Traces of functions of bounded \mathbb{A} -variation and variational problems with linear growth

Dominic Breit, L. Diening & F. Gmeineder

28.06.2017

Linear growth functionals (1)

Find a minimizer $\mathbf{u}:\Omega \to \mathbb{R}^N$, $\Omega \subset \mathbb{R}^n$ bounded and Lipschitz,

of the variational problem

$$\mathfrak{F}[\mathbf{u}] = \int_{\Omega} f(x, D\mathbf{u}) \, \mathrm{d}x, \quad \mathbf{u}|_{\partial\Omega} = \mathbf{u}_0.$$

• $f: \Omega \times \mathbb{R}^N \to \mathbb{R}$ has linear growth and is quasi-convex, i.e.

$$egin{aligned} &c_0|\mathbf{Z}|-C_0 \leq f(x,\mathbf{Z}) \leq c_1|\mathbf{Z}|+C_1, \ &f(x,\mathbf{A}) \leq \int_{(0,1)^n} f(y,\mathbf{A}+Doldsymbol{arphi}) \,\mathrm{d}y &orall oldsymbol{arphi} \in C_0^\infty((0,1)^n); \end{aligned}$$

• \mathfrak{F} defined on $W^{1,1}(\Omega)$, minimization in $\mathbf{u}_0 + W_0^{1,1}(\Omega)$ fails.

Linear growth functionals (2)

Extended functional for $\mathbf{u} \in \mathsf{BV}(\Omega)$

$$\begin{split} \overline{\mathfrak{F}}_{\mathbf{u}_0}[\mathbf{u}] &:= \int_{\Omega} f\left(x, \frac{\mathrm{d}D\mathbf{u}}{\mathrm{d}\mathscr{L}^n}\right) \mathrm{d}\mathscr{L}^n + \int_{\Omega} f^{\infty}\left(x, \frac{\mathrm{d}D\mathbf{u}}{\mathrm{d}|D^s\mathbf{u}|}\right) \mathrm{d}|D^s\mathbf{u}| \\ &+ \int_{\partial\Omega} f^{\infty}\left(x, \nu_{\partial\Omega} \otimes \mathrm{tr}(\mathbf{u} - \mathbf{u}_0)\right) \mathrm{d}\mathcal{H}^{n-1}. \end{split}$$

• f^{∞} : $\overline{\Omega} \times \mathbb{R}^{n \times n} \to \mathbb{R}$ is the strong recession function, i.e.

$$f^{\infty}(x,\mathbf{A}) := \lim_{\substack{x' \to x \\ \mathbf{A}' o \mathbf{A} \\ t o \infty}} \frac{f(x',t\mathbf{A}')}{t}$$

• infima coincide: $\inf_{\mathbf{u}\in\mathbf{u}_0+W_0^{1,1}(\Omega)}\mathfrak{F}[\mathbf{u}]=\min_{\mathbf{u}\in\mathsf{BV}(\Omega)}\overline{\mathfrak{F}}_{\mathbf{u}_0}[\mathbf{u}].$

Linear growth functionals (3)

- Existence of a minimizer by the direct method in the calculus of variations.
- Ambrosio-Dal Maso (1992), Fonseca-Müller (1993): σ
 ³
 ³
 ¹
 ¹
- There is a linear continuous operator tr : $\mathsf{BV}(\Omega) \to L^1(\partial\Omega, \mathcal{H}^{n-1})$ s.t. tr $\mathbf{u} = \mathbf{u}|_{\partial\Omega}$ for $\mathbf{u} \in C^0(\overline{\Omega})$.
- Continuity w.r.t. the strict topology: $\mathbf{u}_n \to^s \mathbf{u}$ iff $\mathbf{u}_n \to \mathbf{u}$ in $L^1(\Omega)$ and $|D\mathbf{u}_n|(\Omega) \to |D\mathbf{u}|(\Omega)$.

The trace operator on $W^{1,1}$

Gagliardo (1957): There is a surjective linear continuous operator

$${\sf tr}: W^{1,1}(\Omega) o L^1(\partial\Omega, {\mathcal H}^{n-1}), \quad {\sf tr} \ u = u|_{\partial\Omega} \quad orall u \in C^0(\overline{\Omega}).$$

- Extends to BV(Ω) by smooth approximation (strict topology): Anzellotti-Giaquinta (1978).
- Proof by fundamental theorem of calculus: for $u \in C^\infty_c(\mathbb{R}^n)$

$$u(x_1,...,x_{n-1},0) = \int_{-\infty}^0 \partial_n u(x_1,...,x_{n-1},t) \, \mathrm{d}t,$$

$$\Rightarrow \|u(\cdot,0)\|_{L^1(\mathbb{R}^{n-1})} \le \|Du\|_{L^1(\mathbb{R}^n)}.$$

The space $BD(\Omega)$

If N = n let $\mathcal{E}(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ be the symmetric gradient

$$\begin{split} \mathsf{LD}(\Omega) &:= \{ \mathbf{u} \in L^1(\Omega) : \ \mathcal{E}(\mathbf{u}) \in L^1(\Omega) \}, \\ \mathsf{BD}(\Omega) &:= \{ \mathbf{u} \in L^1(\Omega) : \ \mathcal{E}(\mathbf{u}) \in \mathcal{M}(\Omega) \}. \end{split}$$

- Introduced by Suquet (1978), Matthies-Strang-Christiansen (1979), Temam-Strang (1980);
- Proper superspace of BV(Ω) (Ornstein's non-inequality in L¹);
- Study linear-growth functionals

$$\mathfrak{F}[\mathbf{u}] = \int_{\Omega} f(x, \mathcal{E}(\mathbf{u})) \, \mathrm{d}x, \quad \mathbf{u}|_{\partial \Omega} = \mathbf{u}_0.$$

Linear growth functionals on $BD(\Omega)$

Extended functional for $\mathbf{u} \in BD(\Omega)$

$$\begin{split} \overline{\mathfrak{F}}_{\mathbf{u}_0}[\mathbf{u}] &:= \int_{\Omega} f\left(x, \frac{\mathrm{d}\mathcal{E}(\mathbf{u})}{\mathrm{d}\mathcal{L}^n}\right) \mathrm{d}\mathcal{L}^n + \int_{\Omega} f^{\infty}\left(x, \frac{\mathrm{d}\mathcal{E}(\mathbf{u})}{\mathrm{d}|\mathcal{E}^s(\mathbf{u})|}\right) \mathrm{d}|\mathcal{E}^s(\mathbf{u})| \\ &+ \int_{\partial\Omega} f^{\infty}\left(x, \nu_{\partial\Omega} \otimes_{sym} \mathrm{tr}(\mathbf{u} - \mathbf{u}_0)\right) \mathrm{d}\mathcal{H}^{n-1}. \end{split}$$

- Rindler (2011): Lower semi-continuity via rigidity and Young measures (an analogone of Alberti's rank one theorem was not known).
- Strang-Temam (1980): There is a linear continuous operator tr : BD(Ω) → L¹(∂Ω, Hⁿ⁻¹) s.t. tr u = u|_{∂Ω} for u ∈ C⁰(Ω). u ∈ BD(Ω) iff ξD(u · ξ) ∈ M(Ω) for all ξ ∈ ℝⁿ.

Trace-free symmetric gradients

$\mathcal{E}^{D}(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^{T}) - \frac{1}{n} \operatorname{div}(\mathbf{u}) = \operatorname{trace-free}$ symmetric gradient

$$W^{\mathcal{E}^{D},1}(\Omega) := \{ \mathbf{u} \in L^{1}(\Omega) : \mathcal{E}^{D}(\mathbf{u}) \in L^{1}(\Omega) \},\$$

$$\mathsf{BV}^{\mathcal{E}^{D}}(\Omega) := \{ \mathbf{u} \in L^{1}(\Omega) : \mathcal{E}^{D}(\mathbf{u}) \in \mathcal{M}(\Omega) \}.$$

- If $n \ge 3 \ N(\mathcal{E}^D) =$ killing vectors (quadratic polynomials);
- If $n = 2 N(\mathcal{E}^D)$ = holomorphic functions;
- Fuchs- Repin (2010): no trace if n = 2, consider $B_1 \ni z \mapsto (z 1)^{-1} \in \mathbb{C}$;
- What happens if $n \ge 3$? No control of $\partial_i u^i$ or div **u**!

General differential operators

Linear maps
$$\mathbb{A}_{\alpha} : \mathbb{R}^{N} \to \mathbb{R}^{K}$$
 (e.g. $K = N \times n$) s.t.

$$\mathbb{A} = \sum_{lpha=1}^{N} \mathbb{A}_{lpha} \partial_{lpha}$$

• The symbol mapping $\mathbb{A}[\xi]$: $\mathbb{R}^N \to \mathbb{R}^K$ is defined by

$$\mathbb{A}[\xi] \mathsf{v} := \mathsf{v} \otimes_{\mathbb{A}} \xi := \sum_{\alpha=1}^n \xi_\alpha \mathbb{A}_\alpha \mathsf{v}.$$

- A is \mathbb{R} -elliptic if $\mathbb{A}[\xi]$: $\mathbb{R}^N \to \mathbb{R}^K$ is injective $\forall \xi \in \mathbb{R}^n \setminus \{0\}$;
- A is \mathbb{C} -elliptic if $\mathbb{A}[\xi] \colon \mathbb{C}^N \to \mathbb{C}^K$ is injective $\forall \xi \in \mathbb{C}^n \setminus \{0\}$;
- A is \mathbb{C} -elliptic iff dim $(N(\mathbb{A})) < \infty$.

The space $\mathsf{BV}^{\mathbb{A}}(\Omega)$

A linear, homogeneous, constant coefficient

$$W^{\mathbb{A},1}(\Omega) := \{ \mathbf{u} \in L^1(\Omega) : \mathbb{A}\mathbf{u} \in L^1(\Omega) \},\ BV^{\mathbb{A}}(\Omega) := \{ \mathbf{u} \in L^1(\Omega) : \mathbb{A}\mathbf{u} \in \mathcal{M}(\Omega) \}.$$

- Van Schaftingen (2013): W^{A,1}(ℝⁿ) → Lⁿ/_{n-1}(ℝⁿ) iff A is cancelling, i.e. ∩_{ε≠0} A[ξ](ℝⁿ) = {0};
- \mathbb{C} -ellipticity \Rightarrow cancelling;
- Classical Gagliardo-Nirenberg-Sobolev inequality if $\mathbb{A} = D$;
- Strauss-inequality if $\mathbb{A} = \mathcal{E}$ (1971).

Poincaré's inequality

A be \mathbb{C} -elliptic, *B* a ball,

$$\inf_{\mathbf{q}\in N(\mathbb{A})} \|\mathbf{u}-\mathbf{q}\|_{L^{1}(B)} \leq \|\mathbf{u}-\Pi_{B}\mathbf{u}\|_{L^{1}(B)} \leq c\,\ell(B)\,|\mathbb{A}\mathbf{u}|(B),$$

- Π_B is the L^2 -orthogonal projection onto $N(\mathbb{A})$;
- Based on representation formula by Kalamajska (1994) and smooth approximation;
- Elements of $N(\mathbb{A})$ are polynomials;
- If $\mathbf{u} = 0$ "somewhere" then $\|\mathbf{u}\|_{L^1(B)} \leq c \,\ell(B) \,|\mathbb{A}\mathbf{u}|(B)$.

Alberti-type theorem

De Philippis-Rindler (2016): for A-free measure μ

$$\frac{\mathrm{d}\mu}{\mathrm{d}|\mu^{s}|} \in \Lambda_{\mathcal{A}} := \bigcup_{\xi \neq 0} \ker(\mathcal{A}[\xi]) = \bigcup_{\xi \neq 0} \mathbb{A}[\xi](\mathbb{R}^{n}) \quad |\mu^{s}| - \mathsf{a.e.}$$

- Λ_A is called characteristic wave cone;
- A is potential to \mathcal{A} (e.g. $\mathbb{A} = D$ and $\mathcal{A} = \operatorname{curl}$);
- If $\mathbf{u} \in \mathsf{BV}(\Omega)$ then $\frac{\mathrm{d}D\mathbf{u}}{\mathrm{d}|D^s\mathbf{u}|} \in \{\mathbf{v} \otimes \xi\} |D^s\mathbf{u}|$ -a.e.;
- If $\mathbf{u} \in \mathsf{BD}(\Omega)$ then $\frac{\mathrm{d}\mathcal{E}(\mathbf{u})}{\mathrm{d}|\mathcal{E}^s(\mathbf{u})|} \in \{v \otimes_{sym} \xi\} |\mathcal{E}^s(\mathbf{u})|$ -a.e.;

• If
$$\mathbf{u} \in \mathsf{BV}^{\mathbb{A}}(\Omega)$$
 then $\frac{\mathrm{d}\mathbb{A}\mathbf{u}}{\mathrm{d}|\mathbb{A}^{s}\mathbf{u}|} \in \{\mathbf{v} \otimes_{\mathbb{A}} \xi\} |\mathbb{A}^{s}\mathbf{u}|$ -a.e.

Linear growth functionals on $\mathsf{BV}^{\mathbb{A}}(\Omega)$

Extended functional for $\mathbf{u} \in \mathsf{BV}^{\mathbb{A}}(\Omega)$

$$\overline{\mathfrak{F}}[\mathbf{u}] := \int_{\Omega} f\left(x, \frac{\mathrm{d}\mathbb{A}\mathbf{u}}{\mathrm{d}\mathcal{L}^n}\right) \mathrm{d}\mathcal{L}^n + \int_{\Omega} f^{\infty}\left(x, \frac{\mathrm{d}\mathbb{A}\mathbf{u}}{\mathrm{d}|\mathbb{A}^s\mathbf{u}|}\right) \mathrm{d}|\mathbb{A}^s\mathbf{u}|$$

- Baía, Chermisi, Matias, Santos (2013): Lower semi-continuity via Young measures;
- Trace-part not included so far!

Main result

Let $\mathbb A$ be a $\mathbb C\text{-elliptic}$ operator and Ω a bounded Lipschitz domain.

Breit, Diening, Gmeineder (2017): ∃ linear continuous operator

$$\mathsf{tr}:\mathsf{BV}^{\mathbb{A}}(\Omega)\to L^1(\partial\Omega,\mathcal{H}^{n-1}),\quad\mathsf{tr}\,\mathbf{u}=\mathbf{u}|_{\partial\Omega}\quad\forall u\in C^0(\overline{\Omega}).$$

- Main difficulty: estimate, even for smooth functions;
- Extension of Fuchs-Repin counterexample for *E^D* shows: C-elliptic is also necessary;
- Lipschitz boundary can be weakened to domains satisfying
 - Ω is an NTA (non-tangentially accessible);
 - **2** Ω is Ahlfors regular, i.e. there is R > 0 and M > 0 s.t.

$$\frac{1}{M}r^{n-1} \leq \mathcal{H}^{n-1}(B_r(x) \cap \partial \Omega) \leq Mr^{n-1} \quad \forall r \in (0, R).$$

NTA domains

A domain $\Omega \subset \mathbb{R}^n$ is an NTA (non-tangentially accessible) domain if it satisfies the interior corkscrew condition, the exterior interior corkscrew condition and the interior Harnack chain condition.

We say that Ω satifies the *interior corkscrew condition* if there exists R > 0 and M > 2 such that for all x ∈ ∂Ω and all r ∈ (0, R) there exists a y ∈ Ω such that

$$rac{1}{M}r \leq |x-y| \leq r$$
 and $B(y,r/M) \subset \Omega$.

Interior Harnack chain condition

We say that Ω ⊂ ℝⁿ satisfies the (interior) Harnack chain condition if any interior points y₁, y₂ ∈ Ω can be connected via a chain of proportional balls B₁,..., B_J in Ω satisfying

Covering by balls

- For each j ∈ Z, let (B_{j,k})_k denote a (countable) cover of balls of ℝⁿ with diameter ~ 2^{-j};
- For each j let (η_{j,k})_k we find a partition of unity with respect to the (B_{j,k})_k;
- Define the 2^{-j} -neighbourhood U_j of $\partial \Omega$ by

$$U_j := \{x \in \Omega : d(x, \partial \Omega) < 2^{-j}\}.$$

- Interior corkscrew condition \Rightarrow for each ball $B_{j,k}$ close to the boundary there is a *reflected ball* $B_{i,k}^{\sharp}$ close by.
- Harnack chain condition ⇒ connect two reflected balls of neighboring balls by a small chain of balls W₁,..., W_γ and set

$$\Omega(B_{j,k}^{\sharp}, B_{l,m}^{\sharp}) := \bigcup_{eta=1}^{\gamma} W_{eta}.$$

Ideas of the proof (1)

Use local projections $\Pi_{j,k} = \Pi_{B_{i,k}^{\sharp}}$ and set

$$T_{j}\mathbf{u} := \mathbf{u} - \rho_{j} \sum_{k} \eta_{j,k} (\mathbf{u} - \Pi_{j,k}\mathbf{u}) = (1 - \rho_{j})\mathbf{u} + \rho_{j} \sum_{k} \eta_{j,k} \Pi_{j,k}\mathbf{u}.$$

- ρ_j smooth s.t. $\chi_{U_{j+1}} \leq \rho_j \leq \chi_{U_j}$;
- *T_j* smooth at the boundary!
- If $\mathbf{u} \in \mathsf{BV}^{\mathbb{A}}(\Omega)$, then in $\mathsf{BV}^{\mathbb{A}}(\Omega)$

$$\mathbf{u} = T_{j_0}\mathbf{u} + \sum_{l=j_0}^{\infty} \left(T_{l+1}\mathbf{u} - T_l\mathbf{u}\right) = \lim_{j \to \infty} T_j\mathbf{u}$$

(ロ) 〈 母) 〈 母) 〈 母) 〈 母) く の

Ideas of the proof (2)

Let $u \in \mathsf{BV}^{\mathbb{A}}(\Omega)$. Then for some $k_0 \in \mathbb{N}$

$$\|\operatorname{tr}(\mathcal{T}_{j+1}\mathbf{u}) - \operatorname{tr}(\mathcal{T}_{j}\mathbf{u})\|_{L^{1}(\partial\Omega)} \lesssim \|\mathbb{A}\mathbf{u}|(U_{j-k_{0}} \setminus U_{j+k_{0}}).$$

Proof: From definiton of T_j

$$\operatorname{tr}(T_{j+1}\mathbf{u}) - \operatorname{tr}(T_{j}\mathbf{u}) = \sum_{k,m} \operatorname{tr} (\eta_{j+1,k}\eta_{j,m}(\Pi_{j+1,k}\mathbf{u} - \Pi_{j,m}\mathbf{u})),$$

where the sums are locally finite sums. Hence,

$$\|\operatorname{tr}(T_{j+1}\mathbf{u})-\operatorname{tr}(T_{j}\mathbf{u})\|_{L^{1}(\partial\Omega)}\leq \sum_{k,m}\|\eta_{j+1,k}\eta_{j,m}(\Pi_{j+1,k}\mathbf{u}-\Pi_{j,m}\mathbf{u})\|_{L^{1}(\partial\Omega)}.$$

Ideas of the proof (3)

We only have to consider those k, m with $B_{j+1,k} \cap B_{j,m} \neq \emptyset$. For such k, m

$$\begin{aligned} \left\| \operatorname{tr} \left(\eta_{j+1,k} \eta_{j,m} (\Pi_{j+1,k} \mathbf{u} - \Pi_{j,m} \mathbf{u}) \right) \right\|_{L^{1}(\partial \Omega)} \\ & \leq \left\| \Pi_{j+1,k} \mathbf{u} - \Pi_{j,m} \mathbf{u} \right\|_{L^{\infty}(B_{j,m})} \mathcal{H}^{n-1}(\partial \Omega \cap B_{j+1,k} \cap B_{j,m}). \end{aligned}$$

By the Ahlfors regularity and Poincaré's inequality imply

$$\left\|\operatorname{tr}\left(\eta_{j+1,k}\eta_{j,m}(\Pi_{j+1,k}\mathbf{u}-\Pi_{j,m}\mathbf{u})\right)\right\|_{L^{1}(\partial\Omega)}\lesssim |\mathbb{A}\mathbf{u}|\left(\Omega(B_{j+1,k}^{\sharp},B_{j,m}^{\sharp})\right).$$

Summing over k and m and implies

$$\|\operatorname{tr}(T_{j+1}\mathbf{u}) - \operatorname{tr}(T_{j}\mathbf{u})\|_{L^{1}(\partial\Omega)} \lesssim |\mathbb{A}\mathbf{u}|(U_{j-k_{0}} \setminus U_{j+k_{0}}).$$

Ideas of the proof (4)

Finally, we have that

$$\operatorname{tr}(T_{j_0}\mathbf{u}) + \sum_{j \ge j_0} \left(\operatorname{tr}(T_{j+1}\mathbf{u}) - \operatorname{tr}(T_j\mathbf{u}) \right) = \lim_{j \to \infty} \operatorname{tr}(T_j\mathbf{u}).$$

is well defined in $L^1(\partial \Omega)$. Hence,

$$\begin{split} \left\| \lim_{j \to \infty} \operatorname{tr}(T_{j} \mathbf{u}) \right\|_{L^{1}(\partial \Omega)} &\leq \left\| \operatorname{tr}(T_{j_{0}} \mathbf{u}) \right\|_{L^{1}} + \sum_{j \ge j_{0}} \left\| \operatorname{tr}(T_{j+1} \mathbf{u}) - \operatorname{tr}(T_{j} \mathbf{u}) \right\|_{L^{1}} \\ &\lesssim \left\| \mathbf{u} \right\|_{L^{1}(U_{j_{0}-k_{0}} \setminus U_{j_{0}+k_{0}})} + \sum_{j \ge j_{0}} \left| \mathbb{A} \mathbf{u} \right| (U_{j-k_{0}} \setminus U_{j+k_{0}}) \\ &\lesssim \left\| \mathbf{u} \right\|_{L^{1}(\Omega)} + \left| \mathbb{A} \mathbf{u} \right| (\Omega). \end{split}$$

Classical results for BV & BD Functions of bounded $\mathbb{A}\text{-variation}$ The trace theorem

Linear growth functionals on $\mathsf{BV}^{\mathbb{A}}(\Omega)$

Breit, Diening, Gmeineder (2017): Functionals on $\mathbf{u} \in \mathsf{BV}^{\mathbb{A}}(\Omega)$

$$\begin{split} \overline{\mathfrak{F}}_{\mathbf{u}_0}[\mathbf{u}] &:= \int_{\Omega} f\left(x, \frac{\mathrm{d}\mathbb{A}\mathbf{u}}{\mathrm{d}\mathscr{L}^n}\right) \mathrm{d}\mathscr{L}^n + \int_{\Omega} f^{\infty}\left(x, \frac{\mathrm{d}D\mathbf{u}}{\mathrm{d}|\mathbb{A}^s\mathbf{u}|}\right) \mathrm{d}|\mathbb{A}^s\mathbf{u}| \\ &+ \int_{\partial\Omega} f^{\infty}\left(x, \nu_{\partial\Omega} \otimes_{\mathbb{A}} \mathrm{tr}(\mathbf{u} - \mathbf{u}_0)\right) \mathrm{d}\mathcal{H}^{n-1}. \end{split}$$

- Existence of minimizer (representation with trace-term);
- infima coincide: inf_{u∈u0+W0}^{A,1}(Ω) 𝔅[u] = min_{u∈BV}^A(Ω) 𝔅u0[u];
 set of generalised minimisers of 𝔅 given by

$$\mathrm{GM}_{\mathbf{u}_0}(\mathfrak{F}) := \left\{ \mathbf{u} \in \mathsf{BV}^{\mathbb{A}}(\Omega) \colon \begin{array}{c} \mathbf{u} \text{ is the } L^1 - \mathsf{limit of some} \\ \mathsf{min. seq.} \quad (u_k) \subset \mathbf{u}_0 + W_0^{\mathbb{A},1}(\Omega) \end{array} \right\}$$

coincides with the class of $\mathsf{BV}^{\mathbb{A}}$ -minimizers.