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Introduction

Stochastic Navier—Stokes equations

Velocity field u and pressure m on Q = (0, T) x O

du = [pAu —div(u®@ u) — Vr]dt + GdW in Q,
divu=20 in Q.

Cylindrical Wiener process W on a separable Hilbert space
with basis (ex)k>0 (e.g. L2(0)): W = > k>0 Brex;
Coefficient G is a Hilbert-Schmidt operator;

Defined on filtered probability space (2, ., (F¢)t>0, P);

°
e Multiplicative noise G = G(u) has to be Lipschitz;
°
@ Initial datum ug can be random.



Introduction

Stochastic perturbations

© It can be understood as turbulence in the fluid motion.
Holm: Dynamics of fluid particles contain turbulent part
oodW

du= ..+ [ocVu]odW,

@ Regularisation by noise. Flandoli-Luo (2021): transport noise
delays vorticity blow-up

dw= ..+ [ocVw]odW,

© Can be interpreted as a perturbation from the physical model.

@ Apart from the force f, which we are observing, there are
further quantities with (usually small) influence on the motion.



Introduction

Weak formulation

Find u such that for all ¢ € W(i’dziv(O) and all t € [0, T]

/u(t) godx—/uo cpdx—i—/ /u®u Ve dxdo
(@
—u/ /Vu chdxda—i—/ / GdW dx.

@ Pressure disappears in weak formulation;
o By Ité-isometry if G € Lp(L2; L2)
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Properties of solutions

Weak pathwise solutions

A stochastically strong solution

is an (§¢)-adapted stochastic process u with
u e C((0, TJ; L5,(0) N L3(0, T Wo 5, (©))

P-a.s. which solves the momentum equation in the weak sense.

e Exists on a given stochastic basis (2,5, (F:), P);

e W is a given (§¢)-cylindrical Wiener process;

@ We have u(0, ) = up P-a.s. where ug is Fo-measurable with
w € L2(S L3, (0));

@ First results by Capinski and Capiriski-Cutland (1991/1993).



Properties of solutions

Qualitative properties: periodic case

Solution u satisfies for all r < oo

T r ,
IE[ sup / |Vu|2+/ / |V2u|2} < c,]E[1+Hu0HiV1,2 .
0<t<T JT2 o Jr2 x

e “Test” by Au (apply Itd's formula to t — ||u||f/vl’2);

o Use [1,(Vu)u- Audx =0;

@ Higher order estimates: ug € Wh? =
u € LP(Wx?) N (W),




Properties of solutions

Qualitative properties: Dirichlet case

Solution u satisfies for all r < oo

tr r r
[ sup /|Vu|2 / /|v2u‘2] < c(r,,l:e)ﬂ-z[1+Huo||f/vl,2
0<t<tgr o Jo x

o Here tg is a stopping time s.t. [|[Vu(tr)|[2 > R;

o tg — t with P(t=00) =1,

@ Higher order estimates (depending on R) accordingly.
@ Not known for ANY finite deterministic T.




Error analysis: periodic case

Finite-element spaces

T}, is quasi-uniform subdivision of T? into triangles S, i,j € N

VI(T?) := {v, € WE2(T?) : vy|s € Z:(S) VS € T},
Ph(Tz) = {m, € L2(T2) D Th|s € @j(S) VS € T}

o V/(T?) and P"(T?) linked by inf-sup condition:

fodivvhwhdx

sup > Cl|mpllz Y7n € Ph(Tz);

vy EVH(T?) HVVh”Lg

@ Discretely solenoidal finite element functions by
Vil (T2) = {Vh € VI(T?): / divvy, mpdx = 0V, € P”(']I‘2)}.
T2



Error analysis: periodic case

The algorithm

Find r.v. uj m with values in V! (T?) s.t. for all ¢ € VI (T?)

/2 Upm - dx + T/z (Vupm)upm-1 + (divupm1)upm) - pdx
T T
+,u7'/ Vupm: Vedx = / Up m—1 - @dx
T2 T2

+ / G(upm—1) AmW - pdx.
T2

o Initial datum upo € VI (T?) given (e.g. upo = Mpup);
e Here Ap,W = W(tp) — W(tm—1) where t, = m%;
e First analysed by Carelli-Prohl (2012).



Error analysis: periodic case

Convergence rates (1)

Breit-Dodgson (Num. Math. 2021): for any £ > 0, a < % <1

2

maxm |u(tm) = uhmlf2 + X Tlu(tm) — Uhmll? 12

h28 + 12a

>&|1 =0

Convergence in probability with rates (almost) 1/2 and 1.
Carelli-Prohl (2012): same estimate with h?® + 7%

Low time-regularity of pressure ~» decompose into
deterministic and stochastic part.

Bessaih-Millet: logarithmic L2-convergence by exponential
moment bounds.



Error analysis: periodic case

Convergence rates (2)

Strategy of the proof:

e Estimates localised in sample space on Q7" where Q™" with
P(Q7") — 1 ~~ estimate for E[lgrs . . .]

o Q™" controls blow-up of maxn, [Vu(tm)ll 2

@ Introduce in m-th step Q;;/ll, multiply by I+ to control
m—1

blow-up of maxp,<m-1 Hvu(tn)HLi;

@ Use regularity estimates for continuous solution.



Error analysis: periodic case

Multiplicative noise

Breit-Prohl (Preprint): for any £ > 0, a < % 6<1

max [U(tR) — wp w2 + 3 TIU(ER) — 20

h28 + 12a >&| =0
e Multiplication by I insufficient to control continuous
m—1

solution until t,,!

e Discrete stopping times tf < t ~ (., )-stopping times but
not (F¢)-stopping times;

e Since tf — t,, in probability it does not effect convergence
result.



Error analysis: periodic case

Additive noise (1)

Consider y(t) = u(t) — fotgﬁdW(s) = u(t) — PW(t) which solves

Oy = pAy — P[(Vy)y] + pA@W] — P[LY(y)]

@ y solves deterministic equation with random coefficients;
@ y has a weak time-derivative;

e Control temporal error between y(t,,) and y,, using stopping
times for u, (um)M_; and oW;

@ Error between u and y known.



Error analysis: periodic case

Additive noise (2)

Breit-Prohl (IMAJNA, online): for any £ >0, o, 8 < 1

. IY(t5) = YamlTz + X TIYER) = Yaml? 12
max x

m h?8 + 720 >8] =0

e Convergence of (up to) order 1 in time!

@ Control temporal error between y,, and y, ,, using estimates
for (ym)m=1-
@ Bessaih-Millet: Convergence rates in mean-square for p > 1.
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