The motion of generalized Newtonian fluids

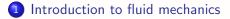
Dr. Dominic Breit

29.02.2012

ŀ

э

Outline



2 Stationary problems

・ロト・西・・田・・田・ うんの

Navier-Stokes equations

Find a velocity field $\mathbf{v}: Q \to \mathbb{R}^d$ and a pressure function $\pi: Q \to \mathbb{R}$ satisfying the following

system of partial differential equations

$$\begin{aligned} -\partial_t \mathbf{v} + \operatorname{div} \boldsymbol{\sigma} &= (\nabla \mathbf{v}) \mathbf{v} + \nabla \pi - \mathbf{f} & \text{on } Q, \\ \operatorname{div} \mathbf{v} &= 0 & \text{on } Q, \\ \mathbf{v} &= 0 & \text{on } \partial \Omega \\ \mathbf{v}(0, \cdot) &= \mathbf{v}_0 & \text{on } \Omega, \end{aligned}$$

- $Q := \Omega \times (0, T)$ with $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$ and T > 0;
- $\mathbf{f}: Q \to \mathbb{R}^d$ is a system of volume forces;
- $\sigma: Q \to \mathbb{R}^{d imes d}$ is the stress deviator.

Constituive law

In order to characterize the specific fluid under consideration we need a constitutive law, which relates σ and the symmetric gradient

$$arepsilon(\mathbf{v}) := rac{1}{2} \left(
abla \mathbf{v} +
abla \mathbf{v}^{\mathcal{T}}
ight).$$

- Newtonian fluid: $\sigma = \nu \varepsilon(\mathbf{v})$ (water, air and the most oils);
- Generalized Newtonian fluid: $\boldsymbol{\sigma} = \nu(|\boldsymbol{\varepsilon}(\mathbf{v})|)\boldsymbol{\varepsilon}(\mathbf{v});$
- the viscosity ν is a function of the shear rate $|\varepsilon(\mathbf{v})|$;
- ν increasing \Rightarrow shear thickening (batter);
- ν decreasing \Rightarrow shear thinning (blood, ketchup).

Power law model

Most popular model among rheologists

for $1 and <math>\nu_0 > 0$

$$\begin{split} \nu(|\varepsilon(\mathbf{v})|) &= \nu_0 |\varepsilon(\mathbf{v})|^{p-2}, \\ \nu(|\varepsilon(\mathbf{v})|) &= \nu_0 (1 + |\varepsilon(\mathbf{v})|)^{p-2} \end{split}$$

- $p > 2 \Rightarrow$ shear thickening fluid (batter);
- $p < 2 \Rightarrow$ shear thinning fluid (blood, ketchup);
- $p = 2 \Rightarrow$ Newtonian fluid.

Mathematical questions

- In which function spaces do we have existence of solutions?
- Under which assumptions is the solution unique?
- How are the regularity properties of solutions?

The *p*-Stokes problem (1)

Find $\mathbf{v}: \Omega \to \mathbb{R}^d$ and $\pi: \Omega \to \mathbb{R}$ satisfying

$$\begin{cases} \operatorname{div} \left(|\boldsymbol{\varepsilon}(\mathbf{v})|^{p-2} \boldsymbol{\varepsilon}(\mathbf{v}) \right) = \nabla \pi - \mathbf{f} & \text{ on } \Omega, \\ \operatorname{div} \mathbf{v} = 0 & \text{ on } \Omega, \\ \mathbf{v} = 0 & \text{ on } \partial \Omega. \end{cases}$$

• Function space for **v**:

$$\mathring{W}^{1,p}_{\mathsf{div}}(\Omega,\mathbb{R}^d) := \left\{ \mathbf{u} \in W^{1,p}(\Omega,\mathbb{R}^d): \ \mathbf{u}|_{\partial\Omega} = 0, \ \mathsf{div}\,\mathbf{u} = 0 \right\};$$

• Function space for π :

$$L_0^{p'}(\Omega) := \left\{ u \in L^{p'}(\Omega) : \int_{\Omega} u \, dx = 0 \right\}.$$

The *p*-Stokes problem (2)

Minimize the functional

$$\mathcal{J}[\mathbf{v}] := rac{1}{p} \int_{\Omega} |arepsilon(\mathbf{v})|^p \, dx - \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dx$$

- in the space $\mathring{W}^{1,p}_{div}(\Omega, \mathbb{R}^d)$.
 - Existence theory via direct method using Korn's inequality

$$\int_{\Omega} |\nabla \mathbf{v}|^p \, dx \le c \int_{\Omega} |\varepsilon(\mathbf{v})|^p \, dx$$

for all $\mathbf{v} \in \mathring{W}^{1,p}_{\operatorname{div}}(\Omega, \mathbb{R}^d).$

The *p*-Stokes problem (3)

Minimizer is weak solution

•.

$$\int_{\Omega} |\boldsymbol{\varepsilon}(\mathbf{v})|^{p-2} \boldsymbol{\varepsilon}(\mathbf{v}) : \boldsymbol{\varepsilon}(\boldsymbol{\varphi}) \, dx = \int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi} \, dx, \quad \boldsymbol{\varphi} \in C^{\infty}_{0, \mathsf{div}}(\Omega, \mathbb{R}^d).$$

• Reconstruction of the pressure π using solutions to

div
$$\mathbf{F} = \mathbf{f} \implies \mathbf{F} = \operatorname{Bog}(\mathbf{f}),$$

Bog : $L_0^p(\Omega) \rightarrow \mathring{W}^{1,p}(\Omega, \mathbb{R}^d).$

The *p*-Stokes problem (4)

Regularity

$$egin{aligned} &V:=|m{arepsilon}(\mathbf{v})|^{rac{p}{2}}\in W^{1,2}(\Omega);\ &\mathbf{v}\in C^{1,lpha}(\Omega_0,\mathbb{R}^d),\quad \mathcal{L}^d(\Omega\setminus\Omega_0)=0;\ &\mathbf{v}\in C^{1,lpha}(\Omega,\mathbb{R}^2) \quad ext{if}\quad d=2. \end{aligned}$$

- Results by Fuchs in 1996, later by Naumann;
- 2D: Kaplický, Málek and Stará in 1999.

The stationary p-Navier-Stokes problem (1)

Existence theory for stationary generalized Newtonian fluids.

Equation of motion

$${\operatorname{div}}\left(|arepsilon({f v})|^{p-2}arepsilon({f v})
ight)={\operatorname{div}}({f v}\otimes{f v})+
abla\pi-{f f}$$

- No variational approach available;
- Consider an approximated system whose solution vⁿ is known to exist together with

$$\mathbf{v}^n \rightharpoonup : \mathbf{v}$$
 in $W^{1,p}(\Omega, \mathbb{R}^d)$.

The stationary *p*-Navier-Stokes problem (2)

Convergence of the convective term

$$\int_{\Omega} \mathbf{v}^n \otimes \mathbf{v}^n : \nabla \varphi \, dx \longrightarrow \int_{\Omega} \mathbf{v} \otimes \mathbf{v} : \nabla \varphi \, dx$$

• Compact embedding

$$W^{1,p}(\Omega,\mathbb{R}^d) \hookrightarrow L^2(\Omega,\mathbb{R}^d), \quad p > rac{2d}{d+2}.$$

▲日▼ ▲雪▼ ▲画▼ ▲画▼ ▲目 ◆のぐら

The stationary *p*-Navier-Stokes problem (3)

Energy convergence

$$\int_{\Omega} |\varepsilon(\mathbf{v}^n)|^{p-2} \varepsilon(\mathbf{v}^n) : \varepsilon(\varphi) \, dx \longrightarrow \int_{\Omega} |\varepsilon(\mathbf{v})|^{p-2} \varepsilon(\mathbf{v}) : \varepsilon(\varphi) \, dx$$

- Almost everywhere-convergence $\varepsilon(\mathbf{v}^n) \rightarrow \varepsilon(\mathbf{v})$.
- Monotone-operator theory:

$$\begin{split} \int_{\Omega} \big(\mathbf{S}(\boldsymbol{\varepsilon}(\mathbf{v}^n)) - \mathbf{S}(\boldsymbol{\varepsilon}(\mathbf{v})) \big) &: \boldsymbol{\varepsilon} \left(\mathbf{v}^n - \mathbf{v} \right) \, dx \longrightarrow \mathbf{0}, \\ \big(\mathbf{S}(\boldsymbol{\zeta}) - \mathbf{S}(\boldsymbol{\xi}) \big) &: \big(\boldsymbol{\zeta} - \boldsymbol{\xi} \big) > \mathbf{0} \quad \text{if} \quad \boldsymbol{\zeta} \neq \boldsymbol{\xi}. \end{split}$$

The stationary *p*-Navier-Stokes problem (4)

Test the equation by

$$\mathbf{u}^n = \mathbf{v}^n - \mathbf{v}.$$

- Standard if $p > \frac{9}{5}$ many interesting fluids are between $[\frac{3}{2}, 2]$;
- L^{∞} -truncation if $p \geq \frac{3}{2}$ by Frehse, Malék, Steinhauer in 1997:

$$\mathbf{u}_{\lambda} = \mathbf{u} \quad \text{on} \quad \{x : |\mathbf{u}(x)| \leq \lambda\}, \quad \|\mathbf{u}_{\lambda}\|_{\infty} \leq \lambda.$$

• For blood we have $p \approx 1.21$.

Lipschitz truncation (1)

One can define the Lipschitz truncation

of a Sobolev function \boldsymbol{u} by

$$\mathcal{T}^{\lambda}\mathbf{u} := \left\{ \begin{array}{cc} \mathbf{u} &, \text{ on } [M(|\nabla \mathbf{u}|) \leq \lambda] \\ \sum_{j} \varphi_{j} \mathbf{u}_{j} &, \text{ on } [M(|\nabla \mathbf{u}|) > \lambda] \end{array} \right.$$

where $M: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$ is the Hardy-Littlewood maximal function

$$(Mf)(x) := \sup_{r>0} \oint_{B_r(x)} |f(y)| \, dy.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ◇◇◇

Lipschitz truncation (2)

- If $\mathbf{u} \in \mathring{W}^{1,p}$ then $T^{\lambda}\mathbf{u} \in \mathring{W}^{1,\infty}$;
- Lipschitz truncation of Sobolev-functions goes back to Acerbi and Fusco (1988);
- Firstly used in fluid mechanics by Frehse, Malék, Steinhauer in 2003;
- Advanced by Diening, Malék, Steinhauer in 2006;
- Existence theory for the stationary *p*-Navier-Stokes problem provided

$$p>rac{6}{5}.$$

The non-stationary *p*-Navier-Stokes problem

Existence theory for non-stationary generalized Newtonian fluids.

Equation of motion

$$-\partial_t \mathbf{v} + \operatorname{div} \left(|\boldsymbol{\varepsilon}(\mathbf{v})|^{p-2} \boldsymbol{\varepsilon}(\mathbf{v})
ight) = \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) +
abla \pi - \mathbf{f}$$

Weak formulation: for all $\varphi \in C^{\infty}_{0,div}((-\infty, T) \times \Omega)$

$$\begin{split} \int_{Q} |\varepsilon(\mathbf{v})|^{p-2} \varepsilon(\mathbf{v}) &: \varepsilon(\varphi) \, dx \, dt = \int_{Q} \mathbf{v} \otimes \mathbf{v} : \nabla \varphi \, dx \, dt + \int_{Q} f \cdot \varphi \, dx \, dt \\ &+ \int_{Q} \mathbf{v} \, \partial_{t} \varphi \, dx \, dt + \int_{\Omega} \mathbf{v}_{0} \, \varphi(0) \, dx. \end{split}$$

Existence-theory (1)

Function space

$$\begin{split} \mathbf{v} &\in L^p(\mathbf{0}, T; \mathring{W}^{1,p}_{\mathsf{div}}(\Omega, \mathbb{R}^d)) \cap L^2(Q, \mathbb{R}^d), \\ \partial_t \mathbf{v} &\in L^{\sigma}(\mathbf{0}, T; \mathring{W}^{-1,\sigma}(\Omega, \mathbb{R}^d)), \quad \sigma > 1. \end{split}$$

- Compactness of \mathbf{v}^n in L^2 by Aubert-Lions;
- Monotone-operator theory provided $p > \frac{11}{5}$;
- L^{∞} -truncation provided $p > \frac{8}{5}$ by Wolf in 2007;
- Lipschitz truncation provided p > ⁶/₅ by Diening, Ruzicka, Wolf in 2010.

Existence-theory (2)

Parabolic scaling

$$Q_r^{\alpha} = (-\alpha r^2, \alpha r^2) \times B_r, \quad \alpha = \lambda^{2-p}.$$

- Decomposition of Q by means of cubes $(Q_{r_i}^{\alpha})_{i \in \mathbb{N}}$;
- Lipschitz truncation \mathbf{v}^{λ} with $\|\nabla \mathbf{v}^{\lambda}\|_{\infty} \leq c\lambda$;
- $\partial_t \mathbf{v}$ is connected with π ;
- pressure decomposition π = π_h + π_S + π_c via singular integrals in L^p-setting.

Open problems

- Convective term $\mathbf{v} \otimes \mathbf{v}$ always defined;
- Existence theory for 1 ;
- Regularity results if $\frac{12}{5} by Seregin in 1999;$
- Millenium problem for p = 2.

Electro-rheological fluids (1)

The fluid reacts on an electric field modeled by

$$p:(0,T)\times\Omega \to (1,\infty)$$

$$\boldsymbol{\sigma} = \nu(t, x, |\boldsymbol{\varepsilon}(\mathbf{v})|)\boldsymbol{\varepsilon}(\mathbf{v}), \quad \nu(t, x, |\boldsymbol{\varepsilon}(\mathbf{v})|) = \nu_0 |\boldsymbol{\varepsilon}(\mathbf{v})|^{p(t, x) - 2}$$

- ν increases in 1ms for the factor 1000;
- Controlling of fluid properties without mechanical interaction;
- Many technological applications: actuators, clutches, shock absorbers, rehabilitation equipment;
- Firstly oberved by Winslow in 1949.

Electro-rheological fluids (2)

Generalized Lebesgue- and Sobolev-spaces

$$L^{p(\cdot)}(\Omega) := \left\{ u: \Omega \to \mathbb{R} : \int_{\Omega} |u(x)|^{p(x)} dx < \infty \right\},$$
$$W^{1,p(\cdot)}(\Omega) := \left\{ u: \Omega \to \mathbb{R} : u \in L^{p(\cdot)}(\Omega), \nabla u \in L^{p(\cdot)}(\Omega, \mathbb{R}^d) \right\}.$$

L^{p(·)}(Ω) is a Banach-space via

$$\|u\|_{p(\cdot)} := \inf \left\{ k: \int_{\Omega} \left| \frac{u(x)}{k} \right|^{p(x)} dx \leq 1 \right\}$$

Electro-rheological fluids (3)

Existence of weak solutions in the steady case provided

$$p:\Omega
ightarrow(1,\infty)$$
 is Hölder continuous and $\inf_\Omega p>rac{2d}{d+2}.$

- Diening, Malék and Steinhauer in 2006 via Lipschitz truncation;
- Study of *L^{p(.)}* and *W*^{1,p(.)} by Diening and Ruzicka: continuity of maximal function, smooth approximation, singular integral operators, Korn's inequality.

Electro-rheological fluids (4)

The non-stationary case:

- Current project: Breit, Diening, Ruzicka, Schwarzacher;
- reconstruction of the pressure fails → solenoidal Lischitz truncation;
- problems with parabolic scaling $\alpha = \lambda^{p-2}$;
- no approach via Bochner spaces like $L^{p}(0, T; W^{1,p})$.

Prandtl-Eyring fluids (1)

Eyring obtained in 1936

$$\boldsymbol{\sigma} = \nu(|\boldsymbol{\varepsilon}(\mathbf{v})|)\boldsymbol{\varepsilon}(\mathbf{v}), \quad \nu(|\boldsymbol{\varepsilon}(\mathbf{v})|) = \nu_0 \frac{\ln(1+|\boldsymbol{\varepsilon}(\mathbf{v})|)}{|\boldsymbol{\varepsilon}(\mathbf{v})|}$$

- Very shear thinng → lubricants;
- Consideration of Stokes-problems by Fuchs and Seregin in 1999;
- Stationary Navier-Stokes problem in 2D by Breit, Diening and Fuchs in 2011.

Prandtl-Eyring fluids (2)

Funcation space for $h(t) = t \ln(1+t)$

$$V^{1,h}(\Omega) := \Big\{ \mathbf{w} \in L^1(\Omega, \mathbb{R}^d) : \int_{\Omega} h(|\boldsymbol{\varepsilon}(\mathbf{w})|) \, dx < \infty \Big\}.$$

•
$$V^{1,h}(\Omega) \hookrightarrow L^{d/(d-1)}(\Omega, \mathbb{R}^d);$$

- Korn's inequality does not hold (Breit and Diening, 2011);
- pressure reconstruction fails → solenoidal Lischitz truncation;
- Maximal function is not continuous,
- Parabolic problem is still open.

- D. Breit, L. Diening (2011): Sharp conditions for Korn inequalities in Orlicz spaces. To appear in J. Math. Fluid Mech.
- D. Breit, L .Diening, M. Fuchs (2011): Solenoidal Lipschitz truncation and applications in fluid mechanics. To appear in J. Diff. Eq.
- L. Diening, J. Malék, M. Steinhauer (2006): On Lipschitz Truncations of Sobolev Functions (with Variable Exponent) and Their Selected Applications. Control, Optimization and Calculus of Variations.
- L. Diening, M. Ruzicka, J. Wolf (2010): Existence of Weak Solutions for Unsteady Motions of Generalized Newtonian Fluids. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, IX, 1-46.

- J. Frehse, J. Malék, M. Steinhauer (2003): On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34 (5), 1064-1083.
- M. Fuchs, G. Seregin (1999): Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening. Math. Meth. Appl. Sciences 22, 317-351.
- J. Wolf (2007): Existence of weak solutions to the equations of nonstationary motion of non-Newtonian fluids with shear-dependent viscosity. J. Math. Fluid Mech. 9, 104-138.