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Compressible Euler equations

Find velocity u : (0,T )× TN → RN , density % : (0,T )× TN → R

satisfying the system of PDEs

blindtext

∂t%+ div(%u) = 0,

∂t(%u) + div(%u⊗ u) +∇p(%) = 0,

%(0, ·) = %0, %u(0, ·) = m0.

Periodic boundary conditions for simplicity;

Also formulation with momentum m = %u (vacuum!!);

Adiabatic pressure law p(%) = 1
Ma2 %

γ .
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Strong solutions

Strong solutions exists locally in time (in [0,Tmax) with Tmax > 0)

Tani (1977), Matsumura-Nishida (1980):
Existence for initial data in W 3,2;

Further results by Agemi (1981), Beirao da Veiga (1981),
Ebin (1979), Schochet (1986);

Global classical solutions do not exists in general (even for
smooth initial data)  weak solutions;

Even in 1D global classical solutions are not known to exists
(contrast to incompressible Euler!)
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Weak solutions

[%,m] is a weak solution on the time interval [0,∞) provided[∫
TN

%ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
TN

[
%∂tϕ+ m · ∇ϕ

]
dx dt (1.1)[∫

TN

m ·ϕ dx

]t=τ

t=0

=

∫ τ

0

∫
TN

[
m · ∂tϕ +

m⊗m

%
: ∇ϕ

]
dx dt

+

∫ τ

0

∫
TN

a%γ divϕ dx dt (1.2)

for any ϕ,ϕ ∈ C 1
c ([0,∞)× TN) and any τ > 0.
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Admissible solutions

Total energy as sum of kinetic and internal energy

blindtext

E =

∫
TN

E dx , E =
1

2

|m|2

%
+ P(%), P(%) =

a

γ − 1
%γ .

1 Mechanical energy equation

∂tE + div
(
Eu
)

+ div
(
EP(%)

)
= 0;

2 Admissible solutions satisfy energy inequality ∂tE ≤ 0;

3 Dafermos (1973): solutions with maximal dissipation, i.e. no
other solution exists with Ẽ (t) ≤ E (t) for all t.
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Ill-posedness

Non-uniqueness

There are infinitely many admissible solutions to the isentropic
Euler system for initial data...

De Lellis-Székelyhidi (2010): ...some bounded initial data;

Chiodaroli (2014):...for any %0 there is m0 s.t....

Feireisl (2014):...for any %0 there is u0 s.t....
admissible but not with maximal dissipation;

Chiodaroli-Kreml (2014): ... for every Riemann-data s.t....

Chiodaroli-Kreml-Mácha-Schwarzacher: ...some smooth data;



Dissipative measure-valued solutions

the Young measure:

(t, x) 7→ νx(t) ∈ L∞w∗((0,∞)× Ω;P(R+×RN));

the kinetic and internal energy concentration defect measures:

t 7→ Ckin(t),Cint(t) ∈ L∞w∗(0,∞;M+(Ω)),

the convective and pressure concentration defect measures:

t 7→ Cconv(t) ∈ L∞w∗

(
0,∞;M+

(
Ω× SN−1

))
,

t 7→ Cpress(t) ∈ L∞w∗
(
0,∞;M+(Ω)

)
.

Compatibility conditions

Cconv(t, dx ,dξ) = 2rx(t,dξ)⊗Ckin(t, dx), Cpress = (γ−1)Cint.



The Young measure

Density and momentum are bari-centre

blindtext

%(τ, x) = 〈νx(τ); %̃〉 ≥ 0, m(τ, x) = 〈νx(τ); m̃〉 for a.a x ∈ TN ,

% ∈ Cw ,loc([0,∞); Lγ(TN)), m ∈ Cw ,loc([0,∞); L
2γ
γ+1 (TN ;RN)).

The energy E ∈ BVloc([0,∞);R) is non-increasing and

E (τ) =

∫
TN

〈
νx(τ);

1

2

|m̃|2

%̃
+

a

γ − 1
%̃γ
〉

dx

+

∫
TN

dCkin(τ) +

∫
TN

dCint(τ).

Energy balance[
Eψ
]t=τ2+

t=τ1−
−
∫ τ2

τ1

E∂tψ dt ≤ 0, E (0−) = E0.
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Field equations

Momentum equation[∫
TN

m ·ϕ(τ, ·)dx

]t=τ

t=0

=

∫ τ

0

∫
TN

[
m · ∂tϕ +

〈
νx(t);

m̃⊗ m̃

%̃

〉
: ∇xϕ

]
dx dt

+ 2

∫ τ

0

∫
TN

〈rx(t); ξ ⊗ ξ〉 : ∇xϕ dCkin dt

+

∫
TN

〈νx(t); a%̃γ〉 divϕ dt + (γ − 1)

∫ τ

0

∫
TN

divϕ dCint dt;

Continuity equation[∫
TN

%ϕ(τ, ·) dx

]t=τ

t=0

=

∫ τ

0

∫
TN

[
%∂tϕ+ m · ∇xϕ

]
dx dt,

Initial conditions %(0, ·) = %0 and m(0, ·) = m0.
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Known results

Existence results:

DiPerna (1985): hyperbolic conservation laws;

DiPerna-Majda (1987): incompressible Euler equation;

Neustupa (1993): compressible Euler equation;

Kröner-Zajaczkowski (1996): complete Euler equations;

Weak-strong uniqueness:

Brennier-DeLellis-Székelyhidi (2011): incompressible Euler
equation;

Gwiazda-Świerczewska-Wiedemann (2015): compressible Euler
equation;

Feireisl-Březina (2018): complete Euler equations.
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Semiflow selection theorem (1)

Phase space

X = W−`,2(TN)×W−`,2(TN ;RN)× R,

Initial data from

D = X ∩
{
%0 ≥ 0,

∫
TN

[
1

2

|m0|2

%0
+

a

γ − 1
%γ0

]
dx ≤ E0

}
;

Trajectory space

Ω = Cloc([0,∞);W−`,2)× Cloc([0,∞);W−`,2)× L1
loc(0,∞).

Solution set U [%0,m0,E0]{
[%,m,E ] ∈ Ω

∣∣∣ [%,m,E ] is DMV sol. starting with [%0,m0,E0]
}
.
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Semiflow selection theorem (2)

Theorem (Breit-Feireisl-Hofmanová, ARMA, 2020)

The isentropic Euler system admits a semiflow selection U in the
class of dissipative measure-valued solutions. Moreover, we have
that U[%0,m0,E0] is maximal for any [%0,m0,E0] ∈ D.

A semiflow is a map

U : D → Ω, U[%0,m0,E0] ∈ U [%0,m0,E0];

The map U : D → Ω is Borel measurable;

We have the semigroup property

U[t1 + t2, %0,m0,E0] = U [t2,U[t1, %0,m0,E0]]

for any [%0,m0,E0] ∈ D and any t1, t2 ≥ 0.
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Required properties (1)

Method by Krylov adapted by Cardona-Kapitanski:

Multi-valued solution mapping

U : [%0,m0,E0] 7→ U [%0,m0,E0] ∈ 2Ω;

Time shift

ST ◦ ξ, ST ◦ ξ(t) = ξ(T + t), t ≥ 0;

Continuation

ξ1 ∪T ξ2(τ) =


ξ1(τ) for 0 ≤ τ ≤ T ,

ξ2(τ − T ) for τ > T .



Required properties (2)

(A1) Compactness: For any [%0,m0,E0] ∈ D, the set
U [%0,m0,E0] is a non-empty compact subset of Ω;

(A2) The mapping

D 3 [%0,m0,E0] 7→ U [%0,m0,E0] ∈ 2Ω

is Borel measurable, where the range of U is endowed with
the Hausdorff metric on the subspace of compact sets in 2Ω;

(A3) Shift invariance: For any [%,m,E ] ∈ U [%0,m0,E0]

ST ◦ [%,m,E ] ∈ U [%(T ),m(T ),E (T−)] for any T > 0;

(A4) Continuation: If T > 0, and

[%1,m1,E 1] ∈ U [%0,m0,E0],

[%2,m2,E 2] ∈ U [%1(T ),m1(T ),E 1(T−)]

⇒[%1,m1,E 1] ∪T [%2,m2,E 2] ∈ U [%0,m0,E0].



Induction argument (1)

System of functionals

blindtext

Iλ,F [%,m,E ] =

∫ ∞
0

exp(−λt)F (%,m,E ) dt, λ > 0.

Here

F : X = W−`,2(Ω)×W−`,2(Ω;RN)× R→ R

is a bounded and continuous functional;

Semiflow reduction: define Iλ,F ◦ U [%0,m0,E0] by{
[%,m,E ] ∈ U [%0,m0,E0]

∣∣∣Iλ,F [%,m,E ] ≤ Iλ,F [%̃, m̃, Ẽ ]
}

;

Induction argument: U satisfies (A1) - (A4) ⇒ Iλ,F ◦ U
satisfies (A1) - (A4).



Induction argument (2)

Choose countable basis {en}∞n=1 in L2(TN), {wm}∞m=1 in
L2(TN ;RN), and a countable set {λk}∞k=1 dense in (0,∞). We
consider a countable family of functionals,

Ik,0,0[%,m,E ] =

∫ ∞
0

exp(−λkt)β(E (t))dt,

Ik,n,0[%,m,E ] =

∫ ∞
0

exp(−λkt)β

(∫
TN

%en dx

)
dt,

Ik,0,m[%,m,E ] =

∫ ∞
0

exp(−λkt)β

(∫
TN

m ·wm dx

)
dt.

By Lerch’s theorem U∞ = ∩∞j=1U j is a singleton.
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Complete Euler equations

Find velocity u, density % and energy E : (0,T )× TN → R

satisfying the system of PDEs

blindtext

∂t%+ divm = 0,

∂tm + div

(
m⊗m

%

)
+∇xp = 0,

∂tE + div

[
(E + p)

m

%

]
= 0.

E is sum of kinetic and internal components (e =internal energy),

E =
1

2

|m|2

%
+ %e.
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Constitutive relations

Caloric equation of state in the form

(γ − 1)%e = p, where γ > 1 is the adiabatic constant;

Temperature ϑ by Boyle–Mariotte thermal equation of state:

p = %ϑ yielding e = cvϑ, cv =
1

γ − 1
;

Pressure p and internal energy e can be written in the form

p = p(%, s) = %γ exp

(
s

cv

)
, e = e(%, s) =

1

γ − 1
%γ−1 exp

(
s

cv

)
.
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Entropy balance

The Second law of thermodynamics is enforced through

the entropy balance equation

blindtext

∂t(%s) + div(sm) = 0 or ∂ts +

(
m

%

)
· ∇s = 0.

The entropy s is given as

s(%, ϑ) = log(ϑcv )− log(%);

In the weak form entropy inequality

∂t(%s) + div(sm) ≥ 0

in the sense of distributions.



Introduction
Measure-valued solutions
Main theorem and proof

Complete Euler equations

Maximal dissipation

Total entropy S = %s satisfies

the entropy inequality

blindtext

∂t(%S) + div
(
S
m

%

)
≥ 0.

Maximal dissipation defined via the entropy production rate

σ(τ) =

∫
TN

(
S(τ)− S0

)
dx ;

A maximal dissipative solution is maximal wrt σ.
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Semiflow selection theorem (2)

Theorem (Breit-Feireisl-Hofmanová, CMP, online first)

The isentropic Euler system admits a semiflow selection U in the
class of dissipative measure-valued solutions. Moreover, we have
that U[%0,m0,S0,E0] is maximal for any [%0,m0, S0,E0] ∈ D.

S only belongs to BVloc([0,∞);W−`,2(TN));

Total energy is a constant of motion:∫
TN

〈
Vt,x ;

1

2

|m̃|2

%̃
+ cv %̃

γ exp

(
S̃

cv %̃

)〉
dx +

∫
TN

(dCkin+dCint).
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D. Breit, E. Feireisl & M. Hofmanová: Solution semiflow for
the isentropic Euler system. Arch. Rational Mech. Anal.
235, 167–194. (2020)

D. Breit, E. Feireisl & M. Hofmanová: Dissipative solutions
and semiflow selection for the complete Euler system.
Commun. Math. Phys. DOI:10.1007/s00220-019-03662-7


	Introduction
	Measure-valued solutions
	Main theorem and proof
	Complete Euler equations

