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Fluid structure interaction

In this talk we will consider a compressible heat-conducting fluid
which is floating in a flexible body.

The fluid forces are interacting with a membrane that is
assumed to be a part of the boundary.

The geometry changes in time.

Examples :

Blood vessels : Gas balloon :

Airplane wing :
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The Setting

Figure – Left : A tubular neighbourhood of shell ∂Ω represented by
bended cylinder. Right : A tiny section of the shell ∂Ω with thickness
2ε0 > 0.

Abuse of notation : identify points y ∈ ∂Ω, with points y ∈ ω,
for simplicity assume ω flat torus ;

Ω can be parametrised by ϕ : ω → R3 ;

For η : ω → R consider ϕ : ω → R3 given by

ϕη(y) = ϕ(y) + η(y)ν(y), y ∈ ω.
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Koiter’s elastic energy

Elastic energy of the deformation given by

blindtext

K (η) =
1

2
ε0

∫
ω
C : G(η)⊗G(η) dy +

1

6
ε3

0

∫
ω
C : R](η)⊗ R](η)dy

G contains covariant components of change of metric tensor ;

R] contains covariant components of change of curvature
tensor ;

C = (C ijkl)2
i ,j ,k,l=1 contains contravariant components of the

shell elasticity ;

K is coercive on W 2,2(ω) but not continuous : most critical
term in K (η) behaves as

∫
ω |∇

2η|2|∇η|4 dy .
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The PDE in the interior

For η : I × ω → R given, denote Ωη(t) the variable in time domain,
by I × Ωη =

⋃
t∈I {t} × Ωη(t) the deformed time-space cylinder :

∂Ωη(t) = {ϕ(y) + η(t, y)ν(y) : y ∈ ω}.
The fluid is heat-conducting, compressible and viscous

∂t%+ div(%u) = 0, in I × Ωη,

∂t(%u) + div(%u⊗ u) = div S(ϑ,∇u)−∇p + %f in I × Ωη,

∂t(%e) + div(%eu) = S(ϑ,∇u) : ∇u− p div u

− div q(ϑ,∇ϑ) + %H in I × Ωη,

u(t, x + η(x)) = ∂tη(t, x) in I × ω.
The shell is driven by Koiter-energy  equation for the shell is

∂2
t η + K ′(η) = g + ν ·

(
− τνη

)
◦ϕη(t)| detDϕη(t)| in I × ω,

τ = S(ϑ,∇u)− pI.
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Constitutive relations

Newton’s rheological law (with λ, µ ∼= 1 + ϑ)

S(ϑ,∇u) = µ(ϑ)
(∇u +∇uT

2
− 1

3
div u I

)
+ λ(ϑ) div u I;

Heat flux determined by Fourier’s law (with κ ∼= 1 + ϑ3)

q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ = −∇K(ϑ), K(ϑ) =

∫ ϑ

0
κ(z) dz ;

p and e related to (specific) entropy s through Gibbs’ equation

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D
(1

%

)
for all %, ϑ > 0,

p(%, ϑ) = %γ + %ϑ+
a

3
ϑ4, s(%, ϑ) = log(ϑcv )− log %+

4a

3

ϑ3

%
.
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Entropy/energy balance balance

The Second law of thermodynamics is enforced through

the entropy balance equation

blindtext

∂t(%s(%, ϑ)) + div(%s(%, ϑ)u) = − div
(q(ϑ,∇ϑ)

ϑ

)
+ σ + %

H

ϑ
,

σ =
1

ϑ

(
S(ϑ,∇u) : ∇u− q(ϑ,∇ϑ) · ∇ϑ

ϑ

)
.

Approach based on entropy balance by Feireisl-Novotný (’09),
earlier approach based on energy balance by Feireisl (’04).

Energy conserved in the entropy approach, here

E =

∫
Ωη

(1

2
%|u|2 + %e(%, ϑ)

)
dx +

∫
ω

|∂tη|2

2
dy + K (η).
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Weak formulation (1)

Let η : I × ω → R and consider a coordinate map Ψη : Ω→ Ωη.
Reynolds transport theorem :

d

dt

∫
Ωη(t)

g dx =

∫
Ωη(t)

∂tg dx +

∫
∂Ωη(t)

∂tη ◦ϕ−1 ◦Ψ−1
η ν · νηg dH2,

The weak continuity equation : integration by parts implies for
ψ ∈ C∞(I × Ω)∫

I

d

dt

∫
Ωη

%ψ dx dt −
∫
I

∫
Ωη

(
%∂tψ + %u · ∇ψ

)
dx dt = 0,

if u ◦Ψη ◦ϕ = ∂tην on ∂Ωη(t).
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Weak formulation (2)

The weak momentum equation :
For (b,ϕ) ∈ C∞(ω)× C∞(I × R3) with trηϕ = bν∫

I

(
d

dt

∫
Ωη

%u ·ϕ dx −
∫

Ωη

%u · ∂tϕ+ %u⊗ u : ∇ϕ dx

)
dt

+

∫
I

∫
Ωη

(
S(ϑ,∇u) : ∇ϕ− p(ϑ, ϑ) divϕ

)
dx dt

+

∫
I

(
d

dt

∫
ω
∂tηb dy −

∫
ω
∂tη ∂tb dy +

∫
ω
K ′(η) b dy

)
dt

=

∫
I

∫
Ωη

%f ·ϕ dx dt +

∫
I

∫
ω
g b dy dt.
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Weak formulation (3)

The weak entropy balance : We have∫
I

d

dt

∫
Ωη

%s(%, ϑ)ψ −
∫
I

∫
Ωη

(
%s(%, ϑ)∂tψ + %s(%, ϑ)u · ∇ψ

)
≥
∫
I

∫
Ωη

1

ϑ

(
S(ϑ,∇u) : ∇u +

κ(ϑ)

ϑ
|∇ϑ|2

)
ψ

−
∫
I

∫
Ωη

κ(ϑ)∇ϑ
ϑ

· ∇ψ dx dt +

∫
I

∫
Ωη

%

ϑ
Hψ

for all ψ ∈ C∞(I × R3) with ψ ≥ 0. Moreover, we have
limr→0 %s(%, ϑ)(t) ≥ %0s(%0, ϑ0) and ∂νηϑ|∂Ωη ≤ 0.
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Renormalized continuity equation

The renormalized continuity equation :
For ψ ∈ C∞(I × Ω) and θ ∈ C 1(R+) with θ(0) = 0

0 =

∫
I

d

dt

∫
Ωη

θ(%)ψ dx dt −
∫
I

∫
Ωη

(
θ(%)∂tψ + θ(%)u · ∇ψ

)
dx dt

+

∫
I

∫
Ωη

(%θ′(%)− θ(%)) div uψ dx dt.

Major ingredient for compressible Navier–Stokes equations.

Introduced by Di Perna-Lions ’89.

Version above : Breit-Schwarzacher, ‘18.
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Main theorem

Theorem (Breit-Schwarzacher, Ann. SNS Pisa, to appear)

Let γ > 12
7 (γ > 1 in two dimensions). Under natural assumptions

on the data there exists a weak solution (η,u, %, ϑ) with satisfies
the energy balance

E(t) = E(0) +

∫
Ωη

%H dx +

∫
Ωη

%f · u dx +

∫
ω
g ∂tη dy ,

E =

∫
Ωη

(1

2
%|u|2 + %θ)

)
dx +

∫
ω

|∂tη|2

2
dy + K (η).

The interval of existence is of the form I = (0, t), t < T only if

Ωη(s) approaches a self-intersection when s → t or

the Koiter energy degenerates (namely, if lims→t γ(s, y) = 0
for some point y ∈ ω).
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Main theorem

Theorem (Breit, Schwarzacher, ARMA ’18)

Let γ > 12
7 (γ > 1 in two dimensions). There is a weak solution

(η,u, %). The solution satisfies the energy estimate

sup
t∈I

∫
Ωη

%|u|2 dx + sup
t∈I

∫
Ωη

%γ dx +

∫
I

∫
Ωη

|∇u|2 dx dt

+ sup
t∈I

∫
ω
|∂tη|2 dy + sup

t∈I

∫
ω
|∇2η|2 ≤ c(q0, %0, f, g , η0, η1).

1 Incompressible analogue : Lengeler & Růžička, (ARMA, ’14).

2 Restriction to linear shell models !
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Sequential compactness

Assume there is a sequence of solutions (ηn,un, %n) which enjoys
suitable regularity properties and satisfies the energy estimate
uniformly in n.
How can we pass to the limit in the equation ?

passage to the limit in the convective terms %nun and
%nun ⊗ un by local arguments and global integrability.
No problems with the moving boundary !
Much easier than incompressible case !

Main problem (typical for compressible Navier–Stokes) :
Passing to the limit in the nonlinear pressure p(%n) = %γn .
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Higher integrability of the pressure (1)

A priori p(%n) only bounded in L∞(L1)
⇒ Concentrations possible !

Improve integrability by “computing the pressure” : Use
globally Bogovskĭı-operator ≈ div−1 or locally ∆−1div :∫

p(%n)%n =

∫
%nun ⊗ un : ∇2∆−1%n + . . . (if γ > 3),∫

p(%n)%Θ
n =

∫
%nun ⊗ un : ∇2∆−1%Θ

n + . . . (if Θ ≤ 3

2
γ − 1);

Bogovskĭı-operator requires Lipschitz boundary ⇒ standard
approach only gives higher integrability locally.

How to exclude concentrations at the boundary ?
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Higher integrability of the pressure (2)

Lemma

There is a measurable set Aκ b I × Ωηn such that for all n ≥ n0∫
I×R3 \Aκ

a%γnχΩηn dx dt ≤ κ.

Construct test-function ϕn such that :

zero boundary conditions on ∂Ωηn ;

divϕn ≥ Kκ close to the boundary ;

Critical term
∫
I

∫
Ωηn

%nun ∂tϕn dx dt with

∂tϕn ∼ ∂tηn = un ◦Ψn|∂Ωηn ∈ L2(L4−) ;

Since %nun ∈ L2(L
6γ
γ+6 ) we need γ > 12

7 .
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Four layer approximation scheme

Artificial pressure (δ-layer) : replace p(%) = a%γ by
pδ(%) = a%γ + δ%β where β is chosen large enough.

Artificial viscosity (ε-layer) : add ε∆% to the right-hand side
of the continuity equation.

Regularization of the boundary (κ-layer) : Replace the
underlying domain Ωη by Ωηκ where ηκ is a suitable
regularization of η. Accordingly, the convective terms and the
pressure have to be regularized as well.

Finite-dimensional approximation (N-layer) : the momentum
equation has to be solved by means of a
Galerkin-approximation.

The first two layers are common in the theory of compressible
Navier–Stokes equations, see Feireisl et al. Third layer is needed
due to the low regularity of η.
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Strong convergence of the temperature

The entropy balance

blindtext

∂t(%s(%, ϑ)) + div(%s(%, ϑ)u) ≥ − div
(q(ϑ,∇ϑ)

ϑ

)
+ σ + %

H

ϑ
,

σ =
1

ϑ

(
S(ϑ,∇u) : ∇u− q(ϑ,∇ϑ) · ∇ϑ

ϑ

)
.

Gives control of ∇ϑ using q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ ;

No control of ∂tϑn (recall %s(%, ϑ) = 4a
3 ϑ

3)

Use monotonicity of s combined with div-curl-lemma in
space-time (Feireils-Novotný) ;

Local argument  no problems with moving domain.
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Total energy

blindtext

E =

∫
Ωη

(1

2
%|u|2 + %e(%, ϑ)

)
dx +

∫
ω

|∂tη|2

2
dy + K (η).

Terms related to the fluid do not cause problems ;

Coercivity of K gives control of ∇2η, not enough to pass to
the limit (not even in linear case) ;

Fractional derivative of ∂tη only in space (trace theorem) ;

Use information from coupled the momentum equation to get
compactness of ∂tη by uniform continuity in time
(approach by Lengeler-Růžička or abstract framework by
Muha-Schwarzacher).
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Fractional difference quotient for some s > 0

blindtext

∫
I
‖∆s

h∇2η‖2
L2(ω) dt ≤ c ⇒

∫
I
‖η‖2

W 2+s,2(ω) dt ≤ c .

Muha-Schwarzacher : use test-function (ϕ, ϕ) with

ϕ =∆s
−h∆s

hη −Kη(∆s
−h∆s

hη),

ϕ =
(
F div
η (∆s

−h∆s
hη −Kη(∆s

−h∆s
hη));

Pressure only in L1-globally !

Most critical term is (requires γ > 12
7 )∫

I

∫
Ωη(t)

%u · ∂tϕ dx dt.



The model
Main result

The isentropic case
The full system

Three layer approximation scheme

Artificial pressure (δ-layer) : replace p(%) = %γ + aϑ4 by
pδ(%) = %γ + δ%β + aϑ4 where β is chosen large enough ;

Artificial viscosity (ε-layer) : add ε∆% to the right-hand side
of the continuity equation ;

Galerkin-approximation (N-layer)  fixed point for linearised
problem on the Galerkin level (use basis functions Ψ−1

η ◦ ω̃k) ;

How to prove strict positivity of the temperature ?

Internal energy equation continuous in space, velocity and
shell finite dimensional ;

Transform to reference domain (det∇Ψη 6= 1) ;

Regularity theory and minimum principle for transformed
equation.
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