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Navier–Stokes equations

Find velocity u : Q → Rd and density % : Q → R satisfying the

system of partial differential equations

blindtext


∂t(%u) + div(%u⊗ u) = divS− a∇%γ in Q,

∂t%+ div(%u) = 0 in Q,
u = 0 on ∂O,

%(0, ·) = %0 in O,
%(0, ·)u(0, ·) = q0 in O,

Q := (0,T )×O with O ⊂ Rd , d ∈ {2, 3}, and T > 0;

S : Q → Rd×d is given by Newton’s law

S = µ
(∇u+∇uT

2 − 1
3 div u I

)
+
(
η + 2

3

)
div u I .
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Momentum equation

Weak formulation of the momentum equation:

find u, % such that for all ϕ ∈ C∞c (Q)

blindtext

∫
Q
%u · ∂tϕ dx dt = µ

∫
Q
∇u : ∇ϕ dx dt + (η + µ)

∫
Q

div u divϕ

−
∫
Q

(%u⊗ u) : ∇ϕ dx dt −
∫
Q
a%γ divϕdx dt

Function space for weak solutions

u ∈ L2(0,T ;W 1,2
0 (O)),

% ∈ Cw ([0,T ]; Lγ(O)),
√
%u ∈ L∞(0,T ; L2(O)).
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Continuity equation

Renormalized formulation of the continuity equation
(DiPerna-Lions, ’89):

% satisfies for all ψ ∈ C∞c (Q)

blindtext

∫
Q
b(%)∂tψ dx dt =

∫
Q
b(%)u · ∇ψ dx dt

−
∫
Q

(
b′(%)%− b(%)

)
div uψ dx dt

b ∈ C 1(R) with b′(z) = 0 for all z ≥ M(b);

% solves weak formulation too (b(z) = z).
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Known results

Existence of weak solutions for γ ≥ 9
5 by Lions (1998);

Existence of weak solutions for γ > 3
2 by Feireisl, Novotný,

Petzeltová (2001);

We have

% ∈ L
5
3
γ−1(Q), u ∈ L2(0,T ;W 1,2

0 (O)),

%u ∈ Cw ([0,T ]; L
2γ
γ+1 (O)),

%u⊗ u ∈ L2(0,T ; L
6γ

4γ+3 (O)).
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Stochastic Navier–Stokes equations

Velocity field u and density % on Q = (0,T )×O

blindtext


d(%u) = [µ∆u− div(%u⊗ u)− a∇%γ ]dt + GdW in Q,

d% = − div(%u) dt in Q,
%(0, ·) = %0 in O,

%(0, ·)u(0, ·) = q0 in O.

Momentum equation in the weak sense:
∫
O %u ·ϕdx = ... for

all ϕ ∈ C∞c (O);

Mass equation in the renormalized sense: db(%) = ... for all
b ∈ C 1(R) with b′(z) = 0 for all z ≥ Mb.
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Concept of solution (1)

A finite energy weak martingale solution is a quantity

blindtext

(
(Ω,F , (Ft),P), %,u,W ).

(Ω,F , (Ft),P) is a stochastic basis,

W is an (Ft)-cylindrical Wiener process,

% ≥ 0 is (Ft)-adapted and % ∈ Cw ([0,T ]; Lγ(O)) P-a.s.,

u is a random variable and u ∈ L2(0,T ;W 1,2(O)) P-a.s.,

%u is (Ft)-adapted %u ∈ Cw ([0,T ]; L
2γ
γ+1 (O)) P-a.s.,

Λ = P ◦
(
%(0), %u(0)

)−1
.
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Concept of solution (2)

(%,u) solves the momentum equation in the weak sense P-a.s.

(%,u) solves the continuity equation in the renormalized sense
P-a.s.

We have the energy inequality

d

∫
O

(1

2
%(t)

∣∣u(t)
∣∣2 +

a

γ − 1
%γ(t)

)
dx dt + µ

∫
O
|∇u|2 dx

≤
∫
O
u ·G(%, %u) dW +

1

2

∑
k≥1

∫
O

|gk(%, %u)|2

%
dx dt

P-a.s. for all t ∈ [0,T ].
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Invariant measures (1)

Statistical approach to fluid mechanics: is there an equilibrium
state such that time-averages of the observable tend to this
state as t →∞?

Well-known for finite dimensional stochastic differential
equations: invariant measure defined via transition semigroup

Pt(ϕ)(x) = Eϕ(Xt(x)), ϕ ∈ Cb(R),

where (Xt) solves... with initial datum x .

Define dual P∗t on space of probability measures by∫
R
ϕdP∗t ν =

∫
R
Ptϕdν ∀ϕ ∈ Cb(R), ν ∈M(R).
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Invariant measures (2)

A measure µ is called invariant if P∗t ν = ν or, equivalently∫
R
Ptϕdν =

∫
R
ϕdν

⇒ probability distribution of Xt is independent of t.

A stochastic process is stationary if its probability distribution
is independent of time. Example: (Wt) Wiener process
⇒W (t + h)−W (t) is stationary for fixed h.

If (Xt) is stationary solution to some SDE its probability law is
an invariant measure.

Semigroup property Pt+s = Pt ◦ Ps requires uniqueness!!
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Stationarity

Definition (Stationary stochastic process)

Let U = {U(t); t ∈ [0,∞)} be an X -valued stochastic process. We
say that U is stationary provided the joint laws

L(U(t1 + τ), . . . ,U(tn + τ)), L(U(t1), . . . ,U(tn))

on X n coincide for all τ ≥ 0, for all t1, . . . , tn ∈ [0,∞).

Here L denotes the law on X n, i.e.

L(Y1, ...,Yn)(B) = P((Y1, ...,Yn) ∈ B) B ⊂ X n

for X -valued random variable Y1, ...,Yn.
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Incompressible Navier–Stokes equations

Existence of stationary martingale solutions by
Flandoli-Ga̧tarek 1995;

L2(0,T ;W 1,2(O)) becomes (almost) L∞(0,T ;W 1,2(O))
⇒ Stationary solutions are smooth (but depend on time)!!!

Existence of unique invariant measure by Da Prato-Debussche
2003 using Kolmogorov equation (equation for E(ϕ(u(t, x))),
where ϕ ∈ Cb(L2)).

Note that u ∈ Cw ([0,T ]; L2(O)), so u(t) ∈ L2(O) for ANY t.
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Weak stationarity

Definition (Weakly stationary random variable)

Let U : Ω→ D′((0,∞)×O) be weakly measurable. Let Sτ be the
time shift on the space of trajectories given by Sτϕ(t) = ϕ(t + τ).
We say that U is weakly stationary provided the laws

L (〈U,S−τϕ1〉, . . . , 〈U,S−τϕn〉) , L (〈U,ϕ1〉, . . . , 〈U,ϕn〉)

on Rn coincide for all τ ≥ 0, ϕ1, . . . ,ϕn ∈ C∞c ((0,∞)×O).

Here L denotes the law on Rn, i.e.

L(Y1, ...,Yn)(B) = P((Y1, ...,Yn) ∈ B) B ⊂ Rn

for real valued random variable Y1, ...,Yn.
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Theorem (Breit, Feireisl, Hofmanová, Maslowski, PTRF, ’19)

Let the total mass be given by M0 ∈ (0,∞), that is,

M0 =

∫
O
%(t, x)dx for all t ∈ (0,∞).

Then there exists a stationary finite energy weak martingale
solution [%,u,W ] satisfying complete slip boundary conditions.

More restrictive assumptions on noise:

G(%, %u)dW = %F(%, %u)dW

with F bounded.

Extension to no-slip b.c. possible (Korn-Poincaré inequality
needed).
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Four layer approximation scheme

existence of an invariant measure on the basic level by
Krylov-Bogoliubov method:

1 strong Feller property (continuous dependence on initial data)
2 solution (%,u) is a Markov process
3 tightness of{

1

T

∫ T

0

L[u(t)]dt;T > 0

}
,

{
1

T

∫ T

0

L[%(t)]dt;T > 0

}
.

new global-in-time estimates needed

stationarity preserved under limit procedures
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Pressure law

Suppose that for some % > 0

blindtext

p(%) ≈ p(%− %)−β.

By energy estimates control P(%) ∈ L1, where

P(%) = %
∫ %

0
p(z)
z2 dz ;

The singularity of the pressure at % yields the (deterministic)
bound % ≤ %;

This hypothesis is relevant for any real fluid!
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Bounded moments (1)

There are constants E∞(m), m = 1, 2, . . . universal and
independent of the initial condition s.t. we have

bounded moments of the total energy E (%,m) = 1
2
|m|2
% + P(%)

blindtext

lim sup
t→∞

E
(∫
O
E (%, %u)dx

)m

≤ E∞(m), m = 1, 2, . . .

⇒Asymptotic compactness. The law of the time shifts of a fixed
solution

L[%(·+ τn),u(·+ τn)], τn →∞

is tight in a suitable trajectory space.
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Bounded moments (2)

The energy inequality yields[
E(t)

]t=τ2

t=τ1

+

∫ τ2

τ1

∫
O
µ|∇u|2 dx dt ≤ ...;

Dissipation beats energy s.t.[
E(t)

]t=τ2

t=τ1

+

∫ τ2

τ1

∫
O
%|u|2 dx dt ≤ ...;

Pressure estimates yield for D = E − ε
∫
O %u · B[%− M

|Q| ]dx

E|D|m(τ) ≤ exp(−Dmτ)
(
E|D(0)|m − Cm

Dm

)
+ Cm

Dm
;

Replace D using |D − E| .
√
E .
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Stationary solutions à la Itô-Nisio

Theorem (Breit, Feireisl & Hofmanová, preprint)

Let
(
(Ω,F , (Ft)t≥0,P), %,u,W ) be a dissipative martingale

solution such that EE(0)4 <∞,.... Then there is a sequence
Tn →∞ and a stationary solution(

(Ω̃, F̃ , (F̃t), P̃), %̃, ũ, W̃ ),

with L [Sτ [%,u,W ]] = L[%,u,W ] such that

1

Tn

∫ Tn

0
L [St [%,u,W ]] dt → L

[
%̃, ũ, W̃

]
as n→∞.
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Navier–Stokes–Fourier equations

Heat-conducting fluids depending on temperature ϑ;

Add entropy balance for specific entropy s

d(%s) +
[

div(%su)− div
(κ∇ϑ

ϑ

)]
dt =

1

ϑ

(
µ|∇u|2 + κ

|∇ϑ|2

ϑ

)
dt

or equivalent equation for internal energy e, where

p(%, ϑ) = %
5
3 + %ϑ+ a

3ϑ
4, e(%, ϑ) = 3

2%
2
3 + cvϑ+ aϑ

4

% ,

s(%, ϑ) = 4a
3
ϑ3

% + log(ϑcv )− log(%).

Existence of weak martingale solutions Breit & Feireisl, IUMJ,
‘20.
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Stationary solutions

Theorem (Breit & Feireisl, IUMJ (2020))

There are no stationary solutions to the stochastic
Navier–Stokes–Fourier equations.

Energetically closed system with energy equality

d

∫
O

[
1

2
%|u|2 + %e(%, ϑ)

]
=

∫
O
G · u dW +

∑
k≥1

∫
O

1

2
%−1|gk |2 dt.

Theorem (Breit, Feireisl & Hofmanová, Math. Ann., in press)

There is a stationary solution to the stochastic
Navier–Stokes–Fourier equation with non-homogeneous
Neumann-boundary values: ∂νϑ|∂O = ϑ−Θ0.
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