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Abstract In many fields of materials science it is important
to know how densely a particle mixture can be packed. The
“packing density” is the ratio of the particle volume and the
volume of the surrounding container needed for a random
close packing of the particles.

We present a method for estimating the packing density
for spherical particles based on computer simulations only,
i.e. without the need for additional experiments. Our method
is particularly suited for particle mixtures with an extremely
wide range of particle diameters as they occur e.g. in mod-
ern concrete mixtures. A single representative sample from
such mixtures would be much larger than can be handled on
present standard computers.

In our hierarchical approach the diameter range is there-
fore divided into smaller intervals. Samples from these lim-
ited diameter intervals are drawn and their packing densityis
estimated from a simulated packing. The results are used to
“fill” the interstices in the sample from the next larger parti-
cle interval. To account for the interaction between particles
of different sizes we include larger particles into the sample
of smaller ones. The larger ones act as part of the boundary
during the packing. Thus we obtain more realistic estimates
of how dense a fraction of particles can be packed within the
whole mixture.

The focus of this paper is on the divide-and-conquer ap-
proach and on how the simulation results from the fractions
can be collected into an overall estimate of the packing den-
sity. We do not go into details of the simulation technique
for the single packing.

We compare our results to some experimental data to
show that our method works at least as good as the classical
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analytical models like CPM without the need for any exper-
iments.

Keywords packing density, space filling, particle simu-
lation, polydisperse particles, sphere packing, systematic
sampling

1 Introduction

Packing of particles and estimating the properties of a ran-
dom dense packing are problems that appear in many fields
of materials science, see, e.g. [15] for a comprehensive over-
view. A basic property of a packing is itspacking density, or
space filling, i.e. the ratio of the net volume of the particles
and the volume of the packing.

Our work is particularly motivated by problems from
concrete research. Advanced technologies like Ultra-High
Performance Concrete (UHPC) require a specific granulo-
metric composition that reduces the void fraction in the dry
mixture [11] to obtain a harder and less porous concrete.
Typically, the particles in a dry concrete mixture have sizes
that vary over an extremely wide range, e.g. from less than
0.1 µm (filler, e.g. fly ash or microsilica) up to 200µm (ce-
ment) with even larger particles at 2 mm and above if aggre-
gates like gravel or sand are added.

To find a particle mixture with a high packing density in
a systematic way, it is advantageous to have a tool that al-
lows to estimate the packing density of a given mixture with
as little effort as possible. In particular, one would like to
avoid the time consuming experiments with the real mix-
ture and its components. As there is no purely analytical
way available, a solution that uses only computer simula-
tions would be useful. In particular, one could then estimate
the packing density even before the mixture exists.

To this end, we first have to characterize the mixture in
a suitable way. In this paper, we restrict ourselves to (hard)
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three-dimensional spherical particles and neglect any other
(e.g. chemical) properties or environments (like water in con-
crete). This simplification is somewhat justified as we are
only interested in the static geometric result of the packing.
It also allows to deal with huge sample sizes in acceptable
computing time. Hence the only relevant characteristic for
the packing density is the frequency distribution of the par-
ticle diameters in the mixture, the so calledparticle size dis-
tribution (PSD) which we callf .

There is a rich literature on the search for PSDs that
yield a good space filling starting with the classical work
of Fuller [5, 1] more than a century ago. Although this work
is sometimes still regarded as a standard, results on “gap
gradings” [13] indicate that PSDs with some intermediate
particle sizes missing may result in higher packing densi-
ties.

Generally, there seem to be two approaches for the es-
timation of packing densities in the more recent literature.
The so-calledanalytical approachuses a mathematical model
of how particles of different size interact geometrically and
derives an approximate formula for the packing density of
a mixture. As input parameters, these methods need em-
pirical data for each (more or less monodisperse) compo-
nent in the mixture, such as its mean diameter, eigenpacking
density or even densities of all binary mixtures of compo-
nents. Examples of this analytical approach include the To-
ufar model [17], the linear packing model by Stovall [12]
and the mixture packing model by Yu and Standish [20]
who also developed a unification of the last two models,
the linear-mixture packing model (LMPM) [21, 22]. An-
other prevalent approach is the compressible packing model
(CPM) by de Larrard [3, 4]. Numerous experiments, de-
scribed, e.g. in [8], show that these approaches allow to esti-
mate the packing density at least of certain simple mixtures
with high accuracy.

The second approach to estimate the packing density
takes a (theoretical) sample of particles from the distribution
and simulates the random close packing of these particles
on a computer. There are a number of different algorithms
to perform the simulation, see, e.g. [7, 2] and [10] for an
overview. Though this approach seems to be “model-free”
in contrast, e.g. to the linear packing model, it turns out that
to some extent the results depend on the algorithms used. As
Torquato [16] (see also [9]) pointed out, the term “random
close packing” is not well defined. The randomness as well
as the closeness depend on the packing algorithm and on the
measures used for randomness.

Both approaches do not work well with wide range size
distributions. For the analytical approach too many compo-
nents have to be examined experimentally to obtain the nec-
essary input data and for the simulation approach the sample
size required to obtain arepresentativesample is much too
large to be simulated on present computers. The necessary

size of samples will be considered in greater detail in Sec-
tion 3 below.

In this paper, we present a new approach to estimate
the packing density that is capable to handle size distribu-
tions with a wide range. It benefits from simulation to deter-
mine the packing density of small restricted samples of par-
ticles and it uses a mathematical model to obtain an estima-
tor for the overall packing density from these simulations.
We divide the particle size range into several smaller in-
tervals (calledfractions) from which samples can be drawn
that allow to simulate the packing density of these restricted
ranges. We then use a simple recursive formula to calcu-
late the packing density of the whole mixture from the sep-
arate simulation results. In contrast to, e.g. the aforemen-
tioned packing models, we do not use an elaborate mathe-
matical approximation formula with elementary data but a
simple mathematical formula with data obtained from simu-
lating a complex sample that includes the interaction of dif-
ferent particle sizes, see below. Besides being less costly, the
purely software based approach has the additional advan-
tage that it does not depend on any technical restrictions like
sieve sizes or limited precision of measurements. The only
limitations we know of are the number of spheres that can be
packed within reasonable time and—with our present pack-
ing software—the inability to handle agglomerations of par-
ticles (see below). Note that the present paper is mainly con-
cerned with the divide-and-conquer aspect of the approach
and not with the exact details on how the packing of a single
fraction can be simulated.

Hierarchical approaches to deal with extreme polydis-
perse mixtures have been used before. Webb and Davies [19]
address this problem with a reduced-dimension algorithm
where spheres are sequentially deposited into nested cylin-
ders. Packing characteristics can then be estimated from the
innermost cylinder which is the only one that contains spheres
of all radii. Though particle radius ratios up to 80:1 were
simulated, the number of different sphere sizes is limited be-
cause each single radius needs to be represented by enough
spheres to fill its own cylinder. Another notable method to
reduce the number of particles is the hierarchical model de-
veloped by Wackenhut et al. [18]. They collect smaller par-
ticles into artificial “soft particles” of larger diameter.Start-
ing with the smallest particles, on each level of diameters
all true and soft particles are condensed into soft particles
on the next level until the number of remaining (true and
soft) particles is small enough to be packed in a simulation.
This approach reduces the complexity and polydispersity of
the packing to a well-manageable size, but it excludes any
interaction with particles hidden in the soft particles. Inpar-
ticular, the small particles can no longer fill the interstices
between the larger ones and the packing density will gener-
ally be underestimated.
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Fig. 1 The hierarchical approach treats smaller spheres as homoge-
neous substance between larger ones.

The main idea of our approach is explained in Figure 1.
When simulating the packing of particles sampled from the
interval of largest radii as, e.g., in Fig. 1 (a), we consider
the empty space between the spheres as filled by some ho-
mogeneous substance with a particular density. This density
is the packing density that is determined by simulating the
packing of spheres from the next smaller interval as indi-
cated by Fig. 1 (b). This again requires first to simulate the
packing of smaller spheres as in Fig. 1 (c) and so on. Tech-
nically, we start by simulating the packing density of the
smallest spheres and then insert this value when packing the
next larger spheres.

Treating the empty space in a packing as if it was evenly
filled by spheres from smaller fractions neglects the lim-
ited arrangement of small particles in the interstices between
larger ones. This error is reduced by the way the space filling
of the smaller fraction is simulated: we enlarge the sample to
be packed by additional larger particles. After a dense pack-
ing has been obtained, the packing density is calculated with
respect to the smaller particles only. The additional larger
particles are considered to be “holes” in the container. Thus,
the packing density of the smaller particles is simulated in
the presence of larger ones yielding a more realistic result
that includes the interaction of particles across the fractions.
This is indicated in Fig. 1 (b) where the spheres A–D from
the larger fraction are present, simulating the boundary be-
tween the fractions.

We discuss in detail how the sampling mechanism should
be adapted to the choice of the intervals and to the size dis-
tribution. To obtain representativity of our samples we usea
particular stratified sampling method also known as system-
atic sampling (see, e.g. [14]) that guarantees to always in-
clude some of the (typically) rare large particles in our sam-
ple. As will become clear, the two aspects, systematic sam-
pling and recursive estimation, are closely related to each
other.

We also present some experimental results showing that
our hierarchical approach yields excellent estimates of the
packing density (within 2% of experimental results). The

problem with real mixtures of, e.g., concrete is that particles
of size below a certain threshold tend to form rigid agglom-
erates of irregular shape that may be far from spherical even
if the particles themselves are spheres. These agglomerates
cannot be packed densely and therefore usually decrease the
packing density when compared to the packing of the corre-
sponding non-agglomerated spheres. The simulation algo-
rithms we used for the packing cannot at present simulate
agglomeration. We therefore first use six different mixtures
of glass spheres in which no agglomeration occurs to com-
pare our simulation results with the experimental data (and
with results from other analytical tools as they were men-
tioned above). In a second step we used realistic concrete
mixtures. Here, we compared our (agglomeration-free) re-
sults with the results from the analytical tools only (they can
be made to neglect agglomeration also). It turns out that only
de Larrard’s compressible packing model [4] yields results
of comparable quality at the price of a slightly higher effort.

Let us stress once more that the focus in the present pa-
per is not on the packing of the sample itself but on how
the results from separate packings may be collected for the
overall packing density and how the interaction between par-
ticles of different fractions can be taken into account. Since
our method is basically independent of a particular sphere
packing method, we shall not discuss in detail the actual al-
gorithm we used in our experiments. It is an algorithm of
the “collective rearrangement” type that was adopted from
[7]. It places the spheres into a container that is too small
initially, so that overlaps between the spheres must occur.
These overlaps are reduced iteratively by simulating a lo-
cal repulsion of the spheres and by enlarging and shrinking
the container until practically no overlaps remain while the
container is kept as small as possible.

Also it might be possible that our approach as summa-
rized in Section 9 works well with soft and/or non-spherical
particles if an appropriate packing algorithm for these parti-
cles would be available. One requirement is that such an al-
gorithm should be able to pack at least, say 50 000 particles
in reasonable time as this simulation has to be repeated more
than 30 times (in our examples). The model will most likely
be applicable to hard disks, i.e. to two-dimensional spheres.
At present, our experience is restricted to hard spheres in 3D
which is also the adequate model for our main application in
concrete research.

The present paper is organized as follows: we start with
a more formal definition of the packing density in Section
2. The shortcomings of a conventional sampling and simu-
lation method for extreme polydisperse mixtures are shown
in Section 3. In the next three Sections we present the main
ideas of estimating the packing density from subdivided di-
ameter ranges that constitute the backbone of our approach.
In Section 7 and 8 we discuss how to choose the fractions
and sample sizes and how to draw the samples. The com-
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plete algorithm RESOS is summarized in Section 9. In Sec-
tion 10, we present some empirical results of our approach,
in particular we compare it to other standard models. Finally,
a conclusion is given followed by an Appendix on statistical
properties of our sampling technique.

2 Estimating the Space Filling

As mentioned before, we restrict ourselves to mixtures of
ideal hard spherical particles as any more complicated model
would prevent us from using samples as large as they are
needed in our setting. The mixtures are completely char-
acterized by the relative frequencies of the particle diame-
ters appearing in the PSDf (or, equivalently, by the volume
share of spheres with a certain diameter). We assume that no
agglomeration occurs.

Fig. 2 shows the PSD of a real concrete mixture that is
used for our simulations in Section 10 below. Both the fre-
quency as well as the volume share are shown as step func-
tions with steps determined by the limited resolution of the
measuring device (e.g., mesh width of sieves) through which
the components of the mixture pass. The values off are a re-
sult of the recipe of the mixture, e.g. in this case it is “12.5%
fly ash, 37.5% cement (10-63µm) and 62.5% granulated
cinder (125-250µm)” where, as it is usual in materials sci-
ence, the percentage is given with respect to mass. Volume
share and relative frequency have to be calculated from that
based on the specific weight of the different materials. In
Fig. 3 the same functions are given with a logarithmicy-
scale showing that the mixture has a certain logarithmic ho-
mogeneity with respect to volume: the logarithm of the vol-
ume share of particles is almost constant in the size of the
particle, whereas its frequency decreases with growing size.

We assume that the PSDf is normalized such that the
area under the graph sums to one, thenf is a probability
density function. We also use the cumulative density func-
tion (cdf)F with

F(t) :=
∫ t

0
f (s) ds, t ≥ 0.

Fig. 4 shows the cdf for the two densities of Fig. 2.
Selecting a particle (a diameter) at random from the mix-

ture can be simulated by sampling fromf . As was men-
tioned above, the steps off correspond to intervals(sν−1,sν ],
ν = 1,2, . . . ,n of diameters which cannot be distinguished
in practice. When sampling fromf , one would first select
an interval(sν−1,sν ] with probability

p(sν) := F(sν)−F(sν−1) (1)

and then select a value from(sν−1,sν ]. The most natural way
would probably be to select it according to a normal distribu-
tion concentrated on the interval as this would in some sense

simulate the behavior of particles in a measuring device. Our
experiments showed, however, that it makes no difference
if we select just one fixed value from each interval, say its
right endpoint. This is probably due to the fact that intervals
with high density values are extremely small. In this way, we
have actually turned our continuous density functionf into
a discrete distributionp concentrated on the right endpoints
sν ,ν = 1, . . . ,n, of the intervals. We shall therefore usep(τ)
to denote the probability of the step (interval) that hasτ as
its right endpoint.

The above example shows two things which are typi-
cal for the distributions we consider in this paper: first, the
range of possible diameters covers several magnitudes and
secondly, larger particles are relatively rare but their volume
cannot be neglected. Note, that in the example frequencies
of particles larger than 1µm can only be distinguished in the
logarithmic scale of Fig. 3.
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Fig. 2 The relative frequencies of diameters of particles and theirrel-
ative share in the volume of a mixture given in detail in Section 10.2.
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Fig. 3 The relative frequencies of diameters of particles and theirrel-
ative share in the volume with logarithmicy-axis.

In the sequel, we assume that we are given a PSDf with
its cumulative density functionF. We start with a definition
of the packing density corresponding tof . Let

x := (x1, . . . ,xM)
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Fig. 4 The cumulative density function for frequencies of diameters
and their relative share in the volume.

denote a large sample of diameters drawn randomly from
the mixture. We denote by

V(x) = V(x1, . . . ,xM) :=
M

∑
j=1

π
6

x3
j (2)

the volume of the spheresfrom this sample. In spite of the
problems connected with defining and measuring random
close packings as they were mentioned in the Introduction,
we assume here that we can associate a numberC(x) =

C(x1, . . . ,xM) with the samplex that gives thespace require-
ment, i.e. the volume of the smallest container holding a ran-
dom close packing of the spheres with diametersx1, . . . ,xM.

Then we define thepacking density of sample xby

ϕ(x) =
V(x1, . . . ,xM)

C(x1, . . . ,xM)
. (3)

If the sample is large enough, we may useϕ(x) as an esti-
mate of the true packing densityΦ( f ) of the whole mixture.
In the literature, the symbolsVV or ρ are sometimes used in-
stead ofΦ( f ). A theoretical packing density ofΦ( f ) = 0.8,
e.g., means that in a random close packing of an arbitrarily
large sample 80 % of the space is covered by spheres and
20 % remains empty on the average.

We could improve the estimatorϕ(x) by repeatedly draw-
ing independent samplesx(1), . . . ,x(n), each of sizeM and
use the average ofϕ(x(1)), . . . ,ϕ(x(n)).

3 Naive Sampling for Space Filling

To get an impression of suitable sample sizesM, note that
our packing program mentioned in the Introduction presently
has the capacity to simulate the dense random packing of
M = 1 000 000 spheres in one run of about 38 h on a Intel
Xeon computer running at 2.33 GHz.

If the 1000000 diameters are sampled randomly from a
cumulative density functionF as in Fig. 4, the probability
that the sample contains at least one diameterlarger thant
is

α(t) := 1−F(t)1000000 (4)

If we take, e.g.,t = 213.2 µm, we obtain for the functionF
depicted in Fig. 4

F(213.2 µm) ≈ 0.999999999168772 hence

α(t) ≈ 1−0.9999999991687721 000 000

≈ 0.000830882490483.

Therefore, random samples even as large as 1 000 000 will
hardly ever pick any of the diameters larger than 213.2 µm.
However, the relative share in the volume of particles larger
than 213.2 µm is about 25%.

To measure therepresentativityof a samplex from a
given PSDf , we look at the rarest sizeτ of the PSD, i.e.τ
is the right endpoint of that step for whichf attains its low-
est non-zero value. We assume throughout this paper that
this rarest sizeτ is also the largest size. In the PSD of Fig.
2 f attains its minimum on the last interval from 863.9 µm
to τ := 948.3 µm with probability p(948.3) ≈ 10−15, p as
defined in (1). As a rough measure of how representative a
samplex of sizeM is, we use the mean numberβ := M · p(τ)
of particles from this interval appearing in the sample. In the
example above we obtainβ = M ·10−15. If we want to make
sure that on the average at least one of the largest spheres is
contained in the sample, i.e.β ≥ 1, we would have to take
a sample of sizeM ≥ 1015 and simulate its packing. This is
clearly impossible on todays standard computers and may
also be intractable on larger clusters or grids as packing al-
gorithms are in general not well suited for parallelization
and grid computers due to the complex interaction between
the particles. It is an additional advantage of our hierarchical
approach that the simulation of the fractions (see below) can
be performed in parallel.

Thus it seems impossible to include the smallest spheres
and spheres of diameters larger than, e.g. 213.2 µm (in our
example) in one representative sample that could be packed
with a standard algorithm. Still this interaction is impor-
tant for the estimation of the packing density as the smaller
spheres might fill the interstices between the larger ones
more or less densely.

We solved this problem by (a) splitting the estimation
of the overall packing density into a set of recursive estima-
tions of smaller size over parts of the PSD and (b) applying
an appropriate sampling scheme that includes the boundary
effects between these parts.

4 Packing Density over a Subdivided Diameter Range

We first describe how the packing density of the mixture
as a whole can be obtained from results based on restricted
diameter ranges only.

Let (0,T] be the interval of possible diameters of spheres.
We partition this interval intom smaller intervals

D1 := (t0, t1], D2 := (t1, t2], . . . ,Dm := (tm−1, tm], (5)
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with t0 = 0 andtm = T. We call these intervalsfractions. The
simplest way to determine theDi would be to choose frac-
tions of equal length, or to use the sieve sizes from which the
PSD was built. A more appropriate partitioning is discussed
in Section 7.

We now consider a single random samplex = (x1, . . .
,xM) drawn from(0,T] from which we want to estimate the
packing densityϕ(x) = V(x)/C(x) as defined in (3). Our
aim is to derive an approximation ofϕ that is based on sep-
arate simulations over the fractionsDi , i = 1, . . . ,m. We start
by studying how the samplex = (x1, . . . ,xM) from (0,T] be-
haves on the fractions.

Let x(i) := (xi,1, . . . ,xi,κi ) be the part ofx that falls into
fractionDi , i.e. ti−1 < xi, j ≤ ti , j = 1, . . . ,κi .

Then

V(x(i)) = V(xi,1, . . . ,xi,κi ) =
κi

∑
j=1

1
6

π x3
i, j . (6)

is the net volume of the spheres from samplex that fall
into fractionDi . Again, let us assume that the space needed
for a dense packing of these spheres is well defined and
can be calculated exactly. Denote this space requirement by
C(x(i)). ThenC(x(i))−V(x(i)) is the empty space between
the densely packed spheres from fractionDi .

Similarly, let C(x(1), . . . ,x(i)) denote the space require-
ment for a dense packing of all spheres fromx that fall into
one of the firsti fractionsD1,D2, . . . ,Di , i.e. have diameters
≤ ti . Then,C(x(1), . . . ,x(m)) = C(x) is the space requirement
of the whole sample.

The following recursive relation betweenC(x(1), . . . , x(i))

andC(x(i)) plays a crucial role in our algorithm (note that
this is only an approximation details of which are explained
below):

C(x(1), . . . ,x(i)) = C(x(i))

if C(x(1), . . . ,x(i−1)) ≤C(x(i))−V(x(i)) and

C(x(1), . . . ,x(i)) = C(x(1), . . . ,x(i−1))+V(x(i))

if C(x(1), . . . ,x(i−1)) > C(x(i))−V(x(i))

(7)

or, equivalently,

C(x(1), . . . ,x(i))

= max
{

C(x(i)), C(x(1), . . . ,x(i−1))+V(x(i))
} (8)

for i = 2, . . . ,m. The first if-case “C(x(1), . . . ,x(i−1))≤C(x(i))

−V(x(i))” in (7) holds if the empty spaceC(x(i))−V(x(i)) of
the i-th fraction is large enough to pack all the spheres from
the preceding smaller fractionsD1, . . . ,Di−1 into it. Conse-
quently, the space needed for all fractions up to (and includ-
ing) thei-th is just the spaceC(x(i)) needed for thei-th frac-
tion alone. See Fig. 5 for a rough sketch of this situation.
Note that in the terminology of Yu and Standish [21],Di is
the “controlling component” of the sub-mixtureD1, . . . ,Di .

In the other case, the empty space of thei-th fraction is not
large enough and hence the volumeC(x(1), . . . ,x(i)) needed
for fractionsD1, . . . , Di is the space for the fractionsD1, . . . ,

Di−1 plus the net volumeV(x(i)) of the spheres of fraction
Di . In this case, the large spheres from fractionDi will not
be close together but rather float in the mass of the smaller
spheres, see Fig. 6.

Fig. 5 The dark spheres from fractionDi dominate the space needed
for fractionsD1, . . . ,Di .

Fig. 6 The dark spheres from fractionDi are dominated by the smaller
fractions.

Of course, this expression is only an approximation to
the real situation. In particular, conditionC(x(1), . . . ,x(i−1))≤

C(x(i))−V(x(i)) treats the spaceC(x(1), . . . , x(i−1)) needed
by the preceding smaller fractions as a continuum that will
fit into the empty spaceC(x(i))−V(x(i)) no matter what
shape the latter has. In reality, there may be small gaps be-
tween spheres of thei-th fraction into which none of the
smaller spheres from fractionsD1, . . . ,Di−1 will fit. A sim-
ilar error occurs ifC(x(1), . . . ,x(i−1)) > C(x(i))−V(x(i)). In
Section 6, it is shown how this error can be reduced by a
more sophisticated setup of the simulation ofC( ·).

Eq. (8) allows to determine the valueC(x(1), . . . ,x(i)) when
C(x(1), . . . ,x(i−1)) is known, by evaluatingC(x(i)) andV(x(i))
which can be done by looking only at sample values fromDi

alone. In the next Section, we want to perform this step by a
separate simulation with a sample drawn fromDi only.
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5 Local Simulation of the Packing Density

When the samplex= (x1, . . . ,xM) is partitioned into the sub-
samplesx(1), . . . ,x(m) on the fractions as in the last section,
then the actual size of thei-th subsamplex(i) is a random
variable. Its mean value isMpi , where

pi := F(ti)−F(ti−1), i = 1, . . . ,m (9)

is the probability to pick a value from fractionDi = (ti−1, ti ].
As shown above,Mpi might become too small for some
fractionsDi even for large values ofM.

To overcome this problem, we take samplesx(i) := (xi,1,

. . . ,xi,Ki ) of fixed(large) sizeKi from each fractionDi with
i = 1, . . . ,m. ThenM := K1 + · · ·+ Km is the total sample
size. How to chooseK1, . . . ,Km is discussed below. We then
determine the volume of the spheres and the enclosing con-
tainer for each samplex(i).

Before we can use this expression in the recursion as (8)
we have to take into account that by choosing fixed sample
sizesKi we have given thei-th fraction a relative weight that
might not correspond to its importanceMpi within the orig-
inal mixture. To come up with the same weight at least on
the average we therefore have to multiply the volumes based
on the fixed sample sizes by a correction factor

ζi :=
Mpi

Ki
(10)

which is the ratio of the expected no. of values fromDi in a
random sample of sizeM and the fixed sample sizeKi used
now. In this way, the importance of the samplesx(i) are bal-
anced among each other according to the whole distribution.

Now let

Vi := ζi

Ki

∑
j=1

1
6

π x3
i, j (11)

be the volume of the spheres with the correct relative weight
and let

Ci := ζiC(x(i)) (12)

be the corresponding weighted container volume. In analogy
to (8) we define

C1...i := max{Ci , C1...i−1 +Vi}, i = 2, . . . ,m, (13)

with C1...1 := C1. HenceC1...i describes the space require-
ment of spheres from fractionsD1, . . . ,Di , estimated from
collection of “local” samplesx(1), . . . ,x(i) with fixed sizes
K1, . . . ,Ki . This way, we may enforce representative sam-
ples from fractions that would otherwise appear rarely in a
random sample from the whole range.

6 Including Boundary Effects

As was noted above, when evaluatingC1...i in (12) we ne-
glect the behavior of spheres from smaller fractions at the
possibly ragged “boundary” formed by spheres from larger
fractions. We can improve the estimators if we take this spe-
cial interior boundary effect into account while simulating
the expected container size forx(i) with 1≤ i < m.

To do so, we first draw a samplex(i) = (xi,1, . . . , xi,Ki )

from Di for each 1≤ i < m as before. We call the corre-
sponding spheres theactive spheres. Then we draw addi-
tional spheres (i.e. diameters)y(i) = (yi,1, . . . ,yi,ki ) of size
ki from the remaininglarger fractionsDi+1, . . . ,Dm. These
spheres are called theboundaryspheres. How to choose the
numbersKi andki is discussed below. For the enlarged sam-
ple

z(i) := (xi,1, . . . ,xi,Ki ,yi,1, . . . ,yi,ki ) (14)

a dense random placement is simulated to obtain a minimal
container volumeC(z(i)). Now the volume of the boundary
spheres is subtracted from the container volume, resulting
in the space requirement of the active spheres fromDi in the
presence of a sample of larger spheres. Again correcting the
relative weight of the container we obtain

C+
i := ζi

(

C(z(i)) −
ki

∑
j=1

1
6

π y3
i, j

)

, (15)

for i = 1, . . . ,m−1. This means that after the packing of all
spheres fromz(i), the boundary spheres are treated as if not
belonging to the sample, they form holes in the container
creating a container boundary to the active spheres that is
similar to the conditions in a huge sample from the whole
diameter range. Note that for the last fractionDm = (tm−1,T]

no boundary spheres are possible, hencekm = 0.
This improved container volume together with the vol-

ume of the corresponding active spheres is now inserted into
(12):

C+
1...1 := C+

1 (16)

C+
1...i := max

{

C+
i , C+

1...i−1 +Vi
}

The overall packing density is now estimated by

Φ̂(z(1), . . . ,z(m)) :=
V1 + · · ·+Vm

C+
1...m

.

In Section 10.1 below it is shown that with this refine-
ment, the estimation of the packing density becomes much
more realistic.

Note thatζ1, . . . ,ζm are relative weights only, we may
useQ·ζi for some constantQ in the above formula without
changing the final estimator̂Φ of the packing density as the
common factorQ may be reduced from the fraction. This
fact is used below in Section 9 to simplify matters.
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7 Determining Fractions and Sample Sizes

Determining the fractionsDi , the sample sizesKi ,ki , i =

1, . . . ,m and the way samples are drawn are tasks that are
closely related to each other. One may start fixing the frac-
tions and then derive suitable sample sizes but in our exper-
iments it turned out to be more adequate to start with the
sample sizes.

Let N be the maximal number of spheres that can be
packed in a single run of our packing program within rea-
sonable time. Hence, the total sample size of the enlarged
samples(x(i),y(i)) (see (14)) should beN. We now fix the
sizes of active and boundary part of these samples to be

Ki ≡ K and ki ≡ N−K, i = 0, . . . ,m−1, Km := N,

whereK is a given number. Note, that we then have the total
sample sizeM = (m−1)K +N and the correction factorζi

from (10) becomes(m−1+N/K)pi which may be replaced
by ζi := pi , see the remark at the end of Section 6.

We can now derive fractionsDi = (ti−1, ti ] by the fol-
lowing argument. Thei-th enlarged sample(x(i),y(i)) of size
N is drawn fromDi ∪Di+1∪·· ·∪Dm = (ti−1,T]. The active
spheresx(i) are drawn fromDi = (ti−1, ti ] alone. HenceK/N,

the relative size ofx(i) within z(i) should reflect the relative
weight ofDi within (ti−1,T]. If this weight is measured by
its relative frequencies or probabilities as given by the cdf F,

we have the requirement

F(ti)−F(ti−1)

1−F(ti−1)
=

K
N

(17)

or equivalently

F(ti) = 1− (1−K/N)(1−F(ti−1))

for i = 1, . . . ,m−1 andF(t0) = F(0) = 0, F(tm) = F(T) =
1. Starting witht0 = 0, we see that (17) implies

F(ti) = 1− (1−K/N)i

or

ti := F−1
(

1−(1−K/N)i
)

, i = 0, . . . ,m−1, tm := T, (18)

whereF−1 denotes the inverse1 of the cdfF . Figure 7 shows
an example.

Note that the only parameters that have to be fixed in
advance are the number of fractionsm, the sample sizeN
and the number of active spheresK. As (18) shows, it is
even enough to fixm and theactive share K/N.

The question remains how to chooseK andK/N. In Sec-
tion 3 we have usedβ , the mean number of spheres of the
rarest diameterτ in a random sample as a measure for the

1 In caseF does not allow an inverse function in the strict sense we
may use thegeneralized inversedefined byF−1(r) := min{t ≥ 0 |
F(t) ≥ r}, r ∈ [0,1].

r2

t4t3t2

r3

r4
r5

Tt1 t5t0

F
r1

1

Fig. 7 The interval[0,1] on they-axis is partitioned byr i := 1− (1−
K/N)i , i = 0, . . . ,m−1, the dashed lines indicate the operationF−1( ·).
HereK/N = 0.5 andm= 6.

representativity of the sample. We assume here as through-
out the paper thatτ is also the largest diameter and therefore
τ ∈ Dm = (tm−1,T]. As was pointed out before, we cannot
expect the valueτ to appear in our samples in general. How-
ever, in the last sample restricted toDm = (tm−1,T] the prob-
ability thatτ is sampled isp(τ)/(1−F(tm−1)). Hence, the
mean number of valuesτ in this sample (with sample size
Km = N) is

β := N ·
p(τ)

1−F(tm−1)
= N ·

p(τ)

(1−K/N)m−1 . (19)

Solving forK/N this yields

K/N = 1−

(

Np(τ)

β

)1/(m−1)

. (20)

Hence, we may express the active shareK/N as a function
of the numbermof fractions, the maximal sample sizeN and
the relative frequencyp(τ) of the largest diameter together
with its required appearanceβ .

As was indicated above, we may also start fixing the
fractions, e.g. as fractions of equal weightF(ti)−F(ti−1) ≡
1/m. Then

ti := F−1
(

i
m

)

, i = 0, . . . ,m

and to maintain the ratio (17) we have to choose

Ki :=
N

m− i +1
, ki := N−Ki , i = 0, . . . ,m−1.

8 Systematic Sampling

So far we have assumed that the sample points are generated
by drawing randomly (with replacement) from the fraction
according to the PSDf . As was pointed out before, ifF
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has regions where its value does not change much as, e.g. in
Fig. 4 fort > 100µm, then the rare values might be difficult
to catch even when sampling is restricted to fractions, see
(19).

To overcome this problem at least partly, we here sug-
gest a sampling method known as systematic sampling (see
[14] and the references therein). It guarantees a more evenly
spread sample and fits well into the fractioned sample space
we use. We assume that the maximal sample sizeN is fixed
and that the fractionsDi = (ti−1, ti ] are already determined.
Instead of drawing active and boundary spheres separately,
we now draw one enlarged samplez(i) = (zi,1, . . . ,zi,N) of
sizeN from the interval

(ti−1,T] = Di ∪Di+1∪ . . .∪Dm

of all sphere diameters contained inDi or larger. The sample
pointszi, j that fall into Di form the active spheres, the rest
are the boundary spheres. Systematic sampling as explained
below guarantees that the sample sizesKi ,ki resulting from
this procedure are as required.

To draw a standard random sample from(ti−1,T] one
would use the “inversion principle”. That means thatN points
θ1, . . . ,θN are sampled uniformly from the interval(F(ti−1),1]

(on they-axis), then the sample pointsF−1(θ1), . . . , F−1(θN)
are used. In contrast to that, systematic sampling from(ti−1,T]

starts by dividing the interval(F(ti−1),1] into N subintervals
of equal length

εi :=
1−F(ti−1)

N
. (21)

From each of these subintervals one point is chosen, the first,
sayξi , is chosen randomly (uniformly distributed) from the
first subinterval(F(ti−1),F(ti−1)+εi ], then the next ones are
chosen exactlyεi apart, i.e.

ξi , ξi + εi , ξi +2εi , . . . ,ξi +(N−1)εi , (22)

see Fig. 11 in the Appendix for an example. Then the sample
points are:

zi, j = F−1(ξi + jεi), j = 0, . . . ,N−1, (23)

see Fig. 8 below. Note that in contrast to the formulation
in Section 5 where we assumed fixed sample sizesKi ,ki of
spheres for each fraction, here the numbers of active and
boundary spheres have become random variables depending
on the sample. However, as it is shown in the Appendix, due
to the systematic sampling, these random numbers deviate
from the prescribedKi andki by at most 1.

Fig. 8 shows an example of systematic sampling applied
to m = 6 fractions with sample sizeN = 5. The fraction
boundariesti are chosen as in Fig. 7 withK/N = 0.5. The
sampling for the first fraction is shown in detail: three of
the selected diameters fall intoD1 = (0, t1] and are active

spheres indicated by black circles, whereas the white circles
are boundary spheres as described in Section 6. For the sec-
ond fractionD2, only the equidistant points on they-axis
are given. The ones marked with black arrows will lead to
the active spheres, the white ones to boundary spheres. Note
that here we have only two active spheres. FromK/N = 0.5
we haveK = 2.5.

ǫ1

ǫ1

ǫ1

ǫ1

t4t3t2 Tt1 t5t0

F

i = 1

r1

i = 2

r2

1

r1

ǫ2

ξ1 + ǫ1

ξ2

ξ2 + ǫ2

ξ1

Fig. 8 For the first sample the equidistant pointsξ1 + jε1, j = 0, . . . ,4
are shown on they-axis together with the sample points. For the second
sample different values ofξ2 andε2 are used as described in the text.

9 Summarizing the Complete Algorithm

Before we give some experimental results we summarize the
complete algorithm RESOS (recursive estimation with sys-
tematic overlapping sampling) with both its parts, the recur-
sive estimation as given in Section 5 and the particular way
of fixing parameters and taking samples as described in the
last two Sections:

Input: a PSDf on the range(0,T] with cdf F, τ the largest
valuet ∈ (0,T] with f (t) > 0; m the number of fractions;
N the maximal allowable number of spheres per run of
the packing program andβ , the minimal average number
of largest spheres with diameterτ to appear in the last
subsample (see (19)).

Output: an estimate of the packing densityΦ( f ).
Steps of the algorithm :
I.Setup Determine the active shareK/N as

K/N := 1− (Np(τ)/β )1/(m−1) .

Partition the interval(0,T] into fractionsDi := (ti−1, ti ],
i = 1, . . . ,m with

ti := F−1
(

1− (1−K/N)i
)

, i = 0, . . . ,m−1,

tm := T.

Putζi := F(ti)−F(ti−1), i = 1, . . . ,m.
II. For eachi = 1, . . . ,mdo
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II.1 Sampling Put εi := (1−F(ti−1))/N, draw ξi uni-
formly distributed from the interval(F(ti−1), F(ti−1)+
εi ] and let

z= (z1, . . . ,zN)

:=
(

F−1(ξi),F
−1(ξi + εi), . . . ,F

−1(ξi +(N−1)εi

)

.

DefineLi := max{l | zl ≤ ti}, thenz1, . . . ,zLi are in
Di and form the active spheres.

II.2 Simulation Put

Vi := ζi
1
6

π
Li

∑
j=1

z3
j

and simulate the container volumeC(z) for a random
close packing ofz. Let

C+
i := ζi

(

C(z)−
1
6

π
N

∑
j=Li+1

z3
j

)

.

III.Recursion DefineC+
1...i recursively as

C+
1...1 := C+

1 ,

C+
1...i := max

{

C+
i , C+

1...i−1 +Vi
}

, i = 2, . . . ,m.

IV.Estimation Obtain as estimator for the packing density
Φ( f )

Φ̂( f ) :=
V1 + · · ·+Vm

C+
1...m

(24)

V.Repetition If necessary, repeat steps II - IV with indepen-
dent samples and take the average to obtain an estimator
with a smaller variance.

To get an impression of the time complexity of this al-
gorithm we compare it to a packing algorithm without frac-
tions. Let us assume that a typical packing algorithm (e.g. of
collective rearrangement type) needs timeO(M log(M)) to
pack a sample of sizeM. We chooseM such that the largest
value τ has a prescribed expected frequencyβ = M · p(τ)
as described in Section 3. For a fair comparison, the same
value ofβ should hold for the fractioned sampling, i.e. from
(19)

M · p(τ) =
Np(τ)

(1−K/N)m−1 or N = M ·(1−K/N)m−1.

As we needmsimulations of samples of sizeN in RESOS it
has time complexity

O(m·N log(N))

= O(m·M ·(1−K/N)m−1 log(M ·(1−K/N)m−1)). (25)

The relative shareK/N of active spheres is always less than
1, therefore the time complexity of RESOS decreases expo-
nentially fast for increasing number of fractions. For the par-
ticular valueK/N≈ 0.5 as in our experiments below, the run

time bound for RESOS in (25) is smaller thanM log(M) for
all m> 2. As the simulations in RESOS may be performed
one after another (or in parallel), the space complexity is
O(N) = O(M ·(1−K/N)m−1) for RESOS andO(M) for the
unfractioned simulation.

In RESOS by far the most time is needed for the sim-
ulation of C+

i in step “II.2 Simulation”. As we will show
now, some of these packing simulations may be skipped or
stopped if we assume that the packing is built up iteratively
with an increasing packing density (as it is the case in the
rearrangement algorithms). To see this, note that in the main
recursion (16) the exact value ofC+

i is not needed if it is
smaller thanC+

1...i−1 +Vi as we have

C+
1...i = C+

1...i−1 + Vi

⇐⇒ C+
i < C+

1...i−1 +Vi .
(26)

As C+
1...i−1 +Vi may be calculated before the simulation of

C+
i starts, we can abort the simulation as soon as the con-

tainer used for the simulation ofC+
i embodies a valid sphere

packing and has a volume less thanC+
1...i−1 +Vi . No fur-

ther densification of the packing is then necessary, we have
C+

1,...,i = C+
1...i−1+Vi and we are in a situation as indicated in

Fig. 6.
If we are able to give a lower boundb on the “local

packing density”Vi/C+
i we may even skip the simulation

of C+
i completely ifC+

1...i−1 +Vi ≥ Vi/b. As Vi/b is an up-
per bound onC+

i we then haveC+
1...i−1 +Vi ≥ C+

i . E.g., in
a polydisperse mixture we can be sure thatVi/C+

i ≥ 0.4 for
all fractions. IfC+

1...i−1 +Vi ≥ Vi/0.4 for somei, we have
C+

i ≤Vi/0.4≤C+
1...i−1 +Vi and we may skip the simulation

of C+
i and obtainC+

1,...,i := C+
1...i−1 +Vi . In this sense, (26)

may be used as a stopping criterion for unnecessary simula-
tions.

10 Simulation Results

In this Section we present some simulation results to show
the validity of our approach and to compare it to the analyt-
ical tools as sketched in the Introduction.

10.1 Mixture of glass spheres

The most convincing test would be to compare results from
our algorithm RESOS to experimental results for real mix-
tures with a broad size distribution. As was mentioned above,
real packings of, e.g. concrete mixtures contain ill-shaped
agglomerations of small particles that usually decrease the
density of the packing. Simulating the effect of these ag-
glomerations on the packing density is quite difficult. With
our present packing tool, we have to restrict ourselves to
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spherical, non-agglomerating particles for a direct compari-
son with experimental data.

We use six different mixtures of glass spheres that do
not agglomerate. Three mixtures follow the classical Fuller
curve (Fu1 - Fu3), the rest are simpler bi- and tridisperse
mixtures (Bi1, Bi2, Tri), see Table 1 for details. We com-
pared our RESOS algorithm to the analytical model of To-
ufar [17], the LMPM [22] and the CPM [4]. These mod-
els need as input data the empirical packing densities of
the monodisperse packings for each sphere diameter, the so-
called eigen-densities, which are given in Table 2.

diameter mass fraction [%]
[mm] Fu1 Fu2 Fu2 Bi1 Bi2 Tri

0.444 37.95 26.59 20.56 34.41 — 34.05
0.940 18.06 12.65 9.78 — 40.36 50.94
1.552 16.13 11.30 8.74 65.59 — —
2.963 27.86 19.52 15.09 — — 15.01
6.003 — 29.94 23.18 — 59.64 —

10.022 — — 22.66 — — —

Table 1 The mixtures of glass spheres used in the experiments.

diameter
[mm]

eigen-
density

0.44 0.64476
0.940 0.65943
1.552 0.64879
2.963 0.64315
6.003 0.62562

10.022 0.59147

Table 2 The empirical eigen-densities of monodisperse packings of
the glass spheres.

The packing densities resulting from the different meth-
ods are shown in Figure 9. The experimental results were
obtained using a pycnometer, they are averages from seven
measurements each. For our RESOS algorithm we used the
(moderate) sample sizeN = 50000 withm = 6 fractions
andK = 25541 active spheres resulting in a ratioK/N =
0.510821. The results are also averages of seven runs. As
can be seen, the estimated packing densities are very close
to the experimental ones, the difference being less than 2 %
on the average.

The model of Toufar tends to underestimate the density,
a similar observation was made with the modified Toufar
model [6]. The linear mixture packing model LMPM [22]
constantly overestimates the density. Only the compressible
packing model CPM yielded results comparable to our hier-
archical approach. Here we used the compaction index 9 (as
suggested by de Larrard [4] for vibration and compression).
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Fig. 9 The packing densities of the glass mixtures from Table 1 as
they were obtained by five different methods. For the experimental and
RESOS results, standard deviations from seven runs are indicated.

We may also use the data of Tables 1 and 2 to explicitely
show the effect of the additional boundary spheres we have
used in the simulation of the single fractions. If we use no
boundary spheres with the abovem = 6 fractions we ob-
tain monodisperse packings and the local packing densities
Ci/Vi = C+

i /Vi are just the eigen-densities as given in Ta-
ble 2. These values may be inserted into the recursion (16)
resp. (13) for the six mixtures of Table 1. Table 3 shows the
results. Here, the second and third column repeat the val-
ues from Figure 9, the last column shows the new estimates
obtained without boundary spheres. It is obvious, that these
values are far from the true experimental values and far from
the estimates of RESOS with boundary spheres.

Mixture Empirical RESOS
with bound-
ary spheres

RESOS
without
boundary
spheres

Fuller1 71.58 72.3130 82.70675
Fuller2 75.30 77.0482 87.22186
Fuller3 78.99 79.8149 89.82571
Bidisperse1 69.50 71.8008 84.06279
Bidisperse2 75.91 74.154 82.75106
Tridisperse 69.53 69.0561 84.20319

Table 3 Comparison of packing densities (in %) of RESOS with and
without boundary spheres
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10.2 Concrete Mixtures

To show that our hierarchical approach in RESOS can cope
with broader size ranges, we applied it to two full-range
PSDs. The first is the one depicted in Figures 2–4, it con-
sists of 12.5% fly ash, 37.5% cement (10-63µm) and 62.5%
granulated cinder (125-250µm), where all % are % by mass.
The second mixture consists of 50% cement (CEM I 32,5R)
and 50% fly ash, its PSD is shown in Figure 10. In both
mixtures, a high percentage of the small particles form ag-
glomerates. As our RESOS simulation does not contain ag-
glomerations, we only compared it to results obtained from
analytical tools, namely LMPM and CPM.
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Fig. 10 The relative shares in volume and frequency of the second
mixture used for our comparison.

Both LMPM and CPM use the eigen-densities of the
components of the mixture, i.e. small intervals of the PSD
that could be treated as more or less monodisperse fractions.
If these densities are determined experimentally, they will
contain the effects of agglomeration. To make results com-
parable, we used eigen-densities as simulated by our pack-
ing tool, without any agglomerations. This also had the side
effect to make efforts for the different approaches compara-
ble: it is the total sample size of simulated packings.

To determine the parameters for RESOS as described in
Section 7 we identify the largest diameter in the PSD of Fig-
ure 2 asτ = 948.3 with

p(τ) = 4.551914·10−15.

We therefore obtain from (20)

K
N

= 1− (N ·4.551914·10−15)1/(m−1). (27)

Applying the same sample sizeN = 50000 and a similar
share of active spheresK/N as with the glass spheres, we
obtain from (27)m= 33 as necessary number of fractions,
leading toK/N ≈ 0.5003. In a similar way, we obtained
for the second mixture with the largest diameterτ = 373.1:
p(τ) ≈ 1.506527·10−15, m= 34 fractions withN = 50000
andK/N ≈ 0.5066.

The most natural components for LMPM and CPM are
the diameter intervals determined by the sieve sizes which
results in 108 components for the first and 98 components
for the second mixture. The eigen-densities of these compo-
nents were obtained by simulation, each with 50000 spheres
as in RESOS. For a fair comparison, we also applied LMPM
and CPM with 33 and 34 components only, i.e. with the
same total of sample points as in RESOS. The results are
given in Table 4.

mixture of Fig. 2 mixture of Fig. 10

method no. of
fractions
or com-
ponents

m

packing
density

[%]

no. of
fractions
or com-
ponents

m

packing
density

[%]

RESOS 33 89.2460 34 86.4908

LMPM 33 88.7871 34 86.5861
LMPM 108 89.5217 98 86.3390

CPM 33 89.6559 34 86.3665
CPM 108 89.5493 98 86.3012

Table 4 Results for the two concrete mixtures. Each component or
fraction was simulated withN = 50000 spheres.

For the first quite complex mixture it turned out that re-
sults from LMPM with 33 components, i.e. with the same
effort as RESOS, were not satisfactory. Only with a much
higher effort, withm = 108 components, LMPM was able
to obtain results of similar quality as RESOS. For the sec-
ond mixture, differences seem insignificant.

The CPM needs the so-called compaction indexK. As
the simulation uses ideal conditions (exact spheres and peri-
odic container walls), we used the valueK = ∞ which can be
derived from de Larrard’s formulas [4]. With this parameter,
CPM produced about the same results as RESOS even with
just m= 33 orm= 34 components.

From these results one may conclude that RESOS yields
slightly better results than LMPM and is comparable to CPM
if this has a suitably adjusted compaction index. Still we
claim that our method is more flexible than the empirical
models as it definitely needs no experiments. Moreover, CPM
has the disadvantage that its performance depends crucially
on the right compaction index which for general particles
has to be determined by experiments, even if the component
data should be obtained from simulation.

11 Conclusion

In this paper, a hierarchical method RESOS for the estima-
tion of the space filling of polydisperse sphere packings has
been developed. It divides the particle size distribution of
the mixture into a number of smaller fractions. Although
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the fractions are treated separately the method takes into
account the filler effect of small particles between bigger
ones by including spheres from other larger fractions as the
container’s inner boundary. This has been combined with a
sampling method which ensures representativity of the sam-
ple even for rare particles as they typically appear in mix-
tures like cement, concrete or mortar. The method can be
used with different packing techniques, present simulation
results are based on collective rearrangement.

RESOS yields fast and reliable estimates for the packing
density of mixtures with a broad size distribution. It opens
the possibility to systematically search for particle sizedis-
tributions with high packing density, as they are needed in
materials science. However, before one can think about de-
signing high density mixtures on the computer, at least two
problems have to be solved: the packing of non-spherical
particles and the simulation of agglomerates within pack-
ings. These will be the topics of our future work.

Appendix

We assume that the fractionsD1, . . . ,Dm and the maximal
sample sizeN are fixed and that systematic sampling is ap-
plied as described in Section 8. Now fixi and letLi be the
random number of sample points in thei-th sample that fall
into Di and lead to active spheres. In (17) the ideal value for
the shareKi/N of active spheres is given as

Ri :=
F(ti)−F(ti−1)

1−F(ti−1)
, i = 0, . . . ,m−1. (28)

We want to show thatLi/N is as close toRi as possible, more
precisely

|Li −NRi | ≤ 1 and ELi = NRi

for i = 1, . . . ,m− 1, whereE indicates expectation. For a
proof first note thatLi is the number of values from(zi,1, . . . ,

zi,N) = (F−1(ξi), . . . ,F−1(ξi +(N−1)εi)) that fall intoDi =

(ti−1, ti ]. It must be equal to the number of valuesξi + jεi , j =
0, . . . ,N− 1 that fall into (F(ti−1),F(ti)] = (r i−1, r i ] where
we putr i := F(ti). As theξi + jεi have constant distanceεi

we see that

Li = max{l ∈N | ξi + lεi ≤ r i} + 1 =

⌊

r i −ξi

εi

⌋

+ 1

where⌊x⌋ is the largest integer less or equal tox. Note that
we have “+1” to account forξi +0εi . As ξi takes on values
in (r i−1, r i−1 + εi ] only (see Section 8), we obtain
⌊

r i − r i−1

εi

⌋

≤ Li ≤

⌊

r i − r i−1

εi

⌋

+1.

From (21) and (28) we have thatNRi = (r i − r i−1)/εi , hence
the random variableLi can take on only the two values⌊NRi⌋

or ⌊NRi⌋+ 1 and|Li −NRi | ≤ 1 follows. Fig. 11 shows an
example for two different values of the starting pointξi .
The black arrows indicate valuesξi + jεi that lead to ac-
tive spheres whereas the white arrows belong to boundary
spheres.

1

ξi

ξi

riri−1

εi

Fig. 11 Depending on the first pointξi , the number of pointsξi + jεi

in (r i−1, r i ] may take on two different values.

From straightforward but tedious calculations it follows
thatLi takes on the value⌊NRi⌋+1 with probabilityNRi −
⌊NRi⌋ from whereELi = NRi follows.

More generally, it can be shown in a similar way that
with systematic sampling the number of sample points that
fall into an arbitrary intervalI deviates from the expected
number of points inI under random samplingonly by at
most 1 and has the same expectation.
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