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The model

Fluid structure interaction

In this talk we will consider a compressible heat-conducting fluid
which is floating in a flexible body.
@ The fluid forces are interacting with a membrane that is
assumed to be a part of the boundary.
@ The geometry changes in time.
Examples :

Blood vessels : Gas balloon :

Airplane wing :



The model

The Setting

FIGURE — Left : A tubular neighboﬁrhood of shell 09 represented by
bended cylinder. Right : A tiny section of the shell 9Q with thickness
2e9 > 0.

@ Abuse of notation : identify points y € 0, with points y € w,
for simplicity assume w flat torus;

@ Q can be parametrised by ¢ : w — R3;

@ For 1 :w — R consider ¢ : w — R3 given by

e, (v) = (y) +ny)vly), yecw.
I



The model

Koiter's elastic energy

Elastic energy of the deformation given by

K(n) = 350 [ €:6n) @ Gn)dy + 523 [ C: R o Ri(n) dy

@ G contains covariant components of change of metric tensor;

e RR? contains covariant components of change of curvature
tensor ;

o C= (C"fk’),?d-%,:1 contains contravariant components of the
shell elasticity ;

e K is coercive on W?2(w) but not continuous : most critical
term in K(n) behaves as [ |V2n|?|Vn|*dy.



The model

The PDE in the interior

For n: 1 x w — R given, denote ,(;) the variable in time domain,
by I x Q) = Uyes {t} X Qy(r) the deformed time-space cylinder :

Oy = {ep(y) +n(t,y)v(y) -y € w}.
The fluid is heat-conducting, compressible and viscous
Oro + div(pu) = 0, in [ xQ,,
O¢(ou) + div(ou ® u) = divS(¥, Vu) = Vp+of inl xQ,,
0t(0e) + div(geu) = S(¥9, Vu) : Vu — pdivu

—divq(9, V) + oH in | xQp,

u(t,x +n(x)) = 0:n(t, x) inl xw.

The shell is driven by Koiter-energy ~~ equation for the shell is

In+Km)=g+v-(—7v)o Py det Dy | in [ X w,

T= Siﬂ,Vui — pZ.



The model

Constitutive relations

@ Newton's rheological law (with A\, = 1+ 9)

-
S(¢, Vu) = u(v) (M - %div uI) + A(¥)divuZ;

@ Heat flux determined by Fourier's law (with x 22 1 + ¥3)
9
a(d, V) = —(9)VI = —VK(9), K(9) = / (z) dz:
0
@ p and e related to (specific) entropy s through Gibbs' equation

1
9Ds(0,9) = De(o,9) + plo, 19)0(5) forall 9,9 >0,

4a 93
plo,?) = o7 + 09 + 39*, s(0,9) = log(#™) ~ log o + -~



The model

Entropy/energy balance balance

The Second law of thermodynamics is enforced through

the entropy balance equation

0t(0s(0,?)) + div(os(o, ¥)u) = —div (W) +o0+ Q%,
o= g(sw,w) : Vu — W).

@ Approach based on entropy balance by Feireisl-Novotny ('09),
earlier approach based on energy balance by Feireisl ('04).
@ Energy conserved in the entropy approach, here

1 d¢nl?
8:/ <§g\u]2+ge(g,19)> dx+/| t2n| dy + K(n).
Q, w




Main result

Weak formulation (1)

Let n: / X w — R and consider a coordinate map W, : Q — ,.
Reynolds transport theorem :

d
P gdx:/ ﬁtgdx—l—/ tho¢_1ow771y-yngd7{2,
Q1) Q) ()

The weak continuity equation : integration by parts implies for
P e C®(l x Q)

/d/ Q¢dth—// (98t¢+gu-vw>dxdt:0,
pdt Qy 1JQy,

if uoW, o =i on 9.



Main result

Weak formulation (2)

The weak momentum equation :
For (b, p) € C®°(w) x C°(I x R3) with tr,p = bv

d
/(/ gu-cpdx—/ Qu-8t90+gu®u:V<pdx>dt
i\ dt Jg Q
n

n

+ /I/Q (5(19, Vu) : Vi — p(v,9) div cp) dxdt

+/<§t/8mbdy—/3m3tbdy+/K’(n)bdy) dt
i w w w
:// gf-cpdxdt+//gbdydt.

1 JQ, I Jw



Main result

Weak formulation (3)

The weak entropy balance : We have

//(;it/Qn os(o,9) ¢ — /I/Qn (Qs(g,ﬂ)f)tw + 0s(0,9)u - Vw)
>//1 (9, Vu) : Vu + ()N19|>

// - Veb dx dt+//nQHw

for all 1 € C(I x R3) with ¢ > 0. Moreover, we have
lim,—0 0s(0,V)(t) > 00s(00, Yo) and 0, ¥aq, < 0.



Main result

Renormalized continuity equation

The renormalized continuity equation :
For ¢ € C*°(I x Q) and # € C}(R*) with 6(0) =0

O://:iit/nn 0(g)¢dxdt—/l/ﬂn (e(g)at¢+9(g)u.w> dx dt
+/I/Q (09 (0) — 0(0)) divu dxdt.

@ Major ingredient for compressible Navier—Stokes equations.
@ Introduced by Di Perna-Lions '89.

@ Version above : Breit-Schwarzacher, ‘18.



Main result

Main theorem

Theorem (Breit—Schwarzacher Ann. SNS Pisa, to appear)

Let v > 12 (’y > 1 in two dimensions). Under natural assumptions
on the data there exists a weak solution (n,u, o, ) with satisfies
the energy balance

E(t) = (0)+/ Qde—l-/ gf-udx—i—/g@tndy,
Q w

n

2 ’ t"7’2
&= |u| +90 dx+ dy + K(n).

The interval of existence is of the form / = (0,t), t < T only if
@ (2,5) approaches a self-intersection when s — t or
e the Koiter energy degenerates (namely, if lims_:75(s,y) =0
for some point y € w).



The isentropic case

Main theorem

Theorem (Breit, Schwarzacher, ARMA '18)

Let v > 12 (fy > 1 in two dimensions). There is a weak solution

(n,u, 0). The solution satisfies the energy estimate

sup/ g|u|2dx+sup/ 7dx+// |Vu|2dxdt

tel Ja, tel

+sur>/ |8rn|2dy+sup/ IV2n[* < c(ao, 00, F, & 0, 1)-
tel Jw tel Jw

© Incompressible analogue

: Lengeler & RaZi¢ka, (ARMA, '14).
@ Restriction to linear shell models!



The isentropic case

Sequential compactness

Assume there is a sequence of solutions (7, u,, ) which enjoys
suitable regularity properties and satisfies the energy estimate
uniformly in n.

How can we pass to the limit in the equation?

@ passage to the limit in the convective terms o,u, and
onU, ® u, by local arguments and global integrability.
No problems with the moving boundary !

Much easier than incompressible case!

@ Main problem (typical for compressible Navier—Stokes) :
Passing to the limit in the nonlinear pressure p(o,) = on.



The isentropic case

Higher integrability of the pressure (1)

@ A priori p(on) only bounded in L°(L1)
= Concentrations possible!

o Improve integrability by “computing the pressure” : Use
globally Bogovskii-operator &~ div™! or locally A~1div :

/p(gn)gn = /g,,u,, Qup: VA o, + ... (if v > 3),
: 3
/p(gn)Q?:/Qnun@)un:VzA_lgS)—i—... (if © < 57—1);

@ Bogouvskii-operator requires Lipschitz boundary = standard
approach only gives higher integrability locally.

@ How to exclude concentrations at the boundary ?



The isentropic case

Higher integrability of the pressure (2)

There is a measurable set A, € | x 2, such that for all n > ng

aoyxaq,, dxdt < k.
IxR3\ A

Construct test-function ¢,, such that :
@ zero boundary conditions on 0%, ;
e divy, > K close to the boundary;
e Critical term |, ann onUp, Orp, dx dt with
at“Pn ~ at"’7n =upo wn|89nn S L2(L4 ) ;

6
@ Since ppu, € L2(Lv%6) we need v > 12,



The isentropic case

Four layer approximation scheme

e Artificial pressure (d-layer) : replace p(p) = ap” by
ps(0) = ap” + 60° where j is chosen large enough.

e Artificial viscosity (e-layer) : add eAp to the right-hand side
of the continuity equation.

@ Regularization of the boundary (x-layer) : Replace the
underlying domain €2, by €, where 7, is a suitable
regularization of 7. Accordingly, the convective terms and the
pressure have to be regularized as well.

e Finite-dimensional approximation (N-layer) : the momentum
equation has to be solved by means of a
Galerkin-approximation.

The first two layers are common in the theory of compressible

Navier—Stokes equations, see Feireis| et al. Third layer is needed

due to the low regularity of n.
I



The full system

Strong convergence of the temperature

The entropy balance

0t(0s(0,)) + div(os(o, ¥)u) > —div (W) + o+ Q%,
o= %(S(ﬁ,Vu) : Vu — W).

e Gives control of V¥ using q(¢, Vi¥) = —x(9)V¥;
e No control of 9,9, (recall ps(o,9) = %20°)

@ Use monotonicity of s combined with div-curl-lemma in
space-time (Feireils-Novotny) ;

@ Local argument ~~ no problems with moving domain.



The full system

Total energy

&= / |u|2+ge(g,19)) dx+/| Oenl® 4, + K(n).

@ Terms related to the fluid do not cause problems;

e Coercivity of K gives control of V27, not enough to pass to
the limit (not even in linear case);

e Fractional derivative of 9:n only in space (trace theorem);

@ Use information from coupled the momentum equation to get
compactness of 0:n by uniform continuity in time

(approach by Lengeler-RiZi¢ka or abstract framework by
Muha-Schwarzacher).



The full system

Fractional difference quotient for some s > 0

J 18190l < ¢ = [lnlfasgde< e

@ Muha-Schwarzacher : use test-function (¢, ¢) with

p =02 A5 — J(AZ,A5),
@ = (FIV(AS  D5n — A (D, 050));

@ Pressure only in L!-globally!

o Most critical term is (requires v > 12)

// ou - Orpdxdt.
178 r)



The full system

Three layer approximation scheme

e Artificial pressure (d-layer) : replace p(0) = o” + av* by
ps(0) = 07 + 00° + a¥* where 3 is chosen large enough ;

o Artificial viscosity (e-layer) : add eAp to the right-hand side
of the continuity equation ;

e Galerkin-approximation (N-layer) ~~ fixed point for linearised
problem on the Galerkin level (use basis functions lllgl o @k);

How to prove strict positivity of the temperature ?

@ Internal energy equation continuous in space, velocity and
shell finite dimensional ;

@ Transform to reference domain (detVW, # 1);

@ Regularity theory and minimum principle for transformed
equation.
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