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Introduction to fluid mechanics

Navier-Stokes equations

Find a velocity field v : @ — R? and a pressure function
7 Q@ — R satisfying the following

system of partial differential equations

—0wv+dive = (Vv)v+Vr—f  on Q,

divv =20 on Q,
v=0 on 0,
v(0,:) = vo on €,

0 Q:=0x(0,T)withQcR? dec{2,3}and T >0;
o f: Q = R is a system of volume forces;
e 0 : Q — RY*9 is the stress deviator.



Introduction to fluid mechanics

Constituive law

In order to characterize the specific fluid under consideration we
need a constitutive law, which relates o and the symmetric
gradient

g(v) == % (Vv + VVT> .

Newtonian fluid: o = ve(v) (water, air and the most oils);
Generalized Newtonian fluid: o = v(|e(v)|)e(v);
the viscosity v is a function of the shear rate |e(v)|;

v increasing = shear thickening (batter);

v decreasing = shear thinning (blood, ketchup).



Introduction to fluid mechanics

Power law model

Most popular model among rheologists

forl< p<ooandy >0

v(le(v)]) = vole(v)|P~,
v(le(v)]) = vo(1 + le(v))P~2.

@ p > 2 = shear thickening fluid (batter);
@ p < 2 = shear thinning fluid (blood, ketchup);
@ p = 2 = Newtonian fluid.



Introduction to fluid mechanics

Mathematical questions

@ In which function spaces do we have existence of solutions?
@ Under which assumptions is the solution unique?

@ How are the regularity properties of solutions?



Stationary problems

The p-Stokes problem (1)

Find v:Q — R? and 7 : Q — R satisfying

divv =0 on 2,

{ div (|e(v)|P2e(v)) =Vr —f on Q,
v=0 on 01.

@ Function space for v:
Vonli;/p(Q,Rd) = {u € WHP(Q,RY) : u|gqg =0, divu= O} ;
@ Function space for m:
Lg/(Q) = {u e P (Q): /Qudx = O}.
I



Stationary problems

The p-Stokes problem (2)

Minimize the functional

JIv] ::[1)/Q|s(v)|pdx—/ﬂf~vdx

in the space W,P(Q, RY).
@ Existence theory via direct method using Korn's inequality

/ |Vv|Pdx < c/ le(v)|P dx
Q Q

for all v € W3P(Q,RY).




Stationary problems

The p-Stokes problem (3)

Minimizer is weak solution

/ le(v)[P2e(v) : () dx = / f-pdx, pc C(‘)’E,EV(Q,R").
Q Q

@ Reconstruction of the pressure 7 using solutions to

dvF=f = F = Bog(f),
Bog : LB(Q) — WLP(Q,RY).



Stationary problems

The p-Stokes problem (4)

Regularity

V= le(v)]2 € W2(Q);
ve Ch(Q,RY), L£9(Q\ Q) =0;
ve ChYQR?) if d=2.

@ Results by Fuchs in 1996, later by Naumann;
e 2D: Kaplicky, Malek and Stard in 1999.



Stationary problems

The stationary p-Navier-Stokes problem (1)

Existence theory for stationary generalized Newtonian fluids.

Equation of motion

div (|e(v)[P2e(v)) = div(v®@ V) + V7 — f

@ No variational approach available;

@ Consider an approximated system whose solution v” is known
to exist together with

vl —ivoin WEP(Q,RY).



Stationary problems

The stationary p-Navier-Stokes problem (2)

Convergence of the convective term

/v"®v":chdx—>/v®v:V<pdx
Q Q

@ Compact embedding

2d
WwiP(Q RY [2(Q, RY Skl
(2,R?) — L5(,RY), P>



Stationary problems

The stationary p-Navier-Stokes problem (3)

Energy convergence

[ 1en)P2eun): e(@)dx — [ [e)P 2e(w) s (i)
Q Q

@ Almost everywhere-convergence e(v") — &(v).

@ Monotone-operator theory:

/Q(S(s(v")) CS(e(v))) (V" — v) dx —» 0,
(S(¢)—S(&): (¢—¢) >0 if ¢#E



Stationary problems

The stationary p-Navier-Stokes problem (4)

Test the equation by
u" =v"—v.
e Standard if p > % many interesting fluids are between [%,2];
@ [*°-truncation if p > % by Frehse, Malék, Steinhauer in 1997:
uy=u on {x: [u(x)] <A}, |lurllec <A

@ For blood we have p ~ 1.21.



Stationary problems

Lipschitz truncation (1)

One can define the Lipschitz truncation

of a Sobolev function u by

L u , on [M(|Vul) < A]
T u ._{ Sjei , on [M([Vul) > Al

where M : [P(RY) — LP(RY) is the Hardy-Littlewood maximal

function
(M := sup ][ [f(y)| dy-
r>0

B:(x)



Stationary problems

Lipschitz truncation (2)

o If uc WP then THu € Wl’oo;

@ Lipschitz truncation of Sobolev-functions goes back to Acerbi
and Fusco (1988);

@ Firstly used in fluid mechanics by Frehse, Malék, Steinhauer in
2003;

Advanced by Diening, Malék, Steinhauer in 2006;

@ Existence theory for the stationary p-Navier-Stokes problem
provided

L0
P>



Parabolic problems

The non-stationary p-Navier-Stokes problem

Existence theory for non-stationary generalized Newtonian fluids.

Equation of motion

—9v +div (le(v)|P2e(v)) = div(v® v) + Vi — f

Weak formulation: for all ¢ € (55, ((—00, T) x Q)

/Q|€(V)\p_2€(V) s () dx dt = /

Q
+/ v@tcpdxdt—l—/vocp(O) dx.
Q Q

v®v:V<pdxdt+/ f-pdxdt
Q



Parabolic problems

Existence-theory (1)

Function space

v € LP(0, T; WP (Q,RY)) N L*(Q,RY),
dwv e L°(0, T; W17(Q,RY)), o> 1.

Compactness of v” in L2 by Aubert-Lions;
Monotone-operator theory provided p > %;
L°°-truncation provided p > % by Wolf in 2007;

Lipschitz truncation provided p > % by Diening, Ruzicka, Wolf
in 2010.



Parabolic problems

Existence-theory (2)

Parabolic scaling

Q® = (—ar®, ar®) x B,, a=\>"P,

Decomposition of Q by means of cubes (Qf)ien;
Lipschitz truncation v* with ||[Vv*||o < c);

OV is connected with 7;

pressure decomposition m = 7, + ms + 7, via singular
integrals in LP-setting.



Parabolic problems

problems

Convective term v ® v always defined;

Regularity results if % <p< % by Seregin in 1999;

°

e Existence theory for 1 < p < &:
°

@ Millenium problem for p = 2.



Further constitutive laws

Electro-rheological fluids (1)

The fluid reacts on an electric field modeled by

p:(0,7T)xQ— (1,00)

o =uv(t,x, |e(v)])e(v), v(t,x,|e(v)]) = vole(v)[P(+)2.

@ v increases in 1ms for the factor 1000;
@ Controlling of fluid properties without mechanical interaction;

@ Many technological applications: actuators, clutches, shock
absorbers, rehabilitation equipment;

@ Firstly oberved by Winslow in 1949.



Further constitutive laws

Electro-rheological fluids (2)

Generalized Lebesgue- and Sobolev-spaces

LPON(Q) .= {u Q- R: / lu(x)|PX) dx < OO},
Q

WirO(Q) = {u Qo R: ue lPOQ), Vue Lp(‘)(Q,Rd)}.

e LP()(Q) is a Banach-space via

p(x)
ullpy = inf{k: / dxgl}.
Q

u(x)
k




Further constitutive laws

Electro-rheological fluids (3)

Existence of weak solutions in the steady case provided

p:Q — (1,00) is Holder continuous and

@ Diening, Malék and Steinhauer in 2006 via Lipschitz
truncation;

e Study of LP() and WP() by Diening and Ruzicka: continuity
of maximal function, smooth approximation, singular integral
operators, Korn's inequality.



Further constitutive laws

Electro-rheological fluids (4)

The non-stationary case:
@ Current project: Breit, Diening, Ruzicka, Schwarzacher;

@ reconstruction of the pressure fails ~ solenoidal Lischitz
truncation;

@ problems with parabolic scaling o = A\P~2;

@ no approach via Bochner spaces like LP(0, T; WLP).



Further constitutive laws

Prandtl-Eyring fluids (1)

Eyring obtained in 1936

In(1 + |e(v)])

o =v(e(e(v), leW)=w="5

@ Very shear thinng ~~ lubricants;

o Consideration of Stokes-problems by Fuchs and Seregin in
1999;

@ Stationary Navier-Stokes problem in 2D by Breit, Diening and
Fuchs in 2011.



Further constitutive laws

Prandtl-Eyring fluids (2)

Funcation space for h(t) = tIn(1 + t)

Vih(Q) = {w e L1(Q,RY): / h(le(w)]) dx < oo}.

Q

VIA(Q) — L9/(d-1)(Q, RY);
Korn's inequality does not hold (Breit and Diening, 2011);
pressure reconstruction fails ~~ solenoidal Lischitz truncation;

Maximal function is not continuous,

Parabolic problem is still open.
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