
Lower Bounds and Quality Guarantees
for Online-Dispatching

Diplomarbeit

von

Stephan Westphal

April 2004

Technische Universität Berlin
Fachbereich II: Mathematik und Naturwissenschaften

Institut für Mathematik
Studiengang Wirtschaftsmathematik

Erstgutachter: Prof. Dr. M. Grötschel
Zweitgutachter: Prof. Dr. S. O. Krumke

Acknowledgements

I would like to express my gratitude to everyone who contributed to this thesis.

First of all, I would like to thank Prof. Dr. Sven Oliver Krumke for the
cooperation and support. This thesis would not have been possible without him
and the mental and technical infrastructure of the Konrad-Zuse-Zentrum für
Informationstechnik Berlin.

On the personal side, I am indebted to Katrin G., my family and all the
friends and companions who supported me throughout this time.

Berlin, den 12.April 2004

Stephan Westphal

iii

Contents

1 Introduction 1

1.1 Some facts about the Yellow Angels 1

1.2 The problem of dispatching . 2

1.3 General principles for the design of online algorithms 6

1.4 Lower Bounds and Quality Guarantees 7

1.4.1 Competitive Analysis . 8

2 Solving the offline problem 10

2.1 Arc-Based Model . 10

2.2 Tour-Based Model . 15

2.2.1 The Algorithm ZIBDIP 17

2.2.2 Column Generation . 19

2.2.3 Implementation of ZIBDIP 21

2.2.4 Lower Bounds for LP . 22

3 Lower Bounds for the Branch & Bound pricing Algorithm 23

3.1 Modeling . 27

3.2 Computational aspects . 33

3.3 Preprocessing . 34

3.4 Computational Results . 35

3.4.1 Snapshots . 36

3.4.2 Offline-Instances . 41

3.4.3 Summary of the Computational Results 46

iv

CONTENTS v

4 Column Generation via Resource Constrained Shortest Paths 52

4.1 The Problem . 52

4.2 The Resource Constrained Shortest Path Problem 55

4.2.1 Complexity . 55

4.2.2 Algorithmic Approaches 56

4.2.3 Labeling Approaches . 58

4.3 Column generation . 67

4.3.1 How to choose the right bucketwidth 69

4.4 Computational results . 69

A Notation 75

A.1 Basic notation . 75

A.2 Graph Theory . 75

A.3 Network Flows . 77

A.4 Branch-and-Bound . 78

A.5 Linear Programming . 79

B Deutsche Zusammenfassung 81

Bibliography 87

Chapter 1

Introduction

Each year thousands of motorists get stuck or break down on the road and have
to call out for assistance. For this reason the German Automobile Club (ADAC)
maintains a fleet of service vehicles, so called ”yellow angels”, in order to help
these people.

Since December 2000 the Konrad-Zuse-Zentrum Berlin (ZIB) has been in-
volved in a project concerning the automization of the online dispatching system
of the ADAC. It is the project’s goal to develop an algorithm that can be used to
guarantee a good quality of service under low operational costs. In the following
sections we introduce the ADAC, a precise definition of the problem we have to
solve and the main difficulties we are faced by the search of good solutions.

1.1 Some facts about the Yellow Angels

Since its foundation in 1954 the fleet of service vehicles grew from 60 motorcycles
in the early days to 1,700 ADAC-owned vehicles and 5,000 extra vehicles run by
partners in 2003. Over the last 50 years the service units drove more than
1,400,000,000 kilometers in order to provide assistance in more than 50,000,000
instances [20].

With the permanently increasing volume of traffic the number of breakdowns
grew the same way, and so, between 1993 and 2003 there has been a 33.45 %
increase in the number of help requests (see Figure 1.1).

The most common causes are problems of the general electrical equipment of
the vehicles, as well as engine and ignition damage. In the year 2003 the yellow
angels worked with their partners on 3,700,000 assignments and helped with
180,000 traffic accidents. This results in an average of 10,000 assignments per

1

2 The problem of dispatching

day. But since cars suffer from extreme weather conditions like very cold winters
and very hot summers the load does not arise evenly. Thus, they provided over
660,000 jump starts in the winter 2003. As an example for an extreme day, we
should mention the 9th January 2003, on which the yellow angels served 20,549
requests.

The yellow angels have by now a success rate of 83 % which means that 83
% of the cars can be fixed in a way that they can continue their drives.

Figure 1.1: Growth of the number of services provided by the ADAC between
1993 and 2002 [1]

The assignments both of the yellow angel as well as of their partners are
coordinated in five help centers by human operators (dispatchers). People who
get stuck on the road and need the help of the yellow angels call these help
centers.

1.2 The problem of dispatching

It is the job of the dispatchers to assign every incoming help request to a service
unit. By doing so, the dispatchers have to create tours for the units.

Whenever it is not possible to find a good dispatch, the dispatchers can revert
to contractors who can provide assistance to the requests instead of the yellow
angels. Contractors are firms, like e.g. garages, which have service cars on their

Introduction 3

own and serve the ADAC’s customers at a lump sum per service done. Usually,
serving a request by a contractor is more expensive than serving it by a yellow
angel, but in some cases it is reasonable to do so, especially if there are many
requests to be served and the customers are not wanted to wait too long.

We call the problem, which has to be solved by the dispatchers, the vehicle
dispatching problem (Vdp) and we will use the notation introduced in [15]. On
page 80 there is an overview on the most important parameters introduced in the
following. An Instance of Vdp consists of a set of units U , a set of contractors
V and a set of events E. Each unit u has a current position ou, a home position
hu where u is heading for at the end of its shift, a logon time tstart

u which marks
the beginning of its shift and a shift end time tend

u which can be exceeded by at
most tmax−ot

u minutes overtime. Moreover, every unit u has a set of capabilities
Fu expressing the abilities of serving the different kinds of damages like jump
starting a vehicle or towing a car to a garage.

Like the service units each contractor v has a set of capabilities Fv. Each event
e has a position xe, a release time θr

e which marks the time when the motorist has
called for assistance, a deadline θd

e when the service should be completed at the
latest and a set of required capabilities Fe. Moreover, it takes a certain amount
of time δe to serve a request. For example the ADAC assumes 15 minutes for
problems with the muffler, 20 minutes for the gear shift and 20 minutes if the
brake does not work properly.

In the following we denote the driving time of unit u from event e to event
f as δef

u and δoue
u resp. δedu

u shall be the driving times of unit u from its current
position to event e resp. from event e to its home position hu.

A feasible solution of Vdp is an assignment of events to units and contractors
capable of serving them, as well as a tour for each unit such that all events are
assigned. Moreover, it is mandatory that the service of events does not start
before their release times, and all tours for all units start at their current positions
not before their logon times and at their home positions. Such a solution is called
a dispatch.

The best and therefore desired solution of Vdp is the solution that has low
operational costs and maintains a good quality of service.

Until quite recently this planning process was completely done by human
dispatchers who used their computers just for assistance purposes such as lo-
cating the units but not for the optimization. For this reason, the quality of
these solutions was highly dependent on the experience and ability of the dis-
patchers. Furthermore, it was not possible to measure the quality of a dispatch
and no quality guarantees could be given apart from some not very meaningful
performance figures like the number of requests served per unit and hour.

4 The problem of dispatching

Hence, the overall goal of the project is to develop an automatic online dis-
patching system, which was called ZIBDIP, that guarantees low operational costs
and short waiting times for the customer.

We recall the two goals of vehicle dispatching in order to get a more precise
definition of an optimal dispatch:

1. Minimization of operational costs which arise by the assignment of units
and contractors. The different cost elements are the following: The usage
of a unit costs cdrv

u per time unit for driving, csvc
u for service and cot

u for
overtime. The costs of the contractors are specified by a value for costs per
service csvc

v .

2. A good quality of service is directly dependent on the time the customer
has to wait for assistance. Therefore, the maximum and average waiting
time has to be our measure for the quality of service achieved by a dispatch.
So far the average waiting time is 40 minutes ([20]).

These two objectives are in conflict with each other as a decrease of the oper-
ational costs usually causes an increase of waiting times. Since the optimization
with respect to objective 1 usually results in a different solution than the opti-
mization with respect to objective 2, both objectives have to be merged in order
to make every two different solutions comparable and thus the definition of an
optimum becomes possible.

For this reason extra costs related to serving an event e at time t which might
be ”too late” are specified by the value of a lateness-function LateCost(e, t) (see
Figure 1.2):

LateTime(e, t) := max((t − θd
e), 0)

LateCost(e, t) := 0.1 · LateTime(e, t) · (1 + LateTime(e, t)/2.24)

This lateness penalty is a quadratic function of the time for the reason that
it should be more expensive to let a customer wait who is already waiting for a
longer time than another customer who did not wait as long. The numeric values
used above are the result of discussions with the ADAC.

Finding a good dispatch is difficult for the two following reasons:

1. The complexity

2. The lack of knowledge about the future

Introduction 5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60

la
te

ne
ss

 c
os

ts

time [minutes] after deadline

Figure 1.2: The lateness function

In order to illustrate the complexity of our problem we make a little calcu-
lation. Even on a ”normal” day it is not unusual that a dispatcher has to take
care of about 100 units and 200 requests at the same time. Assuming an average
service time of 15 minutes and a maximum waiting time of 40 minutes (which
is desired by the ADAC) the average length by means of served vehicles should
not be longer than 4. But even if we only consider tours of length 4 there are
(200 · 199 · 198 · 197=)1,552,438,800 tours per unit. Having 100 units we have
to choose an optimal dispatch from approximately 155 billion tours. It is quite
unlikely that a human dispatcher can handle such a huge amount of possibilities.

Even if it was possible to handle all these tours and an optimal dispatch had
been found, because of the lack of knowledge about the future this dispatch
could become suboptimal after the release of an unsuitable request.

Example 1.1 For reasons of simplicity we choose all deadlines properly so that
no lateness and overtime costs arise. Consider the following situation: There is
only one unit u and one request r1, so the vehicle is sent to r1 (Figure 1.3 (i)).
While serving r1 another request r2 comes up and thus after finishing r1 u is
heading for r2 in order to provide assistance there (Figure 1.3 (ii)). Since the
unit’s shift is nearly over, u drives home (Figure 1.3 (iii)). If the dispatcher had
known in advance that the driver of the car representing r2 called, he would have

6 General principles for the design of online algorithms

sent him to r2 first and then to r1 (Figure 1.3 (iv)) as this tour is shorter and
thus cheaper.

(i) (ii) (iii) (iv)

Figure 1.3: Example for problems in online dispatching

Problems of that kind where one has to make decisions before even knowing
all the relevant data are called online-problems. If all the data was known in
advance, we would call the same problem an offline-problem. As there are several
different strategies to handle online-problems, we present according to [10] some
well-established strategies for online-problems in the next section.

1.3 General principles for the design of online

algorithms

1. Greedy: Every new request is assigned to the currently next best unit. This
strategy, called the nearest neighbor policy, is an implementation of the
greedy-algorithm. The closeness of a request to a unit can be calculated from
different values. In our case it would make sense to consider the distance between
the vehicle and the request, the distance between the request and the vehicle’s
home position, the lateness costs, and the unit specific service costs incurred
thereby. However this closeness function is chosen, a general problem of every

Introduction 7

greedy algorithm is that it always searches for nothing but a local short-term
optimum. Although there are plenty of problems which can be solved by greedy
algorithms to an optimum (e.g. the Minimum Spanning Tree Problem), our
problem cannot be solved this way.

2.Replan: The usage of the Replan-strategy requires an algorithm for the
corresponding offline problem. Replan works in a way that we compute the
optimal solution for the currently known requests. When something important
happens, like the release of a new request or the break down of a yellow angel, we
make a new plan which can be totally different from the previous one. Therefore,
at every point in time, we have got a plan which is optimal with respect to the
known requests and the available service units.

3. Ignore: Like Replan, Ignore assumes that we have an algorithm which
can solve the corresponding offline problem. But in contrast to Replan the once
computed solution is not dropped when an inappropriate request is released. The
current plan is fulfilled until every request has been served. All requests which
are released in the meantime are collected in a buffer and a new plan is computed
which optimizes the not yet served requests. Since we have several units, every
dispatch is a plan which contains several plans called the tours usually ending
at different points in time. So, waiting for the last request to be served means
letting all the other units not involved in this service wait until it is done and
a new plan can be made. This does not make sense and so the well-known
definition of the ignore-strategy like mentioned above is not applicable this
way. In consequence, we should replan whenever a unit has completed its tour,
changing given and not yet fulfilled tours only by appending requests.

In the ADAC project it was decided to solve the Vdp by replan, since this
strategy had provided promising results in the first evaluations on real-world-data
for the ADAC-problem.

Therefore, after each request’s release, we have to solve our problem again.
For this reason we need an offline-algorithm that computes the best or at least
a provably good dispatch in a reasonable time. Such an algorithm is presented
in the following chapter.

1.4 Lower Bounds and Quality Guarantees

In the following we recall some basic procedures of benchmarking online algo-
rithms and try to find some quality strategies for our online-algorithm.

8 Lower Bounds and Quality Guarantees

1.4.1 Competitive Analysis

Since our algorithm’s actions are uniquely determined by the input, it is a de-
terministic algorithm. For this reason we consider nothing but deterministic
algorithms in the following. Those algorithms are usually appraised by compar-
ing them with an optimal offline algorithm which knows the whole sequence σ
in advance and can, therefore, serve it optimally. This leads to the definition of
c-competitiveness (taken from [10]).

Notation 1.2 (Competitive Algorithm, Determistic Case) Let c ≥ 1 be
a real number. A deterministic online-algorithm ALG is called c-competitive if

ALG(σ) ≤ c OPT(σ)

holds for any request sequence σ. The competitive ratio of ALG is the infimum
over all c such that ALG is c-competitive.

Like Torres showed in [22], it is not possible to find a c-competitive algorithm
for Vdp . That means that for every algorithm ALG and every c ∈ R there is a
request sequence σ such that ALG(σ) > c OPT(σ). Since most of the problems
we are faced with in real life are not as malicious as these worst case instances,
it is not likely that our algorithm performs that bad in real life situations.

Thus, we have to find another way to appraise our algorithm’s suitability
for daily use. Hence, we test our algorithm on real world data delivered by the
ADAC and compute the costs incurred, comparing them to the offline solution.

We call this value experimental competitivity, since we are not computing c
for every σ but for some σ that really took place in reality.

The data shows that our algorithm works much better than the competitivity
analysis suggests.

It is evident that the values determined in such a way only represent the
considered instances, and, therefore, no generally accepted statement can be
obtained this way. But since these values are very close together, we can assume
that the values of the other sequences which may take place in practice are similar
to them.

This way, a relative error of about 41% could be obtained (see [16]) which
means that the solutions computed by our Algorithm have been in the average
case about 41 % more expensive than the optimum. In these evaluations of the
online performance, the time periods considered have not been longer than two
hours.

Introduction 9

Because of the high computational demand related to the computation of the
offline instances, it was not possible to compute solutions for the offline instances
considering more than two hours. For this reason, we introduce a new column
generation method which takes a focus on this specific problem in Chapter 4.

Chapter 2

Solving the offline problem

In the following we present two different modeling approaches which can be
seen as the most promising ones for the design of exact algorithms. Both of
them lead to integer programs. First, we present the arc-based model, which is
based on 0/1-variables for each arc in the graph consisting of nodes representing
the requests, the current positions and the home-positions of the units. This
modeling attempt leads to some problems, which will be explained in the ending
of the following section.

Because of these problems we will introduce a second model which is based
on 0/1-variables for every possible tour which can be driven by contractors or
service units. This model is more adaptable since we are able to integrate the
quadratic lateness penalties more easily. The high amount of possible tours we
have to get along with is handled by a column generation approach which will
be introduced in the last section of this chapter.

2.1 Arc-Based Model

In this model, we consider the time discretization {0, . . . , T} with a sufficiently
large time horizon T . It makes sense to choose the time units to have the size of
one to five minutes.

This model has a variable xu,i,j ∈ {0, 1} for each pair of nodes i, j ∈ E and
each unit u ∈ U . The meaning of xu,i,j = 1 is that in the tour of unit u of our
solution, node j is directly served after node i and xu,i,j = 0 otherwise. A feasible
solution is the characteristic vector of a set of paths (one for each unit) through
E such that all request nodes are met exactly once.

The consequence is that we have to model

10

Solving the offline problem 11

• that the xu,i,j in a solution must form a set of feasible paths from the units’
current position ou to their home position hu

• that every request is visited exactly by one tour

• that every unit drives exactly one tour

• that the cost depends on the arrival times of the units at the events

Because of the last requirement, we need for every request i additional vari-
ables ti specifying the time when the assigned service unit arrives and variables
Ti representing the departure time of this unit.

First, every unit is driving a tour through some request nodes. So we need
the following flow constraints in E for each unit u:

∑

j∈E∪{hu}

xu,ou,j = 1 (2.1)

∑

i∈E∪{ou}

xu,i,hu
= 1 (2.2)

∑

i∈E∪{ou}

xu,i,k −
∑

j∈E∪{hu}

xu,k,j = 0 ∀k ∈ E (2.3)

Equations 2.1 - 2.3 express that driving a tour, u has to leave ou (Equation
2.1), pass through some request nodes (Equation 2.3), and finally arrive at hu

(Equation 2.2).

Since the shift of a unit u ∈ U starts at time tstart
u , u cannot depart from its

current position ou earlier than its release time.

Tou
≥ tstart

u ∀u ∈ U

The difference between the arrival and departure time of a request i has to
be at least its service time δi since the request has to be served before it can be
left.

Ti − ti ≥ δi ∀i ∈ E

As the service of an event i cannot start before its release time and it takes
at least δi time to serve it, i cannot be parted earlier than θr

i + δi. This leads to
the following equation:

12 Arc-Based Model

Ti ≥ θr
i + δi ∀i ∈ E

The deadlines are soft. Therefore, we introduce a variable yi ∈ R counting
the lateness at request i. This lateness must additionally be positive since we do
not have any benefit of arriving early:

yi ≥ ti − θd
i ∀i ∈ E

yi ≥ 0 ∀i ∈ E

Analogously to the lateness we implement the overtime yhu
∈ R for every

unit u:

yhu
≥ thu

− tend
u ∀u ∈ U

yhu
≥ 0 ∀u ∈ U

tmax−ot
u ≥ yhu

∀u ∈ U

If a unit u drives directly from i to j, it needs δi,j
u time to get there and thus

the time difference between the departure time at i and the arrival time at j is
the driving time δij

u from i to j. Therefore we need a constraint which ensures

that Ti + δ
(i,j)
u ≤ tj for the case that xu,i,j = 1. The following inequality is such

a constraint:

xu,i,j(tj − Ti − δ(i,j)
u) ≥ 0 ∀i ∈ E ∪ {ou}, j ∈ E ∪ {hu}, u ∈ U (2.4)

If u does not drive directly from i to j, then xu,i,j = 0 and hence the constraint

is fulfilled. Otherwise the constraint is only fulfilled if Ti + δ
(i,j)
u ≤ tj . However,

the constraint is non-linear. Exploiting the fact that we are only interested in
binary values for the variables xu,i,j, we choose an M which is large enough such
that

tj − Ti − δ(i,j)
u + M(1 − xu,i,j) ≥ 0 ∀i ∈ E ∪ {ou}, j ∈ E ∪ {hu}, u ∈ U

has the same effect as equation 2.4.

Solving the offline problem 13

Since we want every request to be served exactly once, we introduce the
following constraint:

∑

u∈U

∑

j∈E∪{hu}

xu,i,j = 1 ∀i ∈ E

The cost of a solution is then a sum of driving costs, service costs, lateness
costs, and overtime costs. Since the xu,i,j specify the paths chosen for the units
and the yi yield the lateness and overtime in time units, we can describe the cost
of a solution by

∑

u∈U,i∈E∪{ou},j∈E∪{hu}
cdrv
u δij

u xu,i,j (driving)

+
∑

u∈U,i∈E,j∈E∪{hu}
csvc
u δixu,i,j (service)

+
∑

i∈E LateCost(i, θr
i + yi) (lateness)

+
∑

u∈U cot
u yhu

(overtime).

This is what we want to minimize.

14 Arc-Based Model

The complete model reads as follows:

(MIP) min
∑

u∈U,i∈E∪{ou},j∈E∪{hu}
cdrv
u δij

u xu,i,j (driving)

+
∑

u∈U,i∈E,j∈E∪{hu}
csvc
u δixu,i,j (service)

+
∑

i∈E LateCost(i, θr
i + yi) (lateness)

+
∑

u∈U cot
u yhu

(overtime)

subject to:
∑

j∈E∪{hu}
xu,ou,j = 1 ∀u ∈ U ;

∑

i∈E∪{ou}
xu,i,hu

= 1 ∀u ∈ U ;

∑

i∈E∪{ou}
xu,i,k −

∑

j∈E∪{hu}
xu,k,j = 0 ∀k ∈ E, u ∈ U ;

Tou
≥ tstart

u ∀u ∈ U ;

Ti − ti ≥ δi ∀i ∈ E;

Ti ≥ θr
i + δi ∀i ∈ E;

yi ≥ ti − θd
i ∀i ∈ E;

yi ≥ 0 ∀i ∈ E;

yhu
≥ thu

− tend
u ∀u ∈ U ;

yhu
≥ 0 ∀u ∈ U ;

tmax−ot
u ≥ yhu

∀u ∈ U ;

tj − Ti − δ
(i,j)
u + M(1 − xu,i,j) ≥ 0 ∀i ∈ E ∪ {ou}, j ∈ E ∪ {hu}, u ∈ U

∑

u∈U

∑

j∈E∪{hu}
xu,i,j = 1 ∀i ∈ E

xu,i,j ∈ {0, 1} ∀i ∈ E ∪ {ou}, j ∈ E ∪ {hu}, u ∈ U

yi ∈ R ∀i ∈ E ∪ {hu}

Solving the offline problem 15

There are several problems connected with the arc based approach just con-
sidered:

1. The contractors are not implemented yet. This is a problem which can be
solved easily by treating contractors as units with no driving and no over-
time costs. Hence, only lateness and service costs are taken into account.

2. The lateness costs considered above are not linear. This non-linearity can
not be handled with a simple trick like the one we applied to handle con-
straint 2.4. If we want to model our problem as an integer linear program
by following the arc based approach, we have to replace the quadratic late-
ness penalty function with one or more linear functions approximating the
quadratic lateness penalty with a piecewise linear function. By doing so,
we would apply slight changes to the problem.

3. Linear integer programs are usually solved by finding the optimal vertex
of the fractional polytope described by the constraints with respect to the
objective function. If this vertex is not a feasible solution for MIP, con-
straints representing cutting planes are added to the linear program and
the process is repeated until the best vertex is feasible for MIP and so the
best feasible solution for MIP has been found. Thus, we are highly depen-
dent on the quality of the fractional solutions obtained thereby, if we do
not want to make too many steps of finding cutting planes and solving the
modified linear programs again and again. It is known that inequalitites
like 2.4 lead to fractional solutions of a low quality and so the solution of an
instance of the MIP described above demands high computational effort.

Since we do not want to set the quadratic lateness penalty aside and we think
that the problem characterized in 3. yields a running time which is not real-time
compliant, we consider another model, which is more suitable for our purposes:

2.2 Tour-Based Model

This model is based on tour variables. Models of this type are by now well-
established in the vehicle routing literature [7].
Let R be the set of all feasible tours. This set splits into the sets Ru of feasible
tours for each unit u. A tour in Ru can be described by any ordered sequence
(u, e1, e2, ..., ek) of k distinct events visited by u in that order. We will use the
sequence (u) to denote the go-home tour. Feasibility means that the capabilities
of the unit are sufficient for all ei, i.e. Fei

⊆ Fu for all i = 1, ..., k.

16 Tour-Based Model

For all R ∈ Ru we define a binary variable xR with the following meaning: xR = 1
if and only if the route R is chosen to be in the dispatch, otherwise xR = 0.
The cost of the route R is denoted by cR. By teR we denote the arrival time at
event e in route R. Let the arrival time of u at its home position be thu

R . Then
the cost cR of route R = (u, e1, ..., ek) can be computed as

cR = cdrv
u δoue1

u +

k
∑

i=2

cdrv
u δei−1ei

u + cdrv
u δekdu

u (driving)

+

k
∑

i=1

csvc
u δei

(service)

+ cot
u max{tdu

R − tend
u , 0} (overtime)

+
k

∑

i=1

LateCost(ei, t
ei

R) (lateness)

A feasible route S for a contractor v ∈ V can be written as a set {e1, e2, ..., ek}
of events that this contractor may be assigned to serve, i.e. Fei

⊆ Fv for all
i = 1, ..., k.
Let tev be the time by which contractor v reaches event e with one of his vehicles
if it was assigned to it. Since the services done by contractors are paid in a
lump sum, we do not have to care about the overtime and driving costs incurred
thereby, and the cost cS of the services {e1, e2, ..., ek} can be computed as:

cS = csvc
v |S| (service)

+

k
∑

i=1

clate
ei

LateCost(ei, t
ei
v) (lateness)

Since the service cost is linear in the number of events served by this contrac-
tor, every tour S of a contractor can be combined from elementary contractor
tours, each containing only a single event. Let Sv be the set of elementary fea-
sible tours for v, and let S be their union over all contractors v ∈ V .
For all S ∈ Sv we introduce binary variables xS = 1 if and only if S is chosen to
be in the dispatch.

Solving the offline problem 17

Let aRe
, bSe

be binary coefficients with aRe
= 1 (resp. bSe

= 1) if and only if
event e is served in tour R (resp. in elementary contractor tour S). The Vdp can
now be formulated as a set partitioning problem as follows:

(IP) min
∑

R∈R

cRxR +
∑

S∈S

cSxS (2.5)

subject to
∑

S∈S

bSe
xS +

∑

R∈R

aRe
xR = 1 ∀e ∈ E; (2.6)

∑

R∈Ru

xR = 1 ∀u ∈ U ; (2.7)

xR ∈ {0, 1} ∀R ∈ R; (2.8)

xS ∈ {0, 1} ∀S ∈ S. (2.9)

This model describes a dispatch which contains exactly one tour for each unit
u ∈ U (2.7) such that every request e ∈ E is served exactly once (2.6) and such
that the sum of the costs which are caused by these tours is minimal (2.5).

2.2.1 The Algorithm ZIBDIP

In the following we describe the algorithm ZIBDIP, which was developed in order
to solve (IP).

ZIBDIP solves (IP) by solving its linear relaxation (LP), which is constructed
by replacing the integrality constraints (2.8) and (2.9) by the nonnegativity con-
straints (2.10) and (2.11):

(LP) min
∑

R∈R

cRxR +
∑

S∈S

cSxS

subject to
∑

S∈S

bSe
xS +

∑

R∈R

aRe
xR = 1 ∀e ∈ E;

∑

R∈Ru

xR = 1 ∀u ∈ U ;

xR ≥ 0 ∀R ∈ R; (2.10)

xS ≥ 0 ∀S ∈ S. (2.11)

18 Tour-Based Model

Since the number of possible tours is exponential in the number of requests
and units, it is evident that not all columns of the coefficient matrix of (LP)
can be statically enumerated for our problem size. Thus, we work with dynamic
column generation, which means that we start with all elementary tours for all
contractors S and a subset R̃ ⊂ R consisting of a tour for each unit from its
current position to its home position. This way, both the initial LP and the
initial IP are feasible, as we can serve all the requests by contractors and send all
the units directly home from their current position. Since this solution is usually
very far from optimal, it is reasonable to add the tours of a heuristically designed
dispatch, in order to have a fallback solution to meet the real-time requirements,
if ZIBDIP would take too much time finding an integer solution.

This restricted problem only considering the tours R̃ ⊂ R reads as follows:

(RLP) min
∑

R∈R̃

cRxR +
∑

S∈S

cSxS (2.12)

subject to
∑

S∈S

bSe
xS +

∑

R∈R̃

aRe
xR = 1 ∀e ∈ E; (2.13)

∑

R∈R̃u

xR = 1 ∀u ∈ U ; (2.14)

xR ≥ 0 ∀R ∈ R̃; (2.15)

xS ≥ 0 ∀S ∈ S. (2.16)

If it is not possible to find an optimal solution of (LP) with these columns,
which is very likely, we generate new columns which lead to better solutions. This
check for a yet disregarded tour R ∈ Ru\R̃u which may lead to a better solution
of (LP). In order to find such a tour we have to consider the dual (DRLP) of
(RLP), which is denoted as follows:

Solving the offline problem 19

(DRLP) max
∑

e∈E

πe +
∑

u∈U

πu (2.17)

subject to
∑

e∈E

aRe
πe +πu ≤ cR ∀R ∈ R̃u, ∀u ∈ U ; (2.18)

∑

e∈E

bSe
πe ≤ cS ∀S ∈ S. (2.19)

∑

R∈R̃u

xR = 1 ∀u ∈ U ; (2.20)

For a unit u ∈ U and a route R ∈ Ru let c̄R be the reduced cost which can
be computed by

c̄R = cR −
∑

e∈E

aRe
πe − πu.

A tour R ∈ Ru\R̃u can possibly improve the current solution of (RLP) only
if c̄R < 0 [5].

(if they are added to the columns of (RLP). If such a column is found, it
is added to the columns of (RLP) and (RLP) is solved again until no better
column can be found. After each iteration of the column generation procedure,
we have the optimal solution of the restricted LP, in which only tours from a
subset R̃ ⊂ R have been considered.)

2.2.2 Column Generation

There are several possiblities to find the columns with negative reduced costs.
The easiest method is the enumeration of all possible tours in a search tree. Each
node in this search tree corresponds with a tour starting at the current position
of a unit and ending at the position of the last event served by the unit. A tour
associated to a node can be completed to a feasible tour by appending the tour
from the position of the last event in the node to the unit’s home position. The
pre-cost of a node in the search tree is the reduced cost of the corresponding
tour (without returning to the unit’s home position and overtime). The cost of
a node in the search tree is defined as the reduced cost of the corresponding
feasible tour (including the costs for returning to the unit’s home position and

20 Tour-Based Model

overtime). The dual prices for the events and units are taken from the previous
run of the LP solver. The root node r corresponds to the empty tour. Given a
node v in the tree, the children of v are obtained by appending one event to v
that is not yet in v. This way all possible tours can be enumerated.

Since a whole enumeration of all possible tours is very time-consuming, we do
not scan the whole search tree. In fact, for every node within the search tree we
only consider the d most promising children and we do not consider tours serving
more than l requests for some intelligently chosen d and l. The d most promising
children of a node v and the order in which they are processed is given by sorting
the children in the order < of increasing reduced costs of the new node (greedy),
or increasing primal cost (primal-greedy). Since we are especially interested in
tours having low reduced costs, we introduce an acceptance threshold a which
means that we skip all tours having greater reduced costs than a. By the setting
of the parameters for the maximal search depth l, the maximal search degree d,
and the acceptance threshold a the processing time and the quality of the output
can be customized.

As even the ”customized” search tree may still contain a lot of useless nodes,
we apply a Branch-and-Bound method in order to explore only the important
parts of the search tree (a detailed description of the Branch-and-Bound

Method can be found on page 78). For this reason, we skip every subtree
having no chance of containing a node with cost smaller than the acceptance
threshold. This procedure of skipping a subtree is called pruning.

The just described procedure looks like this:

GoodColumns
Input: Restricted linear program RLP, maximal search depth l,

maximal search degree d, acceptance threshold a,
current node v (v := r if not specified),
sorting criterion for partial tours <

Output: The linear program RLP with additional columns

1© If v has length l then return
2© while less than d children of v are visited do
3© pick the next best child c of v according to search order <
4© If cost of c smaller than a then
5© add column corresponding to c to RLP
6© If LowerBound(RLP,c) smaller than a then

Solving the offline problem 21

7© GoodColumns(RLP,l, d, c, a, <)
8© return RLP

LowerBound(RLP,c) is a function which calculates a lower bound for the
tours representing the nodes within the subtree of c. In the next chapter we will
show two of such functions.

2.2.3 Implementation of ZIBDIP

The algorithm ZIBDIP reads as follows:

ZIBDIP
Input: Instance of VDP
Output: optimum dispatch

1© initialize LP,l, d, a, t, <
2© while true do
3© repeat
4© // generate new columns in search tree of degree d and depth l :
5© For every u ∈ U do:
6© GoodColumns(RLP,u, l, d, a, <)
7© double [halve] a if less [more] than 1000 columns were generated
8© solve RLP
9© update dual prices
10© If LP progress sufficient and elapsed time large enough then
11© solve RIP corresponding to RLP with time limit t
12© increase t
13© output corresponding dispatch to a file
14© If optimality check successful then
15© mark RLP as optimal
16© break
17© increase l
18© until RLP progress stalls or l > |E|
19© If LP marked optimal then break
20© increase d
21© set l to initial value

22 Tour-Based Model

22© solve RIP corresponding to RLP to optimality
23© return corresponding dispatch and gap

We generate columns (6©) for each unit in loops with increasing values for the
maximal search depth (inner loop: 3© - 17©) and the maximal search degree (outer
loop: 2© - 21©). The values for the maximal search depth are increased (17©)until
no progress has been made in the previous step provided the search depth was
sufficiently large, at latest when the depth equals the number of events(18©). The
search degree is increased until an optimality criterion is met (14©) or the search
degree has reached the number of events.

While we are adding columns to the LP we fix the upper bound to a nega-
tive acceptance threshold: all columns that have reduced costs smaller than the
acceptance threshold are added to the LP. This acceptance threshold is updated
6© after each iteration depending on the number of columns produced.

2.2.4 Lower Bounds for LP

Since we want to have an estimate about the quality of our current solution,
we use a lower bound which is usually attributed to Lasdon coming from the
Lagrangean Relaxation of (LP) w.r.t. the constraints (2.6).

Proposition 2.1 Let (π∗e , π
∗
u) be an optimal solution of (DRLP) and (x∗R, x∗S)T

be the corresponding primal solution. Then the cost copt
LP of an optimal solution

of (LP) satisfies.

copt
LP ≥

∑

R∈R̃

cRx∗R +
∑

S∈S̃

csx
∗
S +

∑

u∈U

min
R∈Ru

(cR −
∑

e∈E

aRe
π∗e − π∗u) (2.21)

To compute this lower bound, we have to calculate minR∈Ru
(cR −

∑

e∈E aRe
π∗e −π∗u) for every unit u. This can be done by enumerating all possible

tours. Since this is usually very time-consuming, we solve a relaxation of the
problem in order to find a lower bound for the minimum reduced cost of u in
Chapter 4.

Chapter 3

Lower Bounds for the Branch &
Bound pricing Algorithm

In this chapter lower bounds for the tours associated with the nodes within a
subtree of a B & B search tree are presented. The quality of this lower bound is
important as a good lower bound makes it possible to make a much better pruning
and therefore to iterate less nodes. We present two of these lower bounds. The
first one has been used until now and delivered good results. The second one
works exactly like the first one with the difference that the lateness costs are
taken into account in a much more realistic way. As a result only a fraction of
the previously examined nodes has to be computed by now. On the other hand,
the computation takes more time, since an Assignment- problem has to be
solved at every node within the search-tree. In fact, we use a two-phase pruning
scheme, which only computes the new lower bound if the old lower bound was
two weak for pruning. In the last section we will test the new pruning on several
different instances.

To every node v of the search tree there is a sequence of requests S(v) which
are served by a unit u in the given order. Let ev be the last event in S(v), tv
be its completion time, l(v) be the length of S(v). Let c(v) be the reduced cost
of the tour corresponding to S(v). Let Ev = {e|Fe ⊆ Fu ∧ e /∈ S(v)} be the
set of all requests which can be appended to S(v) so that the resulting tour is
feasible. Let l be the maximum depth of the search tree and dv := l − l(v) be
the maximum number of requests still to append to the tour corresponding to v.
Let Subtree(v) be the subtree of v within the search tree and let

Low(v) := min
w∈Subtree(v)

c(w)

23

24

be the value of the cheapest node within the subtree of v. This node corre-
sponds to the minimum reduced costs of a tour beginning with S(v).

Subtree(v)

v

u

Figure 3.1: Example for a searchtree with degree = 3, l = 5, l(v) = 2, dv =
3, S(v) = (eu, ev)

Notation 3.1 (minimum reduced costs of an event) Let

MinRedCost(e1, e2, t) := LateCost(e2, t + δe1e2

u) + csvc
u δe2

− πe2

be the minimum reduced costs of the event e2, if e1 is being left for e2 at time
t. These costs only include minimum lateness and service but no driving and
overtime costs.

Therefore, MinRedCost(ev, e, tv) is a lower bound for the reduced costs of e
in the subtree below v.

When processing v one has to estimate a lower bound for the reduced costs
of a tour beginning with S(v) resp. a node within the subtree of v. If this
lower bound is greater than the acceptance threshold, the subtree contains no
node which corresponds to a tour with reduced costs less than the acceptance
threshold and the subtree can be pruned. By now there used to be the following
lower bound scheme:

Notation 3.2 (minimum reduced costs of a node within a subtree)

MaximalGain(v) := c(v) + (min
E⊆Ev,|E|≤dv

∑

e∈E

MinRedCost(ev, e, tv))

Lower Bounds for the Branch & Bound pricing Algorithm 25

MaximalGain(v) is a lower bound for the reduced costs of a node within
the subtree of v, since MaximalGain(v) assumes that all requests can be served
directly after ev.

Proposition 3.3

MaximalGain(v) ≤ Low(v).

So far, this lower bound did a good job pruning the search tree. Most of the
costs arising in this model are lateness costs implemented to assure customers’
short waiting times. Therefore, it seems to be promising to take a closer look
on the lateness costs considered by this lower bound and to develop strategies to
improve them. The lateness costs in MaximalGain(v) are computed according to
the assumption that the service unit starts off for serving each single request in
E immediately after serving ev. But as a tour consists of requests which have to
be served in a certain order, only one request can be attended at the completion
time of the last request in S(v). The second one has to wait at least for the
service-time of the first request, the third request has to wait for the service-
time of both of the previous requests extra and so on. Using the lower bound
described above the late costs thereby incurred are being disregarded. Therefore,
as a general rule, this lower bound is not strong for dv > 1 due to the fact that
a service unit can serve only one request at a time.

In the following we introduce a new lower bound taking the late costs of
sequencialization into account.

Let δ := mine∈Ev
δe be the minimum service time of all requests in Ev. It is

trivial to see that δ is a lower bound for the servicetime of all requests e in Ev.
In practice it takes a service unit at least 15 minutes to serve a customer and,
therefore, δ ≥ 15.

Since every unit u can serve only one request immediately, the second request
has to wait for at least δ time units longer as if it had been served first. The
third request has to wait for at least 2δ time units longer as if it had been served
first by u etc. Therefore, there are a lot of lateness costs emerging from the
sequencialization of the latter requests which have been disregarded yet.

Example 3.4 The service unit u finishes its service at the request ev at 2:50
pm. There are still three jobs e1, e2 and e3 to do. From ev it takes u 18 minutes
to get to e1, 10 minutes to get to e2 and 23 minutes to get to e3. Every job has a
service time of 20 minutes. If the driver served e2 immediately after serving ev,
he would get there at 3:00 pm. Then he would spend 20 minutes repairing the
car. If he drove to e1 next, it would take him at least (18-10=) 8 minutes to get
there, because of the triangle inequality. That’s why he cannot start working on

26

e1 earlier than 3:28 pm. It will take him another 20 minutes to help the person
waiting for him there so that he can leave e1 no earlier than 3:48. At last he
serves e3. To get there takes him at least 5 minutes, meaning that he can start
working there no earlier than 3:53 pm. The following table contains the lower
bounds of the arrival times depending on their order:

Earliest possible arrival time
1st 2nd 3rd

e1 3:08 pm 3:28 pm 3:48 pm
e2 3:00 pm 3:20 pm 3:40 pm
e3 3:13 pm 3:33 pm 3:53 pm

We obtain a lower bound for Low(v) by assigning up to dv different requests
from Ev to the elements of Tv,δ := {tv, tv + δ, tv + 2δ, tv + 3δ, ..., tv + (dv − 1)δ},
such that each t ∈ Tv,δ is covered not more than once and the sum of the reduced
costs arising by leaving ev for e ∈ Ev at the assigned point in time is minimal.
Not every event e ∈ Ev can be assigned to a t ∈ Tv,δ, since |Ev| 6= |Tv,δ| in the
majority of cases. This leads to the following definition of the new lower bound:

Notation 3.5 (lower bound due to improved pruning)

ImprovedBound(v) := c(v) + min
{e0,e1,...,ek}⊆Ev

k
∑

i=0

MinRedCost(ev, ei, tv + iδ),

with k ≤ dv − 1, ei 6= ej ∀i 6= j

Note that if we only assign a subset of Tv,δ, it suffices to consider the first
ones, since for every request e MinRedCost(ev, e, t) is monotonic increasing in t.
Furthermore, no request e will be assigned to a time t with MinRedCost(ev, e, t) ≥
0, as the sum can only become smaller by leaving this request out.

Proposition 3.6

MaximalGain(v) ≤ ImprovedBound(v).

Proof. Since for every request e MinRedCost(ev, e, t) is monotonic increasing in
t, we know that for all e ∈ Ev and i ∈ {0, 1, ..., dv − 1} MinRedCost(ev, ei, tv) ≤

Lower Bounds for the Branch & Bound pricing Algorithm 27

MinRedCost(ev, ei, tv + iδ). Thus,

MaximalGain(v) = c(v)+ min
E⊆Ev,|E|≤dv

∑

e∈E

MinRedCost(ev, e, tv)

= c(v)+ min
{e0,e1,...,ek}⊆Ev,k≤dv

k
∑

i=0

MinRedCost(ev, ei, tv)

≤ c(v)+ min
{e0,e1,...,ek}⊆Ev,k≤dv

k
∑

i=0

MinRedCost(ev, ei, tv + iδ)

= ImprovedBound(v)

�

Proposition 3.7
ImprovedBound(v) ≤ Low(v).

Proof. For computing ImprovedBound(v), we only consider service costs
and late costs of sequencialization. Since these costs cannot be omitted,
ImprovedBound(v) is a lower bound for Low(v). �

Remark 3.8 In some cases ImprovedBound(v) is a strong lower bound for
Low(v). Let Es be the set of requests to be served after ev according to the
computation of ImprovedBound(v). If

1. all requests e ∈ Es to be served after ev lie on the service unit’s way home
from ev in the order of ImprovedBound(v)’s computation (no extra driving,
no extra lateness),

2. ∀e ∈ Es : δe = δ (no extra service cost),

3. tend
u ≥ tv + (|Es| − 1)δ (shift end time late enough)

4. and no waiting time (no extra lateness)

then ImprovedBound(v) = Low(v)

3.1 Modeling

The problem of assigning events to points in time can be modelled as a minimum
weight matching problem in a bipartite graph.

28 Modeling

Therefore, we define a bipartite graph G = (V, A) with V = E∪̇T , where E
contains |Ev| nodes ei (i = 0, 1, ..., |Ev| − 1) for each request ei ∈ Ev. The set
T contains dv nodes tj (j = 0, 1, ..., dv − 1, where tj represents the time tv + jδ.
For every i < |Ev|, j < dv with MinRedCost(ev, ei, tv + jδ) < 0, there is an edge
(ei, tj) with cost MinRedCost(ev, ei, tv + jδ).

Let Mj be the minimum cost matching of cardinality j. Let c(Mj) :=
∑

e∈Mj
c(e). Let M be the optimal matching with c(M) = minj=1,...,dv

c(Mj).

The improved bound can be computed as ImprovedBound(v) = c(v) + c(M)

The minimum weight matching problem in a bipartite graph can be reduced
to a network flow problem (see [2]). For basic definitions about network flow
problems see page 77.

Therefore, we add a vertex s and connect it to all vertices of E. These edges
have zero cost. Orient the edges from s to E and from E to T . Let all edges
have capacity 1. This results in the following graph (see Figure 3.1). We will
call these special kind of networks lateness matching networks.

����

����

����
����

����

����

t0

t1

tdv−1

e0

e1

e2

e|Ev|−1

s

Figure 3.2: The network corresponding to the assignment problem

There is a wide variety of different algorithms which can be used to solve
such a minimum cost flow problem. In our case the most promising algorithm is
the successive shortest path algorithm (see page 29). It works by adjusting the
imbalances of pairs of sources and sinks by augmenting along paths of minimum
weight between them. A detailed description of this algorithm reads as follows:

Lower Bounds for the Branch & Bound pricing Algorithm 29

Successive Shortest Path Algorithm
Input: A digraph G, capacities u : E(G) → R+, numbers b : V (G) → R

with
∑

v∈V (G) b(v) = 0, and conservative weights c : E(G) : → R.

Output: A minimum cost b-flow f .

1© Set b′ := b and f(e) := 0 for each e ∈ E(G)
2© If b′ = 0 then stop
3© else choose a vertex s with b′(s) > 0.
4© Choose a vertex t with b′(t) < 0 such that t is reachable from s in Gf .
5© If there exists no such t then stop. (There exists no b-flow.)
6© Find s − t-path P in Gf of minimum weight
7© Compute γ := min{mine∈E(P) uf(e), b

′(s),−b′(t)}
8© Set b′(s) := b′(s) − γ and b′(t) := b′(t) + γ. Augment f along P by γ.
9© Go to 2©

Since we know that there is always an optimal matching of cardinality j,
matching exactly the j first points in time, we can find Mj by finding a minimum
cost b-flow with b(s) = j, b(ti) = −1, i = 0, . . . , j − 1 and b(v) = 0 for all other
nodes.

The minimum cost flow problem in bipartite graphs is solved by applying
the following variant of the successive shortest path algorithm.

Improved Bound
Input: An acceptance threshold threshold,

a lateness matching network G = (V, A)
Output: true, if a lower bound bound

with bound > threshold could be found
false, otherwise

1© Set f(e) := 0 for each e ∈ A
2© j := 1

30 Modeling

3© while j ≤ dv do
4© Find s − tj−1-path Pj in Gf of minimum weight.
5© If there exists no such path then return true
6© else
7© If c(Pj) ≥ 0 then return true
8© Augment f along Pj

9© Let Mj be the matching corresponding to f
10© If c(Mj) ≤ threshold then return false
11© bound := c(Mj) + (dv − j)c(Pj)
12© If bound > threshold then return true
13© j := j + 1
14© return true

In Comparison to the standard successive shortest path algorithm, we imple-
ment some shortcuts in 5©, 7©, 10© and 12©. In the following we will explain their
meaning.

Therefore, we need the following propositions:

Proposition 3.9 Let Pj and Pj+1 be the augmenting paths found by
ImprovedBound(v) in the jth resp. j + 1th. iteration. Then

c(Pj) ≤ c(Pj+1)

Proof.

s

tj−1

tj

Pj
Pj+1

s

tj−1

tj

P ′
P ′′
C1C2 s

tj−1

tj

P ′
P ′′′

(i) (ii) (iii)

Figure 3.3: Paths and Cycles in Gfj−1
∪ Gfj

for the proof of proposition 3.9

Let fj be the flow corresponding to Mj and let Gfj
be its residual graph. Pj

and Pj+1 are the augmenting paths of iteration j resp. j + 1 (see Figure 3.3 (i)).
By deleting all pairs of reverse edges of Pj and Pj+1 we obtain two edge-disjoint

Lower Bounds for the Branch & Bound pricing Algorithm 31

cycle-free paths P ′ and P ′′ from s to tj−1 resp. to tj and a set C of cycles (see
Figure 3.3 (ii)). Since the reverse edges differ from each other only in their sign,
the sum of the costs of a pair of reverse edges is 0 and therefore:

c(Pj) + c(Pj+1) = c(P ′) + c(P ′′) +
∑

C∈C

c(C) (3.1)

Since the only difference between Gfj−1
and Gfj

is that all edges of Pj have
a different orientation (and of course different costs), every edge in Pj+1 which
is not part of Gfj−1

must have a reverse edge in Pj. As P ′, P ′′ and C do not
contain any of these edges, they lie in Gfj−1

. Since fj−1 is optimal, Gfj−1
does

not contain any negative cycles and therefore:

∀C ∈ C : c(C) ≥ 0

⇒
∑

C∈C

c(C) ≥ 0 (3.2)

Let P ′′′ be the s− tj−1-path which is constructed by changing the last edge’s
target of P ′′ from tj to tj−1 and deleting any cycle which might be gained thereby
(see Figure 3.3 (iii)). If the last edge of P ′′′ was not part of Gfj−1

, Pj would
contain cycles which is impossible. Hence P ′′′ is a s-tj−1-path in Gfj−1

. Because
of the monotonic increasing reduced cost function and because of the fact that
every cycle in Gfj−1

is nonnegative:

c(P ′′′) ≤ c(P ′′) (3.3)

As Pj is the shortest s-tj−1-path in Gfj
:

c(Pj) ≤ c(P ′) (3.4)

c(Pj) ≤ c(P ′′′). (3.5)

Thus, it follows from above:

32 Modeling

c(Pj) + c(Pj+1)
3.1
= c(P ′) + c(P ′′) +

∑

C∈C

c(C)

3.2
≥ c(P ′) + c(P ′′)
3.3

≥ c(P ′) + c(P ′′′)
3.4,3.5

≥ c(Pj) + c(Pj)

⇒ c(Pj) ≤ c(Pj+1)

�

Proposition 3.10 Let Mj and Mi be minimum cost matchings of cardinality i
resp. j with i < j, then

c(Mj) ≥ c(Mi) + (j − i)c(Pi)

Proof.

c(Mj) = c(Mi) + c(Pi+1) + c(Pi+2) + . . . + c(Pj)

Pro.3.9
≥ c(Mi) + (j − i)c(Pi)

�

Proposition 3.11 Let Mk be the minimum cost matching and let h be the high-
est cardinality of a matching possible among the matchings of G. Then

c(M1) ≥ c(M2) ≥ . . . ≥ c(Mk) ≤ c(Mk+1) ≤ . . . ≤ c(Mh)

Proof. Since Mk is optimal we know that

c(Mk−1) ≥ c(Mk) = c(Mk−1) + c(Pk)

and, therefore, c(Pk) ≤ 0. From proposition 3.9 it follows that for all j with
1 ≤ j < k that c(Pj) ≤ c(Pk) ≤ 0 and, thus, c(Mj) ≥ c(Mj+1). Analogously
since Mk is optimal we know that

c(Mk) ≤ c(Mk+1) = c(Mk) + c(Pk+1)

Lower Bounds for the Branch & Bound pricing Algorithm 33

and, therefore, c(Pk+1) ≥ 0. From proposition 3.9 it follows that for all j with
k < j ≤ dv we have c(Pj) ≥ c(Pk) ≥ 0 and, thus, c(Mj−1) ≤ c(Mj). �

As a consequence of the propositions mentioned above, we can justify the
shortcuts implemented in the Improved Bound algorithm:

The algorithm can be interrupted in 10©, since we have found a matching Mj

with c(Mj) < threshold and, therefore, c(M) < threshold.

If c(Pj) ≥ 0, then due to proposition 3.11 all matchings with a cardinality
greater than j − 1 will have higher costs than Mj−1. Since the algorithm has
not been interrupted yet by the condition in 10©, for all i < j we have c(Mi) >
threshold. This results in c(Mj) > threshold for all j ≤ dv and, therefore, the
algorithm can be stopped in 7©.

The algorithm can be terminated in 5©, because it is not possible to find a
matching with cardinality j or higher. That means, the minimum cost match-
ings of every cardnality have already been computed and since their costs have
all been greater than threshold we have found our searched lower bound in
mini≤j−1 c(Mi). Due to proposition 3.11 we know that Mj−1 is the minimum
cost matching.

The algorithm can be interrupted in 12©, since for all i ≥ j : c(Mi) ≥ c(Mj) +
(i − j)c(Pj) > threshold. And since for all i ≤ j : c(Mi) > threshold, we know
that c(M) > threshold and the algorithm can be stopped.

3.2 Computational aspects

Let l′ := mine∈A c(e) be the cost of the cheapest service possible. Since every
lower bound computed by our algorithm estimates the value of a matching of
cardinality dv, by adding −l′ to each of the arcs from E to T , the matchings
do not change, but the values of all estimates change by dvl

′. By doing so we
ensure that all arcs have nonnegative costs. Instead of working on the network
introduced above we use this slightly modified network. Thus, we can use the
Dijkstra-algorithm for the first shortest path computation. By using node
potentials (see [2]), we can use the Dijkstra-algorithm for the other iterations,
too.

Proposition 3.12 The running time is O(|Ev|2dv).

Proof. We have got to find at most dv shortest paths. Having n nodes, the
running time of the Dijkstra-algorithm is O(n2) (see [14]). Since the number

34 Preprocessing

of nodes is |Ev| + dv + 1) we have got a worst case running time of O((|Ev| +
dv + 1)2 ∗ dv) = O(|Ev|

2dv). �

3.3 Preprocessing

Since the running time is highly dependent on the number of events considered,
we should think about a smaller subset of Ev.

Definition 3.13 (k cheapest requests at t) Let

Ev,t,k := {e ∈ Ev : |{e′ ∈ Ev : c(e′, t) < c(e, t)}| < k}

be the set of the k cheapest requests at t.

As Ev,t,k changes with increasing t (see Figure 3.4), we need another definition:

Definition 3.14 (Set of the k cheapest requests in T) Let Ev,T,k :=
∪t∈T Ev,t,k be the set of requests which belong to the k cheapest requests for at
least one t ∈ T .

Proposition 3.15 There is always an optimal matching M with M ⊆ δ(Ev,T,dv
).

Proof. Suppose there is a minimal matching M with M * δ(Ev,T,dv
). Then

there is a node w ∈ Ev \ Ev,T,dv
with (w, ti) ∈ M, ti ∈ T . This node does not

belong to the dv cheapest nodes at time ti. As M is of cardinality at most dv and
|Ev,ti,dv

| ≥ dv, there is a node x ∈ Ev,ti,dv
which is not incident to any edge in M .

From the definition of Ev,ti,dv
follows that c((x, ti)) < c((w, ti)) and, therefore,

that c(M ∪ (x, ti) \ (w, ti)) < c(M) which leads to a contradiction. �

Usually Ev,T,dv
is much smaller than Ev. Therefore, the cost of computation

can be lowered by identifying Ev,T,dv
. Since it takes a worst case running time

of O(|Ev|2) to determine Ev,T,dv
, we used a superset of Ev,T,dv

which can be
determined in linear time:

Definition 3.16 Let E ′v,T,k be the set of requests which belong to the k cheapest
requests at the first point in time of T and all the requests which are cheaper
than at least one of them at the last point in time of T .

E ′v,T,k := Ev,t0,k

⋃

{e ∈ Ev|∃e′ ∈ Ev,t0,k : c(e, t|T |−1) < c(e′, t|T |−1)}

Lower Bounds for the Branch & Bound pricing Algorithm 35

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0 5 10 15 20 25 30

re
du

ce
d

co
st

s

time [minutes]

Request 1
Request 2
Request 3
Request 4
Request 5

Figure 3.4: Some reduced cost functions

Proposition 3.17 Ev,T,dv
⊆ E ′v,T,dv

Proof. Choose e ∈ Ev,T,dv
arbitrarily. There is a tj ∈ T with e ∈ Ev,tj ,dv

. If
j = 0, which means that e belongs to the dv cheapest requests at time t0, then
e ∈ E ′v,T,dv

. If j > 0 there is an event e′ ∈ Ev,t0,dv
with c(e, t0) > c(e′, t0) and

c(e, tj) ≤ c(e′, tj). As the requests’ reduced cost functions are continuous, there
has to be a point of intersection in [t0, tj] of the cost functions of e and e′. Because
of their specific form there can be no other point of intersection in (tj , tdv−1] and,
therefore, c(e, tdv−1) < c(e′, tdv−1) and e ∈ E ′v,T,dv

. �

Since the elements of Ev \ E ′v,T,dv
won’t be assigned to any element of T,

we can do all the computations introduced in the previous section with E ′v,T,dv

instead of Ev.

3.4 Computational Results

In the following, we are analyzing how good our improved pruning scheme works
on real life instances.

36 Computational Results

Since it is always stronger than the pruning we previously used, the amount
of nodes explored is always smaller or at the worst case equal to the number of
nodes explored by using the old pruning scheme. Therefore, we can conclude
from the theoretical results we proved above that our pruning is always better
than the pruning previously used with respect to the number of nodes explored
within any search tree. On the other hand, it takes more time to compute this
more sophisticated bound. This results in the fact that even if there is only a
small fraction of the nodes explored, it might happen that it takes much more
time to explore them. For this reason, we focus on the improvement ratio with
respect to the time taken for the exploration of the search trees.

The problem instances of ZIBDIP can be divided into two groups. One of
them are the snapshots, which are solved for the online-dispatching. The other
problems are those, which have to be solved for a-posterio analysis in order to
compute lower bounds for the optimal online dispatching. These instances are
very different from the snapshots for several reasons. The snapshots are usually
smaller by means of the amount of units and events to be handled. Furthermore,
the difference between these problems is that at processing time, all events of the
snapshots have already been released. Whereas when dispatching instances for
the a-posterio-analysis the algorithm has to get along with events which have not
already been released. As a matter of fact, the lateness costs of the snapshots
are usually higher, and thus we are expecting our new pruning scheme to have a
better performance ratio for the snapshots than for the offline instances.

For the test of the codes referenced in this chapter we used two different
computers. For the computations made in Subsection 3.4.1, we used a 3.06
Ghz Pentium 4 machine, which was equipped with 2 GB of RAM . For the
computation of the results presented in Subsection 3.4.2 we used a 800 Mhz
Pentium III machine, which was equipped with 1 GB of RAM. The prototype
ZIBDIP ran under Linux system (kernel version 2.4.21) on both of the machines
and was compiled using GNU C + +-compiler gcc, version 3.3.1 . The compiler
flags were −g − 06. ZIBDIP used the linear programming and integer linear
programming solver CPLEX version 8.000

3.4.1 Snapshots

In Table 3.1 we present an overview over the experimental data obtained from
the computation of the optimal dispatch. These instances are taken from data
the ADAC gave us. They are taken equally from the whole day, such that we
have instances with a higher system load, which is defined as r := |R|

|U |
, like e.g.

snapshot.900 having a load of r = 2.62 and instances with a lower system load

Lower Bounds for the Branch & Bound pricing Algorithm 37

like snapshot.240 with r = 1.23. In fact, all of these snapshots are, due to
the definition made in accordance with the ADAC, normal load instances since
1 < r ≤ 3 for all of them.

The first column denotes the name of the instance, the second one the amount
of iterations |I| computed, the third one the number of requests |R|, and the
fourth one the number of units |U |. The fifth column contains the amount Timp of
time taken for the column generation in seconds. The sixth column contains the
number Nimp of nodes explored in B & B search trees by the column generation.
The seventh and eighth coulmns contain analogously the times Tusu and number
of nodes Nusu for the column generation worked with the old pruning scheme.
In the following two columns we calculated the improvement ratios in order to
show how much time has been saved and how much nodes had to be explored by
our approach.

Name | I | | R | | U | Timp Nimp Tusu Nusu
Timp

Tusu

Nimp

Nusu

snapshot.240 9 123 100 0.74 9015 0.8 11682 0.925 0.772
snapshot.270 9 125 100 0.69 8927 0.81 11875 0.852 0.752
snapshot.300 9 142 100 1.11 12671 1.22 16976 0.91 0.746
snapshot.330 9 146 100 1.09 12018 1.25 16997 0.872 0.707
snapshot.360 14 156 100 2.13 19974 2.59 37584 0.822 0.531
snapshot.390 9 175 100 2.04 17939 2.45 26376 0.833 0.68
snapshot.420 9 183 100 1.75 14269 2.04 21774 0.858 0.655
snapshot.450 18 200 100 3.49 27267 4.36 52777 0.8 0.517
snapshot.480 12 203 100 2.86 19191 3.38 29961 0.846 0.641
snapshot.510 18 215 100 4.35 31546 5.78 65186 0.753 0.484
snapshot.540 9 216 113 3.01 26029 3.49 34342 0.862 0.758
snapshot.570 9 218 113 2.23 16530 2.71 25386 0.823 0.651
snapshot.600 63 237 113 44.35 208755 120.12 932008 0.369 0.224
snapshot.630 63 250 113 52.43 222860 137.87 1012705 0.38 0.22
snapshot.660 52 247 113 35.61 163249 82.7 616054 0.431 0.265
snapshot.690 63 261 113 67.96 253480 187.9 1350234 0.362 0.188
snapshot.720 63 269 113 79.18 282461 249.28 1702267 0.318 0.166
snapshot.750 63 278 113 90.23 301210 339.73 2247257 0.266 0.134
snapshot.780 88 291 113 171.94 589261 664 4395655 0.259 0.134
snapshot.810 18 290 113 16.89 68629 23.95 160914 0.705 0.426
snapshot.840 33 296 113 41.64 170170 83.15 665072 0.501 0.256
snapshot.870 33 299 113 40.59 156729 65.94 569405 0.616 0.275
snapshot.900 33 308 118 40.14 162978 78.74 671195 0.51 0.243
snapshot.930 25 307 118 33.43 147367 49.23 349847 0.679 0.421
snapshot.960 33 306 118 47.07 182726 81.76 645013 0.576 0.283
snapshot.1020 33 314 135 36.5 150897 62.97 527625 0.58 0.286
snapshot.1050 75 322 135 170.95 597153 599.28 3847145 0.285 0.155
snapshot.1080 75 311 135 139.08 507560 419.07 2567749 0.332 0.198
snapshot.1110 75 316 143 151.4 565927 471.38 2870062 0.321 0.197
snapshot.1140 33 314 143 35.9 184356 59.13 533537 0.607 0.346
snapshot.1170 88 318 143 250.96 1013204 790.36 4978175 0.318 0.204
snapshot.1200 25 308 143 26.24 144604 32.7 304823 0.802 0.474
snapshot.1230 18 304 143 15.44 85954 18.05 167503 0.855 0.513
snapshot.1260 25 302 143 22.65 148705 29.02 305682 0.78 0.486
snapshot.1290 33 292 143 40.7 226991 85.43 733051 0.476 0.31
snapshot.1320 18 293 143 11.1 80210 13.72 166473 0.809 0.482
snapshot.1350 9 282 143 5.23 41382 5.6 54662 0.934 0.757
snapshot.1380 14 281 143 7.55 63766 8.63 98166 0.875 0.65
snapshot.1410 18 291 143 8.71 65916 9.98 113042 0.873 0.583

38 Computational Results

Name | I | | R | | U | Timp Nimp Tusu Nusu
Timp

Tusu

Nimp

Nusu

snapshot.1440 12 292 143 5.62 34374 6.63 48744 0.848 0.705
snapshot.1470 12 293 143 5.17 35067 5.92 50668 0.873 0.692
snapshot.1500 14 276 144 5.36 47808 6.47 82762 0.828 0.578
snapshot.1530 9 273 144 3.87 30655 4.12 40840 0.939 0.751
snapshot.1560 9 273 144 3.12 31857 3.3 43769 0.945 0.728
snapshot.1590 9 245 144 2.26 24678 2.43 33712 0.93 0.732
snapshot.1620 9 247 144 2.31 24327 2.49 32662 0.928 0.745
snapshot.1650 14 241 143 4.22 47102 4.75 75390 0.888 0.625
snapshot.1680 9 207 143 1.47 19227 1.49 24727 0.987 0.778
snapshot.1710 9 204 141 1.65 22202 1.67 28319 0.988 0.784
snapshot.1740 9 175 139 1.23 20564 1.2 25261 1.025 0.814
snapshot.1770 9 171 137 1.05 16604 0.96 20996 1.094 0.791
snapshot.1800 9 158 136 1.01 17134 0.96 21304 1.052 0.804
snapshot.1830 9 151 132 0.73 12734 0.74 16674 0.986 0.764
snapshot.1860 9 142 127 0.9 15992 0.87 21011 1.034 0.761
snapshot.1890 14 135 122 1.31 23321 1.35 40421 0.97 0.577
snapshot.1920 14 129 119 1.63 33235 1.52 54125 1.072 0.614
snapshot.1950 20 126 111 4.02 75510 3.98 143581 1.01 0.526
snapshot.1980 27 140 108 7.72 138405 8.15 270539 0.947 0.512
snapshot.2010 20 136 96 5.53 81607 6.26 163178 0.883 0.5
snapshot.2040 27 133 92 14.07 161867 17.71 330388 0.794 0.49
snapshot.2070 54 135 90 85.08 617194 157.55 2138728 0.54 0.289
snapshot.2100 44 135 81 58.85 460058 91.59 1311138 0.643 0.351
snapshot.2130 54 135 78 117.82 976590 227.24 3519523 0.518 0.277
P

2045.36 9969988 5359.92 41474697 0.382 0.24
Table 3.1: The performance of improved pruning solving snapshots

It can be observed that in most of the cases, the computation took less time
applying the new pruning scheme. Overall, it took only 38.2 % of the time and
only 24.0 % of the nodes have been explored compared to the old pruning.

In the following we have a closer look on the single iterations and try to find
out, on which parameters the improvement rate is dependent.

First, we investigated if the improvement rate is dependent on the maximal
search depth of an iteration. Therefore, we took all iterations calculated for the
computation of the snapshots presented in Table 3.1, computed there specific
improvement rate with respect to the time, and the average and standard devi-
ation of this improvement rate for all instances having the same maximal depth.
This is illustrated in Figure 3.5.

Because it is possible that the good improvement rates are achieved on in-
stances which did not take a lot of time anyway, one should consider the overall
time spent on computations of a specific depth. For this reason, we show in Fig-
ure 3.6 the ratios of the sums of the time spent for the calculation of iterations
having a specific maximal depth. In contrast to Figure 3.5 the iterations which
took longer have a higher weight in Figure 3.6.

As one can see in both of the Figures 3.5 and 3.6, the improvement rate is
highly dependent on the maximal depth of the search tree. As a consequence, for

Lower Bounds for the Branch & Bound pricing Algorithm 39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
at

io
 o

f
Im

pr
ov

em
en

t

depth

"ratiosdepstat.txt" using 1:4:5

Figure 3.5: The ratio of the improvement resp. to the depth of the subtree

the computation of the snapshots it is reasonable to use the improved pruning
for every depth.

Next, we examined the dependency of the improvement rate on the maximal
search degree of an iteration. Therefore we took all iterations calculated for the
computation of the snapshots presented in Table 3.1, computed their specific im-
provement rate with respect to the time, and the average and standard deviation
of this improvement rate for all instances having the same maximal degree. This
is illustrated in Figure 3.7.

Analogously to the maximal search depth of the search trees we calculated
the ratio of the total time spent for the exploration of search trees of a specific
maximal degree in Figure 3.8.

As a consequence of these two Figures 3.7 and 3.8 we should use the improved
pruning scheme, for every search tree independent of its degree.

By testing the snapshots for their maximal depth and degree at the same
time, the consequences formulated above are being confirmed. The average of
the improvement rates for iterations having the same maximal degree and the
same maximal depth are denoted in Table 3.2 and 3.9.

These two figures enforce the consequence denoted above that the improved
pruning scheme does always accelerate the column generation when dispatching

4
0

C
o
m

p
u
ta

ti
o
n
a
l
R

es
u
lt

s

3 4 5 6 7 8 9 10 11 12 13 14 15

3 0.9294 0.9458 0.9111 – – – – – – – – – –

4 0.9432 0.9455 0.9425 0.9194 – – – – – – – – –

5 0.8563 0.8718 0.907 0.8495 0.7374 – – – – – – – –

6 0.8826 0.834 0.8258 0.8246 0.6957 0.5947 – – – – – – –

7 0.8679 0.7481 0.7629 0.66 0.6527 0.5773 0.5566 – – – – – –

8 0.8056 0.7142 0.5644 0.4933 0.5366 0.4804 0.4299 0.3595 – – – – –

9 0.7495 0.5698 0.5244 0.4835 0.3652 0.3754 0.4797 0.3283 0.296 – – – –

10 0.7191 0.5306 0.4675 0.3973 0.3813 0.3141 0.3625 0.3732 0.2983 0.3378 – – –

11 0.6991 0.5321 0.3884 0.3114 0.3337 0.3064 0.264 0.3121 0.3105 0.2611 0.2396 – –

12 0.6532 0.4139 0.3831 0.2761 0.2237 0.2497 0.2584 0.1998 0.2358 0.2734 0.2047 0.2316 –

13 0.6591 0.4079 0.3522 0.2713 0.2198 0.2172 0.2568 0.2026 0.2008 0.2657 0.2045 0.2027 0.2752

Table 3.2: The ratio of the improvement resp. to depth (columns) and degree (rows) of the subtree

Lower Bounds for the Branch & Bound pricing Algorithm 41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 4 6 8 10 12 14 16

R
at

io
 o

f
Im

pr
ov

em
en

t

depth

"ratiosdepweighted.txt" using 1:4

Figure 3.6: Time saved resp. to the depth of the subtree

snapshots. The performance ratio improves with increasing search degree and
increasing search depth of the search tree.

3.4.2 Offline-Instances

Since the requests of these instances are not all already released, there will be
less lateness costs arising. For this reason, we cannot hope for improvement
rates as good as the ones achieved by the computation of the snapshots. We
have three groups of offline instances which have to be solved. One of them has
got a clairvoyance of one hour, the second one has a clairvoyance of two hours.

One-Hour Instances

Analogously to Table 3.1, Table 3.3 gives an overview of the One-Hour Instances
and the performance of our pruning scheme. It can be seen that all in all only
50.1 % of the nodes had to be explored, but due to the different lateness structure
this took 96.8 % of the time necessary for this exploration with the usual pruning
method.

Like we did for the snapshots, we analyzed, if there are any dependencies of

42 Computational Results

Name | I | | R | | U | | C | Timp Nimp Tusu Nusu
Timp

Tusu

Nimp

Nusu

ZIBDIP event 20010102 20 33 21 16 1.49 17048 1.06 28731 1.406 0.593

ZIBDIP event 20010103 15 18 14 16 0.47 9359 0.31 11865 1.516 0.789

ZIBDIP event 20010104 21 25 14 16 0.81 13919 0.66 20048 1.227 0.694

ZIBDIP event 20010105 15 17 18 16 0.23 5448 0.14 6473 1.643 0.842

ZIBDIP event 20010106 10 14 14 16 0.04 1337 0.02 1379 2 0.97

ZIBDIP event 20010107 16 18 13 16 0.29 5530 0.2 7954 1.45 0.695

ZIBDIP event 20010108 21 41 22 16 1.53 23168 1.26 33624 1.214 0.689

ZIBDIP event 20010109 20 37 17 16 1.05 17534 0.77 22860 1.364 0.767

ZIBDIP event 20010110 28 29 19 16 3.54 51438 2.9 82797 1.221 0.621

ZIBDIP event 20010111 15 22 16 16 0.4 8600 0.32 11233 1.25 0.766

ZIBDIP event 20010112 36 32 18 16 3.16 43794 2.73 75646 1.158 0.579

ZIBDIP event 20010113 33 39 17 16 3.56 50399 2.96 75665 1.203 0.666

ZIBDIP event 20010114 18 27 13 16 0.62 10435 0.49 14583 1.265 0.716

ZIBDIP event 20010115 25 62 23 16 5.4 56677 4.85 110674 1.113 0.512

ZIBDIP event 20010116 51 56 18 16 35.95 329475 40.26 691274 0.893 0.477

ZIBDIP event 20010117 51 59 17 16 33.81 187683 40.99 695454 0.825 0.27

ZIBDIP event 20010118 42 44 16 16 15.07 166801 15.48 318762 0.974 0.523

ZIBDIP event 20010119 39 34 18 16 5.7 87537 5.05 127600 1.129 0.686

ZIBDIP event 20010120 21 29 18 16 0.99 23691 0.84 28632 1.179 0.827

ZIBDIP event 20010121 21 18 12 16 0.35 9212 0.26 10928 1.346 0.843

ZIBDIP event 20010122 20 32 20 16 2.22 28157 1.72 42073 1.291 0.669

ZIBDIP event 20010123 15 25 16 16 0.54 10223 0.4 13330 1.35 0.767

ZIBDIP event 20010124 14 21 13 16 0.36 7122 0.32 9354 1.125 0.761

ZIBDIP event 20010125 46 29 16 16 6.02 98227 5.16 144763 1.167 0.679

ZIBDIP event 20010126 27 25 20 16 1.23 28266 0.98 36022 1.255 0.785

ZIBDIP event 20010127 21 23 16 16 0.83 13744 0.59 19772 1.407 0.695

ZIBDIP event 20010128 20 12 12 16 0.27 7120 0.17 8384 1.588 0.849

ZIBDIP event 20010129 35 39 22 16 5.99 83512 5.5 142207 1.089 0.587

ZIBDIP event 20010130 15 24 15 16 0.7 11784 0.58 16116 1.207 0.731

P

132.62 1407240 136.97 2808203 0.968 0.501

Table 3.3: One-Hour Instances: Overview

Lower Bounds for the Branch & Bound pricing Algorithm 43

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14

R
at

io
 o

f
Im

pr
ov

em
en

t

degree

"ratiosdegstat.txt" using 1:4:5

Figure 3.7: The ratio of the improvement resp. to the degree of the subtree

the performance ratio on maximal depth, maximal degree of the iterations and
the system load.

In Figures 3.10 and 3.11 we computed the time spent for all iterations with
a specific maximum depth resp. degree of a search tree.

According to these Figure, our improved pruning scheme does only make sense
for computing One-Hour Instances, when the maximum depth and maximum
degree is at least 8.

Figures 3.13 and 3.12 show the improvement rates by means of explored
nodes, resp. time, against the system load.

Two-Hour Instances

Analogously to the One-Hour Instances, the Two-Hour Instances have been pro-
duced with a clairvoyance of two hours. Table 3.4 gives an overview over these
instances and the improvement rates obtained by computing them. Making use
of the improved pruning scheme, only 32.2 % of the nodes had to be explored
which took 73.6 % of the time compared to the old pruning scheme.

In Figures 3.10 and 3.11 we computed the time spent for all iterations with
a specific maximum depth resp. degree of a search tree.

44 Computational Results

Name | I | | R | | U | | C | Timp Nimp Tusu Nusu
Timp

Tusu

Nimp

Nusu

ZIBDIP event 20010102 70 84 21 16 1366.58 6126478 1860.04 22050522 0.735 0.278

ZIBDIP event 20010103 36 39 14 16 42 400297 31.76 696200 1.322 0.575

ZIBDIP event 20010104 41 51 14 16 76.25 504879 69.79 1266365 1.093 0.399

ZIBDIP event 20010105 27 33 18 16 8.83 94333 8.8 230183 1.003 0.41

ZIBDIP event 20010106 26 31 14 16 4.49 59761 2.9 85955 1.548 0.695

ZIBDIP event 20010107 32 42 13 16 19.72 134489 14.35 259775 1.374 0.518

ZIBDIP event 20010108 41 71 22 16 53.73 365539 55.08 1086986 0.975 0.336

ZIBDIP event 20010109 51 67 17 16 183.24 964987 202.09 2886333 0.907 0.334

ZIBDIP event 20010110 34 54 19 16 42.46 338288 29.85 560005 1.422 0.604

ZIBDIP event 20010111 49 55 16 16 122.81 640184 126.88 2098925 0.968 0.305

ZIBDIP event 20010112 60 70 18 16 392.05 2377388 490.61 6771998 0.799 0.351

ZIBDIP event 20010113 69 84 17 16 1472.47 6425000 2475.07 30369845 0.595 0.212

ZIBDIP event 20010114 36 56 13 16 48.7 355569 42.45 651282 1.147 0.546

ZIBDIP event 20010115 63 119 23 16 2170.9 8648216 2280.18 19543933 0.952 0.443

ZIBDIP event 20010116 76 105 18 16 3801.9 13211887 5589.68 54999845 0.68 0.24

ZIBDIP event 20010117 57 106 17 16 786.35 1977389 1370.6 13376384 0.574 0.148

ZIBDIP event 20010118 58 69 16 16 288.66 1566170 265.57 3692891 1.087 0.424

ZIBDIP event 20010119 130 67 18 16 6506.07 49166973 9212.36 138383990 0.706 0.355

ZIBDIP event 20010120 41 61 18 16 154.8 1106023 144.52 2097268 1.071 0.527

ZIBDIP event 20010121 32 44 12 16 17.57 139881 14.99 306876 1.172 0.456

ZIBDIP event 20010122 41 68 20 16 282.48 1716425 279.23 3570392 1.012 0.481

ZIBDIP event 20010123 51 59 16 16 252.03 1567465 207.31 3576398 1.216 0.438

ZIBDIP event 20010124 22 42 13 16 5.92 60330 3.88 75360 1.526 0.801

ZIBDIP event 20010125 55 47 16 16 160.34 1403528 134.37 2355104 1.193 0.596

ZIBDIP event 20010126 35 45 20 16 33.97 351920 27.93 591724 1.216 0.595

ZIBDIP event 20010127 51 58 16 16 161.93 1157805 183.13 3275419 0.884 0.353

ZIBDIP event 20010128 25 25 12 16 4.02 57656 2.46 76591 1.634 0.753

ZIBDIP event 20010129 42 63 22 16 79.34 667000 61.78 1081714 1.284 0.617

ZIBDIP event 20010130 24 48 15 16 11.38 122590 8.09 174493 1.407 0.703

P

18550.99 101708450 25195.75 316192756 0.736 0.322

Table 3.4: Two-Hour Instances: Overview

Lower Bounds for the Branch & Bound pricing Algorithm 45

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14

R
at

io
 o

f
Im

pr
ov

em
en

t

degree

"ratiosdegweighted.txt" using 1:4

Figure 3.8: Time saved resp. to the degree of the subtree

"ratiosavernull.txt" using 1:2:3

 4
 6

 8
 10

 12
 14

 16
depth 4

 6

 8

 10

 12

 14

degree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ratio of Improvement

Figure 3.9: The ratio of the improvement resp. to depth (columns) and degree
(rows) of the subtree

46 Computational Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 3 4 5 6 7 8 9 10 11 12

R
at

io
 o

f
Im

pr
ov

em
en

t

depth

"ratiosdepweighted.txt" using 1:4

Figure 3.10: One-Hour Instances: Time saved resp. to the depth of the subtree

According to these Figure, our improved pruning scheme does only make
sense for computing Two-Hour Instances, when the maximum depth is at least
8 and maximum degree is at least 7. Table 3.5 which is computed the same way
as Table 3.2 parallels this observation in a good way.

Figures 3.16 and 3.17 show the improvement rates by means of explored
nodes, resp. time, against the system load. In both of these figures can be
observed that the improvement rates are getting better with higher system load.

3.4.3 Summary of the Computational Results

For every group of instances observed, the performance ratio due to the improved
pruning scheme increased with increasing maximal depth and maximal degree
of the search tree. Computing snapshots, it is always reasonable to utilize this
advanced pruning scheme. The offline instances for the a-posteriori analysis can
be solved in a better time if the maximal depth is at least 8 and if the maximal
degree of the search tree is at least 8 for the case of the One-Hour instances and
7 for the case in of the Two-Hour instances.

Since our pruning scheme estimates the lateness costs more precisely at the
cost of a higher computational demand, it has a good performance on instances
with high lateness costs. For this reason the algorithm performed very well

L
o
w

er
B

o
u
n
d
s

fo
r

th
e

B
ra

n
ch

&
B

o
u
n
d

p
ricin

g
A

lg
o
rith

m
4
7

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 0.9183 1.1172 1.2046 – – – – – – – – – – – – –

4 2.5056 1.9333 1.5375 1.3337 – – – – – – – – – – – –

5 2.25 1.4202 1.6148 1.4407 1.4245 – – – – – – – – – – –

6 1.4917 1.4217 1.5299 1.397 1.3755 1.2261 – – – – – – – – – –

7 1.2827 1.5812 1.394 1.406 1.377 1.1649 1.0518 – – – – – – – – –

8 1.2639 1.4519 1.4846 1.3937 1.1576 1.0507 1.0536 0.9121 – – – – – – – –

9 1.2757 1.4806 1.3913 1.291 1.2141 0.9908 0.9718 0.8572 0.8449 – – – – – – –

10 1.3429 1.3647 1.303 1.2345 1.0705 1.0326 0.799 0.8199 0.8629 0.738 – – – – – –

11 1.1635 1.3534 1.1303 1.6029 1.1011 0.9956 1.3698 0.9001 0.9159 0.9892 0.8503 – – – – –

12 1.0333 1.5366 1.0219 0.9967 0.9493 0.8879 0.8605 0.6875 0.8671 0.8621 0.6492 0.8705 – – – –

13 1.1053 1.0649 1.0549 1.2419 0.9137 0.8557 0.6926 0.8463 0.8408 0.6278 0.8433 0.8489 0.6093 – – –

14 1.0541 1.475 1.024 0.9997 0.9203 0.8577 0.8226 0.6358 0.8232 0.8198 0.5889 0.8248 0.8302 0.5752 – –

15 1.05 1.4451 1.0214 0.9849 0.8817 0.8219 0.7873 0.602 0.7828 0.7816 0.5519 0.7835 0.79 0.538 0.7893 –

Table 3.5: Two-Hour Instances: The ratio of the improvement resp. to depth (columns) and degree (rows) of the
subtree

48 Computational Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 3 4 5 6 7 8 9 10

R
at

io
 o

f
Im

pr
ov

em
en

t

degree

"ratiosdegweighted.txt" using 1:4

Figure 3.11: One-Hour Instances: Time saved resp. to the degree of the subtree

solving the snapshot problems. When it came to the One-Hour instances, which
had a comparable system load like the snapshots, it was not possible, to solve
them as efficiently as the snapshots because of their lower lateness costs due to
the later release times of the requests. The Two-Hour instances could be solved
in a much better way due to the longer tours as a result of a higher system load
than the One-Hour instances.

By applying this pruning method to the offline instances, the number of ex-
plored nodes has been lowered to 50.1% for the case of the One-Hour instances
and 32.2% for the case of the Two-Hour instances. But due to the longer com-
putation time of this method, the performance ratio corresponding to the time
reduction was not as good, so that only 3.2% resp. 26.4% of the could be saved
by applying improved pruning.

Lower Bounds for the Branch & Bound pricing Algorithm 49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 1 1.5 2 2.5 3 3.5

R
at

io
 o

f
Im

pr
ov

em
en

t [
N

od
es

]

requests per unit

"loadperformance.txt" using 1:3

Figure 3.12: One-Hour Instances: performance (nodes) vs. systemload

 0

 0.5

 1

 1.5

 2

 0.5 1 1.5 2 2.5 3 3.5

R
at

io
 o

f
Im

pr
ov

em
en

t [
T

im
e]

requests per unit

"loadperformance.txt" using 1:2

Figure 3.13: One-Hour Instances: performance (time) vs. systemload

50 Computational Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2 4 6 8 10 12 14 16 18

R
at

io
 o

f
Im

pr
ov

em
en

t

depth

"ratiosdepweighted.txt" using 1:4

Figure 3.14: Two-Hour Instances: Time saved resp. to the depth of the subtree

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2 4 6 8 10 12 14 16

R
at

io
 o

f
Im

pr
ov

em
en

t

degree

"ratiosdegweighted.txt" using 1:4

Figure 3.15: Two-Hour Instances: Time saved resp. to the degree of the subtree

Lower Bounds for the Branch & Bound pricing Algorithm 51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

R
at

io
 o

f
Im

pr
ov

em
en

t [
T

im
e]

requests per unit

"loadperformance.txt" using 1:2

Figure 3.16: Two-Hour Instances: performance vs. systemload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

R
at

io
 o

f
Im

pr
ov

em
en

t [
N

od
es

]

requests per unit

"loadperformance.txt" using 1:3

Figure 3.17: Two-Hour Instances: performance vs. systemload

Chapter 4

Column Generation via Resource
Constrained Shortest Paths

As we mentioned in Chapter 2, the value of an optimal and feasible solution of
RLP is a lower bound for the value of the optimal dispatch. In proposition 2.1
we showed a lower bound for the value of the optimal solution of RLP which can
be computed by calculating for every unit u a lower bound for the reduced costs
of a tour driven by u. In the remainder of this chapter we concentrate on finding
such a lower bound.

4.1 The Problem

The problem of finding such a tour can be formulated as follows: Let G = (V, A)
be a graph where V is the set of Nodes N ∪ {ou, hu} with N := {e|Fe ⊆ Fu}
consisting of the nodes representing the events, which can be served by u on
the way from the current position ou to the home position hu. A is the set of
arcs A := {(i, j) ∈ V × V |i 6= du, j 6= ou}. A path in the graph G is defined
as a sequence of nodes e0, e1, . . . , eH , such that each arc (eh−1, eh) belongs to A.
All paths start at the origin (e0 = ou) and end at the destination (eH = hu).
An increasing time depending cost function ci,j(t) is associated with each arc
(i, j) ∈ A which includes driving, service, lateness and overtime costs at node
j and denotes the cost when i is being left for j at time t. This function is
increasing in t and looks for all i, j ∈ N ∪ {ou} as follows:

ci,j(t) := MinRedCost(i, j, t) + cdrv
u δi,j

u

ci,hu
(t) := cot

u max{t + δi,hu

u − tend
u , 0} + cdrv

u δi,hu

u − πu

52

Column Generation via Resource Constrained Shortest Paths 53

Let di,j(t) be the time spent for serving request j directly after serving i,
including driving from i to j, waiting and service at j when i is being left at time
t. Because of the requests’ release times and the resultant waiting times, di,j(t)
is not constant. Hence, for all i, j ∈ V ∪ {ou}:

di,j(t) := max{δi,j
u , θr

j − t} + δj

di,hu
(t) := δi,hu

u

The cost of a path is defined as the sum of the costs of its arcs and the
duration is defined as the sum of their durations. The problem of finding the
column with minimum reduced costs is equivalent to the problem of finding the
minimum cost cycle-free path starting no earlier than tstart

u and ending no later
than tend

u + tmax−ot
u in the graph previously described. In the following we will

call this problem with regard to its origin MinColumn. Since the costs of the
arcs are nondecreasing with respect to time, we can assume that there is always
an optimal path starting exactly at tstart

u .

Definition 4.1 (Shortest Simple Path Problem with Arbitrary Weights)
Let G = (V ′, A′) be a digraph with arc weights c : A′ → R and two vertices
s, t ∈ V ′. The task is to find a simple s− t-path of minimum weight or to decide
that no such path exists.

Proposition 4.2 MinColumn is a generalization of the Shortest Simple

Path Problem with Arbitrary Weights.

Proof. It suffices to show that every instance of the Shortest Simple Path

Problem with Arbitrary Weights can be polynomially transformed into
a MinColumn-problem. Consider an arbitrarily chosen problem of finding an
s−t−path on a graph G′ = (V ′, A′) with each arc (i, j) ∈ A′ having weights c(i,j).
Since, a simple shortest path cannot contain parallel arcs, it suffices to consider
the least cost arc of any two parallel arcs with the same direction.

The corresponding MinColumn-problem can be formulated as follows:

N := V ′ \ {s, t}ou := shu := t

The shift start time tstart
u can be chosen arbitrarily. As the Shortest Sim-

ple Path Problem with Arbitrary Weights does not have any resource
restriction, we choose tend

u , tmax−ot
u and cot

u properly so that no resource restriction
will apply.

tend
u = M (big enough)

tmax−ot
u = 0

cot
u = 0

54 The Problem

Since we want ci,j(t) to be constant over the time, we choose the requests’
release and deadlines as the following so that no lateness costs will arise:

θr
e = tstart

u ∀e ∈ N
θd

e = tend
u ∀e ∈ N

The following parameters are set in a way that

cdrv
u = 1
δe = 0 ∀e ∈ N
πu = −mina∈A′ ca

πe = −mina∈A′ ca ∀e ∈ N

Since the MinColumn-problem is defined on a complete graph and G′ does
not have to be complete, we set the δi,j

u for all (i, j) /∈ A′ on such a high value
that the optimal path cannot include such an arc, if any s − t−path exists. We
also have to take care that δi,j

u ≥ 0 for all i, j ∈ N , since the durations of the
driving are defined to be positive.

δi,j
u = c(i,j) − mina∈A′ ca∀(i, j) ∈ A′

δi,j
u = (|A′| + 1) maxa∈A′ ca∀(i, j) /∈ A′

As a result of the definitions just made, for all i, j ∈ N holds:

ci,j(t) = MinRedCost(i, j, t) + cdrv
u δi,j

u

= LateCost(j, t + δij
u) + csvc

u δj − πj + cdrv
u δi,j

u

= −πj + δi,j
u

= mina∈A ca + c(i,j) − mina∈A ca

= c(i,j)

ci,hu
(t) = cot

u max{t + δi,hu
u − tend

u , 0} + cdrv
u δi,hu

u − πu

= δi,hu
u − πu

= c(i,hu) − mina∈A ca + mina∈A′ ca

= c(i,hu)

If the optimal solution of this MinColumn problem has weight ≥ (|A′| +
1) maxa∈A ca, then no s − t-path exists. Otherwise, the value of the shortest
s− t−path is equal to the value of the shortest path in the corresponding Min-

Column-problem and the edges corresponding to the optimal solution of the
s − t−path are the same as for the edges representing the optimal tour of the
MinColumn-problem. �

Since the Shortest Simple Path Problem with Arbitrary Weights

is NP-hard (see [9]), it can be deduced that MinColumn is also NP-hard and

Column Generation via Resource Constrained Shortest Paths 55

therefore it is not reasonable that we find a polynomial algorithm for MinCol-

umn.

As the MinColumn problem looks very similar to another problem called
RCSP, which is well-investigated we will have a look at its definition, complexity
and algorithmic approaches in order to find a way to solve MinColumn.

4.2 The Resource Constrained Shortest Path

Problem

The resource constrained shortest path problem asks for the computation of a
least cost path obeying a set of resource constraints. More precisely, we are given
a graph G = (V, E) with |V | = n and |E| = m, a source node s and a target node
t, and k resource limits λ(1) to λ(k). Each edge e has a cost ce and uses ri

e units
of resource i, 1 ≤ i ≤ k. Costs and resources are assumed to be nonnegative.
They are additive along paths. The goal is to find a least cost path from s to
t that satisfies the resource constraints. The special case k = 1 is called the
single resource case and the case k > 1 is called the multiple resource case. Since
MinColumn is only restricted in the duration of the paths we will only focus
on the single resource case.

4.2.1 Complexity

Handler and Zang [11] showed that every instance of the knapsack problem can
be transformed into an instance of RCSP. In the following we show this trans-
formation:

The knapsack problem reads as follows: We are given a set of n − 1 items,
each having a value vj and a weight wj, for j = 1, . . . , n− 1. The goal is to pack
items into a knapsack so that the weight limit λ is not exceeded and so that the
value of the chosen items is maximized. The knapsack problem is formally given
as follows:

56 The Resource Constrained Shortest Path Problem

(KS) max

n−1
∑

j=1

vjxj

s.t.

n−1
∑

j=1

wjxj ≤ λ

xj ∈ {0, 1} j = 1, . . . , n − 1

where vj, wj, λ are positive integers. Now we set up a n−node network with
two parallel arcs from every node j to node j + 1 for j = 1, . . . , n − 1. Let
c
(1)
j,j+1 = M − vj , t

(1)
j,j+1 = wj and c

(2)
j,j+1 = M, t

(2)
j,j+1 = 0 be the parameters for the

first and the second arcs for j = 1, . . . , n − 1, respectively, where M = max{vj :
j = 1, . . . , n − 1} (see Figure 4.1).

(M − v1, w1)

(M, 0)

(M − v2, w2)

(M, 0)

(M − vn−2, wn−2)

(M, 0)

(M − vn−1, wn−1)

(M, 0)

1 2 n − 1 n

Figure 4.1: The Network corresponding to the knapsack problem

Then it is evident that KS may be solved by finding a shortest path (with
respect to parameter c) from node 1 to node n, subject to a resource constraint
(with respect to parameter t), with right hand side λ. Since every instance of the
knapsack problem, which is NP-hard, can be transformed into a RCSP problem
in polynomial time it can be deduced RCSP is also NP-hard.

4.2.2 Algorithmic Approaches

There are several approaches known for solving the RCSP.

Early work dealing with RCSP in the single resource case was done by Joksch
[13] who presented a pseudopolynomial algorithm based on dynamic program-
ming (see also Lawler [17]). Warburton [23] and Hassin [12] applied the standard
technique of rounding and scaling to obtain fully polynomial ǫ-approximation
scheme for RCSP. Lorenz and Raz [18] improved this algorithm to obtain a better
running time.

RCSP can be solved exactly by ranking paths in nondecreasing cost order
until a path obeying the resource limit has been found. This path constitutes
the optimal solution. The asymptotically best algoritm for ranking the k best
paths is due to Eppstein [8] and runs in time O(m + n log n + kn). According to

Column Generation via Resource Constrained Shortest Paths 57

Handler and Zang [11] the path ranking method is known to perform badly in
an experimental setting.

Another exact approach is to formulate the RCSP as a 0/1-integer program
as follows: We define 0-1 variables xij for edges (i, j) ∈ E:

xij :=

{

1 if edge (i, j) belongs to an optimal path,

0 otherwise

The integer linear program for RCSP is then given by

(RCSPIP) min
∑

i∈V

∑

j∈V

cijxij (4.1)

subject to
∑

i∈V

∑

j∈V

rijxij ≤ λ (4.2)

∑

i∈V

xij =
∑

i∈V

xji ∀j ∈ V \ {s, t} (4.3)

∑

j∈V

xsj = 1 (4.4)

∑

i∈V

xit = 1 (4.5)

xij ∈ {0, 1} ∀i, j ∈ V (4.6)

Equation 4.2 ensures that the total resource consumption of the path satisfies
the resource limit. Equation 4.3 is the degree constraint for each vertex of the
graph (other than source and target) while 4.4 and 4.5 ensure that one edge
leaves the source and one edge enters the target vertex.

Hence, RCSPIP is the usual shortest path formulation with an additional
resource constraints. RCSPIP has |E| variables and |V | + 1 constraints.

Since the resource constraint turns the well studied, efficiently solvable short-
est path problem into an NP-hard one, there has been a variety of work relax-
ing this resource constraint by turning it into the objective function and solving
scaled cost shortest path problems to obtain bounds for the original problem (see
Aneja and Nair[3], Handler and Zang [11], Beasley, Christofides [4] for details)

Since the duration and the cost is not constant over time and we have no
discretization of time, it is not possible to formulate an integer program like the

58 The Resource Constrained Shortest Path Problem

one above. As we are looking for a lower bound, it might be reasonable to replace
ci,j(t) and di,j(t) with constant functions c′i,j(t) ≤ ci,j(t) and d′i,j(t) ≤ di,j(t).
However, as this would mean neglecting the lateness and overtime costs which
form the major part of the overall costs incurred, the lower bounds computed
this way would be far too low.

As dynamic programming seems to be the only promising one of the pre-
viously described algorithmic approaches, we will have a look at labeling ap-
proaches, which can be seen as an improvement of the dynamic programming
approaches:

4.2.3 Labeling Approaches

With each path Pi from the origin ou to the node i is associated a two-dimensional
(time, cost) label corresponding to the end of service at node i and the reduced
costs of the path Pi. At node i, these labels will be denoted by

(T k
i , Ck

i), i ∈ V, k ≥ 1

to indicate the characteristics of the kth path from ou to i. The indices k
and i may be dropped if the context is unambiguous. These labels are calculated
iteratively along the path Pi = (i0, i1, i2, . . . , iH) as:

(Ti0 , Ci0) = (tstart
u , 0)

(Tih, Cih) = (Tih−1
+ dih−1,ih(Tih−1

), Cih−1
+ cih−1,ih(Tih−1))

where i0 = ou and iH = i.

Notation 4.3 Let (T 1
i , C1

i) and (T 2
i , C2

i) be two different labels for two paths
from ou to i. The first label dominates the second, i.e., (T 1

i , C1
i) ≺ (T 2

i , C2
i) if

and only if (T 2
i , C2

i) − (T 1
i , C1

i) ≥ (0, 0).

Notation 4.4 A label (Ti, Ci) at a given node i is said to be efficient if no
other label at i dominates it. A path from ou to i is said to be efficient if the
corresponding label is efficient.

Notation 4.5 For every i ∈ V , let Qi be the set of labels at node i. Then,
EFF(Qi) := {(T, C) ∈ Qi|∄(T ′, C ′) ∈ Qi : (T ′, C ′) ≺ (T, C)} denotes the set of
efficient labels among the set of labels Qi.

Column Generation via Resource Constrained Shortest Paths 59

Since the reduced costs of the feasible paths, which end at a node i, i ∈
V no later than t, can be defined as a decreasing step function of t with the
nondominated labels as breakpoints we do not have to consider dominated labels.
As an example look at Figure 4.2 where P1, . . . , P5 are efficient and P6, . . . , P9

are dominated labels.

T

T

T

T

T

T

T

T

T

cost

time

P1

P2

P3

P4

P5

P6

P7

P8

P9

θr
e + δe tend

u + tmax−ot
u − δehu

Figure 4.2: Dominance relation between labels associated with different paths

The set of efficient labels at each node can be computed by dynamic program-
ming. The shortest path from ou to hu satisfying the time window constraints
is obtained directly from the set EFF(Qhu

): it is represented by the least cost
label.

A basic operation in shortest path algorithms is the treatment of a label
(T k

i , Ck
i). It consists of creating new labels at nodes j ∈ N ∪{hu}\{i} by adding

arcs (i, j) to the path from ou to i associated with label (T k
i , Ck

i). The new label
for a given j ∈ N ∪ {hu} is denoted as fij(T

k
i , Ck

i) and is constructed as follows:

fij(T
k
i , Ck

i) :=

{

(T k
i + di,j(T

k
i), Ck

i + ci,j(T
k
i)), if T k

i + di,j(T
k
i) ≤ tend

u + tmax−ot
u

∅ otherwise

We introduce a permanent labeling algorithm. This algorithm treats the
labels sequentially in increasing order of time. The positive duration of the arcs
insures that once a label has been treated it is impossible to improve it any
further. The algorithm uses sets Pi of permanent labels at node i. Each set Pi

contains the labels of node i which have been previously treated. This algorithm
can be described as follows:

60 The Resource Constrained Shortest Path Problem

Label Setting Algorithm for MinColumn
Input: a unit u, a set of requests E,
Output: the set of the efficient labels at hu

// Initialization:
1© N = {e ∈ E|Fe ⊆ Fu};
2© V = N ∪ {ou, hu};
3© Qou

= {(T 1
0 = tstart

u , C1
0 = 0)}; Qi = ∅ ∀i ∈ N ∪ {hu};

4© Pi = ∅, ∀i ∈ V ;
5© If

⋃

i∈V (Qi\Pi) = ∅ return Qhu

// Selection of the next label to be treated:
6© Choose a label (T k

i , Ck
i) ∈

⋃

i∈V (Qi\Pi) with T k
i minimal;

// Treatment of label (T k
i , Ck

i):
7© For all j ∈ N ∪ {hu} \ {i}:
8© Qj := EFF(fij(T

k
i , Ck

i) ∪ Qj);
9© Pi := Pi ∪ {(T k

i , Ck
i)};

10© Go to 5©

An algorithm like the one just presented has been used so far to calculate a
lower bound for the reduced costs of a tour. In the following we explain its steps:
1©, 2©, 3© and 4© represent the initialization of the algorithm. In the beginning
there is only one label at the home-position which is untreated. All other labels
are to be constructed in the following. If

⋃

i∈V (Qi\Pi) = ∅ in 5©, all labels have
already been treated and, therefore, all paths have been constructed if they were
not dominated by other paths resp. labels. In 7© and 8© the current label is
treated resp. the corresponding path is extended.

As all of the arcs have positive durations and every shift has an absolute end,
the algorithm terminates.

The problem of the label setting algorithm is that cycles may occur. Since
we are searching for the optimal path having no cycles, the algorithm described
above solves a relaxation of our problem. Therefore, if the optimal label repre-
sents such a tour containing cycles, the cost value of this label represents a lower
bound for the minimum reduced costs of a tour.

In fact, in practice cycles of a higher length than 3 rarely take place. If P
contained a cycle entered at node j having more than 3 nodes, the vehicle would
have to provide assistance in at least 4 cases, before returning to j again. As

Column Generation via Resource Constrained Shortest Paths 61

the time of an assistance takes in practice at least 15 minutes, this would cause
additional lateness costs due to at least 60 minutes.

As we will see in Proposition 4.7 an arc (i, j) is not part of an optimal path
if i is left at time t or later and

0 < MinRedCost(i, j, t)
= LateCost(j, t + δij

u) + csvc
u δj − πj

⇒ πj < LateCost(j, t + δij
u) + csvc

u δj

Since t + δij
u is the arrival time tjP of P in j, P cannot be optimal if:

πj < LateCost(j, tjP) + csvc
u δj

As the dual prices are usually not as high that lateness costs due to 60 minutes
of lateness can be compensated, cycles containing more than 3 nodes rarely take
place in practice. As most of the cycles are 2-cycles which are cycles of the form
(j → i → j), we describe in the following a method to avoid them. The Label

Setting Algorithm for MinColumn can be adapted for 2-cycle elimination
by keeping the best and the next best labels having a different predecessor at
each node. The modification appears in the treatment of a node i for which
j ∈ N ∪{hu}\{i}, and the best label in i is obtained by using the arc (j, i). The
creation of a path with the cycle (j → i → j) is avoided by adding the arc (i, j)
to the second best label. It creates the best 2-cycle free path arriving at node j
via node i. This leads to a doubling of the stored labels. We applied this method
for 2-cycle elimination to our label setting algorithms, since it yields good results,
but for reasons of legibility, we will not include it in the pseudocodes denoted on
the following pages.

Speeding up the Label Setting Algorithm

There are several ways to improve the running time of the algorithm. We apply
time buckets for the labels as they enable us to access the labels in shorter time.
Since the speed of the algorithm is highly dependent on the amount of labels
generated, we should think about canceling efficient labels in order to accelerate
it further. We perceived two kinds of labels which may be dropped:

• Efficient but useless labels

• Efficient labels which are very similar to each other

62 The Resource Constrained Shortest Path Problem

Buckets This concept has been introduced by Denardo and Fox [6] in order to
accelerate 6© in the label setting algorithm described on page 60. For classical
shortest path problems, a bucket is a set of nodes whose label costs lie within
a specified interval. For time constrained shortest path, a bucket contains those
labels whose time lies within a specified interval.

Notation 4.6 (Time buckets) For a given bucketwidth w let

Bk,i := {(T, C) ∈ Qi|T ∈ [tstart
u + kw, tstart

u + (k + 1)w)}

be the kth bucket of node i.

If the bucketwidth w ≥ δi,j
u for all i, j ∈ V , then no bucket can contain a

label and its successor and the following modified algorithm yields the same
results as the Label Setting Algorithm for MinColumn:

Label Setting Algorithm for MinColumn
with buckets
Input: a unit u, a set of requests E, a bucketwidth w,
Output: the set of the efficient labels at hu

// Initialization:
1© N = {e ∈ E|Fe ⊆ Fu};
2© V = N ∪ {ou, hu};
3© Qou

= {(T 1
0 = tstart

u , C1
0 = 0)}; Qi = ∅ ∀i ∈ N ∪ {hu};

4© Pi = ∅, ∀i ∈ V ;
5© If

⋃

i∈V (Qi\Pi) = ∅ return Qhu

// Selection of the next bucket to be treated:
6© Choose h with

⋃

i∈V (Bh,i\Pi) 6= ∅ and h minimal;
// Treatment of all labels in the chosen bucket:

7© For all i ∈ V with Bh,i 6= ∅ do
8© For all (T k

i , Ck
i) ∈ Bh,i do

9© For all j ∈ N ∪ {hu} \ {i} do
10© Qj := EFF(fij(T

k
i , Ck

i) ∪ Qj);
11© Pi := Pi ∪ {(T k

i , Ck
i)};

12© Go to 5©

Column Generation via Resource Constrained Shortest Paths 63

Instead of searching for the label with the smallest time value, they propose
searching for the bucket Bh,i containing this label in 6© and then treat all of the
labels contained by this bucket at once (7© - 11©).

Efficient but useless labels Even if notdominated, some labels cannot be
part of an optimal path, since all of their successors have to be dominated. The
following proposition gives a criteria for some of these labels:

Proposition 4.7 Let i, j be two different requests. If MinRedCost(i, j, t) > 0
then (i, j) is not part of an optimal path if i is left at time t or later.

Proof. Assume (i, j) was part of an optimal path P1 with i being left at time t
and k was the successor of j on P1. Then there are three efficient labels (Ti, Ci),
(Tj, Cj) := (Ti + di,j(Ti), Ci + ci,j(Ti)),(T

1
k , C1

k) := (Tj + dj,k(Tj), Cj + cj,k(Tj)) on
the nodes i, j and k representing this part of P1 with Ti = t. We put another
label (T 2

k , C2
k) := (Ti + di,k(Ti), Ci + ci,k(Ti)) on k and show that it dominates

(T 1
k , C1

k) resp. that T 1
k − T 2

k ≥ 0 and C1
k − C2

k ≥ 0. Figure 4.3 illustrates these
coherences.

i

j

k
(Ti, Ci)

(Tj , Cj)

(T 1
k , C1

k)

(T 2
k , C2

k)

Figure 4.3: Requests and associated Labels for the proof of proposition 4.7

T 1
k−T 2

k

=Tj + dj,k(Tj) − (Ti + di,k(Ti))

=Ti + di,j(Ti) + dj,k(Ti + di,j(Ti)) − Ti − di,k(Ti)

=di,j(Ti) + dj,k(Ti + di,j(Ti)) − di,k(Ti) ≥ 0 (triangle inequality)

The final inequation means that it takes at least as much time to drive from i to
j and then to k than driving from i to k directly which is intuitively clear.

64 The Resource Constrained Shortest Path Problem

If k = hu:

C1
k−C2

k

=Cj + cj,k(Tj) − (Ci + ci,k(Ti))

=Ci + ci,j(Ti) + cj,k(Ti + di,j(Ti)) − Ci − ci,k(Ti)

=ci,j(Ti) + cj,k(Ti + di,j(Ti)) − ci,k(Ti))

=MinRedCost(i, j, Ti) + cdrv
u δi,j

u

+ cot
u max{Ti + di,j(Ti) + δj,hu

u − tend
u , 0} + cdrv

u δj,hu

u − πu

− (cot
u max{Ti + δi,hu

u − tend
u , 0} + cdrv

u δi,hu

u − πu)

=MinRedCost(i, j, Ti) + cdrv
u (δi,j

u + δj,hu

u − δi,hu

u)

+ cot
u (max{Ti + max{δi,j

u , θd
j − Ti} + δj,hu

u − tend
u , 0} − max{Ti + δi,hu

u − tend
u , 0})

>0 + 0 + cot
u (max{Ti + δi,j

u + δj,hu

u − tend
u , 0} − max{Ti + δi,hu

u − tend
u , 0})

≥cot
u (max{Ti + δi,hu

u − tend
u , 0} − max{Ti + δi,hu

u − tend
u , 0})

=0

If k 6= hu:

C1
k−C2

k

=Cj + cj,k(Tj) − (Ci + ci,k(Ti))

=Ci + ci,j(Ti) + cj,k(Ti + di,j(Ti)) − Ci − ci,k(Ti)

=ci,j(Ti) + cj,k(Ti + di,j(Ti)) − ci,k(Ti))

=cdrv
u (δi,j

u + δj,k
u − δi,k

u)

+ MinRedCost(i, j, Ti) + MinRedCost(j, k, Tj) − MinRedCost(i, k, Ti)

≥MinRedCost(i, j, Ti) + MinRedCost(j, k, Tj) − MinRedCost(i, k, Ti)

≥MinRedCost(j, k, Tj) − MinRedCost(i, k, Ti)

=LateCost(k, T 1
k) + csvc

u δk − πk − (LateCost(k, T 2
k) + csvc

u δk − πk)

=LateCost(k, T 1
k) − LateCost(k, T 2

k)

≥0 (T 1
k ≥ T 2

k)

Therefore, (T 1
k , C1

k) is not efficient and (i, j)t cannot be part of an optimal path.
�

Efficient labels which are very similar to each other A problem of the
label setting algorithms just described is that it is possible that the amount
of labels generated is exponential. In the literature it is reported that these
algorithms work in pseudopolynomial time, but these running times have been

Column Generation via Resource Constrained Shortest Paths 65

made under the assumption of a discretization of the time with the number of
different time values as input size. As we have got no such discretization, a
infinite number of efficient labels is thinkable and it might happen that all tours
have to be enumerated.

Thus, we apply a slight change to the treatment of the buckets in order to
decrease the number of the labels. In the following we introduce an artificial
discretization of the time by the use of rounding which yields a much faster
algorithm to the disadvantage of a little accuracy.

Let L be a set of efficient labels, which differ only slightly from another.
According to the label setting algorithm previously described, all of these labels
had to be treated. This does not seem to be useful since they do not differ very
much from each other and, therefore, their successors will not differ from each
other very much either. But since all of these labels may be part of an optimal
path, we cannot simply drop one of them. This is why we introduce artificial
labels which dominate efficient labels which are not very distinct from each other
in order to decrease the number of generated labels. In order to avoid too many
rounding errors, we set the cost and time values of the artificial label as high as
possible.

Notation 4.8 Let L be a set of efficient labels. Then let

a(L) := (min{T ∈ R|(T, C) ∈ L}, min{C ∈ R|(T, C) ∈ L})

be the artificial label with the smallest time and cost values dominating every
l ∈ L. Let the predecessor of a(L) =: (T 1, C1) be the predecessor of a label
(T 2, C2) ∈ L with C1 = C2.

The predecessor of a(L) is chosen this way, because the only value in which
the labels of L can differ from each other very much is the cost, since their time
values are similar to another. Therefore, the time value is the more important
value of the both and the predecessor should be chosen according to the chosen
cost value.

Example 4.9 For example let l1 := (44,−193) and l2 := (43,−192) be two
labels on a node i. Since they are both efficient and very similar to each other,
we create a third label l3 := (43,−193) which dominates both. Since we only
treat efficient labels and l1 and l2 are not efficient anymore, we only have to treat
l3. As l2 is the non-artificial label having least cost, l3 has the same predecessor
as l2.

Since the time values of the labels contained by a bucket are very close to-
gether we take the buckets as such sets of very similar labels. When treating a

66 The Resource Constrained Shortest Path Problem

bucket Bh,i, we construct the artificial label a(Bh,i) which dominates all labels
in the bucket and ,therefore, is the only one to be treated. Since there will only
be one label treated per bucket it will have the same effect when we create an
artificial label whenever we insert a label into a nonempty bucket. Thus, we can
store the buckets as a list of labels and can access them in constant time.

The code for this algorithm which we will only call LSAMBAL(u, E, w) in
the following reads as follows.

Label Setting algorithm for MinColumn
with buckets and artificial labels
Input: a unit u, a set of requests E, a bucketwidth w,
Output: the set of the efficient labels at hu

// Initialization:
1© N = {e ∈ E|Fe ⊆ Fu};
2© V = N ∪ {ou, hu};

3© maxbuckets := ⌊ tend
u +tmax−ot

u −tstart
u

w
⌋ + 1;

4© Best(i) = ∞ ∀i ∈ V ;
5© Bh,i = ∅ ∀i ∈ V, h = 0, . . . , maxbuckets − 1;
6© B0,ou

= {(T 1
0 = tstart

u , C1
0 = 0)};

// Iterate all the buckets:
7© For h = 0, . . . , maxbuckets − 1 do
8© For all i ∈ V with Bh,i 6= ∅ do
9© Let (Ti, Ci) be the label contained by Bh,i;

// If the current label is dominated, continue
10© If Ci ≥ Best(i) continue;
11© Best(i) := Ci;

// Treatment of the current bucket:
12© For all j ∈ N ∪ {hu} \ {i} do

// According to Proposition 4.7:
13© If MinRedCost(i, j, Ti) > 0 continue;

// Create new label:
14© (Tj , Cj) := fij(Ti, Ci)

// If the new label violates the time restriction, continue
15© If Tj + δjhu

u > tend
u + tmax−ot

u continue;
// Insert the new label into the appropriate bucket:

16© l := ⌊Tj−tstart
u

w
⌋;

Column Generation via Resource Constrained Shortest Paths 67

17© If Bl,j = ∅ then Bl,j := {(Tj, Cj)}
18© else
19© Let (T ′j , C

′
j) be the label contained by Bl,j;

20© Bl,j := {min{Tj, T
′
j}, min{Cj, C

′
j}};

21© return
⋃

k=0,...,maxbuckets−1 Bk,hu
;

In 3© the maximum number of buckets is computed. Best(i) stores the
smallest cost values of the labels at node i which have already been treated.
Since these labels are exactly the labels with a smaller time value, the new
label has to have less costs than those previously treated. If Ci ≥ Best(i),
there would be a label (T ′′i , C ′′i) with C ′′i = Best(i) ≤ Ci and T ′′i < Ti and
accordingly (T ′′i , C ′′i) ≺ (Ti, Ci) and the next bucket can be observed 10©. In
16© we compute the number of the bucket in which (Tj, Cj) has to be inserted.
According to Proposition 4.7 (Tj, Cj) will not be part of an optimal path if
MinRedCost(i, j, Ti) > 0 (13©). Since there will never be more than one label in
Bl,j for every l < maxbuckets and j ∈ V , (T ′j , C

′
j) is chosen unambiguously in

19©. If the condition in 15© is violated, it is impossible to extend the tour corre-
sponding to (Tj , Cj) to a tour not violating the maximum overtime restriction.
In 16© the number l of the bucket Bl,j in which the new label (Tj , Cj) has to be
inserted is computed. If this bucket is empty (Tj , Cj) is inserted (17©). Otherwise
the dominant label or if necessary an artificial label dominating both is inserted
(20©).

4.3 Column generation

In the previous section we developed a strategy to find a good lower bound for
the reduced costs of a tour depending on the width of the used buckets. All
the labels produced thereby represent tours. Since we need tours with negative
reduced costs, we take a focus on the labels (T, C) with negative costs which will
be called promising labels in the following.

Notation 4.10 (promising labels) Let

L := {(T, C) ∈ Bk,hu
|k = 0, . . . , maxbuckets − 1, C < 0}

(4.7)

be the set of promising labels which correspond to tours with negative reduced
costs if the corresponding paths are simple.

68 Column generation

Notation 4.11 (corresponding tours) For every label l let P (l) be the cor-
responding tour.

Notation 4.12 (promising labels having cycles) Let L be a set of labels,
then let

Lc := {l ∈ L|P (l) is not simple}

(4.8)

be the set of promising labels which correspond to tours with negative reduced
costs if the corresponding paths are simple.

Column Generation via Resource
Constrained Shortest Paths (RCCG)
Input: a set of units U , a set of requests E, a bucketwidth w,

a slope s for the bucketwidth function,
the value of the current optimal solution opt

Output: a lower bound lb for the value of LP,
a set of columns with negative reduced costs

1© lb := opt
2© For all u ∈ U do
3© L := LSAMBAL(u, E, w)
4© Best := min(T,C)∈L C
5© lb := lb + max{0, Best}
6© Pc :=

⋃

P∈Lc
decycle(P)

7© Po :=
⋃

P∈L\Lc
P

8© return(lb, Pc ∪ Po)

Let the function decycle(P) which is called in 6© be a function which con-
structs the cheapest simple path which can be produced by canceling requests
which are served more than once by the path P or ∅ if the costs of all these
simple paths ≥ 0.

Column Generation via Resource Constrained Shortest Paths 69

4.3.1 How to choose the right bucketwidth

We developed a strategy to find a good lower bound for the reduced costs of
a tour depending on the width of the used buckets. While calculating the first
iterations of ZIBDIP the improvement of the LP solutions is relatively high, the
gap is usually relatively high and the number of columns found is also high. Thus,
we do not want to spend much time on the calculation of lower bounds and the
creation of tours, since it is not likely that we already reached the desired gap.
Later on, when the improvement rates become smaller, one should spend more
time on the calculation of the lower bound, since the desired gap may be already
reached and more precision is needed to find columns with negative reduced costs.
Therefore, it is reasonable to define the bucketwidth as a decreasing function of
the number of previously finished iterations. We tested linear functions with
different y-intercepts from 15 to 30 and slopes from -0.5 to -3 per iteration.
Since it led to the best results, we used for the following somputations a linear
bucketwidth function with y-intercept 30 and slope -3. Thus, this function starts
with a bucketwidth of 30, followed by an iteration having a bucketwidth of 27
and so on until the bucketwidth drops under 1. At this point it is fixed at 1.

How important the choice of the right function is, can be seen in Figure 4.4
where the different speeds of convergence of a linear function with y-intercept of
30 and slope of -0.5 is compared to a linear function with y-intercept of 15 and
slope of -3. As expected, the smaller buckets lead to better lower bounds. In
this case the algorithm could not benefit from the shorter running time of the
algorithm due to the bigger buckets.

4.4 Computational results

For the test of the codes referenced in this chapter we used the same computers
as for the computations done for the last chapter. We used the 3.06 Ghz Pentium
4 machine for the computations of the values in Table 4.1 and Table 4.3. For
the computation of the results presented in Subsection 4.2 we used the 800 Mhz
Pentium III machine. We used the same version of ZIBDIP as for the last chapter.

In order to test RCCG we observe the convergence speed of the solution
of the LP for snapshots in Table 4.1 and for offline instances with 3 hours of
clairvoyance in Table 4.2. After all we computed some offline instances with a
clairvoyance of 5 hours which are denoted in Table 4.3.

Like the tables in the previous chapter, the first column of Table 4.1 contains
the name of the instance, the second one the number of requests |R| and the third

70 Computational results

 100000

 105000

 110000

 115000

 120000

 125000

 130000

 135000

 140000

 0 200 400 600 800 1000 1200 1400

va
lu

e
of

 b
ou

nd
s

time

snapshot.1050

"tmplogrccg30-0.5.log1LP.txt"
"tmplogrccg30-0.5.log1LB.txt"

"tmplogohnerccg.log1LP.txt"
"tmplogrccg15-3.log1LP.txt"
"tmplogrccg15-3.log1LB.txt"

Figure 4.4: dispatching snapshot.1050 with different bucketwidth functions

one the number of units |U |. Columns 4-6 show the time in seconds which was
needed by RCCG to find an LP-solution with a gap not worse than 10% resp.
5% resp. 1%. Analogously, the columns 7-9 show the times needed to reach this
gap by the Branch and Bound column generation applying the improved pruning
scheme introduced in Chapter 3.

Name
RCCG CG via B & B

| R | | U | 10% 5% 1% 10% 5% 1%

snapshot.240 123 100 0.11 0.11 0.11 0.11 0.11 0.11

snapshot.270 125 100 0.11 0.11 0.11 0.10 0.10 0.10
snapshot.300 142 100 0.13 0.13 1.03 0.13 0.13 1.02

snapshot.330 146 100 0.13 0.13 0.13 0.13 0.13 0.13

snapshot.360 156 100 0.16 0.16 0.16 0.15 0.15 0.15
snapshot.390 175 100 0.18 0.18 0.18 0.18 0.18 0.18

snapshot.420 183 100 0.19 0.19 1.53 0.19 0.19 1.52

snapshot.450 200 100 0.22 0.22 0.22 0.22 0.22 0.22
snapshot.480 203 100 0.23 0.23 0.23 0.22 0.22 0.22

snapshot.510 215 100 0.26 0.26 1.32 0.26 0.26 1.33
snapshot.540 216 113 0.26 0.26 9.98 0.25 0.25 9.89

snapshot.570 218 113 0.27 0.27 0.27 0.26 0.26 0.26

snapshot.600 237 113 0.30 0.30 21.56 0.30 0.30 14.78
snapshot.630 250 113 0.32 0.32 44.08 0.32 0.32 33.85

snapshot.660 247 113 0.31 0.31 15.06 0.32 0.32 14.92

Column Generation via Resource Constrained Shortest Paths 71

Name
RCCG CG via B & B

| R | | U | 10% 5% 1% 10% 5% 1%

snapshot.690 261 113 0.35 0.35 39.50 0.35 0.35 40.20

snapshot.720 269 113 0.41 0.41 42.86 0.41 0.41 17.81
snapshot.750 278 113 0.44 3.30 100.99 0.43 3.29 98.08

snapshot.780 291 113 0.43 4.15 42.38 0.44 4.16 28.14

snapshot.810 290 113 0.48 0.48 77.09 0.48 0.48 97.70
snapshot.840 296 113 0.44 5.40 48.62 0.46 5.41 20.77

snapshot.870 299 113 0.46 11.13 55.98 0.46 11.07 21.48

snapshot.900 308 118 0.52 8.63 56.22 0.52 8.65 22.34
snapshot.930 307 118 0.50 7.49 46.76 0.51 7.59 25.33

snapshot.960 306 118 0.51 11.44 54.86 0.50 11.47 37.09
snapshot.990 311 118 0.47 0.47 68.51 0.46 0.46 57.97

snapshot.1020 314 135 0.49 3.26 47.90 0.48 3.24 20.54

snapshot.1050 322 135 0.53 19.81 64.09 0.53 12.92 31.27
snapshot.1080 311 135 0.48 12.99 106.19 0.48 12.95 99.54

snapshot.1110 316 143 0.49 2.25 52.81 0.48 2.23 24.21

snapshot.1140 314 143 0.48 4.14 38.72 0.48 4.10 18.05
snapshot.1170 318 143 0.50 4.79 56.34 0.50 4.82 23.43

snapshot.1200 308 143 0.47 5.27 43.81 0.47 5.28 51.65
snapshot.1230 304 143 0.47 0.47 60.20 0.45 0.45 54.10

snapshot.1260 302 143 0.44 2.03 33.25 0.44 2.04 16.47

snapshot.1290 292 143 0.43 0.43 45.44 0.42 0.42 40.67
snapshot.1320 293 143 0.42 0.42 34.10 0.42 0.42 36.01

snapshot.1350 282 143 0.40 0.40 20.71 0.41 0.41 18.79

snapshot.1380 281 143 0.39 0.39 15.61 0.40 0.40 15.54
snapshot.1410 291 143 0.43 0.43 17.81 0.43 0.43 17.54

snapshot.1440 292 143 0.42 0.42 2.52 0.41 0.41 2.50
snapshot.1470 293 143 0.41 0.41 2.68 0.41 0.41 2.68

snapshot.1500 276 144 0.38 0.38 2.67 0.38 0.38 2.68

snapshot.1530 273 144 0.37 0.37 1.20 0.37 0.37 1.21
snapshot.1560 273 144 0.37 0.37 5.76 0.37 0.37 5.74

snapshot.1590 245 144 0.30 0.30 0.30 0.30 0.30 0.30

snapshot.1620 247 144 0.31 0.31 0.31 0.31 0.31 0.31
snapshot.1650 241 143 0.30 0.30 0.30 0.30 0.30 0.30

snapshot.1680 207 143 0.24 0.24 0.24 0.24 0.24 0.24

snapshot.1710 204 141 0.23 0.23 0.23 0.23 0.23 0.23
snapshot.1740 175 139 0.39 0.39 1.58 0.18 0.18 1.59

snapshot.1770 171 137 0.18 0.18 0.18 0.19 0.19 0.19
snapshot.1800 158 136 0.16 0.16 0.87 0.16 0.16 0.85

snapshot.1830 151 132 0.14 0.14 0.14 0.15 0.15 0.15

snapshot.1860 142 127 0.12 0.12 0.75 0.13 0.13 0.75
snapshot.1890 135 122 0.12 0.12 0.12 0.12 0.12 0.12

snapshot.1920 129 119 0.11 0.11 1.36 0.11 0.11 1.30

snapshot.1950 126 111 0.10 0.10 0.95 0.10 0.10 0.93
snapshot.1980 140 108 0.12 0.12 3.37 0.12 0.12 3.61

snapshot.2010 136 96 0.11 0.11 0.35 0.11 0.11 0.33
snapshot.2040 133 92 0.11 0.11 2.88 0.11 0.11 3.26

snapshot.2070 135 90 0.11 0.11 2.35 0.11 0.11 2.33

72 Computational results

Name
RCCG CG via B & B

| R | | U | 10% 5% 1% 10% 5% 1%

snapshot.2100 135 81 0.10 0.10 3.16 0.10 0.10 5.61

snapshot.2130 135 78 0.10 0.10 5.75 0.09 0.09 5.03

Table 4.1: Convergence Speed of RCCG vs. B&B CG on snapshots

As one can see in Table 4.1, applying RCCG instead of the B&B column
generation did not lead to an improvement. In fact, it performed worse solving
the instances with higher load (snapshot.600 - snapshot.1290).

Opposed to the snapshots presented in Table 4.1, the offline instances shown
in Table 4.2 had to be solved by using 16 contractors V . Thus, the Table 4.2
contains the same columns as Table 4.1 with the only difference that the number
of contractors is denoted in the fourth column.

Name
RCCG CG via B & B

| R | | U | | C | 10% 5% 1% 10% 5% 1%

ZIBDIP event 20010102.txt 133 25 16 163.96 185.62 267.53 471.24 1588.26 32098.72

ZIBDIP event 20010103.txt 74 19 16 20.37 24.46 35.94 60.81 875.27 5779.32

ZIBDIP event 20010104.txt 80 18 16 17.28 25.20 28.94 138.55 155.76 1143.44

ZIBDIP event 20010105.txt 56 22 16 6.72 11.66 15.96 5.46 10.45 33.49

ZIBDIP event 20010106.txt 45 16 16 1.85 2.69 5.52 1.08 2.02 7.95

ZIBDIP event 20010107.txt 68 15 16 12.13 17.01 24.99 22.14 109.67 185.97

ZIBDIP event 20010109.txt 99 21 16 34.40 49.01 63.26 78.51 245.79 1460.33

ZIBDIP event 20010110.txt 71 23 16 3.84 9.71 19.34 17.69 55.61 926.38

ZIBDIP event 20010111.txt 81 19 16 20.26 28.24 36.90 30.13 212.90 1537.50

ZIBDIP event 20010112.txt 108 21 16 47.81 68.23 88.15 534.75 1121.23 7707.88

ZIBDIP event 20010113.txt 129 20 16 101.41 118.51 150.35 3316.43 3374.32 34808.34

ZIBDIP event 20010114.txt 102 16 16 64.77 73.74 91.21 1175.44 4701.45 23132.78

Table 4.2: Convergence Speed of RCCG vs. B&B CG on 3 Hour Instances

RCCG performs much better solving these offline instances than the B&B
column generation. Because of the high amount of time necessary to solve these
instances to a gap of 1%, we did not compute more of such instances. Moreover,
the difference in the convergence speed was so evident that no more tests have
been made.

RCCG solved the instances in a small fraction of the time necessary for the
B&B column generation scheme.

This is because of the fact that the Branch and Bound column generation is
designed for online instances which have an average tour length not greater than
5 in most of the cases. Furthermore, due to the high lateness costs incurring,
a lot of pruning can be done so that only a fraction of the nodes of the search
trees have to be explored. These specific characteristics cannot be applied to
the offline problems, since the search trees are very big because of the greater

Column Generation via Resource Constrained Shortest Paths 73

average tour length. Furthermore, the portion of the nodes which have to be
examined is much higher, as we cannot prune as effective as for the snapshots
due to the smaller lateness costs. One could think that for this case, not applying
the improved pruning scheme could yield better results, since it is computational
more demanding and cannot benefit from high lateness costs by solving offline
instances. We tried so but received even much worse results without improved
pruning.

Another problem is the greediness of the B&B column generation scheme:
Only the most promising chlidren of a node within a search tree are examined
which runs the risk of missing important tours.

Because of the achievements made by solving 3-Hour instances, we tried to
solve 5-Hour instances (see Table 4.3). This table is not meant to illustrate a
comparison of the two column generation approaches like the tables before, but
for to show that by now with this new approach instances with a lot higher
clairvoyance can be solved in reasonable time.

74 Computational results

Name
RCCG

| R | | U | | C | 10% 5% 1%

ZIBDIP event 20010102 205 27 16 682.57 791.37 1103.38

ZIBDIP event 20010103 139 21 16 112.32 154.43 198.44

ZIBDIP event 20010104 126 21 16 62.41 85.34 132.30

ZIBDIP event 20010105 95 24 16 31.71 39.96 88.75

ZIBDIP event 20010106 82 19 16 12.56 18.80 28.59

ZIBDIP event 20010107 112 19 16 69.90 76.66 109.77

ZIBDIP event 20010108 180 30 16 218.97 281.20 384.29

ZIBDIP event 20010109 145 24 16 72.76 108.54 155.21

ZIBDIP event 20010110 123 25 16 39.97 51.35 68.58

ZIBDIP event 20010111 133 22 16 70.27 99.45 143.69

ZIBDIP event 20010112 173 24 16 275.72 366.87 717.27

ZIBDIP event 20010113 230 23 16 679.18 797.61 3513.56

ZIBDIP event 20010114 191 20 16 395.29 478.50 3539.63

ZIBDIP event 20010115 275 30 16 2136.36 2532.63 4354.99

ZIBDIP event 20010116 247 26 16 826.62 1022.81 6868.20

ZIBDIP event 20010117 213 23 16 229.42 353.01 647.51

ZIBDIP event 20010118 149 23 16 109.39 125.01 161.16

ZIBDIP event 20010119 172 25 16 231.74 274.12 354.73

ZIBDIP event 20010120 152 23 16 93.00 124.75 175.90

ZIBDIP event 20010121 114 18 16 26.25 32.56 48.09

ZIBDIP event 20010122 177 27 16 265.35 348.81 435.58

ZIBDIP event 20010123 131 22 16 52.80 71.16 108.46

ZIBDIP event 20010124 102 17 16 16.52 22.78 30.85

ZIBDIP event 20010125 112 21 16 20.78 30.69 42.85

ZIBDIP event 20010126 122 25 16 40.19 49.39 71.99

ZIBDIP event 20010127 141 20 16 83.05 104.37 187.95

ZIBDIP event 20010128 92 16 16 23.87 28.51 41.36

ZIBDIP event 20010129 136 28 16 32.99 44.44 76.18

Table 4.3: Convergence Speed of RCCG on 5 Hour Instances

Appendix A

Notation

In this chapter, we outline based on [14] some basic definitions used through-
out this thesis. We describe some graph theory, network flows, the Branch-

And-Bound Method and some basic definitions considering linear and integer
programming. We assume some basic knowledge of linear optimization. For
these fundamentals the reader is referred to [5], and especially regarding integer
programming [21] and [19].

A.1 Basic notation

We will denote by R (Q, Z) the real (rational, integer) numbers. The sets R+

(Q+, Z+) stand for the non-negative real (rational, integer) numbers. We denote
the set of positive integer numbers without zero by N = Z+\{0}. For some
n ∈ N, we define by Kn the set of vectors with n components from K. The
transposition of a vector x is xT .

A.2 Graph Theory

Formally, an (undirected) graph is a triple G = (V, E, Ψ1) consisting of a
nonempty set V , called the nodes (or vertices), a set E, called the edges (or
links), and a relation of incidence Ψ1 : E → V × V that associates with each
edge two nodes, called its ends. Usually we just write G = (V, E) and assume
that the incidence relation is given implicitly in E. For each edge e ∈ E there
exist nodes u, v ∈ V such that Ψ1(e) = {u, v} = {v, u}. Two nodes that are ends
of an edge are adjacent to one another (neighbors). The degree |δ(v)| of a node

75

76 Graph Theory

v is the number of incident edges to v. An edge with identical ends is called a
loop. If two edges join the same pair of ends, they are called parallel. A graph is
simple if it has neither loops nor parallel edges. For a subset W ⊆ V of nodes,
E(W) ⊆ E denotes the subset of edges with both ends in W .

A digraph (directed graph) is a triple G = (V, A, Ψ1) consisting of a nonempty
set V , called the nodes (or vertices), a set A, called the arcs, and a relation of
incidence Ψ1 : A → V × V that associates with each arc an ordered pair of
nodes, called its ends. Usually, we just write D = (V, A) and assume that the
incidence relation is given implicitly in A. For each arc a = (u, v) we call u the
source and v the target of a. Parallel arcs and loops are defined as for undirected
graphs. Two arcs (u, v) and (v, u) are called associated. For an arc (u, v), the
arc (v, u) is called its associated backward arc. A digraph where each arc has its
associated backward arc is called bidirectional. We call the graph G = (V, E) the
underlying graph of the digraph D = (V, A) if there is a bijection between the
arcs of D and the edges of G, such that for each arc a = (u, v) ∈ A there is an
edge e = {u, v} ∈ E, and for each edge e = {u, v} ∈ E the arc a = (u, v) and
the arc a′ = (v, u) are in A. The overlaying digraph D(G) of a graph G is the
digraph obtained from G by replacing each edge by two associated arcs with the
same ends.

In the following, let G = (V, E) denote a graph and D = (V, A) a digraph.

A path P in G (or a directed path in D) from v0 to vl is a sequence P =
(v0, e1, v1, ..., el, vl) of nodes v0, ..., vl ∈ V and edges (arcs) e1, ..., el ∈ V (∈ A) of
G (D), such that the nodes vi−1 and vi are the ends of edge ei (are source and
target of ei) for each 1 ≤ i ≤ l. Node v0 is called the source and vl the target
of P , while both are denoted as the endnodes of P . The nodes v1, ..., vl−1 are
called the inner nodes of P . The length of a path is the number of edges (arcs).
We use the notation e ∈ P (a ∈ P) or v ∈ P , if e ∈ E (a ∈ A) is an edge (arc)
of P or v ∈ V is a node of P . We denote by V (P) and E(P) (A(P)) the set of
inner nodes and edges (arcs) of P . That is, for a path P = (v0, e1, v1, ..., el, vl) in
G (D) we have V (P) = {v1, v2, ..., vl−1} and E(P) = {v1, v2, ..., vl−1} (= A(P)).
We will use the term simple path to denote paths without node repetition. A
(simple) cycle is a (simple) path where the endnodes are identical. Two paths
P1 and P2 are node-disjoint if V (P1) ∩ V (P2) = ∅. Analogously, P1 and P2 are
edge-disjoint (arc-disjoint) if E(P1) ∩ E(P2) = ∅ (= A(P1) ∩ A(P2)).

A graph G̃ = (Ṽ , Ẽ) is a subgraph of G = (V, E) if Ṽ ⊆ V and Ẽ ⊆ E. A
graph G = (V, E) is said to be connected if there is a path between any two
nodes. A tree is a connected graph with no cycles. A spanning tree is a subgraph
of G which has the same set of nodes of G and is a tree.

If G = (V, E) is a graph and X ⊆ V , then the set of edges δ(X) :=
{

{u, v} ∈

Notation 77

E | u ∈ X, v /∈ X
}

is a cut. For a digraph D = (V, A) and a subset X ⊆ V
of nodes, let δ(X)+ := {(u, v) ∈ A | u ∈ X, v /∈ X}, δ(X)− := δ(V \X)+ and
δ(X) := δ+(X) ∪ δ)−(X). The arcset δ(X)+ is called a directed cut.

A.3 Network Flows

We have a digraph G = (V, A) with edge capacities u : E(G) → R+, two specified
vertices s (the source) and t (the sink). The quadruple (G, u, s, t) is called a
network. A flow is a function f : E(G) → R+ with f(e) ≤ u(e) for all e ∈ E(G).
We say that f satisfies the flow conservation rule at vertex v if

∑

e∈δ−(v)

f(e) =
∑

e∈δ+(v)

f(e)

A flow satisfying the flow conservation rule at every vertex is called a cir-
culation. For a given network (G, u, s, t), an s-t-flow is a flow satisfying the
flow conservation rule at all vertices except s and t. We define the value of an
s − t-flow f by

value(f) :=
∑

e∈δ+(s)

f(e) −
∑

e∈δ−(s)

f(e)

For a digraph G we define
↔

G:= (V (G), E(G))
·
∪ {

←
e : e ∈ E(G)}, where

for e = (v, w) ∈ E(G) we define
←
e to be a new edge from w to v. We call

←
e the reverse edge of e and vice versa. Given a digraph G with capacities

u : E(G) → R+ and a flow f , we define residual capacities uf : E(
↔

G) → R+ by

uf(e) := u(e) − f(e) and uf(
←
e) := f(e) for all e ∈ E(G). The residual graph Gf

is the graph (V (G), {e ∈ E(
↔

G) : uf(e) > 0}).

Given a flow f and a path (or circuit) P in Gf , to augment f along P by γ
means to do the following for each e ∈ E(P): if e ∈ E(G) then increase f(e) by

γ, otherwise - if e =
←
e0 for e0 ∈ E(G) - decrease f(e0) by γ.

Given a network (G, u, s, t) and an s − t-flow f , an f-augmenting path is an
s − t-path in the residual graph Gf

Given a digraph G = (V, A) with edge capacities u : E(G) → R+,
and numbers b : V (G) → R with

∑

v∈V (G) b(v) = 0, a b-flow in (G, u)

is a function f : E(G) → R+ with f(e) ≤ u(e) for all e ∈ E(G) and

78 Branch-and-Bound

∑

e∈δ+(v) f(e) −
∑

e∈δ−(v) f(e) = b(v) for all v ∈ V (G). b(v) is called the bal-

ance of vertex v. |b(v)| is called the supply if b(v) > 0 resp. the demand of v
otherwise. Vertices v with b(v) > 0 are called sources, those with b(v) < 0 sinks.

The Minimum Cost Flow Problem is defined as the problem of finding for
a given digraph G with edge capacities u : E(G) → R+, and numbers b : V (G) →
R a b-flow with minimum weight respective to a weight function c : E(G) → R
such that c(f) :=

∑

e∈E(G) f(e)c(e) is minimum or to decide that no b-flow exists.

A.4 Branch-and-Bound

Branch and Bound is a technique for the complete enumeration of all possible
solutions without having to consider them one by one. For many NP -hard com-
binatorial optimization problems it is the best known framework for obtaining
an optimum solution.

To apply the Branch-And-Bound Method to a combinatorial optimiza-
tion (say minimization) problem, we need two steps:

• ”branch”: a given subset of the possible solutions can be partitioned into
at least two nonempty subsets

• ”bound”: for a subset obtained by branching iteratively, a lower bound on
the cost of any solution within this subset can be computed.

The general procedure then is as follows:

Branch-And-Bound Method
Input: An instance of a problem
Output: An optimum solution S∗.

1© Set the initial tree T := (S, ∅), where S is the set of all feasible solutions .
Mark S active .
Set the upper bound U := ∞ (or apply a heuristic in order to get a better
upper bound).

2© Choose an active vertex X of the tree T (if there is none stop)
Mark S non-active .

Notation 79

(”branch”) Find a partition X = X1

·
∪ . . .

·
∪ Xt.

3© For each i = 1, · · · , t do:
(”bound”) Find a lower bound L on the cost of any solution in Xi.
If |Xi| = 1 (say |Xi| = {S}) and cost(S) < U then:

Set U := cost(S) and S∗ := S.
If |Xi| > 1 and L < U then:

Set T := (V (T) ∪ {Xi}, E(T) ∪ {{X, Xi}}) and mark Xi active.
4© Go to 2©

A.5 Linear Programming

A polyhedron P = {x ∈ Rn | Ax ≤ b} ⊆ Rn, and a linear function c : Rn → R
define a linear program, for short LP. Minimization and maximization versions
are

max{cT x | x ∈ P} and min{cT x | x ∈ P}. (A.1)

Each vector x ∈ P is called feasible. A vector x∗ ∈ P, which attains the
maximum (minimum) in (A.1), is an optimal solution.

For any IP we can generate an LP (called the LP-relaxation) from the IP by
taking the same objective function and same constraints but with the requirement
that variables are integer replaced by appropriate continuous constraints.

80 Linear Programming

Unit u

ou current position

hu home position

tstart
u logon time

tend
u shift end time

tmax−ot
u maximum overtime

Fu capabilities

cdrv
u costs per time unit for driving,

cwait
u costs for waiting,

csvc
u costs for service,

cot
u costs for overtime.

Contractor v

Fv a set of capabilities

csvc
v costs per service

Event e

xe position

θr
e release time

θd
e deadline

δe service time

Fe required capabilities

clate
e lateness coefficient

Tours R

Ru feasible tours for u, e.g. (u, e1, e2, ..., ek)

cR cost of the route R

δef
u the driving time of unit u from event e to event f

δoue
u driving times of unit u from its current position to event e

δedu
u driving time of unit u from event e to its home position du

teR arrival time at event e in route R

tdu

R arrival time of u at its home position

Table A.1: Overview: The most important parameters

Anhang B

Deutsche Zusammenfassung

In dieser Diplomarbeit werden untere Schranken bei der Online-Fahrzeug-
Disposition in vielerlei Hinsicht untersucht. Dies basiert auf der Grundlage des
am Konrad-Zuse-Zentrum Berlin (ZIB) entwickelten Algorithmus ZIBDIP, der
entwickelt wurde, um das Fahrzeugeinsatzplanungssystem des ADAC zu automa-
tisieren. Das Umfeld, die Zielsetzung und die generellen Probleme eines solchen
Algorithmus werden in Kapitel 1 beschrieben. Die Modellierung des Problems
und die algorithmische Lösung, die ZIBDIP zugrunde liegt, wird im darauffol-
genden Kapitel 2 ausführlich erklärt.

Das Problem wird als Set-Partitioning-Problem auf der Menge der möglichen
Touren betrachtet. Da diese Menge sehr groß ist, werden nur die Touren be-
trachtet, die für die Lösungsfindung nötig sind und Touren bei Bedarf durch eine
Tiefensuche in einem Branch-and-Bound-Baum gesucht. Um ein schnelles Abar-
beiten dieses Suchbaumes zu ermöglichen, müssen untere Schranken für die redu-
zierten Kosten aller Touren mit einer gegebenen Anfangssequenz von Einsätzen
berechnet werden, was in Kapitel 3 durch die Lösung eines kostenminimalen
Flussproblems gelöst wird. Dieses Verfahren berücksichtigt die Strafkosten, die
durch verspätet erbrachte Hilfeleistungen an den Kunden entstehen, besser als
das bisher verwendete Verfahren. Obwohl dieses neue Verfahren mehr Rechenzeit
zur Berechnung einer unteren Schranke in Anspruch nimmt, konnte die Spalten-
generierung erheblich beschleunigt werden, da in der Regel nur ein Bruchteil der
Knoten der jeweiligen Suchbäume durchsucht werden muss.

Der Wert der Offline-Lösung des Online-Problems stellt wiederum eine untere
Schranke für die optimale Lösung des Online-Problems dar, so dass mit diesem
Wert Aussagen über die Güte einer Online-Lösung gemacht werden können. Bis-
her konnten aber nur Offline-Problem bei kompletter Kenntnis der Auftrge der
nchsten zwei Stunden in angemessener Zeit gelöst werden. Das Verfahren, das

81

82

in Kapitel 3 vorgestellt wird, bringt auf diesen Instanzen zwar eine Verbesse-
rung der Laufzeit, kann das grundlegende Problem dieses Spaltengenerierungs-
verfahrens beim Lösen großer Offline-Probleme aber nicht beheben: Der bisher
gewählte Branch-and-Bound-Ansatz zur Spaltengenerierung wurde speziell für
die Schnappschu-Instanzen entwickelt, die bei der Online-Planung auftreten (d.h.
bei denen alle zu planenenden Auftrge eine Freigabezeit in der Vergangenheit
haben). Diese zeichnen sich durch eine geringe durchschnittliche Tourenlänge
und vergleichsweise hohe Strafkosten für Verspätungen aus. Im Gegensatz hier-
zu weisen offline Probleme eine vergleichsweise hohe Tourenlänge und niedri-
ge Strafkosten auf, was sich auf die Laufzeit der Spaltengenerierung nach dem
Branch-and-Bound-Ansatz negativ auswirkt, da auf der einen Seite die Größe
der Suchbäume mit der Tourenlänge exponentiell wächst und auf der anderen
Seite durch die geringen Verspätungskosten kein effektives Pruning möglich ist.

Aus diesem Grund wird in Kapitel 4 ein neuer Ansatz vorgestellt, der auf
dem Lösen der Berechnung einer unteren Schranke der aktuellen LP-Lösung
mit Resource Constrained Shortest Paths basiert. Dabei wurde hier durch den
Einsatz einer künstlichen Diskretisierung der Zeit durch Zeit-Buckets das Pro-
blem der möglichen Vollenumeration aller Touren gelöst. Die Granularität der
Diskretisierung verändert sich zur Laufzeit des Algorithmus um den verschie-
denen Ansprüchen an die Spaltengenerierung bezüglich Genauigkeit der dabei
errechneten unteren Schranke, Menge der generierten Spalten und Laufzeit zu
jedem Zeitpunkt gerecht zu werden. Dieses Verfahren hat bei der Lösung von
Schnappschuss-Problemen zwar keine Verbesserung erbracht (was auch nicht das
Ziel war), bei der Lösung von Offline-Problemen konnte aber eine beträchtliche
Beschleunigung erreicht werden. Während es bisher nur möglich war, Offline-
Probleme bei kompletter Kenntnis der Auftrge der nchsten zwei Stunden zu
lösen, konnten mit diesem Ansatz Instanzen gelöst werden, die alle Aufträge der
nächsten fünf Stunden bis auf einen Optimalitätsgap von 1% in angemessener
Zeit gelöst werden. Somit ist es jetzt möglich, Aussagen über die Güte der von
ZIBDIP berechneten Online-Lösungen zu treffen, die bisher nur unter erhebli-
chem Mehraufwand formuliert werden konnten.

List of Tables

3.1 The performance of improved pruning solving snapshots 38

3.2 The ratio of the improvement resp. to depth (columns) and degree
(rows) of the subtree . 40

3.3 One-Hour Instances: Overview . 42

3.4 Two-Hour Instances: Overview 44

3.5 Two-Hour Instances: The ratio of the improvement resp. to depth
(columns) and degree (rows) of the subtree 47

4.1 Convergence Speed of RCCG vs. B&B CG on snapshots 72

4.2 Convergence Speed of RCCG vs. B&B CG on 3 Hour Instances . 72

4.3 Convergence Speed of RCCG on 5 Hour Instances 74

A.1 Overview: The most important parameters 80

83

List of Figures

1.1 Growth of the number of services provided by the ADAC between
1993 and 2002 [1] . 2

1.2 The lateness function . 5

1.3 Example for problems in online dispatching 6

3.1 Example for a searchtree with degree = 3, l = 5, l(v) = 2, dv =
3, S(v) = (eu, ev) . 24

3.2 The network corresponding to the assignment problem 28

3.3 Paths and Cycles in Gfj−1
∪ Gfj

for the proof of proposition 3.9 . 30

3.4 Some reduced cost functions . 35

3.5 The ratio of the improvement resp. to the depth of the subtree . . 39

3.6 Time saved resp. to the depth of the subtree 41

3.7 The ratio of the improvement resp. to the degree of the subtree . 43

3.8 Time saved resp. to the degree of the subtree 45

3.9 The ratio of the improvement resp. to depth (columns) and degree
(rows) of the subtree . 45

3.10 One-Hour Instances: Time saved resp. to the depth of the subtree 46

3.11 One-Hour Instances: Time saved resp. to the degree of the subtree 48

3.12 One-Hour Instances: performance (nodes) vs. systemload 49

3.13 One-Hour Instances: performance (time) vs. systemload 49

3.14 Two-Hour Instances: Time saved resp. to the depth of the subtree 50

3.15 Two-Hour Instances: Time saved resp. to the degree of the subtree 50

3.16 Two-Hour Instances: performance vs. systemload 51

3.17 Two-Hour Instances: performance vs. systemload 51

84

LIST OF FIGURES 85

4.1 The Network corresponding to the knapsack problem 56

4.2 Dominance relation between labels associated with different paths 59

4.3 Requests and associated Labels for the proof of proposition 4.7 . . 63

4.4 dispatching snapshot.1050 with different bucketwidth functions . . 70

Bibliography

[1] ADAC. strassenwacht strassendienst 15.jpg. http://presse.adac.de/

infogramme/Hilfe_Leistungen/, February 2004.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice
Hall, 1993.

[3] Y. Aneja and K. Nair. The constrained shortest path problem. Nav. Res.
Log. Q., 25:549–553, 1978.

[4] J. Beasley and N. Christofides. An algorithm for the resource constrained
shortest path problem. Networks, 19:379–394, 1989.

[5] V. Chvátal. Linear programming. A series of books in the mathematical
sciences. New York - San Francisco: W. H. Freeman and Company, 1983.

[6] E. V. Denardo and B. L. Fox. Shortest-route methods: 1. reaching, pruning,
and buckets. Operations Research, 27:161–186, 1979.

[7] M. Desrochers and J. Desrosiers. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342–
354, 1992.

[8] D. Eppstein. Finding the k shortest path. SIAM Journal of computing,
28(2):652–673, 1999.

[9] M. Garey and D. Johnson. Computers and Intractability: A guide to the
theory of NP-Completeness. W.H. Freeman, New York, 1979.

[10] M. Grötschel, S. O. Krumke, J. Rambau, T. Winter, and U. T. Zimmer-
mann. Combiatorial online optimization in real time. In M. Grötschel,
S. O. Krumke, and J. Rambau, editors, Online Optimization of Large Scale
systems, pages 705–730. Springer, 2001.

86

[11] G. J. Handler and I. Zang. A dual algorithm for the constrained shortest
path problem. Networks, 10:293–310, 1980.

[12] R. Hassin. Approximation schemes for the restricted shortest path problem.
Mathematics of Operations Research, 17(1):36–42, 1992.

[13] H. Joksch. The shortest route problem with constraints. Journal of mathe-
matical Analysis and Application, 14:191–197, 1966.

[14] B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin,
Heidelberg, New York, 2000.

[15] S. O. Krumke, J. Rambau, and L. M. Torres Carvajal. Real-time dispatching
of guided and unguided automobile service units with soft time windows.
Technical report, ZIB, 2001.

[16] S. O. Krumke and L. M. Torres Carvajal. Online-studies on munich data.
Technical report, ZIB, 2002.

[17] E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rhinehart and Winston, 1976.

[18] D. H. Lorenz and D. Raz. Approximation schemes for the restricted shortest
pah problem. Operations Research Letters, 28:213–219, 2001.

[19] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John
Wiley & Sons, Inc., 1988.

[20] O. Saalmann. 50 jahre strassenwacht.mp3. http://presse.adac.de/

hoerfunk/Technik/, February 2004.

[21] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience
Series in Discrete Mathematics. A Wiley-Interscience Publication. Chich-
ester: John Wiley & Sons Ltd., 1986.

[22] L. M. Torres Carvajal. Online Vehicle Routing. PhD thesis, ZIB, 2003.

[23] A. Warburton. Approximation of pareto-optima in multiple objective short-
est path problems. Operations Research, 35(1):70–79, 1987.

Statutory Declaration,
Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt die
selbständige und eigenhändige Anfertigung dieser
Diplomarbeit.

(Stephan Westphal)

