Compressible fluids interacting with elastic shells

Dominic Breit & Sebastian Schwarzacher

05.05.2022

・ロ・・団・・団・・団・ うへの

Fluid structure interaction

In this talk we will consider a compressible heat-conducting fluid which is floating in a flexible body.

- The fluid forces are interacting with a membrane that is assumed to be a part of the boundary.
- The geometry changes in time.

Examples :

Airplane wing :

The Setting

$$\label{eq:Figure-Left} \begin{split} &Figure-Left: A tubular neighbourhood of shell <math display="inline">\partial\Omega \mbox{ represented by} \\ &bended \mbox{ cylinder. Right: A tiny section of the shell } \partial\Omega \mbox{ with thickness} \\ &2\varepsilon_0 > 0. \end{split}$$

- Abuse of notation : identify points $y \in \partial \Omega$, with points $y \in \omega$, for simplicity assume ω flat torus;
- Ω can be parametrised by $oldsymbol{arphi}:\omega
 ightarrow\mathbb{R}^3$;
- For $\eta: \omega \to \mathbb{R}$ consider $\varphi: \omega \to \mathbb{R}^3$ given by

$$arphi_\eta(y)=arphi(y)+\eta(y)
u(y),\quad y\in\omega.$$

Koiter's elastic energy

Elastic energy of the deformation given by

$$\mathcal{K}(\eta) = \frac{1}{2}\varepsilon_0 \int_{\omega} \mathbb{C} : \mathbb{G}(\eta) \otimes \mathbb{G}(\eta) \, \mathrm{d}y + \frac{1}{6}\varepsilon_0^3 \int_{\omega} \mathbb{C} : \mathbb{R}^{\sharp}(\eta) \otimes \mathbb{R}^{\sharp}(\eta) \, \mathrm{d}y$$

- G contains covariant components of change of metric tensor;
- \mathbb{R}^{\sharp} contains covariant components of change of curvature tensor;
- C = (C^{ijkl})²_{i,j,k,l=1} contains contravariant components of the shell elasticity;
- K is coercive on W^{2,2}(ω) but not continuous : most critical term in K(η) behaves as ∫_ω |∇²η|²|∇η|⁴ dy.

The PDE in the interior

For $\eta: I \times \omega \to \mathbb{R}$ given, denote $\Omega_{\eta(t)}$ the variable in time domain, by $I \times \Omega_{\eta} = \bigcup_{t \in I} \{t\} \times \Omega_{\eta(t)}$ the deformed time-space cylinder :

$$\partial \Omega_{\eta(t)} = \{ \varphi(y) + \eta(t, y)\nu(y) : y \in \omega \}.$$

The fluid is heat-conducting, compressible and viscous

$$\partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = \mathbf{0}, \qquad \qquad \text{in } I \times \Omega_\eta,$$

$$\begin{aligned} \partial_t(\varrho \mathbf{u}) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) &= \operatorname{div} \mathbf{S}(\vartheta, \nabla \mathbf{u}) - \nabla p + \varrho \mathbf{f} & \text{ in } I \times \Omega_\eta, \\ \partial_t(\varrho e) + \operatorname{div}(\varrho e \mathbf{u}) &= \mathbf{S}(\vartheta, \nabla \mathbf{u}) : \nabla \mathbf{u} - p \operatorname{div} \mathbf{u} \\ &- \operatorname{div} \mathbf{q}(\vartheta, \nabla \vartheta) + \varrho H & \text{ in } I \times \Omega_\eta, \\ \mathbf{u}(t, x + \eta(x)) &= \partial_t \eta(t, x) & \text{ in } I \times \omega. \end{aligned}$$

The shell is driven by Koiter-energy \rightsquigarrow equation for the shell is

$$\begin{split} \partial_t^2 \eta + \mathcal{K}'(\eta) &= g + \nu \cdot \left(-\tau \nu_\eta \right) \circ \varphi_{\eta(t)} |\det D \varphi_{\eta(t)}| \quad \text{in } I \times \omega, \\ \tau &= \mathbf{S}(\vartheta, \nabla \mathbf{u}) - p\mathcal{I}. \end{split}$$

Constitutive relations

• Newton's rheological law (with $\lambda, \mu \cong 1 + \vartheta$)

$$\mathbf{S}(\vartheta, \nabla \mathbf{u}) = \mu(\vartheta) \Big(\frac{\nabla \mathbf{u} + \nabla \mathbf{u}^T}{2} - \frac{1}{3} \operatorname{div} \mathbf{u} \,\mathcal{I} \Big) + \lambda(\vartheta) \operatorname{div} \mathbf{u} \,\mathcal{I};$$

• Heat flux determined by Fourier's law (with $\kappa\cong 1+artheta^3)$

$$\mathbf{q}(\vartheta,\nabla\vartheta) = -\varkappa(\vartheta)\nabla\vartheta = -\nabla\mathcal{K}(\vartheta), \quad \mathcal{K}(\vartheta) = \int_0^\vartheta \varkappa(z)\,\mathrm{d}z;$$

• p and e related to (specific) entropy s through Gibbs' equation

$$\vartheta Ds(\varrho, \vartheta) = De(\varrho, \vartheta) + p(\varrho, \vartheta) D\left(\frac{1}{\varrho}\right) \quad \text{for all} \quad \varrho, \vartheta > 0,$$
$$p(\varrho, \vartheta) = \varrho^{\gamma} + \varrho\vartheta + \frac{a}{3}\vartheta^{4}, \ s(\varrho, \vartheta) = \log(\vartheta^{c_{\nu}}) - \log \varrho + \frac{4a}{3}\frac{\vartheta^{3}}{\varrho}.$$

Entropy/energy balance balance

The Second law of thermodynamics is enforced through

the entropy balance equation

$$\partial_t(\varrho s(\varrho, \vartheta)) + \operatorname{div}(\varrho s(\varrho, \vartheta) \mathbf{u}) = -\operatorname{div}\left(\frac{\mathbf{q}(\vartheta, \nabla \vartheta)}{\vartheta}\right) + \sigma + \varrho \frac{H}{\vartheta},$$
$$\sigma = \frac{1}{\vartheta} \Big(\mathbf{S}(\vartheta, \nabla \mathbf{u}) : \nabla \mathbf{u} - \frac{\mathbf{q}(\vartheta, \nabla \vartheta) \cdot \nabla \vartheta}{\vartheta} \Big).$$

- Approach based on entropy balance by Feireisl-Novotný ('09), earlier approach based on energy balance by Feireisl ('04).
- Energy conserved in the entropy approach, here

$$\mathcal{E} = \int_{\Omega_{\eta}} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) \right) \mathrm{d}x + \int_{\omega} \frac{|\partial_t \eta|^2}{2} \, \mathrm{d}y + \mathcal{K}(\eta).$$

Weak formulation (1)

Let $\eta: I \times \omega \to \mathbb{R}$ and consider a coordinate map $\Psi_{\eta}: \Omega \to \Omega_{\eta}$. Reynolds transport theorem :

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_{\eta(t)}} g \,\mathrm{d}x = \int_{\Omega_{\eta(t)}} \partial_t g \,\mathrm{d}x + \int_{\partial\Omega_{\eta(t)}} \partial_t \eta \circ \varphi^{-1} \circ \Psi_{\eta}^{-1} \nu \cdot \nu_{\eta} g \,\mathrm{d}\mathcal{H}^2,$$

The weak continuity equation : integration by parts implies for $\psi \in C^{\infty}(I \times \overline{\Omega})$

$$\int_{I} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{\eta}} \varrho \psi \,\mathrm{d}x \,\mathrm{d}t - \int_{I} \int_{\Omega_{\eta}} \left(\varrho \partial_{t} \psi + \varrho \mathbf{u} \cdot \nabla \psi \right) \mathrm{d}x \,\mathrm{d}t = \mathbf{0},$$

 $\text{if } \mathbf{u} \circ \mathbf{\Psi}_{\eta} \circ \boldsymbol{\varphi} = \partial_t \eta \nu \text{ on } \partial \Omega_{\eta(t)}.$

Weak formulation (2)

The weak momentum equation : For $(b, \varphi) \in C^{\infty}(\omega) \times C^{\infty}(\overline{I} \times \mathbb{R}^3)$ with $\operatorname{tr}_n \varphi = b\nu$ $\int_{I} \left(\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{\tau}} \varrho \mathbf{u} \cdot \boldsymbol{\varphi} \,\mathrm{d}x - \int_{\Omega_{\tau}} \varrho \mathbf{u} \cdot \partial_{t} \boldsymbol{\varphi} + \varrho \mathbf{u} \otimes \mathbf{u} : \nabla \boldsymbol{\varphi} \,\mathrm{d}x \right) \mathrm{d}t$ $+ \int_{U} \int_{\Omega} \left(\mathbf{S}(\vartheta, \nabla \mathbf{u}) : \nabla \varphi - p(\vartheta, \vartheta) \operatorname{div} \varphi \right) \mathrm{d}x \, \mathrm{d}t$ $+ \int_{U} \left(\frac{\mathrm{d}}{\mathrm{d}t} \int_{U} \partial_t \eta b \,\mathrm{d}y - \int_{U} \partial_t \eta \,\partial_t b \,\mathrm{d}y + \int_{U} \mathcal{K}'(\eta) \,b \,\mathrm{d}y \right) \mathrm{d}t$ $= \int_{U} \int_{\Omega} \varrho \mathbf{f} \cdot \boldsymbol{\varphi} \, \mathrm{d}x \, \mathrm{d}t + \int_{U} \int_{\Omega} g \, \boldsymbol{b} \, \mathrm{d}y \, \mathrm{d}t.$

Weak formulation (3)

The weak entropy balance : We have

$$\begin{split} \int_{I} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{\eta}} \varrho \mathbf{s}(\varrho, \vartheta) \psi &- \int_{I} \int_{\Omega_{\eta}} \left(\varrho \mathbf{s}(\varrho, \vartheta) \partial_{t} \psi + \varrho \mathbf{s}(\varrho, \vartheta) \mathbf{u} \cdot \nabla \psi \right) \\ &\geq \int_{I} \int_{\Omega_{\eta}} \frac{1}{\vartheta} \Big(\mathbf{S}(\vartheta, \nabla \mathbf{u}) : \nabla \mathbf{u} + \frac{\varkappa(\vartheta)}{\vartheta} |\nabla \vartheta|^{2} \Big) \psi \\ &- \int_{I} \int_{\Omega_{\eta}} \frac{\varkappa(\vartheta) \nabla \vartheta}{\vartheta} \cdot \nabla \psi \, \mathrm{d}x \, \mathrm{d}t + \int_{I} \int_{\Omega_{\eta}} \frac{\varrho}{\vartheta} H \psi \end{split}$$

for all $\psi \in C^{\infty}(\overline{I} \times \mathbb{R}^3)$ with $\psi \ge 0$. Moreover, we have $\lim_{r \to 0} \varrho s(\varrho, \vartheta)(t) \ge \varrho_0 s(\varrho_0, \vartheta_0)$ and $\partial_{\nu_{\eta}} \vartheta|_{\partial \Omega_{\eta}} \le 0$.

Renormalized continuity equation

The renormalized continuity equation : For $\psi \in C^{\infty}(I \times \overline{\Omega})$ and $\theta \in C^{1}(\mathbb{R}^{+})$ with $\theta(0) = 0$

$$0 = \int_{I} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{\eta}} \theta(\varrho) \, \psi \, \mathrm{d}x \, \mathrm{d}t - \int_{I} \int_{\Omega_{\eta}} \left(\theta(\varrho) \partial_{t} \psi + \theta(\varrho) \mathbf{u} \cdot \nabla \psi \right) \mathrm{d}x \, \mathrm{d}t \\ + \int_{I} \int_{\Omega_{\eta}} (\varrho \theta'(\varrho) - \theta(\varrho)) \, \mathrm{d}v \, \mathrm{d}t \, \mathrm{d}t.$$

- Major ingredient for compressible Navier-Stokes equations.
- Introduced by Di Perna-Lions '89.
- Version above : Breit-Schwarzacher, '18.

Main theorem

Theorem (Breit-Schwarzacher, Ann. SNS Pisa, to appear)

Let $\gamma > \frac{12}{7}$ ($\gamma > 1$ in two dimensions). Under natural assumptions on the data there exists a weak solution (η , \mathbf{u} , ϱ , ϑ) with satisfies the energy balance

$$\begin{split} \mathcal{E}(t) &= \mathcal{E}(0) + \int_{\Omega_{\eta}} \varrho H \, \mathrm{d}x + \int_{\Omega_{\eta}} \varrho \mathbf{f} \cdot \mathbf{u} \, \mathrm{d}x + \int_{\omega} g \, \partial_t \eta \, \mathrm{d}y, \\ \mathcal{E} &= \int_{\Omega_{\eta}} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho \theta \right) \right) \mathrm{d}x + \int_{\omega} \frac{|\partial_t \eta|^2}{2} \, \mathrm{d}y + \mathcal{K}(\eta). \end{split}$$

The interval of existence is of the form I = (0, t), t < T only if

- $\Omega_{\eta(s)}$ approaches a self-intersection when s
 ightarrow t or
- the Koiter energy degenerates (namely, if lim_{s→t} γ(s, y) = 0 for some point y ∈ ω).

Main theorem

Theorem (Breit, Schwarzacher, ARMA '18)

Let $\gamma > \frac{12}{7}$ ($\gamma > 1$ in two dimensions). There is a weak solution $(\eta, \mathbf{u}, \varrho)$. The solution satisfies the energy estimate

$$\begin{split} \sup_{t \in I} &\int_{\Omega_{\eta}} \varrho |\mathbf{u}|^{2} \, \mathrm{d}x + \sup_{t \in I} \int_{\Omega_{\eta}} \varrho^{\gamma} \, \mathrm{d}x + \int_{I} \int_{\Omega_{\eta}} |\nabla \mathbf{u}|^{2} \, \mathrm{d}x \, \mathrm{d}t \\ &+ \sup_{t \in I} \int_{\omega} |\partial_{t} \eta|^{2} \, \mathrm{d}y + \sup_{t \in I} \int_{\omega} |\nabla^{2} \eta|^{2} \leq \, c(\mathbf{q}_{0}, \varrho_{0}, \mathbf{f}, g, \eta_{0}, \eta_{1}). \end{split}$$

- Incompressible analogue : Lengeler & Růžička, (ARMA, '14).
- 2 Restriction to linear shell models !

Sequential compactness

Assume there is a sequence of solutions $(\eta_n, \mathbf{u}_n, \varrho_n)$ which enjoys suitable regularity properties and satisfies the energy estimate uniformly in n.

How can we pass to the limit in the equation?

- passage to the limit in the convective terms *Q_n***u**_n and *Q_n***u**_n ⊗ **u**_n by local arguments and global integrability. No problems with the moving boundary !
 Much easier than incompressible case !
- Main problem (typical for compressible Navier-Stokes) : Passing to the limit in the nonlinear pressure p(ρ_n) = ρ_n^γ.

Higher integrability of the pressure (1)

- A priori p(ρ_n) only bounded in L[∞](L¹)
 ⇒ Concentrations possible !
- Improve integrability by "computing the pressure" : Use globally Bogovskii-operator $\approx {\rm div}^{-1}$ or locally $\Delta^{-1} {\rm div}$:

$$\int p(\varrho_n)\varrho_n = \int \varrho_n \mathbf{u}_n \otimes \mathbf{u}_n : \nabla^2 \Delta^{-1} \varrho_n + \dots \quad (\text{if } \gamma > 3),$$
$$\int p(\varrho_n)\varrho_n^{\Theta} = \int \varrho_n \mathbf{u}_n \otimes \mathbf{u}_n : \nabla^2 \Delta^{-1} \varrho_n^{\Theta} + \dots \quad (\text{if } \Theta \le \frac{3}{2}\gamma - 1);$$

- Bogovskiĭ-operator requires Lipschitz boundary ⇒ standard approach only gives higher integrability locally.
- How to exclude concentrations at the boundary?

Higher integrability of the pressure (2)

Lemma

There is a measurable set $A_{\kappa} \Subset I imes \Omega_{\eta_n}$ such that for all $n \ge n_0$

$$\int_{I\times\mathbb{R}^3\setminus A_{\kappa}}a\varrho_n^{\gamma}\chi_{\Omega_{\eta_n}}\,\mathrm{d}x\,\mathrm{d}t\leq\kappa.$$

Construct test-function φ_n such that :

- zero boundary conditions on $\partial \Omega_{\eta_n}$;
- div $\varphi_n \geq K_\kappa$ close to the boundary;
- Critical term $\int_{I} \int_{\Omega_{\eta_n}} \varrho_n \mathbf{u}_n \partial_t \varphi_n \, \mathrm{d}x \, \mathrm{d}t$ with $\partial_t \varphi_n \sim \partial_t \eta_n = \mathbf{u}_n \circ \Psi_n |_{\partial \Omega_{\eta_n}} \in L^2(L^{4^-});$

• Since
$$\rho_n \mathbf{u}_n \in L^2(L^{\frac{6\gamma}{\gamma+6}})$$
 we need $\gamma > \frac{12}{7}$

Four layer approximation scheme

- Artificial pressure (δ -layer) : replace $p(\varrho) = a\varrho^{\gamma}$ by $p_{\delta}(\varrho) = a\varrho^{\gamma} + \delta\varrho^{\beta}$ where β is chosen large enough.
- Artificial viscosity (ε-layer) : add εΔρ to the right-hand side of the continuity equation.
- Regularization of the boundary (κ -layer) : Replace the underlying domain Ω_{η} by $\Omega_{\eta_{\kappa}}$ where η_{κ} is a suitable regularization of η . Accordingly, the convective terms and the pressure have to be regularized as well.
- Finite-dimensional approximation (*N*-layer) : the momentum equation has to be solved by means of a Galerkin-approximation.

The first two layers are common in the theory of compressible Navier–Stokes equations, see Feireisl et al. Third layer is needed due to the low regularity of η .

Strong convergence of the temperature

The entropy balance

$$\partial_t(\varrho s(\varrho, \vartheta)) + \operatorname{div}(\varrho s(\varrho, \vartheta) \mathbf{u}) \ge -\operatorname{div}\left(\frac{\mathbf{q}(\vartheta, \nabla \vartheta)}{\vartheta}\right) + \sigma + \varrho \frac{H}{\vartheta},$$

 $\sigma = \frac{1}{\vartheta} \Big(\mathbf{S}(\vartheta, \nabla \mathbf{u}) : \nabla \mathbf{u} - \frac{\mathbf{q}(\vartheta, \nabla \vartheta) \cdot \nabla \vartheta}{\vartheta} \Big).$

- Gives control of $\nabla \vartheta$ using $\mathbf{q}(\vartheta, \nabla \vartheta) = -\varkappa(\vartheta) \nabla \vartheta$;
- No control of $\partial_t \vartheta_n$ (recall $\varrho s(\varrho, \vartheta) = \frac{4a}{3} \vartheta^3$)
- Use monotonicity of s combined with div-curl-lemma in space-time (Feireils-Novotný);
- Local argument \rightsquigarrow no problems with moving domain.

Total energy

$$\mathcal{E} = \int_{\Omega_{\eta}} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) \right) \mathrm{d}x + \int_{\omega} \frac{|\partial_t \eta|^2}{2} \, \mathrm{d}y + \mathcal{K}(\eta).$$

- Terms related to the fluid do not cause problems;
- Coercivity of K gives control of ∇²η, not enough to pass to the limit (not even in linear case);
- Fractional derivative of $\partial_t \eta$ only in space (trace theorem);
- Use information from coupled the momentum equation to get compactness of ∂_tη by uniform continuity in time (approach by Lengeler-Růžička or abstract framework by Muha-Schwarzacher).

Fractional difference quotient for some s > 0

$$\int_{I} \|\Delta_{h}^{s} \nabla^{2} \eta\|_{L^{2}(\omega)}^{2} \mathrm{d} t \leq c \Rightarrow \int_{I} \|\eta\|_{W^{2+s,2}(\omega)}^{2} \mathrm{d} t \leq c.$$

• Muha-Schwarzacher : use test-function $(oldsymbol{arphi}, arphi)$ with

$$egin{aligned} &arphi =& \Delta^s_{-h} \Delta^s_h \eta - \mathscr{K}_\eta (\Delta^s_{-h} \Delta^s_h \eta), \ &arphi = ig(\mathscr{F}^{\mathrm{div}}_\eta (\Delta^s_{-h} \Delta^s_h \eta - \mathscr{K}_\eta (\Delta^s_{-h} \Delta^s_h \eta)); \end{aligned}$$

- Pressure only in *L*¹-globally!
- Most critical term is (requires $\gamma > \frac{12}{7}$)

$$\int_{I}\int_{\Omega_{\eta(t)}}\varrho\mathbf{u}\cdot\partial_t\varphi\,\mathrm{d}x\,\mathrm{d}t.$$

Three layer approximation scheme

- Artificial pressure (δ -layer) : replace $p(\varrho) = \varrho^{\gamma} + a\vartheta^4$ by $p_{\delta}(\varrho) = \varrho^{\gamma} + \delta \varrho^{\beta} + a\vartheta^4$ where β is chosen large enough;
- Artificial viscosity (ε-layer) : add εΔρ to the right-hand side of the continuity equation;
- Galerkin-approximation (N-layer) → fixed point for linearised problem on the Galerkin level (use basis functions Ψ⁻¹_n ∘ ω̃_k);

How to prove strict positivity of the temperature?

- Internal energy equation continuous in space, velocity and shell finite dimensional;
- Transform to reference domain $(\det
 abla \Psi_\eta
 eq 1)$;
- Regularity theory and minimum principle for transformed equation.