TU Clausthal

Mathematik-Bericht 2010/1

Residual type a posteriori error es-
timates for upwinding finite volume
approximations of elliptic boundary
value problems

L. Angermann

Januar 2010

Institut fir Mathematik, TU Clausthal, ErzstraBe 1, D-38678 Clausthal-Zellerfeld, Germany






Residual type a posterior: error estimates for
upwinding finite volume approximations of elliptic
boundary value problems

Lutz Angermann*

Abstract: This article describes the extension of recent methods for a posteriori error
control such as dual-weighted residual methods to node-centered finite volume dis-
cretizations of second order elliptic boundary value problems with upwinding.

Keywords: Finite volume methods, a posteriori error control, DWR, method

2010 Mathematics Subject Classification: 65N 08, 65N 15, 65N 30, 65 N 50

1 Introduction

In this paper, we give a short overview on recent a posteriori error estimates
for node-centered finite volume discretizations of second-order elliptic PDEs in
d € {2,3} independent variables.

Since finite volume methods do not possess, in general, the so-called Galerkin-
orthogonality property, special attention is paid to the treatment of the resulting
defect term. It is shown that the extension of both the classical residual a
posteriori error estimates as well as the more recent dual-weighted a posterior:
error estimates to finite volume discretizations is possible in a reasonable way.
We consider mainly Voronoi and Donald finite volume partitions on simplicial
primary partitions of the domain, however the ideas can be extendend to more
general primary partitions, in particular quadrilateral or hexahedral partitions
(cf., e.g., [Ang06, Sect. 4.2]).

We consider the following boundary value problem:

, (1)

—V-(AVu)+b-Vu+cu = f inQ
u = 0 onl

where Q C R? is a bounded polygonal or hexahedral domain with a Lipschitzian
boundary I". The coefficients in (1) are assumed to satisfy the following condi-
tions:

(A1) AeWL(Q), b= (by,...,by)" € [WL(Q)?, ceWL(Q),
fe qu(Q) with some ¢ > d,
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(A1.2) A >ap>0on, where ay does not depend on z € €2,

1
(A13) c¢— §V~b > a; > 0 on €2, where a; does not depend on z € (.

Using the notations (w,v € HY(Q2))

(w,v) = /wvdx,

Q
(Vw,Vv) = /QVw-Vvdx,
bw,v) = %[(b-Vw,v)—(w,UVv)], @)
dw,v) = (cw,v)—%((v-b)w,v),
a(w,v) = (AVw,Vv)+ b(w,v)+ d(w,v), (3)

the variational formulation of the problem (1) in the space V := H{(Q) reads
as follows:

Find u € V such that
YoeV: a(u,v)=(f,v). (4)

Under the above assumptions, the bilinear form a is continuous and coercive
on V' x V, thus a unique solution u € V' of problem (4) exists.

2 The finite volume scheme

2.1 The case of Voronoi diagrams

Let us consider a family of Voronoi diagrams such that their straight-line duals
are Delaunay triangulations of € consisting of self-centered simplices. Here a
simplex T is called self-centered if its circumcentre lies in the interior of T" or
on the boundary 97T.

Denote by A the index set of all vertices z; of a particular triangulation 7 and
by A the index set of all inner vertices.

In more detail, let

Q=9 = {zeQ:|z—ux] <|z—z] VjeA\{i}}, i €A,
where || - || denotes the Euclidean norm in RY,
m; = measq (),
where meas; (-) denotes the d-dimensional volume,
Iy == 0%uNoQy, I};:=TyNnT, icAjeA\{i}, TeT,
mi; = measq_1 (I';), mg; ‘= measg_1 (Fg;) ,
dij = |z — ],
Ay = {jeA\{i}: my #0},
Ar = {ielA: x; € 9T},
h := maxhp, where hp:=diamT.

TeT
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T

— boundary of ;

Figure 1: Configuration for the Voronoi-type discretization (d = 2)

The finite volume solution will be interpolated in the discrete space
Vg = {’UGV: (VTET: U|T Epl(T))},

where P;(T) is the set of all first degree polynomials on 7. We introduce a so
called lumping operator

Lr: C(Q) — Lo(R) acting as Lyv:= Zv(xi)xgi,
ieA

where y¢ denotes the indicator function of a set G C R%.

Due to stability reasons, especially for the case of dominating convection, the
class of finite volume methods under consideration is characterized by an ad-
ditional stabilization technique called upwinding. For that purpose we use a
weighting function 7 : R — [0, 1], for instance

r(z) ::1—1(1— & ), (5)

z e —1
) . Yijdij
with the particular values 7;; := r( ——— ), where
Hig

Alr,; & pij = const >0, v - blpi; = 7;; = const.

Precise assumptions w.r.t. the approximations ~;;, ;; will be given later in
Section 3. Furthermore, given a weighting function r, let K : R — [0,00) be
defined by K(z) :=1 —[1 —r(z)]z. In case of the weighting function (5), K is
the Bernoulli function: K(z) = z/(e* —1).
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The discrete problem is formulated as follows:

Find ugy € V7 such that

Vor € Vr:+ ar(ur,vr) = (f,v7)7, (6)
where
_ | Pij g (2iadis Vs + W
ar(wr,vr) = Y vriq Y 2 B\ 7 ) (wri = wrg)mag + ciwrima o
i€A jea; Y Hi
(for)r = Y fiorimi and ¢ = c(x;), fi = f(;).
ieA

Moreover, we introduce the following norms and seminorms, resp., on Vg :

lvrllz = V(vr,vr)T = | L7vrloze,

1/2
msq
orly = 0D v ) (ori—er) Gt o (")
i€A FEA; 5]
1/2
lorlly == {lorf +lerl}. ®)

For the sake of consistency in the notations, we also use the following abbrevi-
ations of wellknown seminorms/norms in the Sobolev space H'(Q):

lvr|p = |vrl20, llvrlp = llvrlize. (9)

The scheme (6) with the weighting function (5) is often called exponentially
upwinded, and it can be regarded as a generalization of the II'in-Allen-Southwell
scheme, cf. [II'69]. It can be defined for other control functions r : R — [0, 1],
too. However, we have to assume that all of these control functions satisfy the
following properties:

(P1)  7(2) is monotone for all z € R,

(P2) lim r(z) =0, lim r(z)=1,
Z——00 Zz— 00

(P3) 1+4+2r(z)>0 forall z€R,

(P4) [1—r(z)—r(—2)]z=0 forall z € R,
(P5) [r(z) - ﬂ z>0 forall zeR,

(P6)  zr(z) is Lipschitz-continuous for all z € R.
We get from (P4) the relation
1+ 2r(z) = K(—=2). (10)

Replacing in (10) the argument z by —z, (P3) immediately implies
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(P7) K(2)>0 forall zeR.
EXAMPLE 1 The function
1. .
r(z) = i[szgnz + 1],

due to [BT81], has been investigated in [Ris86], [Ris90]. This scheme is called
fully upwinded.

EXAMPLE 2 The choice of the function

=3 |5 ]

goes back to Samarskij [Sam65].

In the sequel, if there is no special reference, we assume that the scheme under

consideration is defined for a general function r that possesses the properties

(P1) to (P6).

Finally we mention two equivalent representations of the bilinear form az. First
. o

we remember that the leading coefficient Hij g <M> in a7 can be written,
ij Hij

by the definition of K, in the following manner:

Hij (’YijdiJ') _ Mg { Vijdi { (%jdijﬂ } i
— K| —— ="yl -——|1-7r =29 1=V
dij Hig dz‘j i Lij dij ( z]) Yij

Hence we get the representation

ar(wr,vT)
.
= > v Y {miplwrs —wr) T — (1= ry) (wri = wry)vmig )
ieA jEA; R
+ Cinz‘mi}. (11)

Furthermore, introducing the notations

f—_
ar(wr,vr) = Y vri Y pij(wr — wr;) d-l-]’
ieA jEA; v
1
br(wr,vr) = Y vri Y [(1 — Tij)wrj — <2 - Tij) "sz} Yijmiz, (12)
1EA JEN;
1
dr(wr,vr) = Y 4 cm;— 3 > yigmij p wrivzs, (13)
i€A JEA;

we get a splitting of a7 which is comparable with (3):

ar(wr,vr) = a5 (wr,v7) + br(wr,v7) + dr (wr, V7). (14)
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REMARK 1 In the special case V-b = 0 on §Q, it makes more sense to use
the following representations of by and dr:

br(wr,vr) = Y vz Y [(1 = rij)wr; + rijwri] yijmj,
TSN jEAZ‘

dr(wr,vr) = Y cwrivrim,.
ieA

2.2 The case of Donald diagrams

Let us now consider a family of admissible triangulations F = {7 }. Then, for
any T € 7 with local vertices z; = z;;, i; € A, j € [1,d + 1]n, we define

sz‘?,T ={zeT:Vke[l,d+1n\{j}: (z) <Aj(2))},

where \j(z) is the j-th barycentric coordinate of z w.r.t. T. Define for i € A
the sets

of =it | |J Q&
T:0T>x;

In this way, we get a family of Donald diagrams.
Although it is possible to introduce a discretization like (14), we use the follow-
ing version:

aT(wT, ’UT) = (AV’U)T, V’UT) + bT(wT, UT) + dT(wT, UT), (15)

where the forms b7, d7 are defined analogously to (12),(13). In particular,
7i; € R is an approximation to (v - b)|r;.

3 Stability and a priori error estimates

In this section we give a short review of some wellknown properties of the
schemes (6) and (15). We start with the formulation of conditions with respect
to the approximations p;; and ;.

(A2.1) pyjis an approximation of the term m; jl fFi]’ A ds satisfying the following
conditions:

(1) 0 < piy < [|A]l1,00,0,
(i) pij = pgi,
(iif)

ij — mi_j1 fr-' Ads‘ < Chr|Al1 00,0, where T is one of the simplices
ij

having the vertices x;,x;, and C' > 0 is a constant independent of

a, hT7 ia ]

(A2.2) ~;; is an approximation of the term m”1 frij v-b ds satisfying the follow-
ing conditions:

(1) gl < [bll1,00.0,
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(ii) Yij = —Vjis

(iif)

Yij — m;jl fFH(Vij-b)dS) < Chr|bli 00,0, where T is one of the sim-
ij

plices having the vertices z;, x;, and C' > 0 is a constant independent

of b, hT, i, j

The subsequent results are extensions of the theory developed in [Ang91],
[Ang95b].

THEOREM 1 (Discrete coercivity) Let a family F = {7} of triangula-
tions be given, where in the special case of Voronoi diagrams (i.e. = =V ) all
elements T' are self-centered and in the special case of Donald diagrams (i.e.
2 = D) the family is shape-reqular. Moreover, let the assumptions (A1.1) —
(A1.3) and (A2.1), (A2.2) be satisfied. Then, for ho > 0 sufficiently small

there exist two constants ag > 0 and a1 > 0 independent of h such that for all
h € (0, ho] and v € Vr the relation

ar(vr,v7) > @olvr & + a1 |vr|F
holds.

The a priori error estimate is based on this stability property and on the fol-
lowing consistency result.

LEMMA 1 (Discrete consistency) Let a shape-regular family F of trian-
gulations {T} be given, where in the special case of Voronoi diagrams (i.e.
2 = V) all elements T are self-centered, and let the assumptions (A1.1) and
(A2.1), (A2.2) be satisfied. Then, if hg > 0 is sufficiently small, for any element
w e W2(Q)NV and any element vy € Vr the estimate

a7 (I7w,v7) = (=V-(AVw) + b-Vw + cw, Lyvr)| < Chllw|22,0 [[vr]z + [lvr (7]
holds for all h € (0, hg], where C' > 0 is a constant which does not depend on h.

The proof of the following theorem is a modification of the standard proof of
Strang’s first lemma.

THEOREM 2 (A priori error estimate) Let a shape-reqular family F of
triangulations {T } be given, where in the special case of Voronoi diagrams (i.e.
= =1V) all elements T are self-centered, let the assumptions (A1.1) — (A1.3)
and (A2.1), (A2.2) be satisfied and suppose that the solution u € V' of problem
(1) additionally belongs to W3(2).

Then, for sufficiently small hg > 0 the estimate

|u —ur|= < Chi|lull220 + |fl140]

holds for all h € (0, hg], where the constant C' > 0 is independent of h.
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4 A posteriort error estimates

In the papers [Ang91], [Ang92], an extension to finite volume methods of
Babuska&Rheinboldt’s approach to a posteriori error estimation for finite ele-
ment methods has been proposed.

In a subsequent paper ([Ang95a]), for a singularly perturbed model problem
a modification was introduced with the aim to get two-sided bounds of the
error such that the constants occuring in these bounds are independent of the
perturbation parameter. In [AKT98] and [Thi99], residual type error estimates
for finite volume discretizations of more complicated problems in two and three
space dimensions have been presented.

Here we give a more up-to-date treatment based on the so-called dual-weighted
residual error estimators (see, e.g., [Joh94], [BR96], [BR03]|, [Ran05]). The
aforementioned a posteriori error estimates have two disadvantages: On the
one hand, certain global constants, which are not known in general, enter into
the bounds. The coercivity constant of the bilinear form a is a typical example
of such a global constant. On the other hand, certain scaling factors like hp
and v/hg occur simply by using a particular approximation operator.

In the following, we will outline a method that attempts to circumvent these
drawbacks. It is especially appropriate for the estimation of errors of functionals
depending linearly on the solution.

5 Dual-weighted residual error estimators

Let J : V — R denote a linear, continuous functional. We are interested in
an estimate of |J(u) — J(ur)|, where u € V is the weak solution of the elliptic
boundary value problem (4) and uy € V7 is the finite volume approximation
from (6).

To do this, the following auxiliary dual problem is considered:

Find z € V such that
YoeV: a(v,z)=J(). (16)
The solution z € V of the dual problem is called influence function for the
particular choice of J ([AO00]).
Taking v := u — u7 in (16), we get immediately
J(w) = J(ur) =J(u—ur) =alu—ur,z).

If z7 € V7 is an arbitrary element, then

J(w) — J(ur) =alu —ur,z — zr) + a(u — ur, 27) . (17)

The first term of the right-hand side is of the same structure as in many well-
known finite element methods. It can be regarded as the conforming residual
of the (primal) finite volume solution weighted be the formal error! of the dual
solution z. Namely, equation (17) can be rewritten as

J(u) — J(ur) = {o(ur),z — 21) + a(lu — ur, 1), (18)

Note that up to now z7 € V7 is arbitrary.
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where
(o(ur),v) :=a(u—ur,v) = (f,v) —a(ur,v) YveV

by (4). Often this residual is estimated as follows. For arbitrary v € V, it is not
difficult to obtain the representation

a(u —ur, U) = (f, U) — a(UT, v)
) T;T/TTT(W) e E%;T /E[”E (AVur)]gvds,
where

rr(ur) == (f = (=V - (AVur) +b- Vur + cuT))‘T.

Here &7 denotes the set of all interior faces of all elements T' € 7, vg is a fixed
unit normal assigned to any of those faces and [-]p denotes the jump across the
face F in the normal direction vg.

Setting v = z—z7 and applying the Cauchy-Schwarz inequality, we immediately
obtain an estimate of the first term of the right-hand side of (17):

la(u —ur,z—z27)] < > lre(ur)lozrlz = 27llo2r (19)
TeT
+ 3 lve - (AVur)lillys 5z = 27 llo20 -
EeEr

Concerning the second term of the right-hand side of (17), so we use the fol-
lowing argument:

alu—ur,zr) = alu,zr)—alur,z7)
= (f,27) —ar(ur,21) + ar(ur, 27) — a(ur, 27)
= (f7 ZT) - (fv ZT)T + aT(UT, ZT) - G(UT, ZT)' (20)

It is rather obvious that, given z7 € Vi, the last two differences can be locally
calculated with sufficient accuracy.
Namely, we have

(frzr) = (fizr)r = D {(frzn)r = (f,20)ur} (21)
TeT
= Z {(f, 27)T — Z fz'ZTimiT},
TeT 1€EAT
where m! := measy (€2; N T) . Analogously, with

arr(uT, 27)
Ui — UTy T T
= Z 2T Z {Mijw — 75 (1 = ri5) (ugi — UTj)} m;; + curimg o
icA jeAr\{i} u

we have

ar(ur,zr) —alur, z7) = Z {ar r(ur,27) —ar(ur,27)}. (22)
TeT
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Then from (20) we conclude the estimate

alu—ur,2r)| < 30 |(foom)e=3 fremimd |+ 3 oz a(ur, 27)—ar(ur, 7))

TeT i€EAT TeT

Putting this relation together with (19), we arrive at

la(u —ur,z—z2r)] < > |rr(ur)lozrlz = 2zllo2r

TeT

+ Z H[VE ’ (AVUT)]EHO,ZEHZ - ZT||O,2,E
EcEr

+ Z ’(fa 27)T — Z f@ZTZmZT
TeT iEAT

+ 3 |ozatur.2r) — arur, 21)|.
TeT

This is the starting point for the practical computation.

In contrast to traditional approaches, here the norms of z — z7 will not be
theoretically analyzed but numerically approximated. This can be done by an
approximation of the influence function z. There are several (more or less heuris-
tic) ways to do this. A practically successful approach consists in the so-called
higher-order recovery, where z is replaced by an element that is recovered from
the finite element solution z7 € V7 of the auxiliary problem. The recovered
element approximates z with higher order than z7 does (see, e.g., [BR03, Sect.
4.1] or [Ran05, Sect. 3.2]).

A different view on the left-hand side of (18) is obtained if the term (f,z — z7)
is rewritten as follows:

(faZ_Z’T)

S

(’LL, z - ZT)

= a(u—ur,z—z7r)+alur,z — 27)

= a(u—ur,z)—alu—ur,zr)+alur,z — z7)

= J(u)—J(ur) —alu—ur,zr) +alur,z — z7),
where we have used (4) and (16). The first three terms on the right-hand side
can be interpreted as the conforming residual of the approximation z7 of the
dual solution z weighted by the error of the finite volume solution. That is,
with

(0" (27),v) :=J(v) —a(v,zr) YveV (23)
we have

(f,z2 = 21) = (0" (21),u — ur) + a(ur, z — 271).

From (23) we get that
J(u) — J(ur) = (0" (21), v — ur) + alu — ur, z1).
This relation together with (18) leads to

J(u) = J(ur) = Blo(ur), 2 — 27) + (1= B) (0" (27),u —ur) +a(u—ur, z1) (24)
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for any parameter 5 € [0, 1]. In this way we get a representation of the error
under consideration as a convex combination of the primal and dual residuals
plus the orthogonality defect.

The values of the unknown primal solution u in the expression (0*(z7),u — u7r)
can be approximated in the same way as the values of the influence function z,
for instance by means of recovery techniques as indicated above.

At the end of this section we want to mention how the method could be used to
estimate certain norms of the error. In the case where the norms are induced
by particular inner products, there is a simple, formal way. For example, for
the Lo-norm we have

(u—ur,u—ur)
v —urlloz2.0

v —urllo20 =

Keeping both u and ugs fixed, we get with the definition

J(v) = —(v, u— ur)

= 25
|lu —ur |0,2,s2 (25)

a linear, continuous functional J : H'(f)) — R such that J(u) — J(ur) =
lu = urlloz,0-

The practical difficulty of this approach consists in the fact that in order to be
able to find the solution z of the auxiliary problem we have to know the values
of J, but they depend on the unknown element u — uz. However, if there is a
higher recovery of u at hand, then it could be used to approximate u in the
definition (25) of J.

6 Residual a posteriori estimates of the error in the
energy norm

The “traditional” residual error estimates start from the relation
2
allu —urlli o0 < a(u —ur,u—ur),

where « > 0 is the coercivity constant of a. Without loss of generality we may
suppose u —ug € V' \ {0}, hence
1 alu—ur,u—ur) 1 a(u — ur,v)

Ju=urlhan < - < S il -
a |lu—ur|iz20 avev  [vlhz0

Now, the term a(u — ur,v) is treated as the term a(u — u7, z) in the previous
section, i.e. we have, for an arbitrary element vy € Vi,

a(u —ur,v) =a(u —ur,v —vr) + alu — ur,vy) (27)

and so we get

la(u—ur,v—vr)] < > |rr(ur)lozrllv — vrllozr (28)

TeT

+ > |llve - (AVur) gl s llo — vrllo2 e,
EcEr
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ar r(ur,vr)—ar(ur,vr)|.

|a(u—ur,vr)| < Z‘ fror)r=>_ fiorim

TeT i€EAT TeT
(29)
To get the first bound (28) as small as possible, the function vz € V7 is chosen
such that the element v € V is approximated adequately in both spaces L?(T')
and L?(E). Typically, certain quasi-interpolation procedures such as Clément’s
([C1éT5]) or Scott-Zhang’s ([SZ90]) quasi-interpolation operators are applied.
This leads to an estimate of the form

a(u —ur,v —vr)

1/2
< C{ Y Wlrr(un)Bar+ Y hellve - (AVur)lslf, 5} v —vrliza.
TeT EeéEr

It remains to give a decomposition of the second bound (29) with this particular
choice of v7 such that we obtain the structure

error estimator x ||vr|1,2,0-

Then the boundedness of the quasi-interpolation operator implies
error estimator x C||v||1 2.0,

and this can be used in (26) to complete the estimation.

This decomposition will be given in the following section.

7 Analysis of the orthogonality defect

Here we investigate the structure of the defect terms a(u — ur, z7) and a(u —
ur,vr) in (24) and (27), respectively.

Using (21), (22), we get from (20) the following decomposition of the orthogo-
nality defect:

a(u —ur, z7)

= Z/ [fzr — fizrilds

€A

+ZZTZ Z pij(uri — uTj) d -~ — (AVur, Var)
€A JEA;

+ Z Z Tz] Yij UT] uTi)ZTimij - (b -Vur, ZT)
€N jEA;

-l-Z/ CiUTZTi — CUTZT]d

1EA
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{/ fZT—ZTz)d$+/ (f — fl)Z']‘Zda?}

€A
mij
+ Z 2Tq Z M'Lg Ut — UTJ) d J (AVUT, VZT)
€A JEA;
+ Z { Z 1 — Tij 'Yzj(u’T] - uTz)ZTlm” - / (b . VUT)ZTidm}
iEN  jEA; Q;
—Z/ (b-Vur)(zr — zr;)dx
1EA
+ Z {/ ciuT; — curlzridr — / cur (21 — zq—z-)d:r}
iEA Q;

= g+ 61+ 2+ 03

with
o == > zri Y wijluri — Wj)d- (AVur, Var),
€A JEA;
0 = Z/ —b-Vur — cur|(zr — z73)dz,
SN
by = Zsz{/ [f = fi +(V-b—c)ur + ciur;lde — ZUTi'Yijmij}7
’LGA Q ]GAZ

b3 = ZZ/ (rijuri + (1 = rij)urj)yiy — (v - b)urlerids.

€N JEN;

Here we have used that b- Vur =V - (bur) — (V- b)ur
In the case of Donald diagrams, dg = 0.
In order to treat dy in the case of Voronoi diagrams, we introduce a piecewise

constant (w.r.t. 7) approximation A7 to A by Ar|r = / Adz,
measg
T € T. Then we can write

1 mij
Z 2T Z (uz’j " /FJ A7d3> (uri — ut;) i

TSN jEAi

+ ZZTl Z (/ A7d8> UT%UTJ — (AVUT,VZT).
ij v

€A JEN;

It is wellknown that, for arbitrary wy, z7 € V7,
Z 2Ti Z / ATdS w = (ATVUT, VZT).
; : T, d;j
IS JEA; ij

Hence

1 mij
0o = ZZTz Z (Mzg - o, /l;ij ATds> (uri—ury) a; +((Ar—=A)Vur,Vzr).

SN jEAi
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Lj

QT] N,

Figure 2: The auxiliary simplices in the case d = 2

Since both Vugr, Vzr are constant on every element T' € 7, the second term
vanishes. By a symmetry argument, we arrive at

1 1 2
=53 (Mj - /FJ ATd8> (uri —urj)(21i = 21;) dijj-

i€A jEA,; &Y

Now the Cauchy-Schwarz inequality implies

9 1/2
1 1 2 Mjj
0 ST (ot f ) e
i€EN jEA; K
1/2
2 M4
x> (eri = 2)*
i€A jEA; *
The last factor can be bounded by C|z7|1 2,0, therefore we get
|00] < Cimolzr|1,2,0, (30)
where
1 1 ?
. .
7]3 = anl with 7’(2)1 = — Z Wij — / A']‘ds (U/]’i — uTj)2 ) .
; 4 - mij Jr,, dij
ieA JEA; 4

Setting g := f —b- Vur — cur and dy; := sz g(zr — z14)dz, we can write (cf.
Figure 2 for the case d = 2):

01 = Z Z / g(zr — 2713)dz.

T .
JEA; TET:mg;.>O 03508
On each simplex T, it holds
zr = z1i + Var - (x — x;),

where Vz7 is constant on QZ;
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It follows

oy = Z Z / gVzr - (x — z;)dx

JEN; TEeT : mz; >0 QZJ n$;

<> X [ lliVerlle - nlds
jeAiTGT:mg;.>0 ;08
1/2
2
SIY X [ ePle-ala
JEA; Te']’;miTj>() i 8k
1/2
SOIND DI B\ S
jGAiTGT:m£>0 nggl
1/2
= Z Z [E24 _xiHQ/T lg[*da 271,20,
JEN TET :mT;>0 7,08
< miler|i2,.0;,

where

2 . _ Vo2 2
CEDVID VI E S

JEA; TET:m;I;~>O ij
Thus we arrive at
61 < mlzrli2,0- (31)
For the third term ds, with
0; = / f = fi+ (V- -b—c)ur + ciur;|de — Z UTYijMij,
Q :
¢ JEA;

we have

52 = Z ZTZHZ

€A
Because of
z1ibi < mailzril/mi,
where 1y := [60;|//m;, it follows

92 < mallzr||T.

In view of the equivalence of the Lo-norm and the lumped Lo-norm on Vg, we
obtain
62 < Coma|lzrlo,2,0- (32)

For the remaining term d3 we have (by the symmetry argument)

0y =Y O3,

€A
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where

Z / CT’L] 2Ti — Z’T])d

jEA
with
Crij = [rijuri + (L= rij)urjlyig — (vij - b)ur.

. T
In view of z7; — 27j = di;(vi; - Vzr) on Q;; we get

531 - Z dZ] Z / CT’L] Vij - VZT)dS.

JGA TeT :ml>0
It follows (remember that v;; - Vz7 is constant on Fg;- and Vz7 is constant on

T .
QUOQ)

1
03 < Ezdz’j Z

JEA; TeT :m%>0

IVar|

Crijds
T
J

|Vzﬂ|\/measd QL ﬁQ)

1 dij
= 5 Z Z ‘/ C’T@]ds

JEA TET :ml;>0 \/measd QT N Q

By Cauchy’s inequality, we have

1/2
d2. 2
03i < Z Z ”T < C’Tijd8> 12,0
JEN TET ;>0 1CASq (Qij N Q,) r’
< 1,2,04
where
2
1 d2.
Bo- 1YY ( ) %ds>
JEN TET :m, >0 MEASd (Qij N Qz) o
2
d di;
SR (R
JEA; TGT:mz;>0 ) ry
Thus it holds
d3 < m3lzrli 2.0 (33)

Summarizing the estimates (30) — (33), we obtain

a(u—ur,zr) < (Cino +m +n3)|zr|1,2,0 + Conzll 27 ||0,2,0-

The indicators have the following structure:

1/2
m = {Znﬁ} . 1€{0,1,2,3},

(IS
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where

Noi =

REMARK 2 (i) We mention that all the indicators m; can be rewritten in

1/2

2

1 1 2 Mij

5 ij — / Ards | (uri —urj) ==

2 ng\: ( Mg i dij

in case of Voronoi diagrams and 7y; = 0 in case of Donald diagrams,
1/2

> X lef-al b Vur el
N2

JEA; TGT:mg;->O tj

\/1 /
[f = fi + (Vb= c)ur + ciurildz — Z UTiYijMij|
i ), jeA;

iy o (]

JEA TET :mE>0 Y ij

such a way that the resulting local indicators are related to the elements T € T.
(ii) It can be shown that the indicators m; are order-consistent with the a priori
error estimate (Theorem 2) in the following sense :

If f € W (Q) with some q > d and u € W3(Q), then there is a constant C. > 0
such that

3
Y m < Cehlllullzz + |1 flle]
=0

see [Ang92, Thm. 4] for a special case.

References

[AKTOS]

[Ang91]

[Ang92]

[Ang95a]

[Ang95b]

L. Angermann, P. Knabner, and K. Thiele. An error estimator for a finite
volume discretization of density driven flow in porous media. Appl. Numer.
Math., 26(1-2):179-191, 1998.

L. Angermann. A modified error estimator of Babuska-Rheinboldt’s type for
singularly perturbed elliptic problems. In H.-G. Roos, A. Felgenhauer, and
L. Angermann, editors, Numerical methods in singularly perturbed problems,
pages 1-12. TU Dresden, 1991.

L. Angermann. An a-posteriori estimation for the solution of elliptic bound-
ary value problems by means of upwind FEM. IMA J. Numer. Anal., 12:201—
215, 1992.

L. Angermann. Balanced a-posteriori error estimates for finite volume
type discretizations of convection-dominated elliptic problems. Computing,
55(4):305-323, 1995.

L. Angermann. Error estimates for the finite-element solution of an elliptic
singularly perturbed problem. IMA J. Numer. Anal., 15:161-196, 1995.

17

2
[(rijuri + (1 = ri)uz;)vig — (vij - b)UT]d8>

1/2



18

[Ang06]

[AO00]

[BRO6]

[BRO3]

[BTS1]
[C1675]

[11°69]

[Joh94]

[Ran05]

[Ris86]

[Ris90]

[Sam65]

[SZ90]

[Thi99]

L. Angermann: Dual-weighted error estimates. January 5, 2010

L. Angermann. Transport-stabilized semidiscretizations of the incompress-
ible Navier-Stokes equations. Comput. Methods Appl. Math., 6(3):239-263,
2006.

M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element
analysis. Wiley, New York, 2000.

R. Becker and R. Rannacher. A feed-back approach to error control in finite
element methods: Basic analysis and examples. Fast- West J. Numer. Math.,
4(4):237-264, 1996.

W. Bangerth and R. Rannacher. Adaptive finite element methods for differ-
ential equations. Lectures in Mathematics ETH Ziirich. Birkhauser Verlag,
Basel, 2003.

K. Baba and M. Tabata. On a conservative upwind finite element scheme
for convective diffusion equations. RAIRO Anal. Numér., 15(1):3-25, 1981.

P. Clément. Approximation by finite element functions using local regular-
ization. RAIRO Anal. Numér., 9(R-2):77-84, 1975.

A.M. II'in. Differencing scheme for a differential equation with a small pa-
rameter affecting the highest derivative. Mat. Zametki, 6:237-248, 1969.
English transl. in Math. Notes Acad. Sci. USSR 6:596-602, 1969.

C. Johnson. A new paradigm for adaptive finite element methods. In The
mathematics of finite elements and applications (Uzbridge, 1993), pages 105—
120. Wiley, Chichester, 1994.

R. Rannacher. Adaptive finite element methods in flow computations. In Z.-
C. Shi, Z. Chen, T. Tang, and D. Yu, editors, Recent Advances in Adaptive
Computation. Contemporary Mathematics, vol. 383, pages 183-176. AMS,
Providence, Rhode Island, 2005.

U. Risch. Ein hybrides upwind-FEM-Verfahren und dessen Anwendung auf
schwach gekoppelte elliptische Differentialgleichungssysteme mit dominanter
Konvektion. Dissertation, TH Magdeburg, 1986.

U. Risch. An upwind finite element method for singularly perturbed elliptic
problems and local estimates in the Lo-norm. M2?AN, 24(2):235-264, 1990.

A.A. Samarskij. Monotonic difference schemes for elliptic and parabolic equa-
tions in the case of a non-selfadjoint elliptic operator. U.S.S.R. Comput.
Maths. Math. Physics, 5(3):212-217, 1965.

L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions
satisfying boundary conditions. Math. Comp., 54(190):483-493, 1990.

K. Thiele. Adaptive finite volume discretization of density driven flows in
porous media. Dissertation, Naturwissenschaftliche Fakultdt I, Universitat
Erlangen-Niirnberg, 1999.



