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Classical results for BV & BD

Linear growth functionals (1)

Find a minimizer u: Q — RM, Q ¢ R" bounded and Lipschitz,

of the variational problem

3u] = / B U= g
Q

o f: QxRN R has linear growth and is quasi-convex, i.e.
alZ| - G < f(x,Z) < alZ|+ G,

(A< [ A+ D)y Vi GR(0.1)7),
(0,1)"
o  defined on W(Q), minimization in ug + W, ' (Q) fails.



Classical results for BV & BD

Linear growth functionals (2)

Extended functional for u € BV(Q)

Fuslu] _/ ( jbgﬂ)dgu/gfm(x,(m) d|Dou|

= / e <X, Voq & tr(u = UO)> dH" L,
o0

o f® : Q x R™" — R is the strong recession function, i.e.

/ /
F(x,A) := lim M;
x'—=x t
A'—A
t—o0

@ infima coincide: infu€uO+W()1,1(Q) Flu] = minyepv(a) Suolul-



Classical results for BV & BD

Linear growth functionals (3)

@ Existence of a minimizer by the direct method in the calculus
of variations.

e Ambrosio-Dal Maso (1992), Fonseca-Miiller (1993): F,, is
lower semi-continuous on BV(2) w.r.t. weak*-topology! Proof
uses blow-up method and Alberti's rank-one theorem (1993).

@ There is a linear continuous operator -
tr: BV(Q) — L}(0Q,H™ 1) s.t. tru = ulsq for u € CO(Q).

e Continuity w.r.t. the strict topology: u, —° u iff u, — uin
L1(Q) and |Du,|(Q) — |Du|().



Classical results for BV & BD

The trace operator on W1

Gagliardo (1957): There is a surjective linear continuous operator

tr: WHH(Q) — LHOQ,H™ ), tru=ulpq Yue COQ).

e Extends to BV(Q2) by smooth approximation (strict topology):
Anzellotti-Giaquinta (1978).

@ Proof by fundamental theorem of calculus: for u € C°(R")

0
u(x1, ..., xp—1,0) = / Onu(Xy, ..., Xp—1, t) dt,
—o0

=[uC ) x ey < [[Dul[12gey.



Classical results for BV & BD

The space BD(Q2)

If N =nlet &(u) = 3(Vu+ Vu') be the symmetric gradient

LD(Q) := {u € L}(Q) : £(u) € 1(Q)},
BD(Q) := {u e L}(Q) : E(u) € M(Q)}.

@ Introduced by Suquet (1978), Matthies-Strang-Christiansen
(1979), Temam-Strang (1980);

@ Proper superspace of BV(Q2) (Ornstein’s non-inequality in L1);

@ Study linear-growth functionals

3u] = /Q Flx,E))dx,  ulpn = uo.



Classical results for BV & BD

Linear growth functionals on BD(£2)

Extended functional for u € BD(Q2)

s [u1] ::/Qf(x, i;”n))dzu/ﬂfw(x, d‘ﬁggf(‘;))')dyf(u)|

+ / £ <x, V90 ®sym tr(u — uo)) dH" L.
o

@ Rindler (2011): Lower semi-continuity via rigidity and Young
measures (an analogone of Alberti's rank one theorem was not
known).

e Strang-Temam (1980): There is a linear continuous operator
tr: BD(Q) — L1(09, H" 1) s.t. tru = u|gq for u € CO(Q).
u € BD(Q) iff §D(u - &) € M(Q) for all £ € R".



Functions of bounded A-variation

Trace-free symmetric gradients

WEL(Q) = {u e L}(Q) : P(u) € L}(Q)},
BVE”(Q) := {u € L}(Q) : £P(u) € M(Q)}.

o If n >3 N(EP) = killing vectors (quadratic polynomials);
o If n=2 N(EP) = holomorphic functions;

@ Fuchs- Repin (2010): no trace if n = 2, consider
Bis>z—(z—1)"teC;
e What happens if n > 3? No control of 9;u’ or divu!



Functions of bounded A-variation

General differential operators

Linear maps A, : RV — RX (e.g. K= N x n) s.t.

N
A= Z A0,
a=1

o The symbol mapping A[¢] : RN — RK is defined by
n
A[llv :=v®p € = ZfaAav.
a=1

o A is R-elliptic if A[¢]: RN — RK is injective V¢ € R"\{0};
o A is C-elliptic if A[¢]: CN — CK is injective V&€ € C" \ {0};
e A is C-elliptic iff dim(N(A)) < oo.



Functions of bounded A-variation

The space BV4(Q)

A linear, homogeneous, constant coefficient

WAL(Q) == {u e L}Q): Auc L}(Q)},
BVA(Q) := {u e L1(Q): Aue M(Q)}.

o Van Schaftingen (2013): WAL(R™) L"Tnl(R”) iff A is
cancelling, i.e. (¢ A[E](R") = {0};

@ C-ellipticity = cancelling;

@ Classical Gagliardo-Nirenberg-Sobolev inequality if A = D;

e Strauss-inequality if A = & (1971).



Functions of bounded A-variation

Poincaré’s inequality

A be C-elliptic, B a ball,

010 = allp) < lu = Npulgs) < c£(B) [Aul(B),

e Mg is the L?-orthogonal projection onto N(A);

@ Based on representation formula by Kalamajska (1994) and
smooth approximation;

e Elements of N(A) are polynomials;
o If u=0 "somewhere” then [lul|;15) < c{(B) |Au|(B).



Functions of bounded A-variation

Alberti-type theorem

De Philippis-Rindler (2016): for A-free measure p

01(|i s €= U ker(Ale]) = [J ALEIR™) 1] —ae.
£#0 £+£0

A4 is called characteristic wave cone;
A is potential to A (e.g. A =D and A = curl);

If u€ BV(Q) then g5 € {v® ¢} [Dul-ae,;

If u € BD(Q) then o2l € {v @gym &} [€5(u)|-ace;

If u € BVA(Q) then dﬁ@:ﬂ € {veu &} |A%ul-a.e.




Functions of bounded A-variation

Linear growth functionals on BV4(Q)

Extended functional for u € BVA(Q)

- 1 252) 2 [ s ) v

o Arroyo-Rabasa, De Philippis, Rindler, (2017): Lower
semi-continuity via Alberti-type theorem of functionals F[u].

e Baia, Chermisi, Matias, Santos (2013): Lower semi-continuity
via Young measures;

@ Trace-part not included so far!



The trace theorem

Main result

Let A be a C-elliptic operator and €2 a bounded Lipschitz domain.

Breit, Diening, Gmeineder (2017): 3 linear continuous operator

tr: BVA(Q) = LY(0Q,H"Y), tru=ulsg Yue COQ).

e Main difficulty: estimate, even for smooth functions;

o Extension of Fuchs-Repin counterexample for £ shows:
C-elliptic is also necessary;

@ Lipschitz boundary can be weakened to domains satisfying

© Qs an NTA (non-tangentially accessible);
@ Q is Ahlfors regular, i.e. thereis R > 0and M > 0 s.t.

%r"—l SH'HB(x)NOQ) < M Vr e (O,R).



The trace theorem

NTA domains

A domain Q C R" is an NTA (non-tangentially accessible) domain
if it satisfies the interior corkscrew condition, the exterior interior
corkscrew condition and the interior Harnack chain condition.

o We say that Q satifies the interior corkscrew condition if there
exists R > 0 and M > 2 such that for all x € 9Q and
all r € (0, R) there exists a y € Q such that

1
Vil <|x—yl<r and B(y,r/M) C Q.

o We say that € satifies the exterior corkscrew condition if
R™\Q satisfies the interior corkscrew condition.



The trace theorem

Interior Harnack chain condition

e We say that Q C R” satisfies the (interior) Harnack chain
condition if any interior points y1, y» € € can be connected
via a chain of proportional balls By, ..., By in Q satisfying

Q@ yi€Biy€eB,
(2] E(Bj) ~ d(Bj,aQ) forj = 1, . . .,J,
e E(Bj) Z cmin {d(yl, BJ), d(_yz7 Bj)} fOI’j = 17 N ,J,

@ J uniformly bounded in terms of — {d(yll,yég)y,zc‘!(yz,aﬂ)}'




The trace theorem

Covering by balls

@ For each j € Z, let (B} «)« denote a (countable) cover of balls
of R” with diameter ~ 277;

@ For each j let (1 k)« we find a partition of unity with respect
to the (Bj,k)k;

o Define the 27-neighbourhood U; of 0%2 by

U={xeQ:dx0dQ) <27}

@ Interior corkscrew condition = for each ball B; \ close to the
boundary there is a reflected ball B}jk close by.

@ Harnack chain condition = connect two reflected balls of
neighboring balls by a small chain of balls Wi, ..., W, and set

.,
QB! Bf,) = | Ws.
B=1



The trace theorem

|deas of the proof (1)

Use local projections I1; =TI and set

f
Bj,k

Tiu:=u—p; an, Mjeu) = (1= pp)u+p; > njsljsu.
k

® pj smooth s.t. xy,,, < p; < xu;;
@ T; smooth at the boundary!
o If u € BVA(Q), then in BVA(Q)

u= T,OU + Z Ti41u — T/U) 71520 TU
I=jo



The trace theorem

|deas of the proof (2)

Let u € BVA(Q). Then for some ko € N

Jer( Tru) = tr( T3 omy < A0 Ui \ U

Proof: From defintion of T;

tr(Tjpau) — tr(Tju) = > tr (41 k), m(Mj1,6u = 1) mu)),

k,m

where the sums are locally finite sums. Hence,

[tr(Tjt1u) — t"(Tju)H/_l(aQ) < Z H77j+17k77j,m(nj+17ku - nj,mu)HU(&Q)‘

k,m



The trace theorem

|deas of the proof (3)

We only have to consider those k, m with Bj 1 x N B} m # (?. For
such k, m

[tr (njr1,60j,m(Mj1,40 = N mu)) HL1(8Q)
< Pensr =1t o g,y B (OR 0 B k1 B,

By the Ahlfors regularity and Poincaré's inequality imply
[t (- 1,7,m (M 1,0t = T ) [ 130y < Al (B, 4 B L))
Summing over k and m and implies

[er( Tyt — tr(Tju) 1oy S 1AUI(Ujsp \ Uig):



The trace theorem

|deas of the proof (4)

Finally, we have that

T,u —I—Z (tr(Tjz1u) — tr(Tju)) = lim tr(T;u).

Jj—oo
J=jo

is well defined in L}(09). Hence,

im Tl < T+ 32 s~ Tl
S HUHLI(UJofko\UfoMo) + Z |Au|(Uj—k \ Ujtko)

JjZJo
S llull gy + [Aul(€).



The trace theorem

Linear growth functionals on BV4(Q)

Breit, Diening, Gmeineder (2017): Functionals on u € BVA(Q)

Suolu] == / ( gg:)df” /f°°<x, di@‘l“‘)dwm

+ / oo (x, Voo ®a tr(u — uo)> dH" L,
o

e Existence of minimizer (representation with trace-term);
e infima coincide: i"fueu0+w§"1(§2) Blu] = min,cgys () Suolul:
@ set of generalised minimisers of § given by

u is the L1 — limit of some }

- A .
My (§) := {u € BVA(Q): min. seq. (ux) C ug + W(;M(Q)

coincides with the class of BVA-minimizers.
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