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Navier-Stokes equations

Find a velocity field v : Q → Rd and a pressure function
π : Q → R satisfying the following

system of partial differential equations

blindtext


−∂tv + divσ = (∇v)v +∇π − f on Q,

div v = 0 on Q,
v = 0 on ∂Ω,

v(0, ·) = v0 on Ω,

Q := Ω× (0,T ) with Ω ⊂ Rd , d ∈ {2, 3} and T > 0;

f : Q → Rd is a system of volume forces;

σ : Q → Rd×d is the stress deviator.
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Constituive law

In order to characterize the specific fluid under consideration we
need a constitutive law, which relates σ and the symmetric
gradient

ε(v) :=
1

2

(
∇v +∇vT

)
.

Newtonian fluid: σ = νε(v) (water, air and the most oils);

Generalized Newtonian fluid: σ = ν(|ε(v)|)ε(v);

the viscosity ν is a function of the shear rate |ε(v)|;
ν increasing ⇒ shear thickening (batter);

ν decreasing ⇒ shear thinning (blood, ketchup).
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Power law model

Most popular model among rheologists

for 1 < p <∞ and ν0 > 0

blindtext

ν(|ε(v)|) = ν0|ε(v)|p−2,

ν(|ε(v)|) = ν0(1 + |ε(v)|)p−2.

p > 2 ⇒ shear thickening fluid (batter);

p < 2 ⇒ shear thinning fluid (blood, ketchup);

p = 2 ⇒ Newtonian fluid.
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Mathematical questions

In which function spaces do we have existence of solutions?

Under which assumptions is the solution unique?

How are the regularity properties of solutions?
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The p-Stokes problem (1)

Find v : Ω→ Rd and π : Ω→ R satisfying

blindtext


div
(
|ε(v)|p−2ε(v)

)
= ∇π − f on Ω,

div v = 0 on Ω,
v = 0 on ∂Ω.

Function space for v:

W̊ 1,p
div (Ω,Rd) :=

{
u ∈W 1,p(Ω,Rd) : u|∂Ω = 0, div u = 0

}
;

Function space for π:

Lp
′

0 (Ω) :=

{
u ∈ Lp

′
(Ω) :

∫
Ω
u dx = 0

}
.
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The p-Stokes problem (2)

Minimize the functional

blindtext

J [v] :=
1

p

∫
Ω
|ε(v)|p dx −

∫
Ω
f · v dx

in the space W̊ 1,p
div (Ω,Rd).

Existence theory via direct method using Korn’s inequality∫
Ω
|∇v|p dx ≤ c

∫
Ω
|ε(v)|p dx

for all v ∈ W̊ 1,p
div (Ω,Rd).



Introduction to fluid mechanics
Stationary problems
Parabolic problems

Further constitutive laws

The p-Stokes problem (3)

Minimizer is weak solution

blindtext

∫
Ω
|ε(v)|p−2ε(v) : ε(ϕ) dx =

∫
Ω
f ·ϕ dx , ϕ ∈ C∞0,div(Ω,Rd).

Reconstruction of the pressure π using solutions to

divF = f ⇒ F = Bog(f),

Bog : Lp0(Ω)→ W̊ 1,p(Ω,Rd).
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The p-Stokes problem (4)

Regularity

blindtext

V := |ε(v)|
p
2 ∈W 1,2(Ω);

v ∈ C 1,α(Ω0,Rd), Ld(Ω \ Ω0) = 0;

v ∈ C 1,α(Ω,R2) if d = 2.

Results by Fuchs in 1996, later by Naumann;

2D: Kaplický, Málek and Stará in 1999.
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The stationary p-Navier-Stokes problem (1)

Existence theory for stationary generalized Newtonian fluids.

Equation of motion

blindtext

div
(
|ε(v)|p−2ε(v)

)
= div(v ⊗ v) +∇π − f

No variational approach available;

Consider an approximated system whose solution vn is known
to exist together with

vn ⇀: v in W 1,p(Ω,Rd).
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The stationary p-Navier-Stokes problem (2)

Convergence of the convective term

blindtext

∫
Ω
vn ⊗ vn : ∇ϕ dx −→

∫
Ω
v ⊗ v : ∇ϕ dx

Compact embedding

W 1,p(Ω,Rd) ↪→ L2(Ω,Rd), p >
2d

d + 2
.
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The stationary p-Navier-Stokes problem (3)

Energy convergence

blindtext

∫
Ω
|ε(vn)|p−2ε(vn) : ε(ϕ) dx −→

∫
Ω
|ε(v)|p−2ε(v) : ε(ϕ) dx

Almost everywhere-convergence ε(vn)→ ε(v).

Monotone-operator theory:∫
Ω

(
S(ε(vn))− S(ε(v))

)
: ε (vn − v) dx −→ 0,(

S(ζ)− S(ξ)
)

:
(
ζ − ξ

)
> 0 if ζ 6= ξ.



Introduction to fluid mechanics
Stationary problems
Parabolic problems

Further constitutive laws

The stationary p-Navier-Stokes problem (4)

Test the equation by

un = vn − v.

Standard if p > 9
5 many interesting fluids are between [ 3

2 , 2];

L∞-truncation if p ≥ 3
2 by Frehse, Malék, Steinhauer in 1997:

uλ = u on {x : |u(x)| ≤ λ} , ‖uλ‖∞ ≤ λ.

For blood we have p ≈ 1.21.
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Lipschitz truncation (1)

One can define the Lipschitz truncation

of a Sobolev function u by

blindtext

Tλu :=

{
u , on [M(|∇u|) ≤ λ]∑

j ϕjuj , on [M(|∇u|) > λ]

where M : Lp(Rd)→ Lp(Rd) is the Hardy-Littlewood maximal
function

(Mf )(x) := sup
r>0

∫
−

Br (x)

|f (y)| dy .
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Lipschitz truncation (2)

If u ∈ W̊ 1,p then Tλu ∈ W̊ 1,∞;

Lipschitz truncation of Sobolev-functions goes back to Acerbi
and Fusco (1988);

Firstly used in fluid mechanics by Frehse, Malék, Steinhauer in
2003;

Advanced by Diening, Malék, Steinhauer in 2006;

Existence theory for the stationary p-Navier-Stokes problem
provided

p >
6

5
.
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The non-stationary p-Navier-Stokes problem

Existence theory for non-stationary generalized Newtonian fluids.

Equation of motion

blindtext

−∂tv + div
(
|ε(v)|p−2ε(v)

)
= div(v ⊗ v) +∇π − f

Weak formulation: for all ϕ ∈ C∞0,div((−∞,T )× Ω)∫
Q
|ε(v)|p−2ε(v) : ε(ϕ) dx dt =

∫
Q
v ⊗ v : ∇ϕ dx dt +

∫
Q
f · ϕ dx dt

+

∫
Q
v ∂tϕ dx dt +

∫
Ω
v0ϕ(0) dx .
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Existence-theory (1)

Function space

blindtext

v ∈ Lp(0,T ; W̊ 1,p
div (Ω,Rd)) ∩ L2(Q,Rd),

∂tv ∈ Lσ(0,T ; W̊−1,σ(Ω,Rd)), σ > 1.

Compactness of vn in L2 by Aubert-Lions;

Monotone-operator theory provided p > 11
5 ;

L∞-truncation provided p > 8
5 by Wolf in 2007;

Lipschitz truncation provided p > 6
5 by Diening, Ruzicka, Wolf

in 2010.



Introduction to fluid mechanics
Stationary problems
Parabolic problems

Further constitutive laws

Existence-theory (2)

Parabolic scaling

blindtext

Qα
r = (−αr2, αr2)× Br , α = λ2−p.

Decomposition of Q by means of cubes (Qα
ri

)i∈N;

Lipschitz truncation vλ with ‖∇vλ‖∞ ≤ cλ;

∂tv is connected with π;

pressure decomposition π = πh + πS + πc via singular
integrals in Lp-setting.
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Open problems

Convective term v ⊗ v always defined;

Existence theory for 1 < p ≤ 6
5 ;

Regularity results if 12
5 < p < 10

3 by Seregin in 1999;

Millenium problem for p = 2.
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Electro-rheological fluids (1)

The fluid reacts on an electric field modeled by

p : (0,T )× Ω→ (1,∞)

blindtext

σ = ν(t, x , |ε(v)|)ε(v), ν(t, x , |ε(v)|) = ν0|ε(v)|p(t,x)−2.

ν increases in 1ms for the factor 1000;

Controlling of fluid properties without mechanical interaction;

Many technological applications: actuators, clutches, shock
absorbers, rehabilitation equipment;

Firstly oberved by Winslow in 1949.
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Electro-rheological fluids (2)

Generalized Lebesgue- and Sobolev-spaces

blindtext

Lp(·)(Ω) :=

{
u : Ω→ R :

∫
Ω
|u(x)|p(x) dx <∞

}
,

W 1,p(·)(Ω) :=
{
u : Ω→ R : u ∈ Lp(·)(Ω), ∇u ∈ Lp(·)(Ω,Rd)

}
.

Lp(·)(Ω) is a Banach-space via

‖u‖p(·) := inf

{
k :

∫
Ω

∣∣∣∣u(x)

k

∣∣∣∣p(x)

dx ≤ 1

}
.
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Electro-rheological fluids (3)

Existence of weak solutions in the steady case provided

p : Ω→ (1,∞) is Hölder continuous and

blindtext

inf
Ω

p >
2d

d + 2
.

Diening, Malék and Steinhauer in 2006 via Lipschitz
truncation;

Study of Lp(·) and W 1,p(·) by Diening and Ruzicka: continuity
of maximal function, smooth approximation, singular integral
operators, Korn’s inequality.
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Electro-rheological fluids (4)

The non-stationary case:

Current project: Breit, Diening, Ruzicka, Schwarzacher;

reconstruction of the pressure fails  solenoidal Lischitz
truncation;

problems with parabolic scaling α = λp−2;

no approach via Bochner spaces like Lp(0,T ;W 1,p).
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Prandtl-Eyring fluids (1)

Eyring obtained in 1936

blindtext

σ = ν(|ε(v)|)ε(v), ν(|ε(v)|) = ν0
ln(1 + |ε(v)|)
|ε(v)|

.

Very shear thinng  lubricants;

Consideration of Stokes-problems by Fuchs and Seregin in
1999;

Stationary Navier-Stokes problem in 2D by Breit, Diening and
Fuchs in 2011.
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Prandtl-Eyring fluids (2)

Funcation space for h(t) = t ln(1 + t)

blindtext

V 1,h(Ω) :=
{
w ∈ L1(Ω,Rd) :

∫
Ω
h(|ε(w)|) dx <∞

}
.

V 1,h(Ω) ↪→ Ld/(d−1)(Ω,Rd);

Korn’s inequality does not hold (Breit and Diening, 2011);

pressure reconstruction fails  solenoidal Lischitz truncation;

Maximal function is not continuous,

Parabolic problem is still open.
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