ′ =
1 + ∆ ′

ln ∆ ′ . (4.5)

So, for choosing ∆ as ∆ ′ we obtain a competitivity of

1 + ∆ ′

ln ∆ ′ (ln
pmax

pmin

+ ln ∆ ′)
Eq.(4.5)

= ∆ ′
(

ln
pmax

pmin

+ ln ∆ ′
)

∆′≤3.59113

≤ 3.59113

(

ln
pmax

pmin

+ 1.27847

)

Thus, together with Theorem 4.3 we can state the following theorem:

Theorem 4.8 If all jobs have unit size, arbitrary slacks δi and profits between

pmin and pmax, then CRS-GREEDY is 3.59113
(

ln pmax

pmin
+ 1.27847

)

-competitive,

which is optimal up to a constant factor.
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4.3.3 Partitioned Protection Level Policies

We will now use GREEDY and ideas from the classify-and-select paradigm to

obtain a deterministic algorithm which achieves an improved competitiveness.

As it applies for the problem considered in this chapter as well, we restate

Theorem 3.6 from the preceding chapter:

Lemma 4.9 Suppose that we are given a sequence of jobs σ. For 1 ≤ t ≤ m let

OPT (t)(σ) denote the optimal offline profit achievable using t machines (so that

OPT (σ) = OPT (m)(σ)). Then,

t

m
· OPT

(m)(σ) ≤ OPT
(t)(σ) ≤ OPT

(m)(σ).

Instances with m ≥ log∆′ (pmax/pmin)

Similar to the randomized algorithm CRS-GREEDY, the improved deterministic

algorithm C-GREEDY divides the jobs into k := ⌈log∆′ pmax/pmin⌉ classes with

class Ci holding all the jobs with profit between pmin · ∆ ′i−1 and pmin · ∆ ′i. The

algorithm reserves exactly t := ⌊m/k⌋ machines for each of the k classes Ci

and uses an instantiation of GREEDY to process the jobs on each of the classes.

The next Lemma shows that the competitive ratio of this algorithm is only a

factor of 1 + 1/t away from the competitive ratio of CRS-GREEDY :

Lemma 4.10 For m ≥ log∆′

pmax

pmin
C-GREEDY is

(

1 + 1
t

)

(

ln pmax

pmin
+ ln ∆ ′

)

∆ ′- com-

petitive.

Proof. Similar as in Lemma 4.9 let OPT (t) and GREEDY (t) be the respective

algorithms which schedule jobs on t machines instead of on m machines. Let

OPT i be the profit of OPT obtained by jobs in class Ci.

Then with

m/k

⌊m/k⌋ ≤ t + 1

t
= 1 +

1

t
⇒ m

t
≤ k ·

(

1 +
1

t

)

(4.6)
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we can estimate the profit of the optimal algorithm by

OPT (σ) =

k∑

i=1

OPT i ≤
k∑

i=1

OPT
(m)(σi)

Lemma 4.9

≤
k∑

i=1

m

t
· OPT

(t)(σi)

Eq.(4.6)

≤
k∑

i=1

k ·
(

1 +
1

t

)

· OPT
(t)(σi)

Theorem 4.7

≤ k ·
(

1 +
1

t

) k∑

i=1

(∆ + 1)GREEDY
(t)(σi)

= k ·
(

1 +
1

t

)

(∆ ′ + 1)

k∑

i=1

GREEDY
(t)(σi)

= k ·
(

1 +
1

t

)

(∆ ′ + 1) · C-GREEDY(σ).

With

k = ⌈log∆′(pmax/pmin)⌉ ≤ log∆′

pmax

pmin

+ 1 =
ln pmax/pmin + ln ∆ ′

ln ∆ ′

we obtain the claimed competitivity of

k ·
(

1 +
1

t

)

(∆ ′ + 1) ≤
(

1 + 1
t

)

(

ln pmax

pmin
+ ln ∆ ′

)

∆′+1
ln ∆′

Eq.(4.5)
=

(

1 + 1
t

)

(

ln pmax

pmin
+ ln ∆ ′

)

∆ ′.

�

Observe that 1 + 1/t ≤ 2 for m ≥ log∆′

pmax

pmin
.

Instances with m < log∆′ (pmax/pmin)

In this case we cannot apply C-GREEDY as stated above, since t would be less

than one, which means that there are more classes of jobs than machines.

Lemma 4.11 For m < log∆′

pmax

pmin
C-GREEDY is m ·

(

m
√

pmax/pmin + 1
)

- competi-

tive.



Revenue Management for Scheduling Problems 65

Proof. In this case, we define ∆ := m
√

pmax/pmin and analogously to the preced-

ing Lemma the competitivity of this algorithm can be estimated as:

OPT (σ) =

m∑

i=1

OPT i ≤
m∑

i=1

OPT
(m)(σi)

Lemma 4.9

≤
m∑

i=1

m · OPT
(1)(σi)

Theorem 4.7

≤ m ·
m∑

i=1

(∆ + 1)GREEDY
(1)(σi)

= m · (∆ ′ + 1)

k∑

i=1

GREEDY
(1)(σi)

= m · ( m
√

pmax/pmin + 1) · C-GREEDY(σ).

�

4.3.4 Nested Protection Level Policies

Suppose, C-GREEDY processes a sequence σ with all jobs having the same profit.

In this case, the algorithm schedules jobs only on the t machines of the corre-

sponding class and rejects all the others. As this behavior is unsatisfactory from

the practitioner’s point of view, we derive another algorithm NESTED-GREEDY

which has a competitivity not worse than C-GREEDY but overcomes this deficit.

The difference between C-GREEDY and NESTED-GREEDY is that before reject-

ing a job j ∈ Ci, NESTED-GREEDY tries to schedule it on one of the machines

meant for jobs of class Ci−1. If it cannot be scheduled on one of those machines,

it is handed to the next class and so on. If j could not be scheduled on any of

the machines considered, it is rejected.

Observe that the profit realized by a solution found by GREEDY on some

sequence σ cannot become smaller if an additional job j with higher profit is

added to σ. As j can displace at most one of the other jobs, and the replaced

job has a smaller profit, the overall profit can only become larger.

Like C-GREEDY, NESTED-GREEDY uses an instantiation of GREEDY to pro-

cess the jobs of each of the classes Ci. But in contrast to the other al-

gorithm, NESTED-GREEDY enlarges each class Ci by those jobs belonging to

Ci+1, Ci+1, . . . , Ck which could not be scheduled on any of the corresponding
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machines. Because of the observation made enough, we see that the profit

obtained by NESTED-GREEDY is not smaller than the profit of C-GREEDY. Con-

sequently, the competitive ratios proven in Subsection 4.3.3 apply for NESTED-

GREEDY as well

4.4 Experimental Results

Despite the worst case behavior of the online algorithms studied above, we

would like to get an impression of their practical quality. Thus, we imple-

mented them and tested their competitivity for different numbers of jobs n and

machines m. The machine time is 100 and each job has length 10, the jobs’ start

times are sampled uniformly from the interval of all possible start times [1, 70].

δi is chosen uniformly between 0 and 20 and the profit of job i is calculated by

pi := α − β · δi with α := 100 and β := 5. This linear profit function reflects the

experience that jobs requiring a high operational availability come along with a

higher profit, which is a common assumption in revenue management [TR05].

Release times and slack times are chosen in a way such that they can be

sampled independently. Suppose the release time ri was greater than 70, then

δi could not attain 20 anymore, due to the job length and the machine time

of 100. As a consequence jobs with release times greater than 70 would have

smaller δi and thus larger pi.

According to the definition of C-GREEDY and NESTED-GREEDY given in the

previous section, it can happen that not all of the machines are assigned to

classes. In contrast to their definition, we have implemented these algorithms

such that these m−⌊m/k⌋ machines left over are assigned to the classes meant

for the highest profit jobs. Each of these classes received an additional machine

this way. This is allowed, since this modification does not harm the competitiv-

ities proven for C-GREEDY and NESTED-GREEDY.

In Table 4.1 we present the simulation results with each row representing a

set of randomly generated instances. The left part states the parameter setting,

whilst in the right half the average-case competitivities achieved by GREEDY

CRS-GREEDY and C-GREEDY are given with the corresponding sample standard

deviations.

Iter. n m cG[%] E [cCRS] [%] cclass[%] cnested[%]

20 30 2 54.2 ± 9.2 36.3 ± 6.9 44.8 ± 5.8 59.2 ± 7.5

20 30 5 89.6 ± 5.3 35.5 ± 6.4 68.5 ± 9.4 93 ± 4.4

20 30 10 100 ± 0 35 ± 5.1 93.1 ± 6.5 100 ± 0
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Iter. n m cG[%] E [cCRS] [%] cclass[%] cnested[%]

20 30 15 100 ± 0 36.7 ± 6.8 98.9 ± 2.3 100 ± 0

20 40 2 47.5 ± 5.4 33.2 ± 3.7 38.1 ± 6 52 ± 5.1

20 40 5 77.4 ± 5.5 34.6 ± 4.9 58.6 ± 9.4 77.9 ± 4.4

20 40 10 99.7 ± 1.2 36.7 ± 6.8 90.5 ± 5.6 100 ± 0

20 40 15 100 ± 0 37.5 ± 7.4 97.2 ± 3.4 100 ± 0

20 50 2 39.8 ± 6 34.5 ± 2.9 38.5 ± 3.8 47.2 ± 5.8

20 50 5 67.9 ± 6 34.3 ± 5.1 51.9 ± 6.2 69.9 ± 4.4

20 50 10 96.9 ± 3.3 34 ± 3.8 78.4 ± 8.8 98.8 ± 2.9

20 50 15 100 ± 0 35.8 ± 6.1 90.6 ± 7.4 100 ± 0

20 60 2 38.2 ± 4.5 34.5 ± 2.4 35.1 ± 3.7 44.2 ± 4.4

20 60 5 58.3 ± 5.2 34.8 ± 5.5 49.9 ± 4.6 65 ± 4.4

20 60 10 92.7 ± 5.2 34.1 ± 3.8 69.7 ± 5.5 94.1 ± 5.1

20 60 15 100 ± 0 33.3 ± 0 79.5 ± 6.2 100 ± 0

20 70 2 33.7 ± 7.7 36.2 ± 2.8 34 ± 5 40.6 ± 6.6

20 70 5 49.4 ± 4.8 34.2 ± 4.8 48.8 ± 5.6 57.6 ± 4

20 70 10 89 ± 4.9 33.8 ± 3.9 63.8 ± 4.3 90.7 ± 3.4

20 70 15 99.6 ± 0.9 33.3 ± 0 76 ± 6.5 100 ± 0

20 80 2 32.8 ± 6.4 33.3 ± 3.5 33.1 ± 3.1 39.2 ± 4.9

20 80 5 44.5 ± 4.4 32.9 ± 1.7 44.6 ± 2.8 53.8 ± 3.1

20 80 10 80.7 ± 3.6 32.7 ± 0.7 56.6 ± 4.5 82.9 ± 3.7

20 80 15 99.2 ± 1.1 33.3 ± 0 66.3 ± 5.8 99.7 ± 0.8

20 90 2 29.1 ± 4 33.6 ± 1.3 30.4 ± 3.2 35.6 ± 3.2

20 90 5 42.7 ± 5 33.6 ± 3.4 44.2 ± 3.1 51.9 ± 3.3

20 90 10 73.8 ± 4.9 32.7 ± 1 51 ± 5.3 76.2 ± 3.8

20 90 15 96.1 ± 2.3 34.1 ± 3.8 61.3 ± 5.9 97.9 ± 2.7

20 100 2 28.8 ± 3.8 32.6 ± 1.8 32.4 ± 3.4 37.2 ± 3.9

20 100 5 40.7 ± 5.3 32 ± 2.6 42.9 ± 2.6 49.8 ± 2.9

20 100 10 66.5 ± 3.3 33.1 ± 1.1 49.4 ± 3.2 69.2 ± 3.1

20 100 15 93 ± 4 33.1 ± 0.7 56.6 ± 5.8 94.4 ± 4.1

20 110 2 28.7 ± 5.7 31.9 ± 2.1 32 ± 2.9 36.4 ± 5.2

20 110 5 37.1 ± 3.4 32.3 ± 2.2 41.2 ± 2.6 47.3 ± 2.3

20 110 10 61.3 ± 3.9 33.6 ± 1.1 47.8 ± 2.5 63.4 ± 3.7

20 110 15 88.3 ± 3.5 33.1 ± 0.6 53.4 ± 4.3 90 ± 3.1

20 120 2 28 ± 3.7 32.7 ± 2.1 30.4 ± 3.1 35 ± 3.9

20 120 5 35.6 ± 4.9 32.6 ± 1.5 40.9 ± 2.1 45.9 ± 3.3

20 120 10 55.9 ± 3.9 33.2 ± 1 45.5 ± 2.5 59.3 ± 2.8

20 120 15 81.9 ± 2.7 33.2 ± 0.4 49.2 ± 4.5 83.1 ± 3.1

20 130 2 27.5 ± 5.1 31.4 ± 1.7 30 ± 2.6 34.9 ± 4.2

20 130 5 34.1 ± 3.4 32.5 ± 2.1 40.2 ± 2.2 45.6 ± 2.4



68 Experimental Results

Iter. n m cG[%] E [cCRS] [%] cclass[%] cnested[%]

20 130 10 51.3 ± 3.3 33 ± 1.2 43.8 ± 2.4 55.6 ± 2.9

20 130 15 74.8 ± 3.1 33.1 ± 0.8 47.9 ± 3.8 77 ± 3.9

20 140 2 27.2 ± 3.9 31 ± 1.6 29.8 ± 2.5 34.2 ± 3.1

20 140 5 33.2 ± 2.6 32.5 ± 1.3 39.5 ± 1.4 44.3 ± 2.4

20 140 10 48.6 ± 2.8 32.6 ± 1.9 42.5 ± 1.9 54 ± 2.1

20 140 15 69.7 ± 3.7 33.3 ± 0.8 45 ± 3.5 72.1 ± 3.5

20 150 2 26.4 ± 4.2 30.8 ± 1.6 29.3 ± 2.2 33.5 ± 3.3

20 150 5 32.8 ± 4.2 32.1 ± 2.1 38.9 ± 2.1 43.1 ± 2.8

20 150 10 45 ± 2.3 32.5 ± 2 41.5 ± 1.6 51.2 ± 2

20 150 15 65.1 ± 2.9 33.2 ± 0.6 42.5 ± 2.9 67.8 ± 2.3

Table 4.1: Experimental competitivity of GREEDY , CRS-

GREEDY C-GREEDY and NESTED-GREEDY

In order to display the dependency of the algorithms’ competitivities to the

load n/m of the instances considered, Figure 4.2 shows how the monitored

competitivities of the algorithms decrease in dependence of the average num-

ber of jobs each machine is faced with. Every entry of Table 4.1 corresponds to

one points in Figure 4.2.

The disability of C-GREEDY to accept high-profit jobs, when all of the corre-

sponding machines are already occupied, is resolved by the NESTED-GREEDY, as

this algorithm is able to schedule these jobs on other machines. By the use of

this modification, the resulting algorithm NESTED-GREEDY is able to compute

solution of a quality level comparable to those obtained by GREEDY. In fact,

most of the solutions produced by NESTED-GREEDY are slightly better than the

solutions of GREEDY.

In consideration of Table 4.1 and Figure 4.2 it appears that NESTED-GREEDY

outperforms GREEDY not only in the worst case but also in the average case.
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Chapter 5

On a Product Serving Problem

5.1 Introduction

Consider a florist who is asked to create a bouquet of flowers for a special

occasion (e.g. a wedding). In most of the cases this request is not defined

precisely. The customer has only a rough idea, what he expects the bunch of

flowers to look like, and so there are several possibilities to satisfy the client’s

wish. The florist has several flowers in stock, and he can reorder flowers in

boxes of fixed size, say m flowers. As a result of the configuration of flowers he

picks, he might have to reorder some boxes. For the purpose of a high profit he

tries to keep the number of boxes ordered low.

Besides this application there are many real-life problems, mainly in indus-

tries or businesses where the final product to be sold is the result of the simple

combination of raw material (i.e., meals in restaurants, mixed-nut bins, among

others). In all of these cases we are given a ground set of items called F, a set

of configurations C, and a set of products P. Every configuration c ∈ C is a

multiset made up of (not necessarily different) elements of F, and every prod-

uct p ∈ P consists of a subset of C. In the example given above, F corresponds

to the different kinds of flowers, every p ∈ P describes a request for a bunch

of flowers which can be satisfied by one of the possible configurations c ∈ p

reflecting the different possibilities to compose a bouquet of flowers meeting

the customer’s requirements.

At first we take a look at the offline problem in Section 5.2, which corre-

sponds to the case where the florist is given a list of orders and has to decide

how to satisfy all of the jobs. In this case, all of the clients’ requests can be

taken into account simultaneously.

70
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In Section 5.3 we consider the online problem, which reflects the case of a

florist standing in his shop and serving customers one by one. When serving a

customer, he can only base his decisions upon the number of flowers he has in

stock, and the possible configurations of flowers that are allowed to serve the

current request, as he does not know, what the upcoming clients are asking for.

Motivated by the application sketched above, we look at the problem when

each request r consists of up to k configurations {c1, c2, . . . , cl} with each of

these configurations being sets of items. So, in order to satisfy r we must pick

all the elements of at least one configuration ci ∈ r. We assume for simplicity

that initially there are no items in stock.

5.2 Offline Results

We focus on the offline variant of the Product Serving Problem:

Definition 5.1 (k-PRODUCT-SERVING(k-PS)) One is given a finite ground

set F of different types of items. The items can be ordered in boxes each of

which have capacity m at cost m. Then, requests arrive. A request r is a set

{c1, c2, . . . , cl} of configurations with l ≤ k, where k ∈ N is a fixed constant

and ci being multisets of (not necessarily different) items. In order to serve re-

quest r, all the elements of at least one ci ∈ r have to be picked, thus reducing

the inventory in the corresponding boxes by the amount being asked for. The

goal is to serve all requests at minimum cost.

For k = 1 there is exactly one feasible configuration for each product. Thus,

there is exactly one solution for every instance of 1-PRODUCT-SERVING. As this

case is trivial, we focus on k-PRODUCT-SERVING for k ≥ 2.

Lemma 5.2 k-PRODUCT-SERVING is NP-hard for each fixed k ≥ 2.

Proof. Consider the BIN-PACKING problem, where one is given a finite set

U of objects, a size s(u) ∈ Z+ for each u ∈ U, a positive integer k and a

positive integer bin capacity b. The question is to decide whether there exists

a partition of U into disjoint sets U1, U2, . . . , Uk such that the sum of the sizes

of the objects in each Ui is b or less.

We define an instance of k-PRODUCT-SERVING with each bin corresponding

to a box of size b + 1 and each object u ∈ U being represented by a request,

asking for s(u) items of the same kind:

For each bin, we introduce one kind of item and one request, which asks for

one item of this kind. Thus, at least one box has to be ordered for every f ∈ F.
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As every object u ∈ U can be put into any of the k bins, we add a request which

asks for s(u) items of the same kind for every u ∈ U. This means that for every

u there are k different configurations representing the k different bins. As the

instance of BIN-PACKING allows every box to contain objects of a total size of

b, and one unit of every box is already used by a request not representing an

object, we choose the capacity of the boxes to be b+1. Since there is a solution

for this instance of k-PRODUCT-SERVING consisting only of k orderings if and

only if there is a solution to the corresponding instance of BIN-PACKING, the

claim follows. �

5.2.1 A Logarithmic Approximation for |c| = 1 for all c ∈ C

At first we look at the restriction of the problem sketched above, in which every

configuration holds exactly one element. In terms of the example stated in the

introduction of this chapter, every customer asks for a single flower, and the

florist is free to choose one from up to k different types.

We will use a simple greedy-type algorithm for obtaining an approximation.

Let P denote the set of products that need to be covered. In each iteration we

buy that type of items (at cost m for restocking the whole box) which appears

in the most unserved products. We delete the served products from P and

continue.

Suppose that overall there are t iterations. Let φj denote the number of yet

unserved products after iteration j. Then, φ0 = |P| and φt−1 ≥ 1, since we do

t iterations and have not stopped after the t − 1st iteration.

Fix some iteration j and let fj be the item box chosen in this iteration. We

claim that
m

φj−1 − φj

≤ OPT

φj−1

. (5.1)

To see this, consider the optimum solution consisting of OPT /m item inventory

upstockings. Using all the items from OPT covers all φj−1 unserved products

and costs OPT . Thus, on average the cost to profit ratio of a item upstocking

in OPT is OPT /φj−1 and, thus, there must exist a box which has ratio no more

than OPT /φj−1.

Let rj denote the number of products covered by the box chosen in itera-

tion j. Then, for the potential we have

φj = φj−1 − rj.
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Since rj = φj−1 − φj we obtain from (5.1) that

φj ≤
(

1 −
m

OPT

)

φj−1.

Thus, by induction

φt−1 ≤ φ0

(

1 −
m

OPT

)t−1

.

Taking natural logarithms on both sides and simplifying using the estimate

ln(1 − τ) ≤ −τ, we obtain

t − 1 ≤ OPT

m
ln

(

φ0

φt−1

)

.

Recall that φt−1 ≥ 1 and φ0 = |P|, so we have a total of

t ≤ 1 +
OPT

m
· ln|P|

iterations which means that the approximation ratio is no greater than 1+ ln |P|

and we can state the following theorem:

Theorem 5.3 For instances with |c| = 1 for all c ∈ C, k-PRODUCT-SERVING can

be approximated by a factor of (1 + ln |P|) in linear time, that is O(|F| + |P| + l)

with l :=
∑

r∈P |r| denoting the number of links between F and P.

Proof. The claimed approximation ratio is proven above. It remains to show

that the algorithm runs in linear time. In our implementation in Algorithm 3,

we use a vector A of lists, with A[i] containing the items which are able to

satisfy i different products. As there are |P| different products, all items are

stored in the lists A[0], A[1], . . . , A[|P|]. Additionally, we introduce n[f] stores

in which list f is stored, i.e. n[f] = i if and only if f ∈ A[i] For all f ∈ F,

p[f] is a list holding the products which can be satisfied by f. In each iteration

of Algorithm 3, an item f which can satisfy the maximum number of items is

chosen. Then, up to m products are chosen from p[f]. Let r be one of the

products chosen this way. As r is satisfied this way, all other items f ′ ∈ r cannot

satisfy this request anymore, and A, n and p have to be updated.

The initialization takes time O(|P| + m) for p, and O(|F| + l) for b, n, and

A. As the second while-loop is entered at most once for every r ∈ P and the

list-operations can be implemented in constant time, we can conclude that the

for-loop starting in line 15 runs in time O(|P| + l). In total, the implementation

stated in Algorithm 3 runs in time O(|P| + |F| + l), which proves the claim. �
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Algorithm 3 Greedy-Heuristic for one item configurations

1: Input: An instance of defined by sets F, P

2: Output: A vector b

3: // Initialize p, time O(|P| + l)

4: for all r ∈ P do

5: for all f ∈ r do
6: Add r to p[f]

7: end for
8: end for
9: // Initialize b, n, A, time O(|F| + l)

10: for all f ∈ F do
11: b[f] := 0

12: Set n[f] to length of p[f]

13: Add f to A[n[f]]

14: end for

15: for i = |P| to 1 do
16: while A[i] not empty do
17: Let f be the first element of A[i]

18: b[f] := b[f] + 1

19: // Satisfy m products by buying a box of type f

20: cntr := 1

21: while cntr ≤ m and p[f] not empty do
22: cntr := cntr + 1

23: Let r be the first element of p[f]

24: // Remove links to r

25: for all f ′ ∈ r do

26: i := n[f ′]
27: Delete f ′ from A[i]

28: Add f ′ to A[i − 1]

29: n[f ′] := n[f ′] − 1

30: Delete r from p[f ′]
31: end for
32: end while
33: end while

34: end for
35: return b
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5.2.2 Approaches for “large” m

We restrict ourselves to the problem, when m is so large that for each set of

configurations chosen, it suffices to buy at most one box of every kind of item.

This way, the problem boils down to finding the least cardinality subset F ′ of

F, such that all requests can be satisfied only making use of elements of F ′. We

discuss several approaches to solve this problem, compare their performance

on randomly generated data, and give a logarithmic approximation.

Definition 5.4 (MINCARDINALITY-PRODUCT-SERVING) Given requests P, find

a minimum cardinality subset F ′ ⊆ F, such that every product p ∈ P contains a

configuration c ∈ p with f ∈ F ′ for all f ∈ c.

MINCARDINALITY-PRODUCT-SERVING corresponds to HITTINGSET, if all con-

figurations contain exactly one element. Hence, we can follow that it is NP-

hard.

Greedy

A greedy algorithm could work the following way: In each step choose a yet

unsatisfied requests and satisfy it at minimum cost. This procedure is displayed

in Algorithm 4.

By considering the following example, we can see that this algorithm can

perform arbitrarily bad. For n ∈ N consider the instance consisting of the

items xi,j, yi, zi with i, j ∈ {1, . . . , n} and n products p1, . . . , pn, with each pi

consisting of the two configurations {xi,1, xi,2, . . . , xi,n} and {y1, y2, . . . , yn, zi}

for i ∈ {1, . . . , n}. For every product, the Algorithm 4 buys all the items of the

first configuration, whereas the optimal algorithm buys the items of the second

configuration. Thus, the greedy algorithm is n2/(2n) = n/2-approximate on

this instance.

Integer Programming Formulations and Lagrangean Relaxation of the
Subproblem

MINCARDINALITY-PRODUCT-SERVING can be solved by solving the following in-

teger linear program:
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Algorithm 4 Greedy-Heuristic

1: Input: An instance of defined by sets F, C, P

2: Output: A feasible solution F ′ of MINCARDINALITY-PRODUCT-SERVING

3: // Set of items bought

4: F ′ := ∅
5: // Set of satisfied configurations

6: C ′ := ∅
7: for all r ∈ P do

8: // If request not satisfied yet

9: if r ∩ C ′ = ∅ then

10: // Choose cheapest configuration c∗

11: c∗ := argminc∈r |c \ F ′|
12: // Buy missing items to satisfy c∗

13: F ′ := F ′ ∪ c∗

14: // Update C ′

15: C ′ := {c ∈ C : c ⊆ F ′}
16: end if
17: end for

18: return F ′

minimize
∑

i∈F

xi

subject to
∑

c∈r

yc ≥ 1 ∀r ∈ P (5.2)

xi ≥ yc ∀r ∈ P, c ∈ r, i ∈ c (5.3)

xi, yc ∈ {0, 1} ∀i ∈ F, r ∈ P, c ∈ r

In this formulation xi = 1 if and only if i ∈ F ′ and yc = 1 if c is satisfied.

Inequality 5.2 ensures that for each product at least one of its configurations is

chosen and Inequality 5.3 guarantees that configuration c can only be chosen

if all of its items are elements of F ′.

We relax the first constraint and introduce for every r ∈ P a Lagrangean

multiplier λr ≥ 0. This leads to subproblem (LPλ):
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minimize
∑

i∈F

xi +
∑

r∈P

λr

(

1 −
∑

c∈r

yc

)

=
∑

i∈F

xi −
∑

r∈P,c∈r

λr · yc +
∑

r∈P

λr

subject to xi ≥ yc ∀r ∈ P, c ∈ r, i ∈ c

xi, yc ∈ {0, 1} ∀i ∈ F, r ∈ P, c ∈ r

The remaining problem is a special case of the provisioning problem and can

be formulated as a Minimum Cut problem which can be solved in polynomial

time (see [Law76] chapter 4).

Thus, we can approximate the optimal solution by solving the Lagrangean

dual making use of the steepest descent method [JS04]. For each λ, we obtain

a solution which covers some of the products. As the remaining polyhedron is

integer, we know that the highest objective value of the Lagrangean relaxation

corresponds to the value of the linear relaxation.

The other products are satisfied in a greedy fashion: For each unsatisfied

product choose a configuration which can be satisfied in the cheapest way and

buy the additional items needed. A full description of the method applied here

is given in Algorithm 5.

The empirical performance of Algorithm 5 is monitored in Table 5.1. The

first three columns state the number of products, configurations and items.

The instances are sampled in the following way: Let Xf,c for f ∈ F, c ∈ C be

independent Bernoulli random variables with parameter p1 and Xf,c = 1 if and

only if f is part of configuration c. Analogously, let Yc,p for c ∈ C, p ∈ P be

independent Bernoulli random variables with parameter p2 indicating whether

c is an appropriate configuration for p. The probabilities p1 and p2 are chosen

in a way such that the Ec is the expected number of feasible configurations

for each product and and that Ef denotes the expected number of items in a

configuration.

The right part of Table 5.1 states the average approximation ratios and their

standard deviation, for three different algorithms. Algorithm 5 outperforms

the other two approaches. We see that rounding up the fractional solutions of

the LP-relaxation does not produce cost-efficient integer solutions. The Greedy

algorithm chooses in every iteration one product by buying the least number

of items necessary. This way, it achieves competitive approximation ratios, but

is outperformed by Algorithm 5 on most of the instances.
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Algorithm 5 Lagrangean-Greedy-Heuristic

1: Input: An instance of defined by sets F, C, P

2: Output: A feasible solution F ′ of MINCARDINALITY-PRODUCT-SERVING

3: Compute objective value zLP of linear relaxation

4: for all r ∈ P do
5: λr := 0

6: end for
7: repeat
8: Compute objective value zλ of optimal solution (x̃, ỹ) of LPλ

9: // Compute gradient of Lagrangean function at λ

10: for r ∈ P do
11: dr := 1 −

∑
c∈r ỹc

12: end for
13: // Compute step-length

14: s := (zLP − z) /
∑

r∈P |dr|

15: for r ∈ P do
16: λr := λr + dr · s
17: end for
18: until zLP − zλ < 0.001

19: for all r ∈ P do

20: if
∑

c∈r ỹc < 1 then
21: // Choose cheapest configuration c∗

22: c∗ := argminc∈r

∑
f∈c(1 − x̃f)

23: // Buy missing items to satisfy c∗

24: for all f ∈ c∗ do

25: x̃f := 1

26: end for

27: for all c ∈ C do
28: ỹc := minf∈c x̃f

29: end for

30: end if
31: end for
32: F ′ := {f ∈ F : x̃f = 1}

33: return F ′



On a Product Serving Problem 79

|P| |C| |F| Ec Ef LP-rounding [%] Greedy [%] Lag.-Heu. [%] #inst.

40 50 500 10 12 377.37 ± 73.05 39.35 ± 16.84 21.55 ± 12.68 110

40 50 500 4 5 30.16 ± 33.1 18.79 ± 9.59 4.12 ± 5.36 108

40 50 500 8 9 240.71 ± 78.64 36.98 ± 15.71 17.49 ± 9.97 110

60 50 200 10 10 260.1 ± 36.25 32.04 ± 13 24.82 ± 12.07 300

60 50 200 10 12 213.4 ± 27.67 30.45 ± 12.03 26.43 ± 11.19 300

60 50 200 12 12 265.64 ± 33.41 33.18 ± 13.29 29.42 ± 12.88 300

60 50 200 2 3 0.85 ± 3.01 7.54 ± 5.16 0.24 ± 0.96 300

60 50 200 4 4 40.62 ± 32.43 18.71 ± 9.28 7.37 ± 6.28 300

60 50 200 6 6 161.44 ± 43.17 26.36 ± 10.63 15.93 ± 8.13 300

60 50 200 8 8 229.43 ± 34.84 30.82 ± 11.53 20.62 ± 9.18 300

Table 5.1: Performance of different algorithms on randomly generated data.

Applying Results for more General SAT-Problems

MINCARDINALITY-PRODUCT-SERVING can be seen as a generalized satisfiability

problem, where each “clause” is a disjunction of conjunctions, e.g. (x1 ∧ x2 ∧

x3) ∨ (x4 ∧ x5 ∧ x6) ∨ (x1 ∧ x3 ∧ x6) with xi being true if and only if i ∈ F ′.
In our problem, there are no negated literals. It might make sense to allow

negated literals in order to apply results for more general SAT-problems. But,

in general such problems are hard to approximate, which we illustrate by a

reduction from MINIMUM INDEPENDENT DOMINATING SET, which cannot be

approximated within |V |1−ε for any ε > 0 in polynomial time, unless P = NP
(see [Hal93]).

Definition 5.5 (Minimum Independent Dominating Set) For a given graph

G = (V, E), the goal of the MINIMUM INDEPENDENT DOMINATING SET problem

is to find an independent dominating set of minimum cardinality for G, i.e., a

subset V ′ ⊆ V such that for all u ∈ V \V ′ there is a v ∈ V ′ for which (u, v) ∈ E,

and such that no two vertices in V ′ are joined by an edge in E.

Let G = (V, E) be an arbitrary graph with n vertices and m edges. For every

i ∈ V we have a literal xi indicating if i is part of the independent dominating

set. For every i ∈ V with neighbors (j1, . . . jni
) we have a clause

(

(xi ∧ x̄j1 ∧ x̄j2 ∧ · · · ∧ x̄ji) ∨ (x̄i ∧ xj1) ∨ (x̄i ∧ xj2) ∨ · · ·∨ (x̄i ∧ xjni
)
)

The first configuration expresses the possibility that i is member of V ′,
which means that all nodes adjacent to i cannot be part of V ′. Otherwise,
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one of i’s neighbors has to be part of V ′ which is expressed by the other con-

figurations.

Every feasible truth assignment with minimum
∑

i∈V xi corresponds to a

solution of MINIMUM INDEPENDENT DOMINATING SET

Transformation of Clauses

Since we can transform the clauses of the given form to clauses in “standard

form” by de Morgan’s rules, e.g.

(x1 ∧ x2 ∧ x3) ∨ (x4 ∧ x5 ∧ x6) ⇔
(x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x1 ∨ x6)

∧(x2 ∨ x4) ∧ (x2 ∨ x5) ∧ (x2 ∨ x6)

∧(x3 ∨ x4) ∧ (x3 ∨ x5) ∧ (x3 ∨ x6)

obtaining M :=
∑

r∈P

∏
j∈r c ′

j ≤
∑

r∈P |F||r| “regular clauses” with c ′
j ≤ |cj| ≤

|F| being the number of different items corresponding to configuration j.

Then, MINCARDINALITY-PRODUCT-SERVING can be modeled as a hitting set

problem and we can approximate it by 1+ ln(M) ≤ 1+ ln(|P||F|k) = 1+ ln(|P|)+

k ln(|F|) (see [Joh74]).

5.2.3 The General Case

In this subsection we exploit the approximation stated in Subsection 5.2.2 in

order to approximate k-PRODUCT-SERVING.

Lemma 5.6 If for each product every configuration has the same amount

of items and we have a c-approximation ALG with running time O(r) for

MINCARDINALITY-PRODUCT-SERVING, we can derive a (c + 1)-approximation

ALG ′ for the generalized problem with running time O(r + |F| + |P|).

Proof. Apply ALG to find a c-approximation h for the minimum number of

different items necessary to serve all requests. Then we know that the optimal

algorithm requires at least h/c different kinds of items. Let T be the truth

assignment corresponding to the solution of ALG on the given instance and

F ′ ⊆ F be the corresponding set of items which are needed due to ALG in

order to serve all requests. There is at least one possible configuration for
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each product which can be served by the chosen boxes. We pick one arbitrary

configuration for each product. This way, we can determine, how many items

have to be ordered and call this value b(f) for every item f ∈ F. Clearly, b(f) = 0

for f ∈ F \ F ′. Let F1 := {f ∈ F ′ : b(f) ≤ m} be the set of items for which ALG ′

only buys a single box. The cost of ALG ′ can be estimated as

ALG
′ =

∑

f∈F′

m · ⌈b(f)

m
⌉ =

∑

f∈F1

m · ⌈b(f)

m
⌉ +

∑

f∈F′\F1

m · ⌈b(f)

m
⌉

≤ |F1| · m +
∑

f∈F′\F1

(b(f) + m)

= |F ′| · m +
∑

f∈F′\F1

b(f)

= h · m +
∑

f∈F′\F1

b(f)

≤ c · OPT +
∑

f∈F′

b(f) (5.4)

≤ c · OPT + OPT = (c + 1) · OPT (5.5)

Inequation (5.4) holds, since the optimal algorithm requires at least h/c

different kinds of items, which means that it has to buy at least h/c different

boxes with total cost hm/c. As every configuration of a product asks for the

same amount of items, the total number of items required is always the same.

For this reason, OPT ≥ ∑
f∈F′ b(f) which means that (5.5) is true.

Since the algorithm needs to apply ALG once and the rest of the assignment

can be done in linear time, the given running time estimation follows. �

Therefore we have a 2+ln(|P|)+k ln(|F|) = O(ln(|P|)+ln(|F|))-approximation

for k-PRODUCT-SERVING.

5.3 Online Results

In this section, we examine the online version of k-PRODUCT-SERVING. In this

version an instance consists of a sequence of n products σ = (p1, p2, . . . pn).

Whenever a request pi is being released, it has to be decided by which of its

configurations c ∈ pi it is satisfied and consequently for which of the items

new boxes have to be bought. The following Lemma gives a lower bound on
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the competitivity of deterministic online algorithms which holds even for the

special case considered in Subsection 5.2.1.

Lemma 5.7 If no additive constant is allowed, no algorithm can be better than

m-competitive

Proof. Let |F| = 2m − 1. The online algorithm is being offered a request

r1 consisting of m different items F1. Since there are no items in stock, one

of the boxes has to be ordered. Let f1 be the box chosen by the algorithm.

Then the algorithm is being offered a request r2 consisting of the items which

had just been offered but not bought and a new one which was not asked for

yet. This procedure is repeated m times and the algorithm always has to order

a box which results in overall costs of m2 for the online algorithm. Since F1

contains m different items and only one item has been removed within every

step, there has to be at least one item f which was asked for in every of the

m requests. Thus, the optimal offline algorithm can get along with only a

single order of cost m. This results in competitivity of at least m for every

deterministic algorithm. �

r1

r2

r3

f1

f2

f3

f4

f5

Figure 5.1: Example for m = 3

See Figure 5.1, which is the case for m = 3, where ALG buys boxes of f1, f2

and f3 whereas the optimal algorithm only buys a box of f3.

For a given sequence of requests σ = (p1, p2, . . . pn), define lσ :=∑n
i=1 minc∈pi

|c| to be the minimum number of items necessary to serve σ. As

the optimal algorithm has to reorder at least ⌈lσ/m⌉ times, we can estimate its

cost by OPT ≥ ⌈lσ/m⌉ ·m ≥ lσ. We consider the algorithm GREEDY that always

chooses for every product a least cardinality configuration and only reorders

whenever the stock for a specific item is empty.
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Lemma 5.8 The algorithm GREEDY that chooses for each product pi ∈ σ a con-

figuration c ∈ pi of minimum cardinality is m-competitive.

Proof.
GREEDY

OPT
≤ lσ · m

⌈ lσ
m
⌉ · m ≤ m.

�

Lemmas 5.7 and 5.8 prove that the greedy algorithm stated above provides

the best competitive ratio possible for deterministic algorithms. In the remain-

der of this chapter we will show that its competitivity can be even better for

special cases.

As this algorithm has at most m − 1 items of every kind in stock, we have

GREEDY ≤ lσ+|F|·(m−1), and we can estimate its competitivity in the following

way:

GREEDY

OPT
≤ lσ + |F| · (m − 1)

⌈ lσ
m
⌉ · m ≤ lσ + |F| · (m − 1)

lσ

= 1 +
|F| · (m − 1)

lσ

(5.6)

Hence, for ǫ > 0 the greedy algorithm is 1+ǫ-competitive for any sequence

with lσ ≥ |F|·(m−1)

ǫ
. Equation (5.6) can be restated as

GREEDY ≤ 1 · OPT + |F| · (m − 1)

which shows that the greedy algorithm is 1−competitive if we allow an

additive constant of |F| · (m − 1).



Chapter 6

A Monotone Approximation

Algorithm for Scheduling with

Precedence Constraints

6.1 Introduction

Internet users and service providers act selfishly and spontaneously, without an

authority that monitors and regulates network operation in order to achieve

some social optimum such as minimum total delay. An interesting and topical

question is how much performance is lost because of this. This generates new

algorithmic problems, in which we investigate the cost of the lack of coordina-

tion, as opposed to the lack of information (online algorithms) or the lack of

unbounded computational resources (approximation algorithms).

There has been a large amount of previous research into approximation

and online algorithms for a wide variety of computational problems, but most

of this research has focused on developing good algorithms for problems under

the implicit assumption that the algorithm can make definitive decisions which

are always carried out. On the internet, this assumption is no longer valid,

since there is no central controlling agency. To solve problems which occur,

e.g., to utilize bandwidth efficiently (according to some measure), we now not

only need to deal with an allocation problem which might be hard enough to

solve in itself, but also with the fact that the entities that we are dealing with

(e.g. agents that wish to move traffic from one point to the other) do not

necessarily follow our orders but instead are much more likely to act selfishly

in an attempt to optimize their private return (e.g. minimize their latency).

84
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Mechanism design is a classical area of research with many results. Typi-

cally, the fundamental idea of mechanism design is to design a game in such a

way that truth telling is a dominant strategy for the agents: it maximizes the

profit for each agent individually. That is, each agent has some private data

that we have no way of finding out, but by designing our game properly we

can induce them to tell us what that is (out of well-understood self-interest),

thus allowing us to optimize some objective while relying on the truthfulness

of the data that we have. This is done by introducing side payments for the

agents. In a way, we reward them (at some cost to us) for telling us the truth.

The role of the mechanism is to collect the claimed private data (bids), and

based on these bids to provide a solution that optimizes the desired objective,

and hand out payments to the agents. The agents know the mechanism and

are computationally unbounded in maximizing their utility.

The seminal paper of Archer and Tardos [AT01] considered the general

problem of one-parameter agents. The class of one-parameter agents contain

problems where any agent i has a private value ti and his valuation function

has the form wi·ti, where wi is the work assigned to agent i. Each agent makes

a bid depending on its private value and the mechanism, and each agent wants

to maximize its own profit. The paper [AT01] shows that in order to achieve a

truthful mechanism for such problems, it is necessary and sufficient to design

a monotone approximation algorithm. An algorithm is monotone if for every

agent, the amount of work assigned to it does not increase if its bid increases.

More formally, an algorithm is monotone if given two vectors of length m, b, b ′

which represent a set of m bids, which differ only in one component i, i.e.,

bi > b ′
i, and for j 6= i, bj = b ′

j, then the total size of the jobs (the work) that

machine i gets from the algorithm if the bid vector is b is never higher than if

the bid vector is b ′.

Using this result, monotone (and therefore truthful) approximation al-

gorithms were designed for several classical problems, like scheduling on

related machines to minimize the makespan, where the bid of a machine

is the inverse of its speed [AT01, Arc04, APPP04, AAS05, Kov05], shortest

path [AT02, ESS04], set cover and facility location games [DMV03], and com-

binatorial auctions [LOS99, MN02, APTT03].

6.2 Problem Definition and Preliminaries

In this chapter, we consider the problem of scheduling jobs in a multiprocessor

setting where there are precedence constraints between tasks, and where the
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performance measure is the makespan, the time when the last task finishes. We

denote the number of processors by m and the number of jobs by n. This is a

classic scheduling problem considered by Graham in his seminal paper [Gra66]

where he showed that list scheduling produces a (2− 1
m

)-approximate solution

on identical machines. We consider the version where the machines are related:

each machine has a speed at which it runs, which does not depend on the job

being run.

Denote the size of job j by pj (j = 1, . . . , n). Denote the speed of machine

i by si (i = 1, . . . , m). In our model, each machine belongs to a selfish user.

The private value (ti) of user i is equal to 1/si, that is, the cost of doing one

unit of work. The load on machine i, Li, is the total size of the jobs assigned to

machine i divided by si. The profit of user i is Pi − Li, where Pi is the payment

to user i by the payment scheme defined by Archer and Tardos [AT01].

Our goal is to minimize maxi Li. This problem is NP-complete in the strong

sense [GJ79] even on identical machines and without precedence constraints.

6.2.1 Previous Results (Non-Selfish Machines)

Jaffe [Jaf80] presented an algorithm for this problem with approximation ratio

of O(
√

m). This was later improved to O(log m), first by Chudak and Shmoys

using a linear programming relaxation [CS99] and then by Chekuri and Bender

with a combinatorial algorithm [CB01], using a new and more involved lower

bound for the optimal makespan.

6.2.2 Our Result

We present a monotone approximation algorithm based on Jaffe [Jaf80] which

achieves an approximation ratio of O(m2/3). Throughout the chapter, we as-

sume that the jobs are sorted in order of non-increasing size (p1 ≥ p2 ≥
· · · ≥ pn), and the machines are sorted in a fixed order of non-decreasing

bids (i.e. non-increasing speeds, assuming the machine agents are truthful,

s1 ≥ s2 ≥ · · · ≥ sm).

6.3 Algorithm

Our algorithm works as follows. For simplicity of presentation, we assume that

m2/3 is an integer.
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1. For a given bid vector b = (b1, . . . , bm), normalize such that the largest

speed (smallest bid) is 1.

2. Ignore all machines with speed less than α, where α < 1 is a parameter

to be fixed later.

3. If at most m2/3 machines remain, assign all jobs to the fastest machine.

Extend the partial ordering given by the precedence constraints to a com-

plete ordering and run the jobs in this order.

4. If i > m2/3 machines remain, consider all the schedules produced by List

Scheduling on m2/3+1, . . . , i identical machines and use the schedule that

minimizes the maximum load (i.e. not necessarily the makespan!). For

this schedule, reorder the job loads such that the ith largest load ends up

on the ith fastest machine according to the bids.

6.4 Analysis

Theorem 6.1 This algorithm is monotone.

Proof. If a machine that receives no load becomes slower (increases its bid), it

will still receive zero load. If it becomes faster, it might get some load, whereas

previously it did not get any load.

If a machine which is not the fastest but which receives some load becomes

slower, it will move down in the speed ranking of the machines, progressively

getting less and less load until finally it gets zero load. If such a machine

becomes faster, it moves up in the speed ranking until it is the fastest and

receives the most load.

If the machine which is already fastest becomes even faster, this might lead

to some other machines being dropped from consideration. If only the fastest

machine remains (that is, there are at most m2/3 machines with speed at least

α times the maximum speed), it clearly gets more load than before, because it

now gets all the load.

Otherwise, the largest load (which is the load on the fastest machine, that

we are considering) does not decrease, because our algorithm considers all

options of using m2/3+1, . . . , i machines where i is the number of machines that

are not ignored with the old speeds. Thus if the largest load is smaller with the

new amount of machines, we would have used this amount of machines earlier

even though we had more machines available.
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Conversely, if the fastest machine becomes slower, then if it previously had

all the load there is nothing to show. Else, similar to before we find that the

maximum load (which is what is assigned to the fastest machine) can only de-

crease, because our algorithm checks at least as much possibilities than before.

We can use this reasoning until the fastest machine becomes the second fastest

machine, and then we can use the reasoning above (for other machines which

become slower). �

Theorem 6.2 For the right choice of α, this algorithm has an approximation

ratio of O(m2/3).

Proof. Scale the job sizes such that the optimal makespan is 1. If our algorithm

uses only one machine, then the last m−m2/3 machines all have speed at most

α. Thus the optimal load on the first m2/3 machines is at most 1, and the

optimal load on the remaining machines is at most α. Furthermore, there are

no gaps in the schedule produced by our algorithm. Thus it has a makespan of

at most

m2/3 + (m − m2/3)α, (6.1)

compared to an optimal makespan of 1.

If our algorithm uses i machines, we have that the makespan on identical

machines is at most 1+(m− 1)/i times optimal according to Graham [Gra66].

This expression is maximized for i = m2/3 + 1, which is the smallest value of i

that our algorithm uses (besides 1).

Since the algorithm uses machines of speeds at least α < 1 instead of ma-

chines of speed 1, the actual makespan is at most

x =
1

α

(

1 +
m − 1

m2/3 + 1

)

(6.2)

times the optimal makespan on identical machines of speed 1, and therefore cer-

tainly at most x times the optimal makespan on the actual (slower) machines.

We have

lim
m→∞

x = m1/3/α. (6.3)

Balancing (6.1) and (6.3) for α, we find an approximation ratio of φm2/3 for

α = 1/(φm1/3) and m → ∞, where φ = 1.618 . . . �

6.5 Open Questions

An obvious open question is to improve this approximation ratio. However,

finding a better approximation ratio in the context of selfish machines does
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not seem easy. In particular, the approach of Chudak and Shmoys [CS99]

does not seem suitable because we do not know how the output of the linear

programming relaxation changes when the speeds of the machines change. On

the other hand, the lower bound introduced by Chekuri and Bender [CB01] is

a complicated formula of the speeds, for which it is also not easy to analyze the

change when one of these speeds changes.



Chapter 7

VDP with Limited Tour Length

7.1 Introduction

The German Automobile Club ADAC (Allgemeiner Deutscher Automobil-Club)

maintains a heterogeneous fleet of service vehicles in order to assist people

whose cars break down on their way. Service requests arrive online and are

handled in five help centers spread over Germany. The goal is to provide

low operational costs and a good quality of service. The general dispatch-

ing problem at ADAC is online (i.e., decisions have to be made on the basis of

incomplete data). In this chapter we are concerned with the solution of the

following offline-subproblem (snapshot-optimization): compute an optimal dis-

patch for all currently known requests subject to all operational constraints.

The real-world instances to solve are large-scale exhibiting up to 700 requests

and 200 units.

The offline subproblem is currently used at ADAC for an automated dis-

patching system on the basis of cost-reoptimization. This means that a current

dispatch is maintained, which contains all known yet unserved requests and

which is near optimal on the basis of the current data; whenever a unit be-

comes idle its next request is read from the current dispatch; at each event

(new request, finished service, etc.) the dispatch is updated by a reoptimiza-

tion run.

A feasible current dispatch for all known requests and available service ve-

hicles is a partition of the requests into tours for units and contractors such

that each request is in exactly one tour and each unit drives exactly one tour so

that the cost function is minimized. Cost contributions come from driving costs

for units, fixed service costs per requests for contractors, and a strictly convex

90
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lateness cost for the violation of soft time windows at each request (currently

quadratic). The latter cost structure is chosen so as to avoid large individual

waiting times for customers. For details we refer to [KRT02a, HKR05, KRT02b].

Under high load situations, some of these requirements are relaxed for the

benefit of a higher number of events served per time unit. In contrast to the

general case, in which lots of different cost parameters have to be taken into

account, only the total distance driven is of interest.

As the serving of a request takes approximately 20 minutes, it does not

make sense to consider tours which are too long. For example a customer

which is planned to be served in the sixth place could wait for about two hours

until his car is fixed. But within this time, it is very likely that the whole plan

has been changed, because of other requests which came up and changed the

whole dispatching problem to such a great extent that the customer might be

served by a different unit at a different time. Situations like this happen quite

often, as we are facing an online problem. For this reason we impose an upper

bound k on the number of events served per unit.

In the next section, the exact setting of the problem and the notation used

in this chapter are introduced.

7.2 Problem Definition and Preliminaries

We are given a finite set of service vehicles (or units) U, a set of requests (or

events) E and a metric distance function d : (U ∪ E) × (U ∪ E) → R+. A tour

consists of a unit u ∈ U and a sequence of requests (eu,1, eu,2, . . . , eu,h(u)),

which are visited by vehicle u in the given order. We will denote such a tour

by a vector
(

u, eu,1, eu,2, . . . , eu,h(u)

)

. The cost c(ei, ej) of driving from ei to ej

corresponds to the metric distance d(ei, ej) between the two points.

Definition 7.1 (Vehicle Dispatching Problem, VDP-k)

Given requests E, units U, costs c as above and a number k ∈ N such that

|E| ≤ k|U|, the vehicle dispatching problem VDP-k consists of finding a tour
(

u, eu,1, eu,2, . . . , eu,h(u)

)

for each unit u ∈ U which serves h(u) ≤ k requests,

such that each request is served in exactly one tour and such that the total cost

of the tours is minimized.
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7.2.1 Previous Work

This problem is related to metric multi-depot vehicle routing problems (MDVRP)

and to metric k-customer vehicle routing problems. In a multi-depot vehicle

routing problem a fleet of vehicles located at more than one depot are to serve

locally dispersed customers such that the vehicles return to one of the depots

and the transportation costs are minimized. The difference to our problem

is that we do not want our service units to return to their home positions,

since by the time the assigned requests are served, new requests have arrived

that are to be assigned to service units in the next iteration. The multi-depot

vehicle routing problem has been shown to be NP-hard for more than one

depot [BCG87].

In the metric k-customer vehicle routing problem(k-VRP) all vehicles are

based at one depot and are required to serve at most k customers each such that

the transportation costs are minimized. It is known that the metric 2-customer

vehicle routing problem is polynomially solvable, since it can be transformed

to a minimum matching problem, whereas for k ≥ 3 the metric k-VRP is NP-

hard, which was shown by Haimovich and Rinnooy Kan [HRK85].

For our problem, we know that serving at most one customer is easy. Again

the problem can be transformed to a matching problem and solved efficiently.

In contrast, Dischke [Dis04] showed that the problem becomes NP-hard for

k ≥ 3 and Krumke et al. [KSVWar] showed later on that the same applies for

the case k = 2.

7.2.2 Our Results

In Section 7.3 we take a look at the algorithm BESTINSERTION which has been

used so far and give lower bound of 2|U|−1 + 1 on its approximation ratio. As

this algorithm behaves poorly in the worst case we present in Section 7.4 the

algorithm MATCH-DISPATCH and prove that it is a (2k − 1)-approximation for

the metric VDP-k with running time O(n3). For the case that there is no restric-

tion on the amount of requests served per unit, which means that k equals the

total number of requests, we provide in Section 7.5 a 2 − 1/|k|-approximation

which works similar to the Double-Tree-Algorithm for the metric TSP. In Sec-

tion 7.6 we state an integer linear program based on an arc-based network

flow problem with budget constraints which solves VDP-k exactly. Addition-

ally we give a cutting plane with corresponding heuristic separation algorithm

which improves the formulation and thus accelerates the speed of solving the

problem. Finally, in Section 7.7 we have a look at the quality of the solutions
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given by MATCH-DISPATCH and discuss our computational experiments and the

numerical results obtained thereby.

7.3 BestInsertion and a Lower Bound on its Ap-

proximation Ratio

So far, solutions for this problem have been computed by a heuristic called

BESTINSERTION. This heuristic starts with an empty tour for each unit. The

requests are considered one by one and each request is added to a tour in a way

that the overall costs increase by the smallest amount and no tour covers more

than k events. This algorithm cannot guarantee a satisfactory approximation

ratio as one can see by the following lemma:

Lemma 7.2 BESTINSERTION is not better than 2|U|−1 + 1-approximate.

Proof. We consider an example, where all units and requests are located

on the real line. Let the units U = {u1, u2, . . . , um} be on the positions

−1 − ǫ, 1, 2, 4, . . . , 2m−2 with ǫ > 0 be arbitrarily small. Furthermore, there

are k requests at position 0 and for i = 0, 1, 2, . . . , m − 2 there are additional

k requests at position 2i. If the requests are considered by BESTINSERTION in

ascending order of their coordinates, then the first k requests are located at po-

sition 0 and the algorithm constructs a tour, which covers all of these requests

by u2. The next k requests are at position 1, and the algorithm assigns them to

u3 for a total cost of 1 and so on. Finally, there are k requests left at position

2m−2 which forces the only remaining unit u1 to serve these requests incurring

costs of 2m−2 + 1 + ǫ. Overall, this routing costs 2 · 2m−2 + 1 + ǫ = 2|U|−1 + 1 + ǫ

whereas the optimal routing would have incurred costs of 1 + ǫ (see Figures

7.1 and 7.2).

u1 u2 u3 u4 um

−1 − ǫ 0 1 2 4 2m−2

U

E
. . .

. . .

. . .

...
...

...
...

...

Figure 7.1: The solution obtained by BEST-INSERTION
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u1 u2 u3 u4 um

−1 − ǫ 0 1 2 4 2m−2

U

E
. . .

. . .

. . .

...
...

...
...

...

Figure 7.2: The optimal solution

�

Corollary 7.3 BESTINSERTION is not better than 0.5 · k
√

2
|E|

+ 1-approximate.

Proof. Follows directly from Lemma 7.2 and k ≥ |E|/|U| . �

For this reason, we look for an algorithm, which guarantees a better ap-

proximation ratio.

7.4 A (2k − 1)-Approximation

We define the auxiliary graph G = (V, A) with V = E ∪ U ∪ {s, t} and A =

A1 ∪A2 ∪ A3, with A1 := {s} × E, A2 := E× U, A3 := U × {t}. Define capacities

u : A → R with u(a) := k for all a ∈ A1 and u(a) := 1 for all a ∈ A2 ∪ A3.

Define costs c : A → R with c((u, e)) := d(u, e) for all a ∈ A2 and c(a) = 0 for

all a ∈ A1 ∪ A3. We can find an integral maximal s − t−flow of minimum cost

in O(n3) time. This flow corresponds to an assignment of units to events such

that every request is assigned to at most one unit and that each unit is assigned

to at most k requests. For all u ∈ U let Eu := {e1, e2, . . . , eh} ⊆ E be the set of

requests assigned to u ordered such that d(ou, ei) ≤ d(ou, ei+1)i = 0, . . . , h−1.

Our heuristic assigns these requests in the given order to u.

Let M := {(ou, e)|∀u ∈ U, e ∈ Eu} ⊆ A2 be the set of arcs corresponding to

the assignment chosen by MATCH-DISPATCH, D ⊆ A be the set of arcs corre-

sponding to the solution obtained thereby and O ⊆ A be the set of arcs chosen

by the optimal solution. Then, we can state the following propositions:

Lemma 7.4

c(D) ≤ (2 −
1

k
) · c(M)
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Algorithm 6 Match-Dispatch

1: Input: A set of units U, a set of requests E, a metric weight function c :

(U ∪ E) × (U ∪ E) → R+.

2: Output: a set of tours T
3: T := ∅
4: Construct auxiliary graph G

5: Compute maximal s − t−flow of minimum cost

6: for all u ∈ U do

7: Let Eu := {e1, e2, . . . , eh} be the set of requests assigned to u

8: T := T ∪ (u, e1, e2, . . . , eh)

9: end for
10: return T

Proof. For all u ∈ U let Eu = (e1, . . . , eh(u)) be the events covered by u in the

given order. Recall that h(u) ≤ k.

c(D) =
∑

u∈U

(

d((ou, e1)) +

h(u)∑

i=2

d((ei−1, ei))

)

≤
∑

u∈U

(

d((ou, e1)) +

h(u)∑

i=2

c((ei−1, ou)) + c((ou, ei))

)

=
∑

u∈U

(

d((ou, e1)) +

h(u)∑

i=2

d((ou, ei−1)) +

h(u)∑

i=2

d((ou, ei))

)

=
∑

u∈U

(

2 · (
h(u)−1∑

i=1

d((ou, ei))) + d((ou, eh(u)))

)

= 2 · cOPT(M) −
∑

u∈U

(

d((ou, eh))

)

≤ (2 −
1

k
) · c(M)

�

Lemma 7.5

k · c(O) ≥ c(M)

Proof. For all u ∈ U let Eu = (e1, . . . , eh) be the events covered by u in the
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given order. Recall that h ≤ k.

k · c(O) = k ·
(

∑

u∈U

d((ou, e1)) +

h∑

i=2

d((ei−1, ei))

)

≥ ·
∑

u∈U

|Eu |∑

j=1

(

d((ou, e1)) +

j∑

i=2

d((ei−1, ei))

)

≥ ·
∑

u∈U

|Eu |∑

j=1

d((ou, eu,j))

≥ c(M)

�

Observation 7.6 k · c(O) = c(M) can only hold if for all u ∈ U the distances

between the elements of Eu are zero.

Theorem 7.7 MATCH-DISPATCH is a 2k−1− approximation of the metric VDP-k.

Proof.
c(D)

c(O)
≤ (2 − 1

k
) · c(M)

1
k
· c(M)

= 2k − 1

�

Lemma 7.8 For k = 2 the Approximation ratio of Theorem 7.7 is tight.

Proof. Consider the example shown in Figure 7.4. The heuristic assigns the

events e1, e2 to u1 and e3, e4 to u2 causing costs of 2 ·3 = 6, whereas an optimal

solution would assign the events e1, e3 to u1 and e2, e4 to u2 causing costs of

2 · (1 + ǫ) = 2 + 2 · ǫ. For ǫ → 0 the approximation rate converges to 3. �

u1

u2

e1 e2

e3 e41 1

11

ǫ ǫ

Figure 7.3: The graph for the proof of Theorem 7.8

Observe that this example works for the special case of Euclidean distances,

too. Lemma 7.8 can be generalized for arbitrary k and therefore it is not possi-

ble to analyze it more tightly.
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Lemma 7.9 The approximation ratio of Theorem 7.7 is tight for arbitrary k.

Proof. Let U := {ui|i = 1, . . . , k} be the set of units and E := {ei,j|i, j = 1, . . . , k}

the set of requests. Let c be the metric closure induced by the weight function

c ′, with c ′(ui, ei,j) = 1 and c ′(ej,i, ej+1,i) = ǫ for all j = 1, . . . k − 1, i = 1, . . . k

(see Figure 7.4). Analogously to the proof of Lemma 7.8 MATCH-DISPATCH

chooses to assign ei,j to ui for all i, j = 1, . . . k incurring costs of k · (2 · k − 1)

whereas it is possible to get hand on a better solution by assigning ei,j to uj for

all i, j = 1, . . . k incurring costs of k · (1 + (k − 1) · ǫ). Thus, MATCH-DISPATCH

is not better than (2k − 1)-approximate on arbitrary metric systems. �

...

...

...

...
...

...

......
...

u1 u2 uk

e1,1 e1,2 e1,ke2,1 e2,2 e2,k ek,1 ek,2 ek,k

111 1 1 1 1 11

ǫ
ǫǫǫ ǫ

Figure 7.4: The graph for the proof of Lemma 7.9

7.5 A (2−1/|k|)-Approximation for the Metric Case

with k = |E|

In this case, we can provide another algorithm derived from the double-tree

approximation for the metric TSP, which is much better than the one of the

previous section.

Therefore, we construct an undirected simple graph G = (V := U ∪ E, R :=

V × V) with a cost function c : A → R+ with c(i, j) = 0 if i, j ∈ U and

c(i, j) := d(i, j) else. After computing a minimum spanning tree T in G, we

remove the edges U × U obtaining |U| connected components Tu with exactly

one element u ∈ U in each of them. These connected components form the

tours. For each u let vu ∈ Tu be the event with the maximum distance from

ou within Tu. Let T ′
u be the Graph obtained by doubling the edges of Tu. Find

an Eulerian tour S in T ′
u such that vu is the last event being served for the first

time within this tour. Since all of the other events have already been served u

can stop at vu.
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Algorithm 7 Tree-Dispatch

1: Input: A set of units U, a set of requests E, a metric weight function c :

(U ∪ E) × (U ∪ E) → R+.

2: Output: a set of tours T
3: T := ∅
4: G = (V := U ∪ E, R := V × V)

5: for all ui, uj ∈ U do
6: c((ui, uj)) := 0

7: end for
8: Compute minimum spanning tree T in G w.r.t c

9: A := A \ U × U

10: for all u ∈ U do
11: Let Tu be the connected component of T with u ∈ Tu

12: Let vu be the event with maximum distance from ou within Tu

13: Find Eulerian Tour Su in T ′
u with vu being the last element served

14: Let Pvu be the simple ou − vu-path in Tu

15: T := T ∪ (Su \ Pvu)

16: end for

17: Return T

For Algorithm 7 we need to show that:

Lemma 7.10 It is always possible to find an Eulerian tour Su in T ′
u such that vu

is the last event being served for the first time within this tour.

Proof. Since c is a nonnegative function, we can assume vu to be a leaf. Let Pvu

be the simple ou − vu-path in Tu. We can find an Eulerian tour Su by applying

a DFS to Tu and whenever there is a decision to be made which vertex to visit

next we rather pick one which is not an element of Pvu than one which is an

element of Pvu . This way, we will have reached all other nodes in Tu prior to

vu. �

Lemma 7.11 For all u ∈ U it holds that

c(Pvu) ≥ 1

|Tu|
c(Tu)

Proof.

c(Tu) ≤
∑

v∈Tu

c(Pv) ≤
∑

v∈Tu

c(Pvu) ≤ |Tu| · c(Pvu)
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�

Let O ⊆ R be the set of arcs chosen by the optimal solution.

Lemma 7.12

c(T) ≤ c(O)

Proof. By adding |U|−1 edges to O such that all elements of |U| are connected,

we can express O as a spanning tree in G. Since T is a minimum spanning tree

the proposition follows directly. �

Theorem 7.13 For k = |E| TREE-DISPATCH is a 2 − 1
|E|

approximation of the

metric VDP-k

Proof. Due to Theorems 7.12 we can conclude:

c(T )

c(O)
≤

∑
u∈Uc(Su) − c(Pvu)

c(T)

Lem.7.11

≤
∑

u∈U2 · c(Tu) − 1
|Tu |

c(Tu)

c(T)

≤
(2 − 1

|E|
)
∑

u∈U c(Tu)

c(T)

= 2 −
1

|E|

�

7.6 An Exact Algorithm for the VDP with Limited

Tour Length

In this section, we are going to solve the problem presented in the preceding

section exactly. For this reason we are going to present an integer programming

formulation in Section 7.6.1. In the remainder of the chapter, we give some

cutting planes in order to improve the polyhedral description. Additionally, we

propose in Section 7.6.2 algorithms to separate them and show the results of

some experimental computations which demonstrate the effectiveness of the

constraints generated this way.
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7.6.1 An Integer Programming Formulation

We consider this problem as a MinCostFlow-Problem in a time expanded net-

work (Figure 7.5). This network consists of the nodes G = (V ′ ∪ V ′′, A) with

V ′ := {u1, u2, . . . , um} representing the units and V ′′ := {ei,l : i = 1, . . . , n, l =

1, . . . , k} consisting of k copies of each element ei of E. G holds an arc from ui

to ej,1 at cost d((oui
, ej)) and arcs from ei,l to ej,l+1 for l = 1, . . . , k − 1 at cost

d((ei, ej)). All arcs have capacity 1.

u1 u2 um

e1 e2 e3 e4 en

E

U

layer 1

layer 2

. . .

. . .

. . .

. . .

. . .

...

...
...

...
...

...

Figure 7.5: Graph for MinCostFlow representation of VDP-k

Obviously, there are no paths in this network consisting of more than k arcs

and each path from ui to ej,l can be seen as a tour driven by unit ui with ej

being the lth request served. A set of m such paths provides feasible solution

of VDP-k, if all of these paths start at different ui and for all ej ∈ E there is

exactly one of its k copies ej,l covered by one of these paths. This last property

is hard to ensure by applying standard MinCostFlow techniques. Thus, we

apply an integer programming formulation of the just described network flow

problem and add an additional constraint to guarantee that each request is

served exactly once:
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minimize
∑

u∈U,i∈E

d((ou, ei)) · yu,i+
∑

i,j∈E,l∈L

d((ei, ej)) · xi,l,j (7.1)

subject to
∑

i∈E

yu,i = 1 ∀u ∈ U (7.2)

∑

u∈U

yu,i −
∑

j∈E

xi,1,j = 0 ∀i ∈ E (7.3)

∑

j∈E

xj,l−1,i −
∑

h∈E

xi,l,h = 0 ∀l ∈ L : l > 1, i ∈ E (7.4)

∑

u∈U

yu,i +
∑

j∈E,l∈L

xj,l,i = 1 ∀i ∈ E (7.5)

xi,l,j, yu,i ∈ {0, 1} ∀i, j ∈ E, l ∈ L, u ∈ U (7.6)

Here, the binary variable yu,i = 1 if and only if there is unit of flow on arc

(u, ei,1), which corresponds to vehicle u driving directly to request i. Analo-

gously, xi,l,j = 1 if and only if there is one unit of flow on arc (ei,l, ej,l+1) resp.

there is one unit driving directly from Request i ∈ E to request j ∈ E and i

has been the lth request which has been served along the corresponding tour.

L := 1, . . . k − 1 is the index set of the layers of arcs between the nodes corre-

sponding to the events. Constraints (7.2) to (7.4) maintain the balance of the

corresponding flow and constraint (7.5) guarantees that every request is served

exactly once. The objective function (7.1) ensures that the optimal solution of

the IP corresponds to a set of paths of minimum cost.

7.6.2 Improving the Formulation

In this subsection, we give better formulations for the set of integral solutions

described by the IP above. Observe that for |U| = 1 the problem is a variant of

the TSP. Thus, we cannot hope to find an ideal formulation for VDP-k as this

implied an ideal formulation for TSP as well.

Lemma 7.14 If d(i, j) > 0 for all i, j ∈ E, the optimal solution of the linear

relaxation of (7.1) to (7.6) is not integral.

Proof. We prove the claim by constructing a feasible fractional solution (x̃, ỹ) of

the linear relaxation of (7.1) to (7.6) which has an objective value not greater

than the optimal solution. Furthermore, we give a sufficient condition for in-

stances on which the objective value of (x̃, ỹ) is strictly smaller.



102 An Exact Algorithm for the VDP with Limited Tour Length

For an arbitrary instance of VDP-k consider the solution generated by

MATCHDISPATCH. In the first step the algorithm computes an assignment of

events to units, such that at most k events are mapped to each unit and that

the total distance from the events to their chosen units is minimized. Recall

that in section 7.4 the arcs corresponding to this assignment in the appropriate

graph are called M and their cost is denoted as c(M) whereas the cost of the

optimal solution is named c(O).

Consider the following fractional solution of the corresponding IP with

ỹu,i = 1/k if and only if (u, i) ∈ M and x̃i,l,i = 1/(|L| + 1) = 1/k for all

i ∈ E, l ∈ L, all other entries of (x̃, ỹ) are set to 0. A visualization of such a so-

lution is shown in Figure 7.6. Observe that the objective value of this solution

is

c(x̃, ỹ) =
1

k
· c(M)

Lem.7.5

≤ c(O)

Recall that according to Observation 7.6 the equality in Lemma 7.5 does

only hold if for all u ∈ U the distances between the elements in Eu are zero.

Consequently, in all other cases, the objective value of (x̃, ỹ) is strictly smaller

than the optimal integer solution. As all the distances attain positive values,

we have c(x̃, ỹ) < c(O). As we have found a fractional solution attaining a

lower objective value than the optimal integer solution we can conclude that

the optimal solution is fractional as well.

D

Figure 7.6: An example for the solution of the linear relaxation with all units

having their home positions at point D.
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�

In order to avoid solutions of that kind we add constraints (7.7):

xi,l,i = 0 ∀i ∈ E, l ∈ L. (7.7)

Obviously, these constraints do not cut off any integer solution, but forbid

solutions which possess loops of any kind. As it is possible to construct frac-

tional solutions similar to (x̃, ỹ) for the integer linear program which arises by

adding (7.7) to (7.1) to (7.6), we introduce further cutting planes.

Let S ⊆ E be a subset of the requests E. Since every tour covers at most

k requests one needs at least ⌈|S|/k⌉ different units to serve all the request

in S from which follows that ⌈|S|/k⌉ is a lower bound on the amount of flow

entering S. This leads us to the following inequality:

∑

u∈U,m∈S

yu,m +
∑

i/∈S,m∈S,l∈L

xi,l,m ≥
⌈

|S|

k

⌉

∀S ⊆ E (7.8)

Since we know from inequality (7.5) that the total flow entering each node

is exactly 1, we know by summing up over all the elements of S that

∑

m∈S

(

∑

u∈U

yu,m +
∑

i∈E,l∈L

xi,l,m

)

= |S|. (7.9)

Subtracting Inequality (7.8) from (7.9) yields

∑

m∈S

(

∑

i∈E,l∈L

xi,l,m

)

−

(

∑

i/∈S,m∈S,l∈L

xi,l,m

)

≤ |S| −

⌈

|S|

k

⌉

∀S ⊆ E

and finally

∑

i,j∈S,l∈L

xi,l,j ≤ ⌊|S| · (1 − 1/k)⌋ ∀S ⊆ E (7.10)

This means that within a subset S ⊆ E it is not allowed to have a total flow of

more than ⌊|S|·(1−1/k)⌋. We call sets which do not obey (7.10) violating. Since

there is an exponential amount of such inequalities, as the amount of subsets

is exponential, we need polynomial time algorithms which find violating sets.
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A possible approach would be to compute for all h ≤ |V | the set Sh with

cardinality h which maximizes the left hand side of (7.10). If the corresponding

inequalities are satisfied for all these sets, (7.10) is satisfied for all other subsets

of V as well, otherwise the corresponding Sh induces a separating hyperplane.

Let (x̃, ỹ) be a solution of the linear relaxation. The separation problem

for (7.10) is solved if we can find in a complete graph with vertices E and

edge weight b([i, j]) :=
∑

l∈L(x̃i,l,j + x̃j,l,i) on the edge connecting the vertices

corresponding to i and j for all i, j ∈ E a clique of cardinality h and maximum

weight with respect to b in polynomial time. Unfortunately, this problem is

an instance of the weighted version of the DENSEST K-SUBGRAPH PROBLEM.

This problem is NP-hard, which can be seen by reduction from the MAXIMUM

CLIQUE PROBLEM [FS97].

It might be possible that our separation problem is not NP-hard, as the val-

ues of b obey a special structure, but there is only little hope, since the DENSEST

K-SUBGRAPH PROBLEM is NP-hard even for several special cases. For this rea-

son, we will focus in the following on heuristic approaches to find violating

sets.

Observe that for |U| = 1 the inequalities (7.10) correspond to the subtour

inequalities of the VDP.

Lagrangean Relaxation of the DENSEST k-SUBGRAPH problem

Consider the complete graph with edge weights b as defined above. Sh can be

found by solving the following integer linear program:

maximize
∑

e∈E

beue

subject to
∑

i∈V

vi ≤ h (7.11)

ue ≤ vi ∀e ∈ E, i ∈ γ(e)

ue, vi ∈ {0, 1} ∀e ∈ E, i ∈ V

Here, the binary variables vi, which correspond to the nodes of the complete

graph, are 1 if and only if i ∈ Sh and ue is 1 if and only if both of the endpoints

of e are in Sh. As there is no polynomial algorithm known which solves this

problem we relax the cardinality constraint (7.11) and obtain the Lagrangean

relaxation with Lagrangean multiplier c.
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Zc := maximize
∑

e∈E

beue − c
∑

i∈V

vi

subject to ue ≤ vi ∀e ∈ E, i ∈ γ(e)

ue, vi ∈ {0, 1} ∀e ∈ E, i ∈ V

This is a special case of the provisioning problem, which can be restated

as a MinCut-Problem and hence be solved in polynomial time (see [Law76],

chapter 4).

We will use this subproblem to find violating subsets. Suppose the sub-

problem is solved for some arbitrary c with an objective value of Zc and vari-

ables attaining u ′, v ′, and the corresponding set S is not a violating set. Let

w(S) :=
∑

e∈E beu
′
e be the profit obtained on the edges.

w(S) ≤ ⌊|S|(1 − 1/k)⌋

Furthermore, we have

w(S) − c · |S| = Zc (7.12)

Due to optimality of Zc we have for all S ′ ⊆ V

w(S ′) − c · |S ′| ≤ Zc

Hence, for every S ′ ⊆ V we have:

w(S ′) ≤ Zc + c · |S ′| = Zc + c · |S| − c · |S| + c · |S ′|

= w(S) + c(|S ′| − |S|) ≤ ⌊|S|(1 − 1/k)⌋ + c(|S ′| − |S|)

≤ |S|(1 − 1/k) + c(|S ′| − |S|) = (1 − 1/k − c)|S| + c|S ′| (7.13)

Lemma 7.15 For c < 1 − 1/k all S ′ with

|S ′| ≥ |S| +
1 − 1/k

1 − 1/k − c
(7.14)

are not violating.
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Proof. Due to inequality (7.13)

w(S ′) ≤ |S|(1 − 1/k) + c(|S ′| − |S|) = (1 − 1/k − c)|S| + c|S ′|

(7.14)

≤ (1 − 1/k − c)

(

|S ′| −
1 − 1/k

1 − 1/k − c

)

+ c|S ′|

= (1 − 1/k − c)|S ′| − 1 − 1/k + c|S ′| = (1 − 1/k)(|S ′| − 1)

≤ ⌊|S ′|(1 − 1/k)⌋

Which means that S ′ is not violating. �

Remark that we have for all S ′ ⊆ V:

(|S ′| − 1)(1 − 1/k) ≤ ⌊|S ′|(1 − 1/k)⌋ ≤ |S ′|(1 − 1/k)

Every set S ′ corresponds to a linear function with y-intercept w(S ′) and

slope −|S ′|. Thus, the x-axis is crossed at w(S′)

|S′|
, which is called the density of S ′.

Lemma 7.16 If there are no violating subsets then Z1−1/k ≤ 0.

Proof. If all S ′ ⊆ V are non-violating, then:

w(S ′) ≤ ⌊|S ′|(1 − 1/k)⌋ ≤ |S ′|(1 − 1/k)

Thus we have the following upper bound on the density:

w(S ′)

|S ′|
≤ (1 − 1/k)

Let S be the set corresponding to Z1−1/k, then

Z1−1/t

(7.12)
= w(S) − (1 − 1/k) · |S| ≤ |S|(1 − 1/k) − (1 − 1/k) · |S| = 0

�

As the flow entering each node is at most 1, we have for all S ′ ⊆ V

w(S ′) ≤ |S ′| resp.
w(S ′)

|S ′|
≤ 1

Lemma 7.17 If S is violating, then it has a density greater than 1 − 1/k −
1−/k

|S|
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Proof.

w(S) > ⌊|S|(1 − 1/k)⌋ ≥ (|S| − 1)(1 − 1/k)

which means for the density of S that

w(S)

|S|
> 1 − 1/k −

1 − 1/k

|S|

�

Lemmas 7.15 to 7.17 can be applied to find violating constraints. For this

reason, one should compute Z1−1/k. If it is positive, due to Lemma 7.17 a vio-

lating set has been found. After each computation 7.15 gives an upper bound

on the cardinality of a violating set and Lemma 7.17 can be applied to find a

lower bound for the “important” Lagrangean multipliers. Additionally, some vi

should be fixed in order not to get E as the only set which maximizes Zc for all

values of c ≤ 1 − 1/k.

A Greedy Approach to Find Violated Constraints

Let (x̃, ỹ) be a solution of the linear relaxation and b([i, j]) be defined like

above. Then, for any S ⊆ E let the inner flow of S be the sum of all the flow

values between elements of S which can be calculated by 1
2

∑
i,j∈S b[i, j]. We

present a greedy approach, which works in the following way. Starting with a

set S containing a single vertex i and an Inner Flow of 0, S is enlarged in every

iteration by the vertex j whose adding to S makes the inner flow of S increase

by the biggest amount. After each iteration, it is checked if S obeys (7.10) and

if it does not do so, add S to C which is a container for violating subsets found

this way. A formal description of this greedy procedure is given by Algorithm 8.

Here, for any S and j /∈ S there is a value Fl[j] :=
∑

i∈S,j/∈S b[i, j] which stores

the amount of flow between j and its neighbors in S, which makes it possible

to find the best j ∈ E \ S in O(|E|) time. The overall running time is O(|E|3).

7.7 Numerical Simulation Results

For every instances, the position of units and requests where chosen randomly

from a rectangle of size 2000 × 4000 with uniform distribution. The maximal

tour length is always defined as k := ⌈|E|/|U|⌉.
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Algorithm 8 Greedy-Violation

1: Input: a set of requests E, a solution (x̃, ỹ) of LP

2: Output: a collection of violating sets C
3: C := ∅
4: for all i ∈ E do

5: S := {i}

6: InnerFlow := 0

7: for all j ∈ E do

8: Fl[j] := b([i, j])

9: end for

10: repeat
11: Choose j ∈ E \ S with Fl[j] maximal

12: S := S ∪ {j}

13: InnerFlow := InnerFlow + Fl[j]

14: for all j ∈ E \ S do

15: Fl[j] := Fl[j] + b([i, j])

16: end for
17: if InnerFlow > ⌊|S| · (1 − 1/k)⌋ then

18: C := C ∪ S

19: end if
20: until S = E

21: end for
22: return C
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|E| |U| LPgap LPCutgap IPtime IPCuttime #instances

35 10 5.6% 0.5% 6.35 s 0.8 s 20

35 15 3.6% 0.2% 0.56 s 0.17 s 20

35 5 12.6% 2.5% 318.89 s 36.09 s 20

40 10 7.3% 1% 8.24 s 3.88 s 20

40 15 3.8% 0.2% 0.76 s 0.33 s 20

40 20 2.1% 0% 0.15 s 0.04 s 20

40 5 12.5% 2.5% 1331.92 s 172.2 s 19

45 10 7.5% 1.3% 58.4 s 7.47 s 20

45 15 4.4% 0.6% 6.13 s 1.84 s 20

45 20 2.6% 0.2% 0.5 s 0.12 s 20

50 10 8.5% 2.1% 417.07 s 36.19 s 20

50 15 5.8% 0.8% 12.02 s 2.87 s 20

50 20 3.7% 0.3% 3.25 s 0.49 s 20

60 10 9.4% 3.2% 2932.35 s 440.44 s 15

60 15 7.2% 2.1% 261.69 s 35.67 s 18

60 20 4% 0.4% 33.36 s 2.99 s 20

Table 7.1: Performance of cutting planes
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The performance of the cutting planes can be seen in Table 7.1. The first

two columns denote the number of requests |E| and the number of service units

|U|. The average values of the integrality gaps of the linear relaxation and the

linear relaxation with cutting planes for all instances with the same |E| and |U| is

displayed in columns three and four. For ip and lp being the objective function

values of the IP resp. its linear relaxation, the integrality gap is defined as

(ip − lp)/ip. It can be seen that this gap is much smaller, when cutting planes

have been applied. Consequently, an IP-solver working with Branch-&Bound

can be initialized with a tighter lower bound to work with, and thus obtains

optimal IP-solutions in shorter time. This effect can be seen in the fifth and

sixth column, where the average amount of time spent by CPLEX solving the

IPs without any cutting planes resp. with generated cutting planes is shown.

Especially for instances with a high value for k, the application of cutting planes

takes effect. Here, the optimal solutions can be obtained in 11% of the time.

Even though the problem can be solved exactly much faster by applying

these cutting planes, the high load instances of the ADAC still have too many

events and units to be tackled this way exactly. For this reason, we need to

have a look at heuristics, which approximate the optimal solution to a good

extent.

|E| |U| k gap(MD) gap (MD, 2opt) #instances

10 5 2 7.66% ± 0.61% 1.84% ± 0.13% 20

16 8 2 9.17% ± 0.56% 2.37% ± 0.14% 20

20 10 2 10.54% ± 0.30% 0.86% ± 0.02% 10

30 15 2 16.22% ± 0.87% 4.35% ± 0.16% 10

40 20 2 10.22% ± 0.46% 1.64% ± 0.03% 10

60 30 2 15.39% ± 0.33% 3.76% ± 0.05% 10

20 5 4 17.01% ± 1.29% 3.61% ± 0.14% 20

32 8 4 16.33% ± 0.81% 5.95% ± 0.12% 20

40 10 4 15.79% ± 0.32% 6.23% ± 0.18% 10

60 15 4 17.77% ± 0.12% 7.24% ± 0.11% 10

30 5 6 12.87% ± 0.21% 3.28% ± 0.08% 20

48 8 6 17.41% ± 0.41% 7.73% ± 0.27% 20

60 10 6 20.52% ± 1.28% 8.13% ± 0.05% 10

Table 7.2: Performance of MATCHDISPATCH on the plane with k = 2, 4, 6

The performance of MATCHDISPATCH on the plane can be seen in Table 7.2.
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The first three columns denote the number of requests |E|, the number of ser-

vice units |U| and the tour length k. The last number states the number of

instances to which MATCHDISPATCH has been applied and the optimal solution

has been computed. This experiments resulted in an average optimality gap

of MATCHDISPATCH and its variance which is given in the fourth column. We

see that the solutions found by MATCHDISPATCH are circa 17% more expensive

than the optimal solutions. When we apply 2-Opt to the solutions obtained by

MATCHDISPATCH, we find even better solutions which cost roughly 5% more

than the optimum. Generally speaking, for those instances for which it is com-

putationally too demanding to compute the optimal solution, MATCHDISPATCH

with 2-Opt provides an attractive alternative to get a hand on almost optimal

solutions in very short time.

Additionally, observe that the objective function values of the solutions

found here are much better than the worst case competitivity of 2k − 1.



Chapter 8

A Note on the k-Canadian Traveler

Problem

8.1 Introduction

The shortest path problem is a well-studied problem in combinatorial optimiza-

tion. Given an undirected graph G = (V, E) with two nodes s and t and a cost

function d : E → R+ representing the time it takes to traverse the edges, one

seeks to determine a shortest path from s to t (with respect to d). We con-

sider the following online variant of the problem, in which some of the edges

of G are blocked, and an online algorithm only learns from the blocking of an

edge when reaching one of its endpoints. Whenever a blocked edge which is

part of the planned route is reached, it cannot be passed, and for this reason

the remaining path has to be changed. This problem is called the Canadian

Traveler Problem (CTP) and has been introduced by Papadimitriou and Yan-

nakakis [PY91].

Papadimitriou and Yannakakis [PY91] showed that it is PSPACE-complete

to find an online algorithm with a bounded competitive ratio. If there is a

parameter k given which bounds the number of blocked edges from above, the

resulting problem is called k-Canadian Traveler Problem (k-CTP). Bar-Noy and

Schieber [BNS91] studied the k-CTP and several other variants of the CTP, but

they did not consider the problem from a competitive analysis point of view.

Instead, they consider the worst case criterion (see [BDB94] for details) which

aims at a strategy where the maximum cost is minimized.

To the best of our knowledge, there is no work concerning the competi-

tive ratio of the k-CTP. A deterministic online algorithm ALG for k-CTP is c-

112
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competitive, if for any input σ the total length ALG(σ) of the s-t-path produced

by ALG on input σ is at most c OPT (σ), where OPT (σ) is the length of a shortest

s-t-path in G with the blocked edges removed. We show in this chapter that

for every deterministic online algorithm, there is an instance of k-CTP where it

cannot be better than (2k+1)-competitive. Additionally, we provide an easy de-

terministic algorithm which matches this bound. Thus, the given lower bound

is sharp and our simple algorithm is optimal in terms of competitive analy-

sis. Furthermore, we show a lower bound of k + 1 for randomized algorithms

against an oblivious adversary by applying Yao’s principle.

8.2 Tight Competitiveness Bounds

Lemma 8.1 There is no deterministic online algorithm with competitive ratio less

than 2k + 1.

Proof.

v1

v2

v3

vk+1

s t

1

1

1

1

ǫ

ǫ

ǫ

ǫ

...

Figure 8.1: The graph G for the proof of the lower bound

Consider the graph displayed in Figure 8.1. Every deterministic algo-

rithm corresponds to a permutation, which describes in which order the paths

(s, vi, t) for i = 1, . . . , k + 1 are being searched for a way to get from s to t. For

each of these algorithms consider the instance, where the only passable way is

the last one tried and (vi, t) is blocked for all other i. Thus, the competitivity

cannot be better than
k·(1+1)+1+ǫ

1+ǫ
= 2k+1+ǫ

1+ǫ
Since ǫ can attain any positive value,

the lemma follows. �

In the following we provide an easy algorithm BACKTRACK which matches

the above lower bound for arbitrary undirected graphs G = (V, E). Consider

the algorithm which tries to get from s to t by taking the shortest s-t-path P1
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(ties being broken arbitrarily). If one of the edges e1 ∈ P1 is being blocked,

the vehicle drives back from its current location (which is an endpoint of e1)

to s and then tries to get to t by taking a shortest path P2 in G = (V, E1) with

E1 := E \ {e1}. If this path turns out to be impassable again because of some

edge e2 ∈ P2, then the vehicle backtracks again to s and looks for the shortest

path P3 in G = (V, E2) where E2 := E \ {e1, e2} and so on.

Observe that the vehicle backtracks at most k times, since there are no more

than k edges which are impassable simultaneously. Thus, the algorithm ends

up with a path Pq where q ≤ k + 1. Since E1 ⊃ E2 ⊃ · · · ⊃ Eq we have

d(P1) ≤ d(P2) ≤ · · · ≤ d(Pq). Thus, the overall distance driven is less or equal

to
q−1∑

i=1

2d(Pi) + d(Pq) ≤ (2q − 1)d(Pq) ≤ (2k + 1)d(Pq).

As the offline algorithm knows all the blocked edges in advance, it chooses Pq

(or another path of the same length) to get from s to t. Thus, OPT (σ) = d(Pq)

and BACKTRACK is (2k+ 1)-competitive. Combining this result with Lemma 8.1

we get:

Theorem 8.2 The simple algorithm BACKTRACK is (2k + 1)-competitive for the

k-CTP and this is best-possible. �

We continue to derive a lower bound for randomized algorithms.

Lemma 8.3 There is no randomized online algorithm against an oblivious adver-

sary with competitive ratio less than k + 1.

Proof. Consider again the graph shown in Figure 8.1. We choose i ∈
{1, . . . , k + 1} uniformly at random, block all edges (vj, t) with j 6= i and leave

all other edges intact. So, only the path (s, vi, t) is passable at cost 1 + ǫ and

the expected optimal offline cost is 1 + ǫ. Moreover, with probability 1/(k + 1)

an arbitrary deterministic online algorithm finds the path (s, vi, t) on the ℓth

trial for ℓ = 1, . . . , k + 1. If the algorithm is successful on its ℓth try, it incurs a

cost of 2ℓ − 1 + ǫ and, hence, its expected cost is at least

1

k + 1

k+1∑

ℓ=1

2ℓ − 1 + ǫ =
1

k + 1
·
(

(k + 1)(k + 2) − (k + 1) + (k + 1)ǫ
)

= k + 1 + ǫ.

This proves that for any deterministic online algorithm its expected cost (with

respect to the distribution given on the inputs) is at least k + 1 + ǫ, while we
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have seen that the expected optimal cost is 1 + ǫ. The claim of the lemma now

follows from Yao’s Principle (Theorem 2.5). �



Chapter 9

Lower Bounds for Online k-Server

Routing Problems

9.1 Introduction

In a k-server routing problem, k-servers move in a metric space in order to

serve requests. In the Traveling Salesman Problem (TSP) and the Traveling Re-

pairman Problem (TRP) requests are simply points in the space and a request at

point x is served if at least one of the servers visits x after the request has been

released. In the Dial-a-Ride version (DARP) of the Problems, each request rj

specifies a source aj and a target bj between which an object has to be trans-

ported. In the setting considered in this paper, the server can carry at most

one object at a time and preemption is not allowed, that is, once and object

has been picked up it must be delivered to its destination without intermediate

droppings.

We are concerned with online server routing problems. All servers start in

a designated point 0 of the metric space, called the origin at time 0, and travel

at most at unit speed. Requests are released over time while the servers are

traveling. Thus, a request rj is specified by a triple rj = (tj, aj, bj), where tj ≥ 0

is the time when the request becomes released and aj and bj denote the source

and destination of the corresponding object. The completion time of request rj

is the time when the object has been delivered at bj. In the TSP and TRP we

have aj = bj for all requests rj, such that in order to serve a request at aj = bj

it suffices to visit point aj by (at least) one server at some time t ≥ tj.

An online algorithm does not know about the existence of a request before

its release time. It must base its decisions solely on past information. This

116
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online model allows the servers to wait. However, waiting yields an increase

in the completion times of the points still to be served. Decisions are revocable

as long as they have not been executed. A common way to evaluate the quality

of online algorithms is competitive analysis [BEY98]: An algorithm is called

c-competitive if its cost on any input sequence is at most c times the cost of

an optimal offline algorithm. For a randomized algorithm against an oblivious

adversary, one considers the expected cost.

We derive lower bounds for three online k-server routing problems:

k-TSP in R2 The metric space is the Euclidean plane R2 and the objective is

to minimize the time when the last request is served (“minimize the

makespan”).

k-TRP in R The metric space is the real line R and the objective is to minimize

the sum of completion times.

k-DARP General metric spaces are allowed, and some objects may have to be

carried (i.e. aj 6= bj for some requests rj); the objective is to minimize the

sum of completion times.

The basic method for deriving the lower bounds is Yao’s principle (Theo-

rem 2.5).

9.1.1 Previous Work

In [FS01] Feuerstein and Stougie presented the first competitive algorithms

for the 1-TRP and the 1-DARPon the real line. The competitive ratios obtained

were 9 and 15. In the same paper lower bounds of 1+
√

2 and 3 on the competi-

tive ratio of any deterministic algorithm for the TRP and the DARP, respectively,

were proved. This left a large gap between lower and upper bounds.

The bounds were subsequently improved in [KdPPS03, KdPPS06], where

a 5.8285-competitive deterministic and a 3.8738-competitive randomized algo-

rithm for the 1-DARP in general metric spaces was given. Moreover, the lower

bound for the 1-DARP was raised to 2.4104.

The study of the case k > 1 for both the k-TSP and the k-TRP in specific

metric spaces was essentially initiated in [BS06], where competitive algorithms

and lower bounds were given (see also Table 9.1). It turned out that the gaps

between the lower and upper bounds increased for k > 1. In general metric

spaces, the best deterministic competitive algorithm for the k-TSP achieves a
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Problem Upper Bounds Previous Best

Lower Bound

New Lower Bound

k-TSP in R2 1 +
√

2 [BS06]

(deterministic)

5/4 [BS06] 1 + 1
3−2/k

k-TRP in R 1+O( log k

k
) [BS06]

(deterministic)

1 + 1
2k

[BS06] 1 + 1
2k−1

k-DARP (1 +
√

2)2 ≈
5.8285 [BS06]

(deterministic)
2+

√
2

ln(1+
√

2)
≈

3.8738 [KdPPS03,

KdPPS06]

(randomized for

k = 1)

4e−5
2e−3

≈
2.4104 [KdPPS03]

(for k = 1)

3 (for all k ≥ 1)

Table 9.1: Upper and lower bounds for randomized algorithms for k-server

routing problems

competitive ratio of 2 [AKR00], which matches the lower bound for k = 1

from [AFL+01]. As shown in [BS06], for the real line the best competitive

ratio for the k-TSP and k-TRP is 1 + O(k/ log k).

9.1.2 Our Results

We provide new lower bounds for randomized algorithms for k-server rout-

ing problems. Table 9.1 shows our new lower bounds in comparison to the

previously best results. Our improvements for the k-TSP in R2 from 5/4 to es-

sentially 4/3 and for the k-TRP in R from 1 + 1/(2k) to 1 + 1/(2k − 1) may

be considered to be minor. However, for the k-DARP the increase of the lower

bound from 2.4104 to 3 is a major leap, in particular, since the best determinis-

tic lower bound for the problem from [FS01] remains at 3.

As mentioned before, our basic method for deriving the lower bounds is

Yao’s Principle. While for the k-TSP and k-TRP we use a discrete probability

distribution on the input sequences, for the k-DARP we use a method explained

in [Sei00] to compute a suitable distribution once our ground set of request

sequences has been fixed.
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9.2 k-TSP on the Plane

In our lower bound construction we use a (seemingly) more general prob-

lem, in which each request rj located at some point aj also has a processing

time pj ≥ 0 (this processing time can be divided among the servers processing

the request). The request is completed, once one or more servers have vis-

ited the point aj for a total of at least pj time units. As shown in [BS06], such

“long” requests can be emulated in the Euclidean plane with arbitrary precision

by giving a high enough number of requests packed inside an arbitrarily small

square around aj.

Theorem 9.1 The competitive ratio of any randomized online algorithm for the

k-TSP on the plane is at least 1 + 1
3−2/k

.

Proof. The adversary gives a request at time 1 with processing time p, in

a point x which is drawn uniformly at random from {(a, 0), (−a, 0)}, for some

a ≤ 1. As the optimal algorithm, has its servers already positioned at x, when

the request appears, it can let all of them work on the job at the same time. As

they can share the workload, the expected makespan of the optimal algorithm

is E [OPT (σ)] = 1+p/k. Analogously to the proof of Theorem 5.1 in [BS06] by

Bonifaci and Stougie, we can estimate the expected cost of any deterministic

online algorithm by

E [ALG (σ)] ≥ 1 + p/k + 1/2d((a, 0), (−a, 0)) = 1 + p/k + a. (9.1)

for the case, that p is chosen big enough such that all request contribute to

the serving of the request. Hence, we have

E [ALG (σ)]

E [OPT (σ)]
≥ 1 + p/k + a

1 + p/k
= 1 +

a

1 + p/k
.

For Equation (9.1) to hold, we require all servers to contribute to serving

the request. In the worst case, at time 1, k − 1 servers are located at x and

one server at −1. The k − 1 servers need time p

k−1
to serve the request and the

kth server needs time 1 + a to arrive at x, that is to assure that all servers will

contribute to serving the request, we require

p

k − 1
≥ 1 + a ⇔ a ≤ p

k − 1
− 1.
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Hence, we have to solve the NLP to find the best possible bound:

max
p,a

1 +
a

1 + p/k

s.t a ≤ p

k − 1
− 1

a ≤ 1

which is equivalent to maximizing

1 +
min{1, p

k−1
− 1}

1 + p/k
. (9.2)

If the minimum in (9.2) equals p

k−1
− 1, that is p

k−1
− 1 ≤ 1 (⇔ p ≤ 2k − 2), we

obtain

E [ALG (σ]

E [OPT (σ)]
≥ 1 +

p

k−1
− 1

1 + p/k
.

As this therm increases with p, we choose p = 2k − 2 in order to get the

best possible bound for this case.

E [ALG (σ)]

E [OPT (σ)]
≥ 1 +

1

3 − 2/k
.

In the case where p

2k−2
≥ 1,

E [ALG (σ]

E [OPT (σ)]
≥ 1 +

1

1 + p/k

p=2k−2
= 1 +

1

3 − 2/k
.

Hence, by Yao’s Principle, for p = 2k − 2 (⇒ a = 1) a lower bound for the

competitive ratio of 1 + 1
3−2/k

is obtained.

�

9.3 k-TRP on the Real Line

Theorem 9.2 The competitive ratio of any randomized online algorithm for the

k-TRP for any k ≥ 2 on the real line is at least 1 + 1
2k−1

.

Proof. At time 1, the adversary gives a single request in a point drawn

uniformly at random from the set R := {−1, −k−2
k−1

, .., − 1
k−1

, 0, 1
k−1

, ..., k−2
k−1

, 1}, that
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is the set consisting of 2k + 1 points spread evenly in the interval [-1,1]. Let

the location of request point j be denoted by rj such that rj < rk for j < k. We

have that E [OPT (σ)] = 1. Hence, by Yao’s Principle it remains to show that

E [ALG (σ)] ≥ 1 + 1
2k−1

. That is, we have to show that the best deterministic

algorithm has an expected cost of at least 1 + 1
2k−1

.

We claim that there exists a best deterministic online algorithm, which has

all the requests located on the request points at time 1. Let ALG be an optimal

deterministic online algorithm. Let si be the location of server i at time 1 and

define Ri ⊆ R to be the set of request points which are closest to this server at

time 1 (see Figure 9.1). If some r ∈ R could be part of two different subsets,

choose one of them arbitrarily.

R1 R2 R3

1
2

0−1 −1
2 1

Figure 9.1: Example for k = 3

When the request appears, ALG will send the server to the request with

minimum distance. Thus, the expected value can be computed as follows:

E [ALG (σ)] = 1 +

k∑

i=1

∑

r∈Ri

(

1

2k − 1
· d(r, si)

)

= 1 +
1

2k − 1

k∑

i=1

∑

r∈Ri

d(r, si)

We claim, that there is an optimal algorithm which has all the servers lo-

cated on request points. Suppose, there was a server i, which is not located at

a request point at time 1. Let R−
i ⊆ Ri be the request assigned to this server

which are located on the left of it, and let R+
i be the number of requests which

are located on the right side of i. If R−
i > R+

i , one can obtain a better expected

value by moving i to the left by ǫ > 0 units, as all requests on the left can be

served at cost d(r, si) − ǫ and all requests on the right can be served at cost

d(r, si) + ǫ, which means for the sum of all these requests:



122 k-DARP

∑

r∈R−
i

(d(r, si) − ǫ) +
∑

r∈R+
i

(d(r, si) + ǫ)

=
∑

r∈R−
i

d(r, si) − |R−
i | · ǫ +

∑

r∈R+
i

d(r, si) + |R+
i | · ǫ

=
∑

r∈R−
i

d(r, si) +
∑

r∈R+
i

d(r, si) + (|R+
i | − |R−

i |)︸ ︷︷ ︸
<0

·ǫ

<
∑

r∈R−
i

d(r, si) +
∑

r∈R+
i

d(r, si) =
∑

r∈Ri

d(r, si)

Along the same lines, we obtain a better expected value by moving the

server to the right, if |R+
i | > |R−

i |. These two cases contradict the optimality of

ALG . If |R+
i | = |R−

i |, we can move the server to the right or to the left without

changing the expected value. This allows us to move it to the next request

point. Therefore, we can conclude that there is always a best deterministic

online algorithm which locates all servers on request points at time 1.

Since there are 2k − 1 request points and k servers, the probability that a

request point is chosen, where a server is located is k/(2k − 1). Otherwise, a

server has to move to the request point, where the request appears and, as the

distance between the request points is 1/(k−1), the server has to move at least
1

k−1
units. For this reason, we can estimate the expected value as:

E [ALG (σ)] ≥ 1 +
k

2k − 1
· 0 +

k − 1

2k − 1
· 1

k − 1
= 1 +

1

2k − 1

�

9.4 k-DARP

Theorem 9.3 The competitive ratio of any randomized online algorithm for the

k-DARP for any k ≥ 1 in general metric spaces is at least 3.

Proof. As metric space, we choose a star consisting of 2k + 1 rays named A

and B1, ..., B2k. At time 0, one request σ1 from o to 1A is given. With probability

q, there are no further requests. With probability 1 − q, at time 2y, on k of

the 2k “B-rays” the adversary gives respectively m requests in 2yBi1
, ..., 2yBik

,

i1 6= i2... 6= ik ∈ {1, ..., 2k}, where y ∈ [v, 1] is chosen according to some
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probability density function p(y) which satisfies q +
∫1

v
p(y)dy = 1. v ∈ [0, 1]

is chosen by the adversary in such a way that the competitive ratio is maximal.

The probability that m of these requests are given in 2yBi
is 1−q

2k
for each i ∈

{1, ..., 2k}.

An offline algorithm pays 1 with probability q and 1 + (4 + 2km)y if the

additional k · m requests arrive. Hence, the expected optimal offline cost is

E [OPT (σ)] = q +

∫1

v

(1 + (4 + 2km)y)p(y)dy. (9.3)

To calculate the expected cost of an online algorithm ALG x, let 2x be the

time when one of the servers starts serving σ1, unless the k · m requests arrive

before time 2x. Wlog x ≤ 1, since if no further requests arrive, the algorithm

knows that there will be no further requests. As in the previous proofs, one

can show, that the servers of the best deterministic online algorithm will wait

in the origin until time 2x (respectively 2y if x ≥ y).

With probability q, the online cost is 2x + 1. If x ≥ y, ALG x first serves the

k ·m requests before serving σ1. In this case, it pays 1+(6+4km)y. Otherwise,

if x < y, the online algorithm first has to serve σ1 before it can start serving the

last m requests. Wlog let s1 be the server serving σ1. Then, if s1 is back in the

origin after having served σ1 before s2, ..., sk are back in o after having served

respectively m of the k ·m requests, ALG x pays (2x+1)+(k−1)4my+(2x+2+

2y)m, otherwise, the online algorithm’s cost is (2x+1)+(k−1)4my+(6y+2y)m.

Hence, the online algorithm pays (2x + 1) + 4my + (min{2x + 2, 6y} + 2y)m ≥
(2x+ 1) + 4my + (2x+ 2y + 2y)m = 1 + (2 + 2m)x + 8my. Therefore, we have

E [ALG x(σ)] ≥ (1 + 2x)q +

∫x

v

(1 + (6 + 4km)y)p(y)dy

+

∫1

x

(1 + (2 + 2m)x + 4km · y)p(y)dy

=: φ(x).

To maximize the expected cost of any deterministic online algorithm, we

wish to choose q and p(y) such that minx∈[0,1] φ(x) is maximized. To this end,

we use a heuristic approach where we choose q and p(y) such that φ(x) is

constant for all x ∈ [0, 1]. Then we have that ∂jφ

∂xj = 0 ∀j ≥ 1. Differentiating,

we find that

∂φ

∂x
= 2q + (4 − 2m)xp(x) + (2 + 2m)

∫1

x

p(y)dy



124 k-DARP

∂2φ

∂x2
= (4 − 2m)xp ′(x) + (2 − 4m)p(x).

Since ∂2φ
∂x2 = 0, we obtain the differential equation

p ′(x)

p(x)
=

2m − 1

(2 − m)x

which has solutions of the form

p(x) = x
2m−1
2−m · c.

Using q +
∫1

v
p(y)dy = 1, we obtain

c =
1 − q

2−m
m+1

(1 − v
m+1
2−m )

and hence

p(x) =
(1 − q)(m + 1)

(2 − m)(1 − v
m+1
2−m )

x
2m−1
2−m .

Plugging p(x) in φ(x), we find that

φ(x) = (2x + 1)q +
(1 − q)(3 + 4km + 4km2 + (6 + 6m)x)

3(1 − v
m+1
2−m )

(9.4)

−
(1 − q)(v

m+1
2−m (3 + (4km2 + 4km + 6m + 6)v))

3(1 − v
m+1
2−m )

.

Since we wanted to choose q and p(y) such that φ(x) is constant for all

x ∈ [0, 1], we must have that ∂φ(x)

∂x
= 0, that is

2q +
1 − q

1 − v
m+1
2−m

(2 + 2m) = 0

and therefore

q =
m + 1

m + v
m+1
2−m

.

Now, the expected cost of the optimal offline algorithm and ALG x can be

determined by plugging the obtained results for q and p(y) in (9.3) and (9.4):

E [ALG x(σ)] ≥ 3m − 4km − 4km2 + v
m+1
2−m (3 + (4km2 + 4km6m + 6)v)

3(v
m+1
2−m + m)



Lower Bounds for Online k-Server Routing Problems 125

E [OPT (σ)] =
−4 − m − 2km − 2km2 + v

m+1
2−m (3 + (2km2 + 2km + 4m + 4)v)

3(v
m+1
2−m + m)

.

We conclude that

E [ALG x(σ)]

E [OPT (σ)]
≥ −5m − 8m2 + v

m+1
2−m (3 + (8m2 + 14m + 6)v)

−4 − 5m − 4m2 + v
m+1
2−m (3 + (4m2 + 8m + 4)v)

m→∞→ 3 − 4k · log(v)

1 − 2k · log(v)
.

Hence the desired result is obtained as v → 1.

�
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