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Abstract In many fields of materials science it is important analytical models like CPM without the need for any exper-
to know how densely a particle mixture can be packed. Thé@nents.

“packing density” is the ratio of the particle volume and the

volume of the surrounding container needed for a randorfi€YWords packing density, space filling, particle simu-
close packing of the particles. lation, polydisperse patrticles, sphere packing, systemat

We present a method for estimating the packing densit;?amp“ng

for spherical particles based on computer simulations,only
i.e. without the need for additional experiments. Our métho 1 |ntroduction
is particularly suited for particle mixtures with an extrely
wide range of particle diameters as they occur e.g. in modPacking of particles and estimating the properties of a ran-
ern concrete mixtures. A single representative sample frordom dense packing are problems that appear in many fields
such mixtures would be much larger than can be handled oof materials science, see, e.g. [15] for a comprehensive ove
present standard computers. view. A basic property of a packing is ifgmcking densityor

In our hierarchical approach the diameter range is therespace filling i.e. the ratio of the net volume of the particles
fore divided into smaller intervals. Samples from these lim and the volume of the packing.
ited diameter intervals are drawn and their packing defsity ~ Our work is particularly motivated by problems from
estimated from a simulated packing. The results are used gpncrete research. Advanced technologies like Ultra-High
“ill” the interstices in the sample from the next larger part Performance Concrete (UHPC) require a specific granulo-
cle interval. To account for the interaction between plesic metric composition that reduces the void fraction in the dry
of different sizes we include larger particles into the smp mixture [11] to obtain a harder and less porous concrete.
of smaller ones. The larger ones act as part of the boundarypically, the particles in a dry concrete mixture have size
during the packing. Thus we obtain more realistic estimatethat vary over an extremely wide range, e.g. from less than

of how dense a fraction of particles can be packed within th®.1 um (filler, e.g. fly ash or microsilica) up to 2Q0n (ce-
whole mixture. ment) with even larger particles at 2 mm and above if aggre-

The focus of this paper is on the divide-and-conquer apdates like gravel or sand are added. _ o
proach and on how the simulation results from the fractions 10 find & particle mixture with a high packing density in
can be collected into an overall estimate of the packing derf Systematic way, it is advantageous to have a tool that al-

sity. We do not go into details of the simulation technique'OWS to estimate the packing density of a given mixture with

for the single packing. as little effort as possible. In particular, one would lile t
avoid the time consuming experiments with the real mix-

We compare our results to some experimental data to . . .
tU]re and its components. As there is no purely analytical

show that our method works at least as good as the classica . . .
way available, a solution that uses only computer simula-

tions would be useful. In particular, one could then estamat

the packing density even before the mixture exists.

Institute of Mathematics, Clausthal University of Technologyz-E To this end, we first have to characterize the mixture in
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three-dimensional spherical particles and neglect angroth size of samples will be considered in greater detail in Sec-
(e.g. chemical) properties or environments (like wateoin-c  tion 3 below.

crete). This simplification is somewhat justified as we are

only interested in the static geometric result of the pagkin !N this paper, we present a new approach to estimate
It also allows to deal with huge sample sizes in acceptablE'® Packing density that is capable to handle size distribu-
computing time. Hence the only relevant characteristic fofions with a wide range. It benefits from simulation to deter-

the packing density is the frequency distribution of the- parMine the packing density of small restricted samples of par-
ticle diameters in the mixture, the so callearticle size dis- ticles and it uses a mathematical model to obtain an estima-

tribution (PSD) which we callf. tor for the overall packing density from these simulations.

There is a rich literature on the search for PSDs thaWe divide the particle size range into several smaller in-

yield a good space filling starting with the classical Worktervals (called'ractions) from WhiCh samples can be drawn
of Fuller [5, 1] more than a century ago. Although this work that allow to simulate the packing density of these restdct

is sometimes still regarded as a standard, results on “gdﬁmgehs' Wekt_henduse_ a s]:mhple rheclursn_/e forrpula tﬁ calcu-
gradings” [13] indicate that PSDs with some intermediateiatet e packing density of the whole mixture from the sep-

particle sizes missing may result in higher packing densi-e,“ate 5|mulqt|on results. In contrast to, e.g. the aforemen
ties tioned packing models, we do not use an elaborate mathe-
matical approximation formula with elementary data but a

Generally, there seem to be two approaches for the es- . . . .
e . e . simple mathematical formula with data obtained from simu-
timation of packing densities in the more recent literature

' . lating a complex sample that includes the interaction of dif
The so-calle@nalytical approachuses a mathematical model . . . .
. : o . ferent particle sizes, see below. Besides being less ¢ctistly
of how particles of different size interact geometricalhda

derives an approximate formula for the packing density O{JUFEW software based approach has the additional advan-

. . age that it does not depend on any technical restrictiaas li
a mixture. As input parameters, these methods need em g P y

o . sieve sizes or limited precision of measurements. The only
pirical data for each (more or less monodisperse) comp

. . . . . .qimitations we know of are the number of spheres that can be
nentin the mixture, such as its mean diameter, eigenpackin o . .
cked within reasonable time and—uwith our present pack-

density or even densities of all binary mixtures of compo—in software—the inability to handle agalomerations of par-
nents. Examples of this analytical approach include the To- 9 Y 99 P

ufar model [17], the linear packing model by Stovall [12] ticles (seg below)..l\.lote that the present paper is mainly con
: ) . cerned with the divide-and-conquer aspect of the approach
and the mixture packing model by Yu and Standish [20] . . ) .
e and not with the exact details on how the packing of a single
who also developed a unification of the last two models

the linear-mixture packing model (LMPM) [21, 22]. An- fraction can be simulated.

other prevalent approach is the compressible packing model Hjerarchical approaches to deal with extreme polydis-
(CPM) by de Larrard [3, 4]. Numerous experiments, deperse mixtures have been used before. Webb and Davies [19]
scribed, e.g. in [8], show that these approaches allow to estyqqress this problem with a reduced-dimension algorithm
mate the packing density at least of certain simple mixturegpere spheres are sequentially deposited into nested cylin
with high accuracy. ders. Packing characteristics can then be estimated frem th

The second approach to estimate the packing densifyinermost cylinder which is the only one that contains spher
takes a (theoretical) sample of particles from the distiiiou  of all radii. Though particle radius ratios up to 80:1 were
and simulates the random close packing of these particlesmulated, the number of different sphere sizes is limited b
on a computer. There are a number of different algorithmsause each single radius needs to be represented by enough
to perform the simulation, see, e.g. [7, 2] and [10] for anspheres to fill its own cylinder. Another notable method to
overview. Though this approach seems to be “model-freefeduce the number of particles is the hierarchical model de-
in contrast, e.g. to the linear packing model, it turns oat th veloped by Wackenhut et al. [18]. They collect smaller par-
to some extent the results depend on the algorithms used. Aigles into artificial “soft particles” of larger diametéStart-
Torquato [16] (see also [9]) pointed out, the term “randoming with the smallest particles, on each level of diameters
close packing” is not well defined. The randomness as wel|| true and soft particles are condensed into soft pasticle
as the closeness depend on the packing algorithm and on tha the next level until the number of remaining (true and
measures used for randomness. soft) particles is small enough to be packed in a simulation.

Both approaches do not work well with wide range sizeThis approach reduces the complexity and polydispersity of
distributions. For the analytical approach too many compothe packing to a well-manageable size, but it excludes any
nents have to be examined experimentally to obtain the ne@ateraction with particles hidden in the soft particlesphr-
essary input data and for the simulation approach the sampleular, the small particles can no longer fill the interstic
size required to obtain @presentativesample is much too between the larger ones and the packing density will gener-
large to be simulated on present computers. The necessaally be underestimated.



problem with real mixtures of, e.g., concrete is that plsic
of size below a certain threshold tend to form rigid agglom-
erates of irregular shape that may be far from spherical even
if the particles themselves are spheres. These agglorserate
cannot be packed densely and therefore usually decrease the
packing density when compared to the packing of the corre-
sponding non-agglomerated spheres. The simulation algo-
rithms we used for the packing cannot at present simulate
agglomeration. We therefore first use six different mixsure
of glass spheres in which no agglomeration occurs to com-
pare our simulation results with the experimental data (and
Fig. 1 The hierarchical approach treats smaller spheres as homoggyith results from other analytical tools as they were men-
neous substance between larger ones. tioned above). In a second step we used realistic concrete
mixtures. Here, we compared our (agglomeration-free) re-
The main idea of our approach is explained in Figure 1 Sults with the results from the apalytical tools only (theync
When simulating the packing of particles sampled from thé®® made to neglect agglomeration also). It turns out that onl
interval of largest radii as, e.g., in Fig. 1 (a), we consided® Larrard's compressible packing model [4] yields results
the empty space between the spheres as filled by some Hef.comparable quality at the price of a slightly higher effor
mogeneous substance with a particular density. This gensit  Let us stress once more that the focus in the present pa-
is the packing density that is determined by simulating théer isnot on the packing of the sample itself but on how
packing of spheres from the next smaller interval as indithe results from separate packings may be collected for the
cated by Fig. 1 (b). This again requires first to simulate theédverall packing density and how the interaction between par
packing of smaller spheres as in Fig. 1 (c) and so on. TecHicles of different fractions can be taken into accountc8in
nically, we start by simulating the packing density of theour method is basically independent of a particular sphere
smallest spheres and then insert this value when packing tf@cking method, we shall not discuss in detail the actual al-
next larger spheres. gorithm we used in our experiments. It is an algorithm of
Treating the empty space in a packing as if it was evenlyhe “collective rearrangement” type that was adopted from
filled by spheres from smaller fractions neglects the lim-7]. It places the spheres into a container that is too small
ited arrangement of small particles in the interstices betw initially, so that overlaps between the spheres must occur.
larger ones. This error is reduced by the way the space fillinghese overlaps are reduced iteratively by simulating a lo-
of the smaller fraction is simulated: we enlarge the santple tcal repulsion of the spheres and by enlarging and shrinking
be packed by additional larger particles. After a dense-packhe container until practically no overlaps remain while th
ing has been obtained, the packing density is calculatdd witcontainer is kept as small as possible.
respect to the smaller particles only. The additional large  Also it might be possible that our approach as summa-
particles are considered to be “holes” in the containersThu rized in Section 9 works well with soft and/or non-spherical
the packing density of the smaller particles is simulated irparticles if an appropriate packing algorithm for thesdipar
the presence of larger ones yielding a more realistic resuftles would be available. One requirement is that such an al-
that includes the interaction of particles across theifsast ~ gorithm should be able to pack at least, say 50 000 particles
This is indicated in Fig. 1 (b) where the spheres A-D fromin reasonable time as this simulation has to be repeated more
the larger fraction are present, simulating the boundary behan 30 times (in our examples). The model will most likely
tween the fractions. be applicable to hard disks, i.e. to two-dimensional sghere
We discuss in detail how the sampling mechanism shoulét present, our experience is restricted to hard sphereS in 3
be adapted to the choice of the intervals and to the size digvhich is also the adequate model for our main application in
tribution. To obtain representativity of our samples weaise concrete research.
particular stratified sampling method also known as system-  The present paper is organized as follows: we start with
atic sampling (see, e.g. [14]) that guarantees to always ira more formal definition of the packing density in Section
clude some of the (typically) rare large particles in our sam2. The shortcomings of a conventional sampling and simu-
ple. As will become clear, the two aspects, systematic samation method for extreme polydisperse mixtures are shown
pling and recursive estimation, are closely related to eacin Section 3. In the next three Sections we present the main
other. ideas of estimating the packing density from subdivided di-
We also present some experimental results showing thaimeter ranges that constitute the backbone of our approach.
our hierarchical approach yields excellent estimates ef thin Section 7 and 8 we discuss how to choose the fractions
packing density (within 2% of experimental results). Theand sample sizes and how to draw the samples. The com-




plete algorithm RESOS is summarized in Section 9. In Secsimulate the behavior of particles in a measuring device. Ou
tion 10, we present some empirical results of our approactexperiments showed, however, that it makes no difference
in particular we compare it to other standard models. Rinall if we select just one fixed value from each interval, say its
a conclusion is given followed by an Appendix on statisticalright endpoint. This is probably due to the fact that intésva
properties of our sampling technique. with high density values are extremely small. In this way, we
have actually turned our continuous density functfoimto
a discrete distributiop concentrated on the right endpoints
2 Estimating the Space Filling sy,V=1,...,n, of the intervals. We shall therefore uper)
to denote the probability of the step (interval) that lmeess
As mentioned before, we restrict ourselves to mixtures ofts right endpoint.
ideal hard spherical particles as any more complicated mode 14 apove example shows two things which are typi-

would prevent us from using samples as large as they agg| for the distributions we consider in this paper: firse th
needed in our setting. The mixtures are completely chafnge of possible diameters covers several magnitudes and
acterized by the relative frequencies of the particle diamegeqonqly, Jarger particles are relatively rare but thefume

ters appearing in the PSD(or, equivalently, by the volume .5 nn6t he neglected. Note, that in the example frequencies
share of spheres with a certain diameter). We assume that B?particles larger than m can only be distinguished in the

agglqmeration occurs. ] _logarithmic scale of Fig. 3.
Fig. 2 shows the PSD of a real concrete mixture that is

used for our simulations in Section 10 below. Both the fre-

quency as well as the volume share are shown as step func-17s — trequency” 015
tions with steps determined by the limited resolution of theZ s+ e PP
measuring device (e.g., mesh width of sieves) through whiclg 125 - L o1

the components of the mixture pass. The valuelsark a re- 10+

sult of the recipe of the mixture, e.g. in this case it is “22.5
fly ash, 37.5% cement (10-68m) and 62.5% granulated
cinder (125-25Qum)” where, as it is usual in materials sci-
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5

sieve passing (volume) [%]

sieve passing (fre

2.5

ence, the percentage is given with respect to mass. Volume °1, ‘ ‘ - nll il
share and relative frequency have to be calculated from that 004 01 e 10 100 1000
based on the specific weight of the different materials. In diameter fim]

Fig. 3 the same functions are given with a logarithiic  Fig. 2 The relative frequencies of diameters of particles and thebir
scale Showing that the mixture has a certain |Ogarithmic hoative share in the volume of a mixture given in detail in Sectior21
mogeneity with respect to volume: the logarithm of the vol-
ume share of particles is almost constant in the size of the
particle, whereas its frequency decreases with growirg siz

We assume that the PSDis normalized such that the 20 ——
area under the graph sums to one, tHeis a probability 0.2 — volume
density function. We also use the cumulative density funcs 20:’22:
tion (cdf) F with 26-07
2e-09
2e-11+
2e-13
2e-15

sieve passing [

F(t) = /ot f(s)ds t>0.

Fig. 4 shows the cdf for the two densities of Fig. 2. 2 ‘ ‘ ‘ ‘
Selecting a particle (a diameter) at random from the mix- 004 01 1 10 100 100(
ture can be simulated by sampling from As was men- diameter fim]

tioned above, the steps btorrespond tointervals, 1,5y},  Fig. 3 The relative frequencies of diameters of particles and teir
v =1,2,...,n of diameters which cannot be distinguishedative share in the volume with logarithmyeaxis.
in practice. When sampling frorfi, one would first select

an interval(sy_1,sy] with probability
In the sequel, we assume that we are given a PSih

p(sv) := F(sv) —F(sv-1) (1)  its cumulative density functioR. We start with a definition

of the packing density correspondingftoLet
and then select a value frofs,_1,sy]. The most natural way

would probably be to select it according to a normal distribu
tion concentrated on the interval as this would in some sense:= (xq,...,Xv)



0 If we take, e.g.t = 2132 um, we obtain for the functiof
08 depicted in Fig. 4
§ oo F (2132 um) ~ 0.999999999168772  hence
g o4 a(t) ~ 1—0.9999999991687 #200 000
02 ~ 0.000830882490483
0.0 4 = e Therefore, random samples even as large as 1 000 000 will
00 o j N 100 o« hardly ever pick any of the diameters larger than.218n.
diameter fim] However, the relative share in the volume of particles large

i 0
Fig. 4 The cumulative density function for frequencies of diametersthaln 2132 pum is about 25%. o
and their relative share in the volume. To measure theepresentativityof a samplex from a

given PSDf, we look at the rarest sizeof the PSD, i.er
d . is the right endpoint of that step for whidhattains its low-
enote a large sample of diameters drawn randomly from .
the mixture. We denote by e;t non-zero va_Iue. We assume throughout this paper that
this rarest size is also the largest size. In the PSD of Fig.
2 2 f attains its minimum on the last interval from 883um
] @ tor:—o0s83 um with probability p(9483) ~ 10715, p as
defined in (1). As a rough measure of how representative a
the volume of the spherefsom this Sample. In spite of the Samp|9( of sizeM is, we use the mean numué[: M- p('[)
problems connected with defining and measuring randorgf particles from this interval appearing in the samplehie t
close packings as they were mentioned in the Introductionexample above we obtafh= M- 1015, If we want to make
we assume here that we can associate a nuBber= syre that on the average at least one of the largest spheres is
C(x1,...,%u) with the samplexthat gives thespace require-  contained in the sample, i.6.> 1, we would have to take
ment i.e. the volume of the smallest container holding a rang sample of siz& > 10 and simulate its packing. This is
dom close packing of the spheres with diamesers..,xv.  clearly impossible on todays standard computers and may
Then we define thpacking density of sampleby also be intractable on larger clusters or grids as packing al
V(Xe,. .., %) gorithms are in general not well suited_for par.allelization
$(x) = m ) and grid computers due to the complex interaction between
Lo the particles. It is an additional advantage of our hieriaadh
If the sample is large enough, we may ys&) as an esti-  approach that the simulation of the fractions (see below) ca
mate of the true packing densi@( f) of the whole mixture.  pe performed in parallel.
In the literature, the symbol4, or p are sometimes used in-  Thus it seems impossible to include the smallest spheres
stead of®(f). A theoretical packing density @(f) =0.8,  and spheres of diameters larger than, e.g.28n (in our
e.g., means that in a random close packing of an arbitrarilgxample) in one representative sample that could be packed
large sample 80 % of the space is covered by spheres aRgth a standard algorithm. Still this interaction is impor-

<

V(X) = V(X]_,...,XM) =

T
&6

20 % remains empty on the average. tant for the estimation of the packing density as the smaller
We could improve the estimatgi(x) by repeatedly draw- spheres might fill the interstices between the larger ones

ing independent samples”,... X", each of sizeM and  more or less densely.

use the average af(x\),...,¢(x"). We solved this problem by (a) splitting the estimation

of the overall packing density into a set of recursive estima
tions of smaller size over parts of the PSD and (b) applying
an appropriate sampling scheme that includes the boundary
effects between these parts.

3 Naive Sampling for Space Filling

To get an impression of suitable sample sik&snote that

our packing program mentioned in the Introduction pregentl

has the capacity to simulate the dense random packing of packing Density over a Subdivided Diameter Range

M = 1 000 000 spheres in one run of about 38 h on a Intel

Xeon computer running at 2.33 GHz. We first describe how the packing density of the mixture
If the 1000000 diameters are sampled randomly from as a whole can be obtained from results based on restricted

cumulative density functiofr as in Fig. 4, the probability diameter ranges only.

that the sample contains at least one diamietger thant Let (0, T] be the interval of possible diameters of spheres.

is We partition this interval intan smaller intervals

aft) :=1— F(t)1000000 (4)  Di:= (to,t1], D2:= (t1,t2],...,Dm:= (tm_1,tm], (5)



with tg = 0 andt,, = T. We call these intervalsactions The
simplest way to determine tHg; would be to choose frac-

In the other case, the empty space ofitlle fraction is not
large enough and hence the volu®gy),. . .,X)) needed

tions of equal length, or to use the sieve sizes from which théor fractionsD1, ..., D; is the space for the fractiom, ...,
PSD was built. A more appropriate partitioning is discussed; -1 plus the net volum& (x) of the spheres of fraction

in Section 7.

We now consider a single random samgle- (xy,...
,Xm) drawn from(0, T] from which we want to estimate the
packing densityp (x) = V(x)/C(x) as defined in (3). Our
aim is to derive an approximation ¢fthat is based on sep-
arate simulations over the fractiobs,i = 1,...,m. We start
by studying how the sample= (x1,...,xm) from (0, T] be-
haves on the fractions.

Let x) := (Xi1,..-,% k) be the part ok that falls into
fractionDj, i.e.ti_y <X j <t,j=1,...,K.

Then

V(Xiy) = V(%1 Xik) = ZI El,)rrx,sJ (6)
=1

is the net volume of the spheres from sampléhat fall

D;. In this case, the large spheres from fractiyrwill not
be close together but rather float in the mass of the smaller
spheres, see Fig. 6.

Fig. 5 The dark spheres from fractidy dominate the space needed

into fractionD;. Again, let us assume that the space needetbr fractionsDy,...,D;.
for a dense packing of these spheres is well defined and
can be calculated exactly. Denote this space requirement by

C(Xi))- ThenC(x;)) — V(X)) is the empty space between
the densely packed spheres from fractijn

Similarly, letC(xy), ..., Xq)) denote the space require-
ment for a dense packing of all spheres frethat fall into
one of the firsi fractionsD1, Do, ..., D;, i.e. have diameters
<ti. ThenC(Xy),...,Xm)) = C(x) is the space requirement
of the whole sample.

The following recursive relation betwe@ix ), . . ., X))
andC(x) plays a crucial role in our algorithm (note that

this is only an approximation details of which are explained

below):
C(X)s-->Xi)) = CXqy)
if C(X(l), .. 7X(i,l)) < C(X(l)) —V(X(|)) and )
C(X(1)s-- X)) = CXys--»Xi-1)) +V (X))
if C(X(1),---»Xi-1)) > C(Xi)) =V (X))
or, equivalently,
C(Xiq), .-, Xi
(X1 M) @®)

=max{C(X)), C(X),---»Xi-1)) +V (i)}

fori=2,...,m Thefirstif-caseC(X),...,Xi-1)) < C(X())
=V (X4y)"in (7) holds if the empty spadg(x;)) —V (X) of

Fig. 6 The dark spheres from fractid» are dominated by the smaller
fractions.

Of course, this expression is only an approximation to
the real situation. In particular, conditi@fx 1), ... ,Xj_1)) <
C(xy) — V(x()) treats the spac€(xy),. .., Xi-1)) needed
by the preceding smaller fractions as a continuum that will
fit into the empty spac€(x;) —V(X4)) no matter what
shape the latter has. In reality, there may be small gaps be-
tween spheres of theth fraction into which none of the
smaller spheres from fractiom, ..., D;j_1 will fit. A sim-
ilar error occurs ifC(X1), - -, Xi-1)) > C(Xi)) —=V(X4)). In

thei-th fraction is large enough to pack all the spheres fronSection 6, it is shown how this error can be reduced by a

the preceding smaller fractiom3y,...,D;_1 into it. Conse-

quently, the space needed for all fractions up to (and includ

ing) thei-th is just the spac€(x) needed for théth frac-

more sophisticated setup of the simulatiorCof ).
Eq. (8) allows to determine the val@x), . .., X)) when

C(X(l), oo vX(i—l)) is known, by evaluating?(x<i>) andV(x(i))

tion alone. See Fig. 5 for a rough sketch of this situationwhich can be done by looking only at sample values fidm

Note that in the terminology of Yu and Standish [2D],is
the “controlling component” of the sub-mixtui®, ..., D;.

alone. In the next Section, we want to perform this step by a
separate simulation with a sample drawn frByronly.



5 Local Simulation of the Packing Density 6 Including Boundary Effects

When the sample= (x1,...,xv) is partitioned into the sub- As was noted above, when evaluati@g_; in (12) we ne-

samples(y), ... ,Xm on the fractions as in the last section, glect the behavior of spheres from smaller fractions at the
then the actual size of theth subsamplex; is a random possibly ragged “boundary” formed by spheres from larger
variable. Its mean value M p;, where fractions. We can improve the estimators if we take this spe-

cial interior boundary effect into account while simulatin
pi = Fti)—F({-1), i=1...,m (9)  the expected container size fop, with 1 <i <m.

To do so, we first draw a sampig) = (X 1,..., Xik;)

is the probability to pick a value from fractidy = (ti_1,t]. from D; for each 1< i < m as before. We call the corre-
As shown aboveMp; might become too small for some sponding spheres thactive spheres. Then we draw addi-
fractionsD; even for large values d¥l. tional spheres (i.e. diameterg)) = (Yi1,...,Yik) of size

To overcome this problem, we take sampigs:= (x.1, ki from the remainindarger fractionsDi.1,...,Dm. These
..., Xi ;) of fixed(large) sizeK; from each fractiorD; with ~ spheres are called thmundaryspheres. How to choose the
i=1...,m ThenM := K; +--- + Ky, is the total sample number; andk; is discussed below. For the enlarged sam-
size. How to choosKjy, . .., Ky is discussed below. We then ple
determine the volume of the spheres and the enclosing con-
tainer for each sample;). Zi) 1= (X2 Xk Vi Vi) (14)

Before we can use this expression in the recursion as (§) gense random placement is simulated to obtain a minimal
we have to take into account that by choosing fixed samplggntainer volume(z;)). Now the volume of the boundary
sizesK; we have given theth fraction a relative weight that - spheres is subtracted from the container volume, resulting
might not correspond to its importanbép; within the orig- i the space requirement of the active spheres Bpin the

inal mixture. To come up with the same weight at least orpresence of a sample of larger spheres. Again correcting the
the average we therefore have to multiply the volumes baseg|ative weight of the container we obtain

on the fixed sample sizes by a correction factor
Ki

ki
=1

fori=1,...,m— 1. This means that after the packing of all
) i _ spheres fronz;), the boundary spheres are treated as if not
random sample of sizl and the fixed sample si2§ used  peonging to the sample, they form holes in the container

now. In this way, the importance of the sampigsare bal-  ¢eating a container boundary to the active spheres that is
anced among each other according to the whole distributioRsimiiar to the conditions in a huge sample from the whole

g (10)

which is the ratio of the expected no. of values frBmin a

Now let diameter range. Note that for the last fractig = (tm_1, T]
ki q no boundary spheres are possible, hdqage: 0.
V=G Z *7TXi??j (11) This improved container volume together with the vol-
%6 ume of the corresponding active spheres is now inserted into
12):
be the volume of the spheres with the correct relative Weigh(t )
and let Ci,=C/ (16)
Cli = max{G', C] ;_;+Vi}
G = GCl) (12) . . .
The overall packing density is now estimated by
be the corresponding weighted container volume. In analogy. Vi+ -+ Vi
to (8) we define D(Zy)s- -5 Zm) = Y
1..m
Ci.i = max{C, Cy j-1+Vi}, 1=2,....m (13) In Section 10.1 below it is shown that with this refine-

ment, the estimation of the packing density becomes much
with Cy. 1 := C;. HenceCy_; describes the space require- more realistic.
ment of spheres from fractiordy,...,D;, estimated from Note that(s, ..., {n are relative weights only, we may
collection of “local” samples(y),...,X;) with fixed sizes useQ-¢; for some constar® in the above formula without
Ki,...,Ki. This way, we may enforce representative sam-changing the final estimatap of the packing density as the
ples from fractions that would otherwise appear rarely in aaommon factorQ may be reduced from the fraction. This
random sample from the whole range. fact is used below in Section 9 to simplify matters.



7 Determining Fractions and Sample Sizes

Determining the fraction®;, the sample sizeK, ki, i =
1,...,mand the way samples are drawn are tasks that are
closely related to each other. One may start fixing the frac-
tions and then derive suitable sample sizes but in our exper-
iments it turned out to be more adequate to start with the
sample sizes.

Let N be the maximal number of spheres that can be
packed in a single run of our packing program within rea-
sonable time. Hence, the total sample size of the enlarged
samples(X,Y()) (see (14)) should bdl. We now fix the

Y LR T
| T | |
sizes of active and boundary part of these samples to be ty ty t3 t ts T

Fig. 7 The interval[0,1] on they-axis is partitioned by; :=1— (1—

Ki=K andk =N—K,i=0,....m=1, Kn:=N, K/N)\,i=0,...,m—1, the dashed lines indicate the operatfort(-).

whereK is a given number. Note, that we then have the total ereK/N = 0.5 andm =6.

sample sizéM = (m— 1)K + N and the correction factaf;

from (10) becomesm— 14 N/K)p; which may be replaced representativity of the sample. We assume here as through-

by ¢ := pi, see the remark at the end of Section 6. out the paper that is also the largest diameter and therefore
We can now derive fractionB; = (ti_1,t;] by the fol- 1 € Dy, = (tn_1,T]. As was pointed out before, we cannot

lowing argument. Théth enlarged samplex), Y(i)) of size  expect the value to appear in our samples in general. How-

N is drawn fromD; UDj1U---UDm = (ti_1, T]. The active  ever, in the last sample restricteddg, = (tm_1, T] the prob-

spheres;, are drawn fronD; = (ti_1,t] alone. Henc& /N,  ability that 7 is sampled i(7)/(1— F(tm-1)). Hence, the

the relative size ok, within z;) should reflect the relative  mean number of valuesin this sample (with sample size

weight of D; within (ti_1, T]. If this weight is measured by K, = N)is

its relative frequencies or probabilities as given by thieFed

we have the requirement B = N'lpli((?) - N'(li(/r,\)l)m_l. (19)
- m-1 _

Ft) —F(t— K

g-z':(ti(—l)l) N 17 Solving forK /N this yields

or equivalently K/N=1_ <N p(r)>1/(m_1> | 0)

F(t) = 1-(1-K/N)(1-F(t 1) B

Hence, we may express the active shigy@\ as a function
of the numbemof fractions, the maximal sample sikeand
the relative frequency(t) of the largest diameter together
Ft) = 1—(1—K/N) with its required appearange

As was indicated above, we may also start fixing the
fractions, e.g. as fractions of equal weight;) — F(ti_1) =

t = F*l(l—(l—K/N)i>7 i=0,...,m—1, tn:=T, (18) 1/m. Then

fori=1,...,m—1andF(tp) =F(0) =0, F(tm) =F(T) =
1. Starting withtyg = 0, we see that (17) implies

or

whereF ~1 denotes the inverdef the cdfF. Figure 7 shows t:=F * <rln) ,J=0,....m
an example.

Note that the only parameters that have to be fixed irand to maintain the ratio (17) we have to choose
advance are the number of fractioms the sample sizé&l N
and the number of active spherks As (18) shows, itis Kj:=———, k:=N-K;, i=0,..
even enough to fixnand theactive share KN. m-i+1

The question remains how to chodéandK /N. In Sec-
tion 3 we have usef$, the mean number of spheres of theg systematic Sampling
rarest diameter in a random sample as a measure for the

1 In caseF does not allow an inverse function in the strict sense weS0 far W,e . assumed.that the sample points are gengrated

may use thegeneralized inverseefined byF —1(r) = min{t > 0 | by drawing randomly (with replacement) from the fraction
F(t)>r}, relo1]. according to the PSO. As was pointed out before, F

m-—1.

9




has regions where its value does not change much as, e.g.9pheres indicated by black circles, whereas the whiteesircl

Fig. 4 fort > 100um, then the rare values might be difficult are boundary spheres as described in Section 6. For the sec-

to catch even when sampling is restricted to fractions, seend fractionD,, only the equidistant points on theaxis

(29). are given. The ones marked with black arrows will lead to
To overcome this problem at least partly, we here sugthe active spheres, the white ones to boundary spheres. Note

gest a sampling method known as systematic sampling (s¢leat here we have only two active spheres. FiofiN = 0.5

[14] and the references therein). It guarantees a moreyevenive haveK = 2.5.

spread sample and fits well into the fractioned sample space

we use. We assume that the maximal sample Sirefixed

and that the fractionB; = (;_1,t] are already determined.

Instead of drawing active and boundary spheres separately, -

we now draw one enlarged sampl@ =(z1,...,zN) Of r, —

sizeN from the interval bte 1t

& ™

(t_1,T] = DjUDj{1U...UDp "
of all sphere diameters containeddnor larger. The sample
pointsz j that fall into D; form the active spheres, the rest
are the boundary spheres. Systematic sampling as explained
below guarantees that the sample siZg%; resulting from i=2
this procedure are as required. Fig. 8 For the first sample the equidistant poifis+ je1,j =0,...,4

To draw a standard random sample fréfn1,T] one  are shown on thg-axis together with the sample points. For the second
would use the “inversion principle”. That means tNgtoints sample different values &, ande; are used as described in the text.
61, ..., 6N are sampled uniformly from the intervid# (ti_1), 1|
(on they-axis), then the sample poirfss %(6y),..., F~1(6y)
are used. In contrast to that, systematic sampling fitor, T]
starts by dividing the intervdF (t_1), 1] into N subintervals
of equal length

9 Summarizing the Complete Algorithm

1-F(t_1) Before we give some experimental results we summarize the
&= —3 - (21)  complete algorithm RESOS (recursive estimation with sys-
tematic overlapping sampling) with both its parts, the recu
From each of these subintervals one pointis chosen, the firsje estimation as given in Section 5 and the particular way

say{j, is chosen randomly (uniformly distributed) from the of fixing parameters and taking samples as described in the
first subintervalF (ti_1),F (ti_1) + &], then the next ones are |3st two Sections:

chosen exactly; apart, i.e.
Input: a PSDf on the rang€0, T] with cdf F, T the largest

&G, &+, &+28,...,.5+(N=1)g, (22) valuet € (0, T] with f(t) > 0; mthe number of fractions;
N the maximal allowable number of spheres per run of
the packing program arnfél the minimal average number
of largest spheres with diameterto appear in the last
Zj= Ffl(fi &), j=0,...N—1, (23) sub.sample _(see (19)). _ _

Output: an estimate of the packing densiy( f).
see Fig. 8 below. Note that in contrast to the formulationSteps of the algorithm :
in Section 5 where we assumed fixed sample sizelg of ~ 1.Setup Determine the active shake/N as
spheres for each fraction, here the numbers of active and
boundary spheres have become random variables depending K/N:=1-(Np(1)/B)
on the sample. However, as it is shown in the Appendix, due Partition the interva(0, T]

see Fig. 11 in the Appendix for an example. Then the sample
points are:

1/(m-1)

into fractionsD; := (tj_1,t],

to the systematic sampling, these random numbers deviate i—1 . mwith
from the prescribed; andk; by at most 1. T
Fig. 8 shows an example of systematic sampling applied ¢, :— Ffl(l_ (1- K/N)i), i=0,...,m-1,
to m= 6 fractions with sample sizdl = 5. The fraction
boundarieg; are chosen as in Fig. 7 witk/N = 0.5. The tm:i=T.

sampling for the first fraction is shown in detail: three of  Put{i:=F(t)—F(t_1),i=1,....,m.
the selected diameters fall inf®; = (0,t;] and are active Il. Foreach =1,...,mdo



10

[1.1 Sampling Puteg := (1—F(ti_1))/N, draw & uni-  time bound for RESOS in (25) is smaller thistiog(M) for
formly distributed from the intervdF (ti_1), F(ti_1)+ all m> 2. As the simulations in RESOS may be performed

&) and let one after another (or in parallel), the space complexity is
O(N) =O(M-(1—K/N)™1) for RESOS and(M) for the
2= (21, 2) unfractioned simulation.
= (F‘l(Ei),F‘l(Ei +&),....F Y&+ (N— 1)Si)- In RESOS by far the most time is needed for the sim-
ulation of G in step “Il.2 Simulation”. As we will show
DefineL; := max{l | z <t}, thenz,...,z,; are in  now, some of these packing simulations may be skipped or
Di and form the active spheres. stopped if we assume that the packing is built up iteratively
1.2 Simulation Put with an increasing packing density (as it is the case in the
1 L rearrangement algorithms). To see this, note that in tha mai
Vi =G éﬂjzlz? recursion (16) the exact value 6f" is not needed if it is

smaller tharC; ;_; +V; as we have

and simulate the container volur@éz) for a random . N

close packing of. Let Cli=Cliat+V (26)

_ — C' <Cf; ;+V.

Ch =y (C(z) —om zf‘)
6 i As C{ ; ;+Vi may be calculated before the simulation of

C' starts, we can abort the simulation as soon as the con-

tainer used for the simulation 6f" embodies a valid sphere

Cf .= Cf, packing and has a volume less th@p ; , +Vi. No fur-

Ch = max{Ci*, Cf_.i,lJrVi}, i—2...m ther densification of the packing is then necessary, we have

lll.Recursion DefineC; ; recursively as

IV.Estimation Obtain as estimator for the packing density Fig. 6.
P(f) If we are able to give a lower bourid on the “local
R YRRV packing density”\/i_/Ci+ we may even skip the.simulation
o(f)=—— (24)  of G completely ifC{ ;_; +Vi > Vi/b. As Vi/b is an up-
L..m per bound orC;" we then have] ; ; +V >C'. E.g., in
V.Repetition If necessary, repeat steps Il - IV with indepen- a polydisperse mixture we can be sure ¥aC;" > 0.4 for
dent samples and take the average to obtain an estimatalf fractions. h‘le'i_1 +Vi >V;/0.4 for somei, we have
with a smaller variance. Cﬁ <\Vi/04< Cf._i,l +V; and we may skip the simulation

-t A i
To get an impression of the time complexity of this al- ..i = Ci.i1 + V. In this sense, (26)

gorithm we compare it to a packing algorithm without frac- may be used as a stopping criterion for unnecessary simula-
. ; ) . tions

tions. Let us assume that a typical packing algorithm (€.g. o
collective rearrangement type) needs tidgMlog(M)) to
pack a sample of sizZél. We chooseM such that the largest
value T has a prescribed expected frequelficy= M - p(1)

as described in Section 3. For a fair comparison, the same ) ) )
value off3 should hold for the fractioned sampling, i.e. from In this .S.ectlon we present some simulation Iresults to show
(19) the validity of our approach and to compare it to the analyt-

ical tools as sketched in the Introduction.

10 Simulation Results

Np(7)
(1-K/N)m-1

As we needn simulations of samples of siz2¢in RESOS it 10.1 Mixture of glass spheres
has time complexity

M-p(1) = or N=M-(1-K/N)™1,

The most convincing test would be to compare results from

O(m-Nlog(N)) our algorithm RESOS to experimental results for real mix-

— O(M-M-(1—K/N)™Llog(M-(1—K/N)™1)). (25) tures With_a broad size distribution..As was ment_ior!ed apove
real packings of, e.g. concrete mixtures contain ill-skiape

The relative shar& /N of active spheres is always less thanagglomerations of small particles that usually decrease th
1, therefore the time complexity of RESOS decreases expadensity of the packing. Simulating the effect of these ag-
nentially fast for increasing number of fractions. For te-p  glomerations on the packing density is quite difficult. With

ticular valueK /N ~ 0.5 as in our experiments below, the run our present packing tool, we have to restrict ourselves to
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spherical, non-agglomerating particles for a direct campa
son with experimental data.

We use six different mixtures of glass spheres that dos

not agglomerate. Three mixtures follow the classical Fulle

curve (Ful - Fu3), the rest are simpler bi- and tridisperse

mixtures (Bil, Bi2, Tri), see Table 1 for details. We com-

pared our RESOS algorithm to the analytical model of To-

ufar [17], the LMPM [22] and the CPM [4]. These mod-

els need as input data the empirical packing densities ofg
the monodisperse packings for each sphere diameter, the sg-

called eigen-densities, which are given in Table 2.

diameter mass fraction [%0]

[mm] | Ful Fu2 Fu2 Bil Bi2 Tri
0.444 | 37.95 26,59 2056 3441 — 34.05
0.940 | 18.06 12.65 9.78 — 40.36 50.94
1552 | 16.13 11.30 8.74 6559 — —
2963 | 27.86 19.52 15.09 — — 15.01
6.003 | — 2994 2318 — 59.64 —

10.022 | — — 2266 — — —

Table 1 The mixtures of glass spheres used in the experiments.

diameter | eigen-

[mm] density
0.44 0.64476
0.940 0.65943
1.552 0.64879
2.963 0.64315
6.003 0.62562

10.022 0.59147

Table 2 The empirical eigen-densities of monodisperse packings o
the glass spheres.
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Fig. 9 The packing densities of the glass mixtures from Table 1 as
they were obtained by five different methods. For the experiatamid
RESOS results, standard deviations from seven runs are indlicate

We may also use the data of Tables 1 and 2 to explicitely
show the effect of the additional boundary spheres we have
used in the simulation of the single fractions. If we use no
boundary spheres with the abowe= 6 fractions we ob-
tain monodisperse packings and the local packing densities
Gi/Vi = G /V; are just the eigen-densities as given in Ta-
ble 2. These values may be inserted into the recursion (16)
fesp. (13) for the six mixtures of Table 1. Table 3 shows the
results. Here, the second and third column repeat the val-
ues from Figure 9, the last column shows the new estimates
obtained without boundary spheres. It is obvious, thatehes

The packing densities resulting from the different meth-ajyes are far from the true experimental values and far from
ods are shown in Figure 9. The experimental results werghe estimates of RESOS with boundary spheres.

obtained using a pycnometer, they are averages from sev:
measurements each. For our RESOS algorithm we used t
(moderate) sample sizZzd = 50000 withm = 6 fractions
andK = 25541 active spheres resulting in a ratigN =

en
he

Mixture Empirical RESOS RESOS
with bound- | without

0.510821 The results are also averages of seven runs. As ary spheres bort:ndary
; ; i spheres
can be seen, the estimated pagkmg densn.les are very close—ggert 7158 753130 8270675
to the experimental ones, the difference being less than 2 % Eyjler2 75.30 77.0482 8722186
on the average. Fuller3 78.99 79.8149 89.82571
The model of Toufar tends to underestimate the density, ~Bidispersell 6950 718008 84.06279
- . . . Bidisperse2 75.91 74.154 82.75106
a similar observation was made with the modified Toufar Tridisperse 69,53 69.0561 8420319

model [6]. The linear mixture packing model LMPM [22]
constantly overestimates the density. Only the compriessib

Table 3 Comparison of packing densities (in %) of RESOS with and
without boundary spheres

packing model CPM yielded results comparable to our hier-
archical approach. Here we used the compaction index 9 (as
suggested by de Larrard [4] for vibration and compression).
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10.2 Concrete Mixtures The most natural components for LMPM and CPM are
the diameter intervals determined by the sieve sizes which
To show that our hierarchical approach in RESOS can copeesults in 108 components for the first and 98 components
with broader size ranges, we applied it to two full-rangefor the second mixture. The eigen-densities of these compo-
PSDs. The first is the one depicted in Figures 2—4, it connents were obtained by simulation, each with 50000 spheres
sists of 12.5% fly ash, 37.5% cement (10488) and 62.5% asin RESOS. For a fair comparison, we also applied LMPM
granulated cinder (125-250m), where all % are % by mass. and CPM with 33 and 34 components only, i.e. with the
The second mixture consists of 50% cement (CEM | 32,5R}ame total of sample points as in RESOS. The results are
and 50% fly ash, its PSD is shown in Figure 10. In bothgiven in Table 4.
mixtures, a high percentage of the small particles form ag-
glomerates. As our RESOS simulation does not contain ag-

glomerations, we only compared it to results obtained from mixture of Fig. 2 mixture of Fig. 10

analytical tools, namely LMPM and CPM. method | no.of —packing | no.of —packing
fractions density fractions density
or com- [%] or com- [%]

w75 p——EES ponents ponents

£ g5 — voume 02 g m m

7 oirs 5 RESOS 33 89.2460 34 86.4908

& 12.5 £

s 015 —E LMPM 33 88.7871 34 86.5861

= 107 o1 g LMPM 108 89.5217 98 86.3390

g 7 | CPM 33 89.6559| 34 86.3665

¢ 5 | 0'05 ¢ CPM 108 89.5493 98 86.3012

” 28 [ 0.025 Table 4 Results for the two concrete mixtures. Each component or

[y ‘ ‘ ‘ 0 fraction was simulated witN = 50000 spheres.
0.04 0.1 1 10 100 1000

diameter im]

Fig. 10 The relative shares in volume and frequency of the second  For the first quite complex mixture it turned out that re-
mixture used for our comparison. sults from LMPM with 33 components, i.e. with the same
effort as RESOS, were not satisfactory. Only with a much

Both LMPM and CPM use the eigen-densities of thehigher effort, withm = 108 components, LMPM was able

components of the mixture, i.e. small intervals of the psO® gbte}m res?jl,t; of similar qual_|ty_as.fF.{ESOS. For the sec-
that could be treated as more or less monodisperse fractiorfd'd Mixture, differences seem insignificant.

If these densities are determined experimentally, they wil  1he CPM needs the so-called compaction inexAs

contain the effects of agglomeration. To make results comi€ Simulation uses ideal conditions (exact spheres ard per

parable, we used eigen-densities as simulated by our pacRdiC container walls), we used the vakie= « which can be

ing tool, without any agglomerations. This also had the sig&l€rved from de Larrard's formulas [4]. With this parameter

effect to make efforts for the different approaches comparaCPM Produced about the same results as RESOS even with

ble: it is the total sample size of simulated packings. Justm= 33 orm= 34 components. _
To determine the parameters for RESOS as described in, From these results one may conclyde that RESOS yields
Section 7 we identify the largest diameter in the PSD of Fig-S“ghtIy better results than LMPM and is comparable to CPM

ure 2 ast — 9483 with if this has a suitably adjusted compaction index. Still we
claim that our method is more flexible than the empirical
p(1) = 4.551914 10715 models as it definitely needs no experiments. Moreover, CPM
has the disadvantage that its performance depends cyuciall
We therefore obtain from (20) on the right compaction index which for general particles
K has to be determined by experiments, even if the component
N =1 (N-4551914 10~ 1)Y/(m-1), (27)  data should be obtained from simulation.

Applying the same sample si2¢ = 50000 and a similar

share of active spherds/N as with the glass spheres, we 11 Conclusion

obtain from (27)m = 33 as necessary humber of fractions,

leading toK/N ~ 0.5003. In a similar way, we obtained In this paper, a hierarchical method RESOS for the estima-
for the second mixture with the largest diametet 3731.  tion of the space filling of polydisperse sphere packings has
p(T) ~ 1.506527 1015, m= 34 fractions withN = 50000  been developed. It divides the particle size distributibn o
andK /N = 0.5066. the mixture into a number of smaller fractions. Although
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the fractions are treated separately the method takes intr [NR | + 1 and|L; — NR| < 1 follows. Fig. 11 shows an
account the filler effect of small particles between biggerexample for two different values of the starting po#t
ones by including spheres from other larger fractions as th€he black arrows indicate valu&s+ j& that lead to ac-
container’s inner boundary. This has been combined with 8ve spheres whereas the white arrows belong to boundary
sampling method which ensures representativity of the sanspheres.
ple even for rare particles as they typically appear in mix-

tures like cement, concrete or mortar. The method can be

used with different packing techniques, present simutatio &
results are based on collective rearrangement. |

RESOS yields fast and reliable estimates for the packing rgq,
density of mixtures with a broad size distribution. It opens
the possibility to systematically search for particle siie
tributions with high packing density, as they are needed i i .

) ; . in (ri_1,r;] may take on two different values.
materials science. However, before one can think about de-
signing high density mixtures on the computer, at least two
problems have to be solved: the packing of non-spherical From straightforward but tedious calculations it follows
particles and the simulation of agglomerates within packthatL; takes on the valuéNR | + 1 with probabilityNR —
ings. These will be the topics of our future work. [NR | from whereEL; = NR follows.

More generally, it can be shown in a similar way that
with systematic sampling the number of sample points that
fall into an arbitrary interval deviates from the expected
number of points i underrandom samplingnly by at
most 1 and has the same expectation.

1 ———"
N

i

ig. 11 Depending on the first poir;, the number of point§; + j&

Appendix

We assume that the fractiol¥,...,Dy and the maximal
sample sizeN are fixed and that systematic sampling is ap-

plied as described in Section 8. Now fiand letL; be the i
Acknowledgements One of the authors (S.R.) acknowledges finan-

_random number of sample points in thn Sample that fall cial support by the Dyckerhoff-Stiftung, project no. T218681/ 2006.
into Dj and lead to active spheres. In (17) the ideal value for  The authors want to thank the reviewers for their detailebteip-

the share<; /N of active spheres is given as ful comments.

F (ti) —-F (ti—l)

R= T "Fn )

..,m—1 (28)
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