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Abstract: We study convolution algebras associated with Heckman-

Opdam polynomials. For root systems of type BC we derive three con-

tinuous classes of positive convolution algebras (hypergroups) by interpo-

lating the double coset convolution structures of compact Grassmannians

U/K with fixed rank over the real, complex or quaternionic numbers.

These convolution algebras are linked to explicit positive product formu-

las for Heckman-Opdam polynomials of type BC, which occur for certain

discrete multiplicities as the spherical functions of U/K. These results

complement those of a recent paper by the second author for the non-

compact case.
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1 Introduction

In the theory of multivariable hypergeometric functions and polynomials of
Heckman, Cherednik and Opdam, the existence of product formulas and posi-
tive convolution algebras is in general unsolved. In [18], three continuous series
of positive convolution algebras having Heckman-Opdam hypergeometric func-
tions as multiplicative functions were obtained by interpolating geometric cases
in an explicit way, namely the product formulas for the spherical functions of
non-compact Grassmannians. In these cases, a full picture of harmonic analysis
for the hypergeometric transform could thus be obtained. The present paper
extends these results to the dual situation related to compact Grassmannians
and convolution algebras for three continuous series of Heckman-Opdam Jacobi
polynomials of type BC.

1



To be specific, we consider the compact Grassmann manifolds U/K where
U = SO(p+q), SU(p+q) or Sp(p+q) and K = SO(p)×SO(q), S(U(p)×U(q))
or Sp(p) × Sp(q), respectively. These are dual to the noncompact Grassman-
nians studied in [18]. Following the procedure in loc.cit., we write down the
product formula for their spherical functions in a way which allows analytic
continuation with respect to the dimension parameter p, the rank q being fixed.
The spherical functions are Heckman-Opdam Jacobi polynomials of type BC
with certain discrete multiplicities, and our continuation gives an explicit prod-
uct formula for an interpolated continuous range of multiplicities. This formula
in part generalizes Koornwinder’s product formula for Jacobi polynomials [12]
to higher rank. Naturally, it is similar to the non-compact case, but direct an-
alytic continuation from the non-compact to the compact case seems to be not
feasible.

The compact case is easier in some respect (identifying the dual space for
instance), but also needs some special care when studying the geometric back-
ground. We obtain commutative hypergroup algebras on the fundamental alcove
of the associated affine reflection group, with the associated Heckman-Opdam
Jacobi polynomials as characters.

The organisation of this paper is as follows: In Section 2 we recall some
basics of trigonometric Dunkl theory. Section 3 is a short summary of the
necessary background from the theory of symmetric spaces. After this we start
in Section 4 with the compact Grassmannians U/K, identify their spherical
functions with Jacobi polynomials, and use a KAK-type decomposition to make
their product formula explicit. Following the idea of [18], this product formula
is then analytically continued. Section 5 contains a review of the rank one case,
and in Section 6, the related hypergroup structures on the fundamental alcove
are studied.

2 Fundamentals of Trigonometric Dunkl Theory

This section is a short review of the fundamentals of trigonometric Dunkl the-
ory which will be needed in this article. For details, we refer to the work of
Heckman and Opdam ([6], [15], [16]).

Let a be a q-dimensional Euclidean space with inner product 〈·, ·〉, which is
extended to a complex bilinear form on the complexification aC of a. We identify
a with its dual space a∗ = Hom(a,R) via the given inner product. Let Σ ⊂ a be
a (not necessarily reduced) root system. For α ∈ Σ we write α∨ := 2α/〈α, α〉
for the coroot of α and denote by sα(x) = x − 〈α∨, x〉α the reflection in the
hyperplane Hα perpendicular to α.

The reflections {sα : α ∈ Σ} generate the Weyl group W = W (Σ). We
define the root lattice Q := Z.Σ and the coroot lattice Q∨ = Z.Σ∨. Further,
we fix some positive subsystem Σ+ of Σ, as well as a basis {α1, . . . αq} ⊂ Σ+

of simple roots. An element λ ∈ a is called (strictly) dominant, if 〈λ, αi〉 ≥ 0
(respectively > 0) for all i = 1, . . . , q. We write a+ := {λ ∈ a : 〈λ, α∨〉 >
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0 ∀α ∈ Σ+} for the Weyl chamber of strictly dominant elements.
For α ∈ Σ and λ ∈ aC let

λα :=
〈λ, α〉
〈α, α〉 .

The weight lattice is given by

Λ := {λ ∈ a : λα ∈ Z for all α ∈ Σ}

and the set

Λ+ := {λ ∈ a : λα ∈ Z+ for all α ∈ Σ+}

is called the lattice of dominant weights. Here we use the notation Z+ :=
{0, 1, 2, . . .}. The positive root lattice Q+ = Z+.Σ+ defines a partial ordering
� on a:

µ � λ ⇐⇒ λ− µ ∈ Q+.

This ordering is called the dominance ordering.

2.1 Lemma. Let γ ∈ a+ be dominant. Then wγ � γ for all w ∈W .

Proof. Lemma 10.3B in [10].

2.2 Lemma. Let λ, µ ∈ Λ+ be dominant weights with µ � λ. Then |µ| ≤ |λ|.
Proof. Let λ, µ ∈ Λ+ with µ � λ. Then λ + µ is also dominant and λ − µ is a
sum of positive roots. Therefore

0 ≤ 〈λ+ µ, λ− µ〉 = |λ|2 − |µ|2.

A multiplicity function is a W -invariant map m : Σ → C, α 7→ mα. We
denote the set of multiplicity functions by M. In this article we only consider
non-negative multiplicities, i.e. mα ≥ 0 for all α ∈ Σ. Define

ρ = ρ(m) :=
1
2

∑
α∈Σ+

mαα. (2.1)

2.3 Definition. Let ξ ∈ a and m ∈M. The Dunkl-Cherednik operator associ-
ated with Σ and m is given by

Tξ = T (ξ,m) := ∂ξ +
∑
α∈Σ+

mα〈α, ξ〉 1
1− e−2α

(1− sα)− 〈ρ, ξ〉,

where ∂ξ is the usual directional derivative and eλ(ξ) := e〈λ,ξ〉 for λ, ξ ∈ aC.
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2.4 Remark. Heckman and Opdam use a slightly different notation. They con-
sider a root system R with multiplicity k, which is connected to our notation
via

R = 2Σ, k2α =
1
2
mα.

Note that this implies further differences. Our notation comes from the theory
of symmetric spaces.

For fixed multiplicity m, the operators Tξ, ξ ∈ aC commute. Therefore the
assignment ξ 7→ T (ξ,m) uniquely extends to a homomorphism on the symmetric
algebra S(aC) over aC, which may be identified with the algebra of complex
polynomials on aC. Let T (p,m) be the operator which corresponds in this way
to p ∈ S(aC). If p ∈ S(aC)W , the subspace of W -invariant polynomials on aC,
then T (p,m) acts as a differential operator on the space of W -invariant analytic
functions on a.

Fix a spectral parameter λ ∈ aC. Then according to fundamental results of
Heckman and Opdam (see [6]), the so-called hypergeometric system

T (p,m)ϕ = p(λ)ϕ for all p ∈ S(aC)W

has a unique W -invariant solution ϕ = Fλ(m; ·) = F (λ,m; ·) which is analytic
on a and satisfies Fλ(m; 0) = 1. Moreover, there is a W -invariant tubular
neighborhood U of a in aC such that F extends to a (single-valued) holomorphic
function F : aC×Mreg×U → C. The function F (λ,m;x) is W -invariant in both
λ and x. It is called the hypergeometric function associated with Σ. For certain
spectral parameters λ, the functions Fλ are actually trigonometric polynomials,
the so-called Heckman-Opdam polynomials. In order to make this precise, we
need some more notation.

Let T := lin{eiλ : λ ∈ Λ} be the space of trigonometric polynomials as-
sociated with Λ. Trigonometric polynomials are πQ∨-periodic, and TξT ⊂ T .
Consider the torus T = a/πQ∨ with the W -invariant weight function

wm :=
∏
α∈Σ+

∣∣eiα − e−iα∣∣mα . (2.2)

Let
Mλ :=

∑
µ∈W.λ

eiµ, λ ∈ Λ+

denote the W -invariant orbit sums. They form a basis of the space of W -
invariant trigonometric polynomials T W . For λ ∈ Λ+ the (Heckman-Opdam)
Jacobi polynomials associated with Σ are now defined by

Pλ = Pλ(m; ·) :=
∑

µ∈Λ+, µ�λ
cλµ(m)Mµ

where the coefficients cλµ(m) are uniquely determined by the conditions
(i) cλλ(m) = 1
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(ii) Pλ is orthogonal to Mµ in L2(T ;wm) for all µ ∈ Λ+ with µ ≺ λ.
The Jacobi polynomials Pλ form an orthogonal basis of L2(T,wm)W , the

subspace of W -invariant elements from L2(T,wm).

2.5 Remark. Notice that our notation slightly differs from that of Heckman and
Opdam (e.g. [6], [16]), namely by a factor i in the spectral variable. This choice
of notation will be more convenient for our purposes.

The connection between the Jacobi polynomials and the hypergeometric
function is as follows:

2.6 Lemma. (See [6]) For all x ∈ aC and λ ∈ Λ+,

Fλ+ρ(m; ix) = c(λ+ ρ,m)Pλ(m;x),

where the c-function c(λ+ ρ,m) = Pλ(m; 0)−1 is given by

c(λ+ ρ,m) =
∏
α∈Σ+

Γ(λα + ρα + 1
4mα/2)Γ(ρα + 1

4mα/2 + 1
2mα)

Γ(λα + ρα + 1
4mα/2 + 1

2mα)Γ(ρα + 1
4mα/2)

.

We shall work with a renormalized version of the Jacobi polynomials, defined
by

Rλ(x) := Rλ(m;x) := c(λ+ ρ,m)Pλ(m;x). (2.3)

They satisfy Rλ(0) = 1.
Let us identify a with Rq. Dividing the torus T = a/πQ∨ by the action of the

Weyl group W gives the fundamental alcove A0 = {x ∈ Rq : π
2 ≥ x1 ≥ x2 ≥

. . . ≥ xq ≥ 0}. We may consider the W -invariant trigonometric polynomials
T W as functions on the fundamental alcove A0. The Jacobi polynomials Rλ are
orthogonal with respect to the inner product

〈f, g〉m =
∫
A0

f(x)g(x)wm(x) dx,

but they are not orthonormal. We put

rλ :=
1

‖Rλ‖2m
. (2.4)

3 Compact symmetric spaces and their spheri-
cal functions

In this section we recall some basics from the theory of symmetric spaces. Stan-
dard references are the books of Helgason [7] and [8].

Let U be a compact semisimple and connected Lie group with Lie algebra
u. Let K be a closed subgroup such that M := U/K is connected and there
exists an involutive automorphism θ : U → U with Uθ0 = K. Here Uθ = {u ∈
U : θ(u) = u} and Uθ0 denotes the identity component of Uθ. Then M = U/K
is a compact symmetric space.
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The derivation of θ gives an involution of the Lie algebra u, which we also
denote by θ. The corresponding Cartan decomposition is given by u = k ⊕ q.
Let b ⊆ q be a maximal abelian subspace. Denote by G the analytic subgroup
of the complexification UC with Lie algebra g := k ⊕ iq. We have K ⊆ G. Put
p := iq. Then a := ib is a maximal abelian subspace of p. Denote by θC the
analytic continuation of θ to UC and let τ = θ|G. Then τ is a Cartan involution
of G and K = Gτ . The symmetric space G/K is called the noncompact dual
of U/K. Denote by Σ := Σ(g, a) the restricted root system and by Σ+ a fixed
subset of positive restricted roots.

Recall that for an arbitrary Lie group G with compact subgroup K, a spheri-
cal function on G is a nonzero, K-biinvariant function ϕ : G→ C which satisfies
the product formula

ϕ(g)ϕ(h) =
∫
K

ϕ(gkh)dk for all g, h ∈ G, (3.1)

where dk denotes the normalized Haar measure on K.
Assume now that (U,K) is as above, and U is also simply connected. Then

the spherical functions on U are indexed by the set{
ν ∈ a : να :=

〈ν, α〉
〈α, α〉 ∈ Z+ (∀α ∈ Σ+)

}
, (3.2)

which coincides with the set Λ+(U/K) of (restrictions of ) highest weights of
K-spherical irreducible representations of U . Recall that an irreducible unitary
representation Φ : U → GL(V ) is called K- spherical, if there exists a K-fixed
vector. More precisely, the following holds ([8], Theorem 3.4, Ch. IV and
Theorem 4.1, Ch. V):

3.1 Proposition. Assume that U is simply connected. Let µ ∈ Λ+(U/K) and
Φ : U → GL(V ) be a spherical representation of U . Choose a K-fixed vector
vµ ∈ V with ‖vµ‖ = 1. Then

ψµ(u) = 〈Φ(u)vµ, vµ〉

is a spherical function on U . Conversely, every spherical function on U is of
this form for some unique µ ∈ Λ+(U/K).

If U is not simply connected, then the spherical functions on U are in general
indexed by a subset of {ν ∈ a : να ∈ Z+ (∀α ∈ Σ+)}.

We assume again that U is simply connected, and G/K is the concompact
dual of U/K. Then there is a close connection between the spherical functions
on G and those on U , which is given by the following important proposition.

3.2 Proposition. Every spherical function ϕλ on G (λ ∈ aC) is an analytic
function. It extends to a holomorphic function on GC if and only if λ = µ+ρ ∈
ρ + Λ+. If it extends we denote the analytic extension also by ϕλ and the
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restriction of this extension to U is a spherical function ψ on U. There is a shift
in the index and we have the equality

ϕµ+ρ|U = ψµ, µ ∈ Λ+.

Conversely: Every spherical function ψµ on U (µ ∈ Λ+) extends to a holomor-
phic function ψµ on UC and its restriction to G is a spherical function ϕ on G.
Then ψµ|G = ϕµ+ρ.

Proof. Corollary 5.2.3 in [6] and Lemma 2.5 in [3].

4 The product formula for Jacobi polynomials

We consider the compact Grassmanians M = U/K where U = SO(p + q),
SU(p+q) or Sp(p+q) and K = SO(p)×SO(q), S(U(p)×U(q)) or Sp(p)×Sp(q),
respectively. We write U = SU(p+q,F) with F ∈ {R,C,H} and consider K as a
subgroup of U(p,F)×U(q,F). We exclude the case p = q and assume p > q ≥ 1.
4.1 Remark. Note that SU(p+q,F) is simply connected in the case F ∈ {C,H},
but the group SO(p+ q) is not. It has the spin group Spin(p+ q) as a double
cover. In contrast to the noncompact case some complications can occur in the
study of compact symmetric spaces. See e.g. Proposition 1.2, Ch. VII in [7].
Therefore in the study of the real case some care has to be taken. Nevertheless
we are able to show (with some technical effort) that the same results hold in
the real case.

Now we apply the general theory of Section 3 to the compact symmetric
spaces under consideration in this article. We may choose for the maximal
abelian subspace b ⊂ u the set of all matrices Hix ∈Mp+q(F) of the form

Hix =

 0p×p
ix

0(p−q)×q
ix 0q×(p−q) 0q×q

 ,

where x := diag(x1, . . . , xq) is the q × q diagonal matrix corresponding to x =
(x1, . . . xq) ∈ Rq. In the literature often a slightly different identification of b
without the factor i is used. See eg. [7], p.452. Our choice is dual to a = {Hx :
x ∈ Rq}. Compare the treatise of the noncompact case in [18]. Naturally, this
doesn’t change any result. We identify a (and its dual space a∗) with Rq via
Hx 7→ x. The corresponding root system Σ is of type BCq, with the convention
that zero is allowed as a multiplicity. In this way the case Bq which occurs
for F = R is included. The roots α with their multiplicities mα are given in
the following table. The multiplicities depend on p, q and the real dimension
d = 1, 2, 4 of F = R,C,H.

root α multiplicity mα

±ei 1 ≤ i ≤ q d(p− q)
±2ei, 1 ≤ i ≤ q d− 1

±ei ± ej , 1 ≤ i < j ≤ q d
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We will use the notation m = (m1,m2,m3) where mi (i = 1, 2, 3) denotes
the multiplicity on ±ei, ±2ei or ±ei ± ej , respectively. The canonical choice of
positive roots is Σ+ = {ei, 2ei : 1 ≤ i ≤ q}∪{ei± ej : 1 ≤ i < j ≤ q}. The Weyl
group W , which is generated by the reflections in the hyperplanes

Hα = {x ∈ Rq : 〈α, x〉 = 0},
is the hyperoctahedral group in all cases. The Weyl chamber associated to Σ+

is given by

a+ = {Hx : x = (x1, . . . , xq) ∈ Rq such that x1 > x2 > . . . > xq > 0}.
The set of dominant weights is given by

Λ+ = {λ ∈ Rq : λα ∈ Z+ (∀α ∈ Σ+)} =

{
(Z+)q if F = R;
2(Z+)q if F = C,H.

In the case of a compact symmetric space, the affine Weyl group contains more
information about the space. For k ∈ πZ and α ∈ Σ let

Hα,k = {x ∈ Rq : 〈α, x〉 = k} = Hα +
k

2
α∨

and denote by sα,k the reflection in the hyperplane Hα,k. The affine Weyl group
Waff is the (infinite) group generated by the reflections {sα,k : α ∈ Σ, k ∈ πZ}.
It is a semidirect product of the coroot lattice and the Weyl group Waff =
Q∨ oW.

The connected components of Rq \{⋃α∈Σ+,k∈πZ Hα,k} are called alcoves. In
the case of BCq we choose the fundamental alcove

A0 = {x ∈ Rq :
π

2
> x1 > x2 > . . . > xq > 0}. (4.1)

(The Weyl chamber a+ is cut off by Q∨.) Its closure A0 is a fundamental domain
for the action of Waff on a.

The following theorem gives a sharpened KAK-decomposition of U .

4.2 Theorem. Let U = SU(p+ q,F). The group U decomposes as U = KSK,
where

S =

bx =

 cosx 0q×(p−q) i sinx
0(p−q)×q Ip−q 0(p−q)×q
i sinx 0q×(p−q) cosx

 : x ∈ A0

 .

Every u ∈ U can be written as u = kbxk
′ with k, k′ ∈ K and a unique bx ∈ S.

Proof. In the cases F = C,H the group U is simply connected and the result
follows from Theorem 8.6. in Chapter VII of [7]: Put Q0 := {Hix : x ∈ A0}.
Then a short calculation shows that S = expQ0.

In the case of SO(p+q) we cannot apply this theorem but the decomposition
is also valid and unique. See [20], Section 15.1.9.
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Now we turn our attention to the spherical functions on U . Our first aim is
to make the product formula

ψ(g)ψ(h) =
∫
K

ψ(gkh)dk (4.2)

explicit. For this, we may closely follow the argumentation of [18] (Section 2)
in the non-compact dual cases. Since spherical functions on U = KSK are
K-biinvariant they are determined by their values on S. We consider

g :=
(
u 0
0 v

)
bx

(
ũ 0
0 ṽ

)
∈ KSK.

and write g in p× q block notation as

g =
(
A(g) B(g)
C(g) D(g)

)
.

A short calculation then gives

D(g) = v cosx ṽ (4.3)

where cosx = diag(cosx1, . . . , cosxq) with cosxi ∈ [0, 1] for all i. We denote
by specs(X) the singular spectrum of X ∈Mq(F), that is

specs(X) =
√

spec(X∗X) = (σ1, . . . , σq) ∈ R
¯
q,

with the singular values σi of X ordered by size: σ1 ≥ . . . ≥ σq ≥ 0. Equation
(4.3) implies that the singular spectrum of D(g) is given by specs(D(g)) =
(cosx1, . . . , cosxq) =: cosx. By our choice of the fundamental alcove A0, we
therefore have

x = arccos(specs(D(g)) ∀g ∈ KbxK, x ∈ A0, (4.4)

where arccos is also taken componentwise.
In order to evaluate formula (4.2) explicitly, we write bx ∈ S in p× q block

notation:

bx =
(
Ax Bx
Cx Dx

)
.

Then for k =
(
u 0
0 v

)
∈ K we obtain by a short calculation that

D(bxkby) = − sin xσ∗0uσ0 sin y + cosx v cos y.

with the p× q block matrix

σ0 :=
(
Iq
0

)
.
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Now let ψ be a spherical function on U and put ψ̃(x) := ψ(bx) for x ∈ A0.
From (4.4) it follows that ψ̃ satisfies

ψ̃(x)ψ̃(y) =
∫
K

ψ̃ (arccos (specs(D(bxkby))) dk. (4.5)

For our later extension of this product formula beyond the geometric cases, it
is important to rewrite it in a way where the parameter p is no longer contained
in the domain of integration. Under the technical assumption p ≥ 2q, this can
be done in the same way as in [18], which leads to the following

4.3 Proposition. Suppose that p ≥ 2q. Define

Bq := {w ∈Mq(F) : w∗w < I},

γ := d(q − 1
2

) + 1,

and for µ ∈ C with Re µ > γ − 1, put

κµ :=
∫
Bq

∆(I − w∗w)µ−γdw

where ∆ is the usual determinant on Mq(F) for F = R or C, and the Dieudonné
determinant for F = H, i.e. ∆(X) = (detC(X))1/2, when X is considered as a
complex matrix.
Then the spherical functions ψ̃(x) = ψ(bx) (x ∈ A0) on U satisfy the product
formula

ψ̃(x)ψ̃(y) =
1

κpd/2

∫
Bq

∫
U0(q,F)

ψ̃
(
arccos

(
specs(− sin xw sin y + cosx v cos y)

))
·∆(I − w∗w)pd/2−γdvdw.

The next step is to identify the spherical functions on SU(p + q,F) as
Heckman-Opdam Jacobi polynomials of type BCq.

Consider first the general situation. Let G be a simply connected, semisimple
noncompact Lie group with maximal compact subgroup K. Let g, k be the Lie
algebras of G and K with corresponding Cartan decomposition g = k ⊕ p.
Choose a maximal abelian subspace a ⊂ p and denote by Σ = Σ(g, a) the
(restricted) root system with geometric multiplicity m. Then the spherical
functions on G are indexed by aC, ([8]), where two spherical functions ϕλ and
ϕµ coincide iff λ and µ are in the same orbit of the Weyl group W (Σ). The
following important fact links the theory of Heckman and Opdam with the
classical theory of symmetric spaces:

4.4 Proposition. ([6], Theorem 5.2.2) Let ϕλ, λ ∈ aC, be a spherical func-
tion on G, let Σ and m be the associated restricted root system and geometric
multiplicity. Then for x ∈ a,

ϕλ(expx) = Fλ(m;x).
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We know from Proposition 3.2 that a spherical function ϕµ on G extends
holomorphically to the complexification GC if and only if µ ∈ ρ + Λ+. In this
case the restriction to the simply connected U is a spherical function ψλ on U ,
where

ψλ = ϕλ+ρ|U , λ ∈ Λ+.

When combining this with Proposition 4.4 and (2.3), we obtain

4.5 Theorem. Let U/K be a compact symmetric space with dual G/K. Assume
that U is simply connected and let (a,Σ,m) be the associated geometric root data.
Then the spherical functions on U - restricted to i exp a - are (Heckman-Opdam)
Jacobi polynomials of type Σ and with multiplicity m:

ψλ(i expx) = ϕλ+ρ(i expx) = Fλ+ρ(m; ix) = Rλ(m;x), for all λ ∈ Λ+, x ∈ a.

Here we denote by ψ the spherical functions on U and by ϕ the holomorphic
extension of the spherical functions on G to the complexification GC.

The second equality in the theorem above follows from Proposition 4.4 since
ϕλ+ρ and Fλ+ρ extend holomorphically to the complexification.

4.6 The real case U = SO(p + q). As already remarked, the case U =
SO(p + q) has to be treated with some care, since this group is not sim-
ply connected. If U is not simply connected then we only know that the set
Λ+(U/K) of highest weights of K-spherical representations of U is a sublattice
of {ν ∈ a : να ∈ Z+ (∀α ∈ Σ+)}.

The spin group Ũ = Spin(p + q) is the universal covering group of U =
SO(p + q). The spin group is a subset of the Clifford algebra. Denote by
ϕ : Ũ → U the covering homomorphism. The kernel S := ker ϕ = {±1} is con-
tained in the center of Ũ . Further, there exists a unique involution θ̃ : Ũ → Ũ
which corresponds to the involution θ : u → u on the Lie algebra. Since Ũ

is simply connected, the group K̃ := Ũ
eθ of fixed points of θ̃ is connected ([7],

Theorem 8.2 in Chapter VII).

We claim that

Λ+(U/K) = Λ+(Ũ/K̃) =
{
ν ∈ a : να ∈ Z+ (∀α ∈ Σ+)

}
.

This is equivalent to showing that every K̃-spherical representation on Ũ de-
scends to a K-spherical representation on U . Note that in general if a K̃-
spherical representation descends it will have automatically a K0-fixed vector,
but not necessarily a K-fixed vector (See the remarks in [14] after Theorem
2.1.). Since K = SO(p)×SO(q) is connected this problem doesn’t occur in our
case. The fact that every K̃-spherical representation on Ũ descends will follow
as soon as we know that S ⊂ K̃. For this, recall that (U,K) is a Riemannian
symmetric pair and that θ : U → U is an involution of U which corresponds
to the Cartan involution on the Lie algebra u. Thus Lemma 1.3, Ch. VII, [7]
implies θ̃(S) ⊂ S. Since θ̃ is an involution we have θ̃(1) = 1 and θ̃(−1) = −1.
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Therefore S is contained in the fixpoint group K̃.

From this the claim follows either by a remark of Vretare (The spherical func-
tion on U coincides with those on Ũ for which ϕ(u′s) = ϕ(u′), u′ ∈ Ũ , s ∈ S; see
[19], p. 357.) or by the following reasoning: A spherical representation π on Ũ is
irreducible. Since S is contained in the center of Ũ it acts by a constant (Schur’s
Lemma). This constant has to be 1 because every K-fixed vector is also S-fixed.

We summarize: The spherical functions on U coincide with those on Ũ .

Using Theorem 4.5 and 4.6 we conclude for the spherical functions ψλ (λ ∈
Λ+) on our compact Grassmann manifolds U/K over each of the (skew-) fields
F ∈ {R,C,H}:

ψ̃λ(x) = ψλ(bx) = FBCq (λ+ ρ,m; ix) = Rλ(x). (4.6)

Under the assumption p ≥ 2q we get from Proposition 4.3:

Rλ(x)Rλ(y) =
1

κpd/2
·
∫
Bq

∫
U0(q,F)

Rλ
(
d(x y, v, w)

)
∆(I − w∗w)pd/2−γdvdw,

for all x, y ∈ Rq, where

d(x, y, v, w) := arccos
(
specs(− sinx,w sin y + cosx v cos y)

)
. (4.7)

The next step is analytic continuation. Fix q and d = dimRF. For µ ∈ C
with Re µ > γ − 1 and dominant weight λ define

Rµλ(x) := FBCq (λ+ ρ,mµ; ix),

where the multiplicity mµ is given by

mµ = (2µ− dq, d− 1, d).

For µ = pd/2, with p ∈ N we have geometric cases. This means that for these
values of µ, the Jacobi polynomials Rµλ are the spherical functions of a compact
symmetric space U/K.

4.7 Theorem. For µ ∈ C with Reµ > γ − 1 as above the Jacobi polynomials
Rµλ satisfy the product formula

Rµλ(x)Rµλ(y) =
1
κµ

∫
Bq

∫
U0(q,F)

Rµλ
(
d(x, y, v, w)

)
∆(I − w∗w)µ−γdvdw

with d(· · · ) as in (4.7).

Proof. The proof is a direct copy of the first part of the proof of Theorem 4.1
in [18]. Replace the (R, k)-notation by our (Σ,m)-notation and the product
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formula by our product formula. Then rewrite the claimed formula in terms of
Pµλ := 1

c(λ+ρ,mµ)R
µ
λ (the standard Heckman-Opdam normalization):

Pµλ (x)Pµλ (y) =
1

κµ · c(λ+ ρ,mµ)

∫
Bq

∫
U0(q,F)

Pµλ
(
d(x, y, v, w)

)
∆(I−w∗w)µ−γdvdw

For fixed λ ∈ Λ+, the function c(λ+ρ,mµ) is bounded away from zero as µ→∞
in the half plane H = {µ ∈ C : Re µ > γ − 1} (see [18]). Then one uses the
fact that the coefficients of the Pµλ with respect to the monomial basis {eν :
ν ∈ Λ} are rational (see [13], Par. 11), and that the integral

1
κµ

∫
Bq

|∆(I − w∗w)µ−γ |dw

converges exactly for Re µ > γ − 1 and is of polynomial growth as µ → ∞ in
H. This allows to apply Carlson’s theorem. For details we refer to [18].

5 The rank one case

At this point it is worthwile to spend some time to see how our product for-
mula for Heckman-Opdam Jacobi polynomials generalizes the product formula
of classical one-variable Jacobi polynomials for certain indices.

The classical Jacobi polynomials with indices α, β > −1 are given by

P (α,β)
n (x) =

(α+ 1)n
n! 2F1

(
α+ β + n+ 1,−n, α+ 1;

1− x
2
)

(5.1)

where 2F1 is the Gaussian hypergeometric function and (a)k := a(a+ 1) . . . (a+
k − 1) = Γ(α+k)

Γ(α) . We renormalize:

R(α,β)
n (x) =:=

n!
(α+ 1)n

P (α,β)
n (x).

Let us consider the Heckman-Opdam theory in the rank one case. The root
system is BC1 = {±e1,±2e1} in a ∼= R and we denote the multiplicity by
m1 := mα and m2 := m2α. Note that zero is allowed as a multiplicity and in
fact, we have m2 = 0 in the real case.

According to the example in [15], p. 89f, the hypergeometric function FBC1

is given by

FBC1(λ,m;x) = 2F1

(
a, b, c;

1
2

(1− cosh 2x)
)
. (5.2)

Here

a =
1
2
(
λ+

1
2
m1+m2

)
, b =

1
2
(−λ+

1
2
m1+m2

)
and c =

1
2
(
1+m1+m2

)
. (5.3)

The dominants weights in the rank one case are

Λ+(Σ) =

{
Z+ if F = R
2Z+ if F = C,H.

13



According to Lemma 2.6 we have

Fλ+ρ(ix) = Rλ(x).

In the case F ∈ {C,H} let µ = λ+ρ = 2n+ 1
2m1 +m2 ∈ ρ+2Z+ and choose

a, b, c as in (5.3). Then we get from equation (5.2)

FBC1(µ,m;x) = 2F1

(
n+

1
2
m1 +m2,−n, 1

2
(1 +m1 +m2);

1
2

(1− cosh 2x)
)

and with equation (5.1) we conclude

Rλ(x) = R(α,β)
n (cos 2x)

where
α =

1
2

(m1 +m2 − 1), β =
1
2

(m2 − 1).

In the real case F = R the rank one symmetric space SO(p+1)/SO(p) is the
sphere Sp, the root system Σ = {±e1} is of type B1 and the dominant weights
are the natural numbers. It is well known that the spherical functions of Sp are
Gegenbauer polynomials. In fact, we have in the real rank one case for a weight
λ = n ∈ Z+

Rλ(x) = FB1(λ+ ρ,m; ix) = 2F1

(
n

2
+

1
2
m1,−n2 ,

1
2

(1 +m1);
1
2

(1− cos 2x)
)
.

Using the hypergeometric identity (3.1.3) in [1], we obtain

Rλ(x) = 2F1

(
n+m1,−n, 1

2
(1 +m1);

1− cosx
2

)
= R(α,α)

n (cosx),

where α = 1
2 (m1 − 1). So the Heckman-Opdam Jacobi polynomials on the

sphere are indeed Gegenbauer polynomials.

To summarize: The spherical functions of the compact rank one symmetric
space U/K are given by (classical) Jacobi polynomials. This is well known, see
e.g. Theorem 4.5, Ch. V in [8].

In the 1970ies, Koornwinder devoted a series of papers to the product for-
mula for one-variable Jacobi polynomials, see e.g. [12]. For arbitrary α > β >
− 1

2 , it is given by

R(α,β)
n (x)R(α,β)

n (y) =
∫ 1

0

∫ π

0

R(α,β)
n

(1
2

(1 + x)(1 + y) +
1
2

(1− x)(1− y)r2

+
√

1− x2
√

1− y2r cos θ − 1
)
dmα,β(r, θ)

with
dmα,β(r, θ) = cα,β(1− r2)α−β−1(r sin θ)2βr drdθ
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and
1
cα,β

=
∫ 1

0

∫ π

0

(1− r2)α−β−1(r sin θ)2βr drdθ.

Now consider the product formula from Theorem 4.7 in the geometric cases
for rank q = 1. The geometric multiplicities are

m1 = d(p− 1) and m2 = d− 1,

where d = dimRF ∈ {1, 2, 4} and p ∈ N, p ≥ 2. Then we use the identification
(5) with parameters

α =
1
2

(m1 +m2 − 1) =
1
2
dp− 1 and β =

1
2

(m2 − 1) =
1
2
d− 1.

The domains of integration reduce to B1 = {w ∈ F : |w| < 1} and U0(1) =
{v ∈ F : |v| = 1}0. Furthermore we have

d(x, y, v, w) = arccos | − w sinx sin y + v cosx cos y|

and ∆(I−w∗w)µ−γ = (1−|w|2)
d
2 (p−1)−1. The U0(1)-integral cancels under the

coordinate transform w′ := v−1w. Using cos 2x = 2 cos2 x− 1 we obtain

R(α,β)
n (cos 2x)R(α,β)

n (cos 2y) =
1

κpd/2

∫
B1

R(α,β)
n (2 | − z sinx sin y + cosx cos y|2 − 1) · (1− |z|2)

d
2 (p−1)−1dz.

(5.4)

Let us sketch the further calculations only in the case F = C. We introduce
polar coordinates z = reiθ and put t := cos 2x, s := cos 2y. Then use the
identities sin2 x = 1

2 (1 − t), sinx cosx = 1
2

√
1− t2 and cos2 x = 1

2 (1 + t). The
constant κpd/2 is given by

κpd/2 = 2π
∫ 1

0

(1− r2)p−2r dr =
π

p− 1
.

We conclude from (5.4) exactly the product formula for Jacobi polynomials with
α = p− 1 and β = 0:

R(p−1,0)
n (t)R(p−1,0)

n (s) =
2(p− 1)

π

∫ 1

0

∫ π

0

R(p−1,0)
n (

1
2

(1 + t)(1 + s) +
1
2

(1− t)(1− s)r2

+
√

1− t2
√

1− s2r cos θ − 1)(1− r2)p−2r drdθ.

6 Hypergroup structures on the alcove

In this section we shall see that the product formula of Theorem 4.7 leads to
three continuous series (for d = 1, 2, 4) of positivity-preserving convolution alge-
bras on the fundamental alcove A0 = {t ∈ Rq : π

2 ≥ t1 ≥ . . . ≥ tq ≥ 0}, which
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are compact commutative hypergroups with normalized Jacobi polynomials as
characters. In the geometric cases (µ = pd/2), these hypergroups convolutions
are just given by the double coset convolutions on the double coset space U//K
which may be identified with A0 by Theorem 4.2.

To start with, let us briefly recall some basics from hypergroup theory. For
a detailed treatment, the reader is referred to [11]. Hypergroups generalize the
convolution algebras of locally compact groups, with the convolution product
of two point measures δx and δy being in general not a point measure again but
a probability measure with compact support depending on x and y.

6.1 Definition. A hypergroup is a locally compact Hausdorff space X with
a weakly continuous, associative convolution ∗ on the space Mb(X) of regular
bounded Borel measures on X, satisfying the following properties:

(i) The convolution product δx ∗ δy of two point measures is a compactly
supported probability measure on X, and supp(δx ∗ δy) depends contin-
uously on x and y with respect to the so-called Michael topology on the
space of compact subsets of X (see [11]).

(ii) There exists a (necessarily unique) neutral element e ∈ X satisfying
δe ∗ δx = δx ∗ δe = δx for all x ∈ X.

(iii) There exists a (necessarily unique) continuous involution x 7→ x on X
such that δx ∗ δy = (δy ∗ δx)− and x = y ⇐⇒ e ∈ supp(δx ∗ δy). (Here
the measure µ− is given by µ−(A) = µ(A).)

The hypergroup is called commutative if the convolution is commutative.

Note that due to weak continuity, the convolution of measures on a hyper-
group is uniquely determined by the convolution of point measures.

Every commutative hypergroup X has a unique (up to a multiplicative fac-
tor) Haar measure ω, that is a positive Radon measure with the property∫

X

f(x ∗ y)dω(y) =
∫
X

f(y)dω(y) (∀x ∈ X, f ∈ Cc(X)),

where we use the notation f(x ∗ y) := (δx ∗ δy)(f).
The dual space of a hypergroup X is defined by

X̂ := {ϕ ∈ Cb(X) : ϕ 6= 0, ϕ(x) = ϕ(x) and ϕ(x ∗ y) = ϕ(x)ϕ(y)}.

The elements of X̂ are called characters of X. As in the case of locally compact
abelian groups, the dual of a commutative hypergroup is a locally compact
Hausdorff space with the topology of locally uniform convergence. In general
the dual is not again a hypergroup. In the case of a compact hypergroup X the
dual X̂ is discrete. The Fourier transform on L1(X,ω) is defined by f̂(ϕ) :=∫
X
f(x)ϕ(x)dω(x). It is injective and there exists a unique positive Radon

measure π on X̂, called the Plancherel measure of (X, ∗), such that f 7→ f̂

extends to an isometric isomorphism from L2(X,ω) onto L2(X̂, π).
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6.2 Example. (Double coset hypergroups)
Let G be a locally compact group with compact subgroup K and denote by dk
the Haar measure on K. Then there is a natural hypergroup structure on the
set of double cosets G//K = {KxK : x ∈ G} which is given by

δKxK ∗ δKyK =
∫
K

δKxkyK dk, x, y ∈ G.

The neutral element is K = KeK and the involution is given by (KxK)− =
Kx−1K (see Theorem 8.2B in [11]). The double coset hypergroup (G//K, ∗) is
commutative if and only if (G,K) is a Gelfand pair.

6.3 Theorem. Let µ ∈ C with Re µ > γ − 1. Then the probability measures

δx∗µδy(f) :=
1
κµ

∫
Bq

∫
U0(q,F)

f
(
arccos

(
specs(− sinxw sin y + cosx v cos y)

)) ·
·∆(I − w∗w)µ−γdvdw

for x, y ∈ A0 define a commutative hypergroup structure on the compact alcove
A0. The neutral element is 0 and the involution is the identity mapping.

Note that in the geometric cases µ = pd/2 the hypergroup on A0 coincides
with the double coset hypergroup U//K.

Proof. Commutativity is obvious. For associativity let x, y, z ∈ A0. Then

δx ∗µ (δy ∗µ δz)(f) =
1
κ2
µ

∫
Bq×U0(q)

∫
Bq×U0(q)

f(D(x, y, z, v, w, v′, w′))·

·∆(I − w∗w)µ−γ∆(I − (w′)∗w′)µ−γdvdwdv′dw′ =: I(µ)

with a certain A0 valued argument D, which is independent of µ. The same is
true for

(δx ∗µ δy) ∗µ δz(f) =: I ′(µ)

with a µ-independent argument D′ instead of D. The integrals I(µ) and I ′(µ)
are well defined and holomorphic in {µ ∈ C : Reµ > γ − 1}. The convolu-
tion is associative in the geometric cases µ = pd/2. Analytic continuation yields
associativity for all µ with Reµ > γ−1 as in [17]. Weak continuity of the convo-
lution follows from the continuity of the mapping (x, y, v, w) 7→ f(d(x, y, v, w))
on A0

2 × Bq × U0(q,F). The compact support of δx ∗ δy is trivial. It is also
obvious that 0 is neutral. So only the support continuity with respect to the
Michael topology and the fact that the identity mapping is a hypergroup in-
volution remain. As the support of δx ∗µ δy is independent of µ, it suffices to
verify both statements in the geometric cases U//K. But these are known to
correspond to double coset hypergroups, which immediately implies the support
continuity. In the geometric cases, the involution is induced from the mapping
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x 7→ −x on Rq ∼= a. A short calculation shows that b−x ∈ KbxK on U//K and
therefore the involution on U//K is the identity. In fact, cosx i sinx

Ip−q
i sinx cosx

 =

=

−Iq Ip−2q,q

Iq

 cosx −i sinx
Ip−q

−i sinx cosx

−Iq Ip−2q,q

Iq


where In,m = diag(1, . . . , 1,−1, . . . ,−1) denotes the diagonal matrix with the
first n entries equal to 1 and the last m entries equal to −1. Then

det
(−Iq

Ip−2q,q

)
= 1.

6.4 Proposition. The support of δx ∗µ δy satisfies

supp(δx ∗µ δy) ⊆ {z ∈ A0 : ‖z‖∞ ≤ ‖x‖∞ + ‖y‖∞}
where ‖ · ‖∞ is the maximum norm in Rq.

Proof. For a matrix A ∈Mq(F) we denote by√
spec(A∗A) = specs(A) = {σi(A) : i = 1, . . . , q}

the singular values of A, decreasingly ordered by size: σ1(A) ≥ . . . ≥ σq(A) ≥ 0.
Write ‖A‖ = ‖specs(A)‖∞ = σ1(A) for the spectral norm of A. Recall the
following estimates from Theorem 3.3.16 in [9]:

|σq(A+B)− σq(A)| ≤ σ1(B) (6.1)
σq(AB) ≤ σq(A)σ1(B) (6.2)

These estimates are only given for F = R,C but in the case of a quaternionic
matrix A ∈Mq(H) we simply consider the corresponding complex matrix χA ∈
M2q(C), namely

χA =
(
A1 A2

−A2 A1

)
where A1, A2 are complex q × q-matrices such that A = A1 + A2j. The map
Mq(H) → M2q(C), A 7→ χA is a homomorphism and χA∗ = (χA)∗. Moreover,
specs(A) = specs(χA) where in the second set each singular value appears twice
(see [21] for a survey about quaternionic matrices).

Let ξ := cosx v cos y − sinxw sin y. By (6.1),

σq(ξ) ≥ σq(cosx v cos y)− σ1(sinxw sin y).

Since sinx is increasing on [0, π/2] we get (using submultiplicativity)

σ1(sinxw sin y) = ‖ sinxw sin y‖ ≤ ‖ sinx‖‖ sin y‖ = sin ‖x‖∞ sin ‖y‖∞.
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On the other hand, if yi 6= 0 for all i, then by (6.2)

σq(cosx v cos y) ≥ σq(cosx v)
σ1

(
(cos y)−1

) ≥ cos ‖x‖∞ cos ‖y‖∞.

Therefore

σq(ξ) ≥ cos ‖x‖∞ cos ‖y‖∞ − sin ‖x‖∞ sin ‖y‖∞ = cos(‖x‖∞ + ‖y‖∞)

This implies the claim, because arccos is decreasing. If yi = 0 for some i,
the estimate remains by continuity since the eigenvalues of a matrix depend
continuously upon its entries; see e.g. [9], p. 396.)

Because of Theorem 4.7 the Jacobi polynomials Rλ are multiplicative,

Rλ(x)Rλ(y) = Rλ(x ∗µ y).

6.5 Lemma. Assume that the Weyl group W contains the reflection σ : x 7→
−x. Then the Jacobi polynomials Rλ are real-valued on Rq. In particular, this
holds for the root systems Bq, Cq and BCq.

Proof. The polynomial Rλ is a linear combination of the orbit sums Mµ, where

Mµ =
∑
γ∈W.µ

eiγ .

Since σ ∈W we sum up eiγ1 + e−iγ1 + . . .. This is real-valued.

Therefore the Rλ, λ ∈ Λ+ are characters of the hypergroup (A0, ∗). In fact
they are all:

6.6 Proposition. (a) The Haar measure of the hypergroup (A0, ∗µ) is given
by

dω(x) = wm(x)dx =
∏
α∈Σ+

∣∣∣ei〈α,x〉 − e−i〈α,x〉∣∣∣mα dx.

(b) The dual space is (A0, ∗µ)∧ = {Rλ : λ ∈ Λ+}.
Proof. (a) For a Jacobi polynomial Rλ with λ 6= 0 we have

∫
A0
Rλdω = 0 since

Rλ is orthogonal to R0 = 1 with respect to 〈·, ·〉m. For z ∈ A0 consider the
generalized translation

(τzf)(x) := f(z ∗µ x) =
∫
A0

f(y)d(δz ∗µ δx)(y).

In view of (6), we obtain∫
A0

(τzRλ)(x)dω(x) =
∫
A0

Rλ(z ∗µ x)dω(x) = Rλ(z)
∫
A0

Rλ(x)dω(x) = 0.
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By linearity, the above equation holds for all W -invariant trigonometric poly-
nomials. Note that T W is dense in C(A0) with respect to the norm ‖ · ‖∞
(Stone-Weierstrass). Now the assertion follows from the ‖ · ‖∞-continuity of the
generalized translation (see Lemma 3.3B in [11]).

(b) We already know that the Rλ are characters of our hypergroup. In
general, the characters of a compact hypergroup X form an orthogonal basis of
L2(X, dω) (The proof is the same as in the case of a compact group and uses
the Plancherel Theorem. See Theorem 3.5 in [5]). The Jacobi polynomials form
already an orthogonal basis of L2(A0). So there are no additional characters.

6.7 Remark. For a general commutative hypergroup X the set of bounded semi-
characters

χb(X) := {ϕ ∈ Cb(X) : ϕ 6= 0 and ϕ(x ∗ y) = ϕ(x)ϕ(y)}.

may not coincide with the dual X̂. However, in the case of a compact commu-
tative hypergroup X (or more general a commutative hypergroup of subexpo-
nential growth), one has X̂ = χb(X); see Theorem 2.5.12 in [2]. But Lemma
6.5 is much simpler and of some interest on its own.

We identify the dual of our hypergroup with the set of dominant weights via
the mapping (A0)∧ → Λ+, Rλ 7→ λ.

6.8 Proposition. The Plancherel measure of the hypergroup (A0, ∗µ) is the
following measure on Λ+:

π =
∑
ν∈Λ+

rνδν ,

where δν denotes the point measure in ν ∈ Λ+.

Proof. The set {r1/2
λ Rν : ν ∈ Λ+} is an orthonormal basis of L2(A0, ω). Thus

for f ∈ L2(A0, ω) we obtain∫
A0

|f |2dω =
∑
ν∈Λ+

rν | < f,Rν > |2 =
∑
ν∈Λ+

rν |f̂(ν)|2 =
∫

Λ+
|f̂ |2dπ.
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