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Introduction

Compressible Euler equations

Find velocity u: (0, T) x TV — RN, density o: (0, T) x TN — R

satisfying the system of PDEs

Oro+div(pu) = 0,
J¢(ou) + div(pu ® u) + Vp(o)
Q(Ov ) = 0o, QU(O, ) = mMmo.

I
o

@ Periodic boundary conditions for simplicity;
@ Also formulation with momentum m = pu (vacuum!!);

e Adiabatic pressure law p(p) = ﬁ@v-



Introduction

Strong solutions

Strong solutions exists locally in time (in [0, Tyax) With Timax > 0)
e Tani (1977), Matsumura-Nishida (1980):
Existence for initial data in W32;
o Further results by Agemi (1981), Beirao da Veiga (1981),
Ebin (1979), Schochet (1986);

@ Global classical solutions do not exists in general (even for
smooth initial data) ~» weak solutions;

@ Even in 1D global classical solutions are not known to exists
(contrast to incompressible Euler!)
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Weak solutions

[0, m] is a weak solution on the time interval [0, c0) provided

t=T1 T
[/ op dx} = / / [Qatcp +m- th} dx dt (1.1)
TN t=0 o JTn

t=1 T
[ m- dx} :// [m.8t<p+m®m:ch] dx dt
TN t=0 0 JTN 0

+/ / ag’ divep dx dt (1.2)
0o JTN

for any ¢, ¢ € C([0,00) x TN) and any 7 > 0.
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Admissible solutions

Total energy as sum of kinetic and internal energy

1 |m|? a
TNE X, E=5— -+ (o), P(o) po—

@ Mechanical energy equation
OeE + div (Eu) 4+ div (EP(0)) = 0;

@ Admissible solutions satisfy energy inequality 0:E < 0;

© Dafermos (1973): solutions with maximal dissipation, i.e. no
other solution exists with E(t) < E(t) for all ¢.
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[ll-posedness

Non-uniqueness

There are infinitely many admissible solutions to the isentropic
Euler system for initial data...

De Lellis-Székelyhidi (2010): ...some bounded initial data;
Chiodaroli (2014):...for any go there is mg s.t....

Feireisl (2014):...for any gg there is ug s.t....
admissible but not with maximal dissipation;

Chiodaroli-Kreml (2014): ... for every Riemann-data s.t....

Chiodaroli-Kreml-Macha-Schwarzacher: ...some smooth data;



Dissipative measure-valued solutions

@ the Young measure:
(t,x) = vx(t) € L32((0,00) x Q; P(RT x RV));
@ the kinetic and internal energy concentration defect measures:
t = Cin(t), Cint(t) € Lo (0, 00; MT(Q)),
@ the convective and pressure concentration defect measures:

t— Q:conv(t) S LSVO* (0, oQ; M+ (Q X SN_1>),
t— Q:press(t) S sto* (0, o0, M+(Q)) .
@ Compatibility conditions

Q:conv(tydxa d{) = 2rx(t7df)®€kin(tadx)7 Q:press = (’Y_l)etint'



The Young measure

Density and momentum are bari-centre

o(7,x) = (vx(7); 8) > 0, m(7,x) = (vy(7); M) fora.a x e TV,

S Cw,loc([ov OO); LW(TN))a m c Cw,loc([()» OO); L%(TN; RN))'

@ The energy E € BVjo([0,00); R) is non-increasing and

£y = [, (i 3+ 25 o

+ / d@kin(T) + / d(’:int(T)-
TN TN

@ Energy balance

[Elp} L /T2 Edw dt <0, E(0-) = Eo.

t=71— 1



Measure-valued solutions

Field equations

@ Momentum equation

[ m - (T, )de:T

<[ e s (i 2™ ] v

+2/0 /T (r(£): €@ ) : Ve dCign dt
+ /JI"V (Ux(t); a0") divepdt + (v — 1)/0 /T’V div e d€;y dt;

e Continuity equation

t=71 T
[/ 0(T, ) dx} =/ / {96t<p+m-vxgo] dx dt,
T t=0 0 JTN

e Initial conditions (0, ) = go and m(0, ) = mg.




Measure-valued solutions

Known results

Existence results:
@ DiPerna (1985): hyperbolic conservation laws;
@ DiPerna-Majda (1987): incompressible Euler equation;
@ Neustupa (1993): compressible Euler equation;
e Kroner-Zajaczkowski (1996): complete Euler equations;
Weak-strong uniqueness:
@ Brennier-DelLellis-Székelyhidi (2011): incompressible Euler
equation;
o Gwiazda-Swierczewska-Wiedemann (2015): compressible Euler
equation;
o Feireisl-Bfezina (2018): complete Euler equations.



Main theorem and proof

Semiflow selection theorem (1)

@ Phase space
X = W=52(TN) x w=42(TV, RV) x R,

@ Initial data from

1 2
D=XnN QOZO,/ Jm0| + 2 Qg dx < Eg ¢ ;
™ [2 00 -1

@ Trajectory space

Q = Goc([0, 0); W_£’2) X Cloe([0, 00); W‘m) x LL (0, 00).
@ Solution set U[pg, mo, Eo]

{[g, m,E] € Q | [o,m, E] is DMV sol. starting with [0g, mo, Eo]}.



Main theorem and proof

Semiflow selection theorem (2)

Theorem (Breit-Feireisl-Hofmanova, ARMA, 2020)

The isentropic Euler system admits a semiflow selection U in the
class of dissipative measure-valued solutions. Moreover, we have
that U[oo, mo, Eo] is maximal for any [gg, mo, Eo] € D.

@ A semiflow is a map
U:D— Qv U[QOa mp, EO] € M[QO, mo, EO];

@ The map U: D — Q is Borel measurable;
@ We have the semigroup property

Ult1 + to, 0o, mo, Eg] = U [t2, U[t1, 00, mo, Eo]

for any [0o, Mg, Eg] € D and any t1,t, > 0.



Main theorem and proof

Required properties (1)

Method by Krylov adapted by Cardona-Kapitanski:
@ Multi-valued solution mapping
U : [0, mo, Eo] — Ulgo. mo, Eo] € 2%,
e Time shift
Stog&, Stof(t)=&(T+1), t>0;
e Continuation

&(r)for0<7<T,

LUt &(T) =
&(r—T)form>T.



Required properties (2)

@ (A1) Compactness: For any [0o, mg, Eg] € D, the set
U[oo, Mg, Eg] is a non-empty compact subset of Q;

@ (A2) The mapping
D > [go, mo, Eo] +— UJgo, mo, Eo] € 27

is Borel measurable, where the range of U is endowed with
the Hausdorff metric on the subspace of compact sets in 2%;

e (A3) Shift invariance: For any [p, m, E] € U[gg, mo, Eo]
Stolo,m,El € U[o(T),m(T),E(T—)] for any T > 0;
e (A4) Continuation: If T > 0, and

[Qlﬂ m17 El] S u[QOv mo, E0]7
[0?,m? E?] € U[o*(T),m*(T), EY(T-)]
:[Qla ml) El] UT [927 m27 E2] S u[@()) mo, EO]



Induction argument (1)

System of functionals

Ir,Flo, m, E] :/ exp(—At)F(o,m, E) dt, A > 0.
0

@ Here
F:X=W"Q)x W2(QRV) xR - R

is a bounded and continuous functional;

e Semiflow reduction: define /) F o U[gg, mg, Eo] by
{[Q7 m, E] € u[QOa mp, EO] I)\,F[Qv m, E] < l)\,F[év ﬁ;lv E]} )

@ Induction argument: U satisfies (Al) - (A4) = [\ pFold
satisfies (A1) - (A4).



Induction argument (2)

Choose countable basis {e,}°%, in L2(TN), {w,}%_; in
L2(TV; RN), and a countable set {\(}?, dense in (0, 00). We
consider a countable family of functionals,

heoolo.m, E] = /0 " exp(—Mt)B(E(1)) dt,

lk.n0l0, m, E] :/ exp(—Axt)B </ oen dx> dt,
0 TN

lk.0,mlo, m, E] _/ exp(—)\kt)ﬁ( m-wp, dx) dt.
0 TN

By Lerch’s theorem U™ = ﬂj‘ilb{j is a singleton.



Complete Euler equations

Complete Euler equations

Find velocity u, density o and energy £: (0, T) x TN — R

satisfying the system of PDEs

00+ divm = 0,

8em + div <W> +Vep=0,
o

0:E + div [(5 +p) r;'] 0.

& is sum of kinetic and internal components (e =internal energy),

_}7\"“2 -+ oe

£



Complete Euler equations

Constitutive relations

@ Caloric equation of state in the form
(v — 1)oe = p, where v > 1 is the adiabatic constant;

@ Temperature 9 by Boyle—-Mariotte thermal equation of state:

1
p = o¥ yielding e = ¢,9, ¢, = ——;
v—1

@ Pressure p and internal energy e can be written in the form

S 1 S
= = % _ = = Fy_l _ .
p=plo,s) =0 eXp<C >,e e(o,s) po 4 exr><cv>

v



Complete Euler equations

Entropy balance

The Second law of thermodynamics is enforced through

the entropy balance equation

0t(0s) + div(sm) = 0 or 9ss + (?) -Vs =0.

@ The entropy s is given as
s(0,9) = log() — log(e);
@ In the weak form entropy inequality
0t(ps) + div(sm) >0

in the sense of distributions.



Complete Euler equations

Maximal dissipation

Total entropy S = os satisfies

the entropy inequality

9:(0S) + div (5%) > 0.

@ Maximal dissipation defined via the entropy production rate

o(r) = /TN (5(7) — So) dx;

o A maximal dissipative solution is maximal wrt o.



Complete Euler equations

Semiflow selection theorem (2)

Theorem (Breit-Feireisl-Hofmanova, CMP, online first)

The isentropic Euler system admits a semiflow selection U in the
class of dissipative measure-valued solutions. Moreover, we have
that U[go, mo, So, Eo] is maximal for any [0g, mg, So, Eo] € D.

o S only belongs to BV ([0, o0); W=52(TN));
@ Total energy is a constant of motion:

1 |m2 S
/ <vt,x;|"1| +cvmexp< >> dx + / (A€ +dCing ).
™ 2 0 c0 TN




Complete Euler equations
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