Long-time behaviour of stochastically forced compressible fluid flows

Dominic Breit, Eduard Feireisl, Bohdan Maslowski & Martina Hofmanová

01.11.2021

Navier–Stokes equations

Find velocity $\mathbf{u}: \mathcal{Q} \to \mathbb{R}^d$ and density $\varrho: \mathcal{Q} \to \mathbb{R}$ satisfying the

system of partial differential equations

Q,
дО,
О,
О,

• $Q := (0, T) \times \mathcal{O}$ with $\mathcal{O} \subset \mathbb{R}^d$, $d \in \{2, 3\}$, and T > 0; • $\mathbf{S} : Q \to \mathbb{R}^{d \times d}$ is given by Newton's law

$$\mathbf{S} = \mu \left(\frac{\nabla \mathbf{u} + \nabla \mathbf{u}^T}{2} - \frac{1}{3} \operatorname{div} \mathbf{u} I \right) + \left(\eta + \frac{2}{3} \right) \operatorname{div} \mathbf{u} I.$$

Momentum equation

Weak formulation of the momentum equation:

find \mathbf{u}, ϱ such that for all $\varphi \in C^\infty_c(Q)$

$$\int_{Q} \rho \mathbf{u} \cdot \partial_{t} \varphi \, \mathrm{d}x \, \mathrm{d}t = \mu \int_{Q} \nabla \mathbf{u} : \nabla \varphi \, \mathrm{d}x \, \mathrm{d}t + (\eta + \mu) \int_{Q} \operatorname{div} \mathbf{u} \, \operatorname{div} \varphi$$
$$- \int_{Q} (\rho \mathbf{u} \otimes \mathbf{u}) : \nabla \varphi \, \mathrm{d}x \, \mathrm{d}t - \int_{Q} \mathbf{a} \rho^{\gamma} \, \mathrm{div} \, \varphi \, \mathrm{d}x \, \mathrm{d}t$$

• Function space for weak solutions

$$\mathbf{u} \in L^{2}(0, T; W_{0}^{1,2}(\mathcal{O})),$$
$$\varrho \in C_{w}([0, T]; L^{\gamma}(\mathcal{O})),$$
$$\sqrt{\varrho}\mathbf{u} \in L^{\infty}(0, T; L^{2}(\mathcal{O})).$$

Continuity equation

Renormalized formulation of the continuity equation (DiPerna-Lions, '89):

arrho satisfies for all $\psi \in C^\infty_c(Q)$

$$\int_{Q} b(\varrho) \partial_{t} \psi \, \mathrm{d}x \, \mathrm{d}t = \int_{Q} b(\varrho) \mathbf{u} \cdot \nabla \psi \, \mathrm{d}x \, \mathrm{d}t - \int_{Q} \left(b'(\varrho) \varrho - b(\varrho) \right) \operatorname{div} \mathbf{u} \, \psi \, \mathrm{d}x \, \mathrm{d}t$$

- $b \in C^1(\mathbb{R})$ with b'(z) = 0 for all $z \ge M(b)$;
- ρ solves weak formulation too (b(z) = z).

Known results

- Existence of weak solutions for $\gamma \geq \frac{9}{5}$ by Lions (1998);
- Existence of weak solutions for $\gamma > \frac{3}{2}$ by Feireisl, Novotný, Petzeltová (2001);
- We have

$$\begin{split} \varrho &\in L^{\frac{5}{3}\gamma-1}(Q), \quad \mathbf{u} \in L^{2}(0, T; W^{1,2}_{0}(\mathcal{O})), \\ \varrho \mathbf{u} &\in C_{w}([0, T]; L^{\frac{2\gamma}{\gamma+1}}(\mathcal{O})), \\ \varrho \mathbf{u} \otimes \mathbf{u} \in L^{2}(0, T; L^{\frac{6\gamma}{4\gamma+3}}(\mathcal{O})). \end{split}$$

Stochastic Navier–Stokes equations

Velocity field **u** and density ρ on $Q = (0, T) \times O$

$$d(\rho \mathbf{u}) = [\mu \Delta \mathbf{u} - \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) - \mathbf{a} \nabla \rho^{\gamma}] dt + \mathbb{G} d\mathcal{W} \quad \text{in } Q,$$

$$d\rho = -\operatorname{div}(\rho \mathbf{u}) dt \quad \text{in } Q,$$

$$\rho(0, \cdot) = \rho_{0} \quad \text{in } \mathcal{O},$$

$$\rho(0, \cdot) \mathbf{u}(0, \cdot) = \mathbf{q}_{0} \quad \text{in } \mathcal{O}.$$

- Momentum equation in the weak sense: $\int_{\mathcal{O}} \rho \mathbf{u} \cdot \boldsymbol{\varphi} \, dx = \dots$ for all $\boldsymbol{\varphi} \in C_c^{\infty}(\mathcal{O})$;
- Mass equation in the renormalized sense: db(ρ) = ... for all b ∈ C¹(ℝ) with b'(z) = 0 for all z ≥ M_b.

Concept of solution (1)

A finite energy weak martingale solution is a quantity

$$((\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P}), \varrho, \mathbf{u}, W).$$

- $(\Omega, \mathscr{F}, (\mathscr{F}_t), \mathbb{P})$ is a stochastic basis,
- W is an (\mathscr{F}_t) -cylindrical Wiener process,
- $\varrho \geq 0$ is (\mathscr{F}_t) -adapted and $\varrho \in C_w([0, T]; L^{\gamma}(\mathcal{O}))$ \mathbb{P} -a.s.,
- **u** is a random variable and $\mathbf{u} \in L^2(0, T; W^{1,2}(\mathcal{O}))$ \mathbb{P} -a.s.,
- ϱ **u** is (\mathscr{F}_t) -adapted ϱ **u** $\in C_w([0, T]; L^{\frac{2\gamma}{\gamma+1}}(\mathcal{O}))$ \mathbb{P} -a.s.,

•
$$\Lambda = \mathbb{P} \circ (\varrho(0), \varrho \mathbf{u}(0))^{-1}$$
.

Concept of solution (2)

- (ϱ, \mathbf{u}) solves the momentum equation in the weak sense \mathbb{P} -a.s.
- (ϱ, \mathbf{u}) solves the continuity equation in the renormalized sense \mathbb{P} -a.s.
- We have the energy inequality

$$d \int_{\mathcal{O}} \left(\frac{1}{2} \varrho(t) |\mathbf{u}(t)|^2 + \frac{a}{\gamma - 1} \varrho^{\gamma}(t) \right) dx dt + \mu \int_{\mathcal{O}} |\nabla \mathbf{u}|^2 dx \leq \int_{\mathcal{O}} \mathbf{u} \cdot \mathbb{G}(\varrho, \varrho \mathbf{u}) dW + \frac{1}{2} \sum_{k \ge 1} \int_{\mathcal{O}} \frac{|\mathbf{g}_k(\varrho, \varrho \mathbf{u})|^2}{\varrho} dx dt$$

 \mathbb{P} -a.s. for all $t \in [0, T]$.

Invariant measures (1)

- Statistical approach to fluid mechanics: is there an equilibrium state such that time-averages of the observable tend to this state as $t \to \infty$?
- Well-known for finite dimensional stochastic differential equations: invariant measure defined via transition semigroup

$$P_t(\varphi)(x) = \mathbb{E} \varphi(X_t(x)), \quad \varphi \in C_b(\mathbb{R}),$$

where (X_t) solves... with initial datum x.

• Define dual P_t^* on space of probability measures by

$$\int_{\mathbb{R}} \varphi \, \mathrm{d} P_t^* \nu = \int_{\mathbb{R}} P_t \varphi \, \mathrm{d} \nu \quad \forall \varphi \in C_b(\mathbb{R}), \, \nu \in \mathcal{M}(\mathbb{R}).$$

Invariant measures (2)

• A measure μ is called invariant if $P_t^*\nu = \nu$ or, equivalently

$$\int_{\mathbb{R}} \mathsf{P}_t \varphi \, \mathrm{d}\nu = \int_{\mathbb{R}} \varphi \, \mathrm{d}\nu$$

 \Rightarrow probability distribution of X_t is independent of t.

- A stochastic process is stationary if its probability distribution is independent of time. Example: (W_t) Wiener process
 ⇒ W(t + h) - W(t) is stationary for fixed h.
- If (X_t) is stationary solution to some SDE its probability law is an invariant measure.
- Semigroup property $P_{t+s} = P_t \circ P_s$ requires uniqueness!!

Stationarity

Definition (Stationary stochastic process)

Let $\mathbf{U} = {\mathbf{U}(t); t \in [0, \infty)}$ be an X-valued stochastic process. We say that **U** is *stationary* provided the joint laws

$$\mathcal{L}(\mathbf{U}(t_1+\tau),\ldots,\mathbf{U}(t_n+\tau)), \quad \mathcal{L}(\mathbf{U}(t_1),\ldots,\mathbf{U}(t_n))$$

on X^n coincide for all $\tau \ge 0$, for all $t_1, \ldots, t_n \in [0, \infty)$.

• Here \mathcal{L} denotes the law on X^n , i.e.

$$\mathcal{L}(Y_1,...,Y_n)(B) = \mathbb{P}((Y_1,...,Y_n) \in B) \quad B \subset X^n$$

for X-valued random variable $Y_1, ..., Y_n$.

Incompressible Navier–Stokes equations

- Existence of stationary martingale solutions by Flandoli-Gatarek 1995;
- L²(0, T; W^{1,2}(O)) becomes (almost) L[∞](0, T; W^{1,2}(O))
 ⇒ Stationary solutions are smooth (but depend on time)!!!
- Existence of unique invariant measure by Da Prato-Debussche 2003 using Kolmogorov equation (equation for $\mathbb{E}(\varphi(\mathbf{u}(t,x)))$, where $\varphi \in C_b(L^2)$).
- Note that $\mathbf{u} \in C_w([0, T]; L^2(\mathcal{O}))$, so $\mathbf{u}(t) \in L^2(\mathcal{O})$ for ANY t.

Weak stationarity

Definition (Weakly stationary random variable)

Let $\mathbf{U}: \Omega \to \mathcal{D}'((0,\infty) \times \mathcal{O})$ be weakly measurable. Let \mathcal{S}_{τ} be the time shift on the space of trajectories given by $\mathcal{S}_{\tau}\varphi(t) = \varphi(t+\tau)$. We say that \mathbf{U} is *weakly stationary* provided the laws

$$\mathcal{L}\left(\langle \mathbf{U}, \mathcal{S}_{-\tau}\boldsymbol{\varphi}_1 \rangle, \dots, \langle \mathbf{U}, \mathcal{S}_{-\tau}\boldsymbol{\varphi}_n \rangle\right), \quad \mathcal{L}\left(\langle \mathbf{U}, \boldsymbol{\varphi}_1 \rangle, \dots, \langle \mathbf{U}, \boldsymbol{\varphi}_n \rangle\right)$$

on \mathbb{R}^n coincide for all $\tau \geq 0$, $\varphi_1, \ldots, \varphi_n \in C^\infty_c((0,\infty) \times \mathcal{O})$.

• Here \mathcal{L} denotes the law on \mathbb{R}^n , i.e.

$$\mathcal{L}(Y_1,...,Y_n)(B) = \mathbb{P}((Y_1,...,Y_n) \in B) \quad B \subset \mathbb{R}^n$$

for real valued random variable $Y_1, ..., Y_n$.

Theorem (Breit, Feireisl, Hofmanová, Maslowski, PTRF, '19)

Let the total mass be given by $M_0 \in (0,\infty)$, that is,

$$M_0 = \int_{\mathcal{O}} \varrho(t, x) \, \mathrm{d}x \quad \textit{for all} \quad t \in (0, \infty).$$

Then there exists a stationary finite energy weak martingale solution $[\varrho, \mathbf{u}, W]$ satisfying complete slip boundary conditions.

• More restrictive assumptions on noise:

$$\mathbb{G}(\varrho, \varrho \mathbf{u}) \mathrm{d} W = \varrho \mathbb{F}(\varrho, \varrho \mathbf{u}) \mathrm{d} W$$

with \mathbb{F} bounded.

Extension to no-slip b.c. possible (Korn-Poincaré inequality needed).

Four layer approximation scheme

- existence of an invariant measure on the basic level by Krylov-Bogoliubov method:
 - **1** strong Feller property (continuous dependence on initial data)
 - solution (*ρ*, **u**) is a Markov process
 - tightness of

$$\bigg\{\frac{1}{T}\int_0^T \mathcal{L}[\mathbf{u}(t)]\,\mathrm{d}t;\,T>0\bigg\},\ \bigg\{\frac{1}{T}\int_0^T \mathcal{L}[\varrho(t)]\,\mathrm{d}t;\,T>0\bigg\}.$$

- new global-in-time estimates needed
- stationarity preserved under limit procedures

Pressure law

Suppose that for some $\overline{\varrho} > 0$

$$p(\varrho) \approx \overline{p}(\overline{\varrho} - \varrho)^{-\beta}.$$

- By energy estimates control $P(\varrho) \in L^1$, where $P(\varrho) = \varrho \int_0^{\varrho} \frac{p(z)}{z^2} dz$;
- The singularity of the pressure at *p̄* yields the (deterministic) bound *ρ* ≤ *p̄*;
- This hypothesis is relevant for any real fluid!

Bounded moments (1)

There are constants $\mathcal{E}_{\infty}(m)$, m = 1, 2, ... universal and independent of the initial condition s.t. we have

bounded moments of the total energy $E(\varrho, \mathbf{m}) = \frac{1}{2} \frac{|\mathbf{m}|^2}{\rho} + P(\varrho)$

$$\limsup_{t\to\infty} \mathbb{E}\left(\int_{\mathcal{O}} E(\varrho, \varrho \mathbf{u}) \, \mathrm{d}x\right)^m \leq \mathcal{E}_{\infty}(m), \ m = 1, 2, \dots$$

 $\Rightarrow \textbf{Asymptotic compactness.}$ The law of the time shifts of a fixed solution

$$\mathcal{L}[\varrho(\cdot + \tau_n), \mathbf{u}(\cdot + \tau_n)], \tau_n \to \infty$$

is tight in a suitable trajectory space.

Bounded moments (2)

• The energy inequality yields

$$\left[\mathcal{E}(t)\right]_{t=\tau_1}^{t=\tau_2} + \int_{\tau_1}^{\tau_2} \int_{\mathcal{O}} \mu |\nabla \mathbf{u}|^2 \, \mathrm{d}x \, \mathrm{d}t \leq ...;$$

Dissipation beats energy s.t.

$$\left[\mathcal{E}(t)\right]_{t=\tau_1}^{t=\tau_2} + \int_{\tau_1}^{\tau_2} \int_{\mathcal{O}} \rho |\mathbf{u}|^2 \, \mathrm{d}x \, \mathrm{d}t \leq ...;$$

• Pressure estimates yield for $\mathcal{D} = \mathcal{E} - \varepsilon \int_{\mathcal{O}} \rho \mathbf{u} \cdot \mathcal{B}[\rho - \frac{M}{|Q|}] dx$

$$\mathbb{E}|\mathcal{D}|^m(au) \leq \exp(-D_m au)\left(\mathbb{E}|\mathcal{D}(0)|^m - rac{C_m}{D_m}
ight) + rac{C_m}{D_m};$$

• Replace \mathcal{D} using $|\mathcal{D} - \mathcal{E}| \lesssim \sqrt{\mathcal{E}}$.

Stationary solutions à la Itô-Nisio

Theorem (Breit, Feireisl & Hofmanová, preprint)

Let $((\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P}), \varrho, \mathbf{u}, W)$ be a dissipative martingale solution such that $\mathbb{E}\mathcal{E}(0)^4 < \infty, \dots$ Then there is a sequence $T_n \to \infty$ and a stationary solution

$$((\tilde{\Omega}, \tilde{\mathscr{F}}, (\tilde{\mathscr{F}}_t), \tilde{\mathbb{P}}), \tilde{\varrho}, \tilde{\mathbf{u}}, \tilde{W}),$$

with $\mathcal{L}[\mathcal{S}_{\tau}[\varrho, \mathbf{u}, W]] = \mathcal{L}[\varrho, \mathbf{u}, W]$ such that

$$\frac{1}{T_n} \int_0^{T_n} \mathcal{L}\left[\mathcal{S}_t\left[\varrho, \mathbf{u}, W\right]\right] \, \mathrm{d}t \to \mathcal{L}\left[\tilde{\varrho}, \tilde{\mathbf{u}}, \tilde{W}\right] \text{ as } n \to \infty.$$

Navier–Stokes–Fourier equations

- Heat-conducting fluids depending on temperature ϑ ;
- Add entropy balance for specific entropy s

$$\mathrm{d}(\varrho s) + \left[\operatorname{div}(\varrho s \mathbf{u}) - \operatorname{div}\left(\frac{\kappa \nabla \vartheta}{\vartheta}\right)\right] \mathrm{d}t = \frac{1}{\vartheta} \left(\mu |\nabla \mathbf{u}|^2 + \kappa \frac{|\nabla \vartheta|^2}{\vartheta}\right) \mathrm{d}t$$

or equivalent equation for internal energy e, where

$$\begin{split} p(\varrho,\vartheta) &= \varrho^{\frac{5}{3}} + \varrho\vartheta + \frac{a}{3}\vartheta^4, \ e(\varrho,\vartheta) = \frac{3}{2}\varrho^{\frac{2}{3}} + c_v\vartheta + a\frac{\vartheta^4}{\varrho}, \\ s(\varrho,\vartheta) &= \frac{4a}{3}\frac{\vartheta^3}{\varrho} + \log(\vartheta^{c_v}) - \log(\varrho). \end{split}$$

• Existence of weak martingale solutions Breit & Feireisl, IUMJ, '20.

Stationary solutions

Theorem (Breit & Feireisl, IUMJ (2020))

There are no stationary solutions to the stochastic Navier–Stokes–Fourier equations.

Energetically closed system with energy equality

$$\mathrm{d} \int_{\mathcal{O}} \left[\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho \boldsymbol{e}(\varrho, \vartheta) \right] = \int_{\mathcal{O}} \mathbb{G} \cdot \mathbf{u} \, \mathrm{d} W + \sum_{k \ge 1} \int_{\mathcal{O}} \frac{1}{2} \varrho^{-1} |\mathbf{g}_k|^2 \, \mathrm{d} t.$$

Theorem (Breit, Feireisl & Hofmanová, Math. Ann., in press)

There is a stationary solution to the stochastic Navier–Stokes–Fourier equation with non-homogeneous Neumann-boundary values: $\partial_{\nu}\vartheta|_{\partial\mathcal{O}} = \vartheta - \Theta_0$.

- D. Breit & E. Feireisl: Stochastic Navier–Stokes–Fourier equations. Indiana Univ. Math. J. 69, 911–975. (2020)
- D. Breit, E. Feireisl & M. Hofmanová: On the long time behavior of compressible fluid flows excited by random forcing. Preprint at arXiv:2012.07476v1
- D. Breit, E. Feireisl & M. Hofmanová: Stationary solutions in thermodynamics of stochastically forced fluids. Math. Ann. DOI:10.1007/s00208-021-02300-9
- D. Breit, E. Feireisl, M. Hofmanová & B. Maslowski: Stationary solutions to the compressible Navier–Stokes system driven by stochastic forces. Probab. Theory Relat. Fields 174, 981–1032. (2019)