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Compressible fluid mechanics

Navier—Stokes equations

Find velocity u: @ — RY and density o : Q — R satisfying the

system of partial differential equations

Ot(ou) + div(ou ® u) =divS —aVp? in Q,

Oro + div(pu) =0 in Q,
u=20 on 00,

0(0,-) = 0o in O,

9(07 ')U(O, ) =90 in O,

0 Q:=(0,T)xOwithOcRY dec {23} and T > 0;
e S: Q@ — R s given by Newton's law

S:,u(vu%w—%divul)—k(n+%)divul.



Compressible fluid mechanics

Momentum equation

Weak formulation of the momentum equation:

find u, g such that for all p € C°(Q)

/Qu-atapdxdt:,u/Vu:Vgodxdt+(77+u)/divu divep
Q Q Q

—/(gu@u):chdxdt—/ ap” divep dxdt
Q Q

@ Function space for weak solutions
u € L2(0, T; Wy %(0)),
0 € CW([O7 T]v L’Y(O )7
Vou € L=(0, T; L2(0)).
I



Compressible fluid mechanics

Continuity equation

Renormalized formulation of the continuity equation
(DiPerna-Lions, '89):

o satisfies for all ¢ € C(Q)

/b(g)aﬂ/}dxdt:/ b(o)u - Ve dxdt
Q Q

- /Q (b'(0)o — b(o)) divuy dx dt

e b€ CY(R) with b/'(z) =0 for all z> M(b);

@ o solves weak formulation too (b(z) = z).



Compressible fluid mechanics

Known results

e Existence of weak solutions for v > Z by Lions (1998);

by Feireisl, Novotny,

NIw Oo1l©o

@ Existence of weak solutions for v >
Petzeltovd (2001);

o We have
o€ L37Y(Q), we 20, T; W(0)),
ou € G, ([0, T]; L3(0)),
ou®ue L%0,T; L%(O))



Martingale solutions

Stochastic Navier—Stokes equations

Velocity field u and density o on Q = (0, T) x O

d(ou) = [pAu — div(pu ® u) — aVp']dt + GAW in Q,
do = —div(pu) dt in Q,
0(0,-) = 0o in O,
2(0,)u(0,-) = qo in O.
@ Momentum equation in the weak sense: fo ou-pdx = ... for
all p € C(0);
@ Mass equation in the renormalized sense: db(p) = ... for all

b € CYR) with b'(z) = 0 for all z > M,,.



Martingale solutions

Concept of solution (1)

A finite energy weak martingale solution is a quantity

(2, Z,(Z:),P), 0,u, W).

(Q, #,(%:),P) is a stochastic basis,

W is an (.%:)-cylindrical Wiener process,

0 > 0is (%;)-adapted and p € C,, ([0, T]; L7(O)) P-as.,
u is a random variable and u € L?(0, T; W12(0)) P-ass.,
ou is (:#¢)-adapted pu € C,, ([0, T]; L%((’))) P-ass.,

o A="Po (0(0), QU(O))_l.



Martingale solutions

Concept of solution (2)

@ (p,u) solves the momentum equation in the weak sense P-a.s.

@ (p,u) solves the continuity equation in the renormalized sense
P-as.

@ We have the energy inequality

a [ (Gewlutof + =2

1 2
§/u-G(g,gu)dW+Z/‘gk(g’Qu)|dxdt
o 251 )o 0

gv(t)) dx dt+u/ IVul? dx
1 o

P-a.s. for all t € [0, T].



Stationary solutions

Invariant measures (1)

@ Statistical approach to fluid mechanics: is there an equilibrium
state such that time-averages of the observable tend to this
state as t — 00?

@ Well-known for finite dimensional stochastic differential
equations: invariant measure defined via transition semigroup

Pe(p)(x) = Eo(Xi(x)), ¢ € CGp(R),

where (X;) solves... with initial datum x.

@ Define dual P} on space of probability measures by
/ edPfv = / Prpdv Yy € Cp(R), v € M(R).
R R



Stationary solutions

Invariant measures (2)

@ A measure y is called invariant if Pjv = v or, equivalently

/Ptgodyz/godv
R R

= probability distribution of X; is independent of t.

@ A stochastic process is stationary if its probability distribution
is independent of time. Example: (W;) Wiener process
= W(t+ h) — W(t) is stationary for fixed h.

e If (X;) is stationary solution to some SDE its probability law is
an invariant measure.

@ Semigroup property P:is = P; o Ps requires uniqueness!!



Stationary solutions

Stationarity

Definition (Stationary stochastic process)

Let U = {U(t);t € [0,00)} be an X-valued stochastic process. We
say that U is stationary provided the joint laws

LUty +7),...,U(tn +7)), L(U(t1),...,U(tn))

on X" coincide for all 7 >0, for all t1,...,t, € [0,00).

@ Here £ denotes the law on X7, i.e.
L(Y1,..., Ya)(B) =P((Y1,..., Yn) €B) BcC X"

for X-valued random variable Yy, ..., Y.



Stationary solutions

Incompressible Navier—Stokes equations

@ Existence of stationary martingale solutions by
Flandoli-Gatarek 1995;

o [2(0, T; W12(0)) becomes (almost) L>=(0, T; W12(0))
= Stationary solutions are smooth (but depend on time)!!!

@ Existence of unique invariant measure by Da Prato-Debussche
2003 using Kolmogorov equation (equation for E(¢(u(t, x))),
where ¢ € Cy(L?)).

o Note that u € C, ([0, T]; L?(0)), so u(t) € L?(O) for ANY t.



Stationary solutions

Weak stationarity

Definition (Weakly stationary random variable)

Let U: Q — D'((0,00) x O) be weakly measurable. Let S; be the
time shift on the space of trajectories given by S;¢(t) = ¢(t + 7).
We say that U is weakly stationary provided the laws

LU, S—rp1),- -, (U, Srp)) s LU, 01),--.,(U,0,))

on R" coincide for all 7> 0, ¢4,...,¢, € C((0,00) x O).

@ Here £ denotes the law on R”, i.e.
L(Y1,....,Yn)(B)=P(Y1,..,Yn) €B) BCR"

for real valued random variable Y1, ..., Y,.



Stationary solutions

Theorem (Breit, Feireisl, Hofmanova, Maslowski, PTRF, '19)

Let the total mass be given by My € (0, 00), that is,

MO:/ o(t,x)dx forall te(0,00).
o

Then there exists a stationary finite energy weak martingale
solution [p,u, W] satisfying complete slip boundary conditions.

@ More restrictive assumptions on noise:

G(o, ou)dW = oF (o, ou)dW

with F bounded.

e Extension to no-slip b.c. possible (Korn-Poincaré inequality
needed).



Stationary solutions

Four layer approximation scheme

@ existence of an invariant measure on the basic level by
Krylov-Bogoliubov method:

© strong Feller property (continuous dependence on initial data)
@ solution (p,u) is a Markov process
© tightness of

{;_/OTﬁ[u(t)]dt;T>O}, {;_/OTC[Q(t)]dt;T>O}.

@ new global-in-time estimates needed

@ stationarity preserved under limit procedures



Hard sphere pressure

Pressure law

Suppose that for some ¢ > 0

p(o) ~ p(o—0)".

° By energy estimates control P(p) € L, where
_ Qfg p Z) dz:
° The smgularlty of the pressure at p yields the (deterministic)
bound p < p;

@ This hypothesis is relevant for any real fluid!



Hard sphere pressure

Bounded moments (1)

There are constants E,(m), m=1,2,... universal and
independent of the initial condition s.t. we have

bounded moments of the total energy E(o, m)

limsupE </ E(Q,Qu)dx> <Ex(m), m=1,2,...
@]

t—00

= Asymptotic compactness. The law of the time shifts of a fixed
solution

‘C[Q( + 7—n)a u(' + Tn)]a Tn —» OO

is tight in a suitable trajectory space.



Hard sphere pressure

Bounded moments (2)

@ The energy inequality yields

T2
+/ / uqu|2 dx dt < ...
T O

@ Dissipation beats energy s.t.

t—Tz
/ / olul?dx dt < ...;
t T1

@ Pressure estimates yield for D =& — gfo ou- Blo— %] dx
E|D|™(7) < exp(—Dp7) (E|D(o)|m _ %Z) + l%:;

@ Replace D using |D — &| < VE.
I



Hard sphere pressure

Stationary solutions a la It6-Nisio

Theorem (Breit, Feireisl & Hofmanova, preprint)

Let ((Q,a@", (Z+t)t>0,P), 0,u, W) be a dissipative martingale
solution such that E€(0)* < co,.... Then there is a sequence
T, — oo and a stationary solution

((Q7 j? (jt)v ED)) 57 ﬁa W)a
with £ [S; [0, u, W]] = L[o, u, W] such that

Tn -
Ti L[S: [o,u, W]] dt—)ﬁ{@,ﬁ, W] as n — .
n JO




Heat-conducting fluids

Navier—Stokes—Fourier equations

@ Heat-conducting fluids depending on temperature ¥;

@ Add entropy balance for specific entropy s

d(ps) + | div(esu) — div (/@Zﬁ)} dt = %(p\Vu\z + /@’ng) dt

or equivalent equation for internal energy e, where
5
p(o,9) = 03 + o9 + 39*, e(0,9) = 30% + ¥ + a2,
s, 9) = %% + log(9™) — log(o).

@ Existence of weak martingale solutions Breit & Feireisl, [IUMJ,
‘20.



Heat-conducting fluids

Stationary solutions

Theorem (Breit & Feireisl, IUMJ (2020))

There are no stationary solutions to the stochastic
Navier—Stokes—Fourier equations.

Energetically closed system with energy equality

d/[ olu? + pe(o, ) } /G udW+Z/ g2 dt.
O

k>1

Theorem (Breit, Feireisl & Hofmanova, Math. Ann., in press)

There is a stationary solution to the stochastic
Navier—Stokes—Fourier equation with non-homogeneous
Neumann-boundary values: 9,9|90 = ¥ — ©y.




Heat-conducting fluids
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