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Abstract

In this paper, we derive explicit product formulas and positive con-
volution structures for three continuous classes of Heckman-Opdam hy-
pergeometric functions of type BC. For specific discrete series of multi-
plicities these hypergeometric functions occur as the spherical functions
of non-compact Grassmann manifolds G/K over one of the skew fields
F = R, C, H. We write the product formula of these spherical functions
in an explicit form which allows analytic continuation with respect to
the parameters. In each of the three cases, we obtain a series of hyper-
group algebras which include the commutative convolution algebras of
K-biinvariant functions on G as special cases. The characters are given
by the associated hypergeometric functions.

Key words: Hypergeometric functions associated with root systems, Heckman-
Opdam theory, hypergroups, Grassmann manifolds.
AMS subject classification (2000): 33C67, 43A90, 43A62, 33C80.

1 Introduction

There is a well-established theory of hypergeometric functions associated with
root systems due to Heckman, Opdam and Cherednik which generalizes and
completes the theory of spherical functions on Riemannian symmetric spaces in
many respects; see [O1], [HS], [O2], [Sch] as well as the literature cited there.
In rank one, i.e. for root systems of type BC1, these hypergeometric func-
tions are known as Jacobi functions and were studied by Flensted-Jensen and
Koornwinder in a series of papers in the 1970ies. A comprehensive exposition
is given in [K]. In generalization of the one-variable case, hypergeometric func-
tions associated with root systems are indexed by continuous parameters (the
multiplicities) on a given root system. They build up the solutions of the joint
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eigenvalue problem for an associated system of commuting differential opera-
tors which generalize the radial parts of all invariant differential operators on a
Riemannian symmetric space G/K of the non-compact type. In such geometric
cases, the root system and multiplicity function are given in terms of the root
space data of (G,K). In fact, the harmonic analysis associated with such hy-
pergeometric functions is only the Weyl-group invariant part of a more general
harmonic analysis associated with a commuting family of differential-reflection
operators of Dunkl type, the so-called Cherednik operators. The associated inte-
gral transform, which generalizes the spherical transform on symmetric spaces,
is studied in detail in [O1]. There are, in particular, a Paley-Wiener theorem
and a Plancherel theorem established for this transform. In the geometric cases
(G,K) is a Gelfand pair, and the corresponding spherical functions satisfy a
product formula which is intimately connected to the harmonic analysis on the
commutative algebra of K-biinvariant measures on G. In the rank one case,
a positive product formula and harmonic analysis for Jacobi functions associ-
ated with general non-negative multiplicities was established by Flensted-Jensen
and Koornwinder, see [K]. However, apart from theses cases, the existence of
a positive product formula for multivariable hypergeometric functions and a
positivity-preserving convolution which would allow for a general Lp-theory are
still open in general.

In the present paper, such results are obtained for three classes of hypergeo-
metric functions of type BCq. These interpolate the spherical functions on the
non-compact Grassmann manifolds SO0(p, q)/SO(p)×SO(q), SU(p, q)/S(U(p)×
U(q)) and Sp(p, q)/Sp(p)×Sp(q) with respect to the parameter p (p ≥ q), which
is no longer restricted to be integral. We give an explicit product formula for
the hypergeometric functions in these cases which leads to complete picture of
of harmonic analysis within the framework of commutative hypergroups on the
associated Weyl chamber. In particular, the hypergeometric tranform becomes
an interpretation as a hypergroup Fourier transform.

The paper is organized as follows: In Section 2, we calculate the product
formula for the spherical functions on the Grassmann manifolds. Section 3
gives a short account on Heckman-Opdam theory as well as the identification
of the spherical functions on Grassmann manifolds as hypergeometric functions
of type BCq. The extension of the product formula to a continuous range of
multiplicities interpolating the dimension parameter p is carried out in Section
4, and Section 5 is devoted to the study of the associated hypergroup algebras
on the Weyl chamber. A central part of this section is the characterization of
the bounded multiplicative functions which generalizes well-known results for
sphercial functions. The reasoning here is, however, not based on an integral
representation but on exponential bounds for the Heckman-Opdam hypergeo-
metric functions and their generalized Harish-Chandra expansion.
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2 Spherical functions on Grassmann manifolds
and their product formula

We consider the Grassmann manifolds G/K where G is one of the indefinite
orthogonal, unitary or symplectic groups SO0(p, q), SU(p, q) or Sp(p, q) with
maximal compact subgroup K = SO(p) × SO(q), S(U(p) × U(q)) or Sp(p) ×
Sp(q), respectively. For a unified point of view we also consider K as subgroup
of U(p; F)× U(q,F), where U(p; F) is the unitary group over F = R,C or H. In
the same way G is a subgroup of the indefinite unitary group U(p, q; F), which
is the isometry group for the quadratic form

|x1|2 + . . .+ |xp|2 − |xp+1|2 − . . .− |xp+q|2

on Fp+q. To avoid exceptions which will be irrelevant lateron, we shall exclude
the case p = q and assume that p > q ≥ 1.

It is well known that (G,K) is a Gelfand pair (this follows from Corollary
1.5.4. of [GV]). The spherical functions of this pair are characterized as the non-
zero K-biinvariant continuous functions ϕ : G → C which satisfy the product
formula

ϕ(g)ϕ(h) =
∫
K

ϕ(gkh)dk for all g, h ∈ G (2.1)

where dk denotes the normalized Haar measure of K. This means that the space
of continuous, K-biinvariant compactly supported functions on G is a commuta-
tive subalgebra of the convolution algebra Cc(G). The space Cc(G//K) on the
double coset space G//K therefore inherits the struture of a commutative topo-
logical algebra. The spherical functions of (G,K) provide exactly the non-zero
continuous characters of this algebra, via f 7→ ∫

G
f(x)ϕ(x)dx.

To make the product formula explicit, we recall the KAK-decomposition
of G. Let g and k denote the Lie algebras of G and K. g has the Cartan
decomposition g = k⊕ p with p consisting of the p+ q-block matrices(

0 X
X∗ 0

)
, X ∈Mp,q(F).

Let a be a maximal abelian subalgebra of p. Then G = KAK with A = exp a.
The spherical functions of (G,K) are therefore determined by their values on A.
Actually, they are already determined by their values on the topolgical closure
A+ = exp(a+) if a+ is the positive Weyl chamber associated with an (arbitrary)
choice of positive roots within the restricted root system ∆ = ∆(a, g) of g with
respect to a. We may choose for a the set of all matrices Ht ∈ Mp+q(F) of the
form

Ht =

 0p×p
t

0(p−q)×q
t 0q×(p−q) 0q×q


where t := diag(t1, . . . , tq) is the q × q diagonal matrix corresponding to t =
(t1, . . . , tq) ∈ Rq (here R is considered as a subfield of C and H in the usual
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way). The real rank of G is q, and the restricted root system ∆ = ∆(a, g) is of
type BCq with the understanding that zero is allowed as a multiplicity on the
long roots. In this way the limiting case Bq, which occurs for F = R, is included.
We identify a with Rq via Ht 7→ t, where the coordinates are with respect to
the standard basis e1, . . . , eq of Rq. Then the Killing form on a becomes the
standard Euclidean inner product on Rq. Here is a comprehensive table of the
roots α and their (geometric) multiplicities m(α), that is the dimensions of the
corresponding root spaces; c.f. Table 9 of [OV]. The constant d denotes the
dimension of F as an R-vectorspace, i.e. d = 1, 2, 4 for F = R,C,H.

root α multiplicity m(α) = mp,d(α)
α(t) = ±ti ; 1 ≤ i ≤ q d(p− q)
α(t) = ±2ti ; 1 ≤ i ≤ q d− 1

α(t) = ±ti ± tj ; 1 ≤ i < j ≤ q d

(2.2)

Thanks to our restriction p > q, the Weyl group of (a, g) is the hyperocta-
hedral group in all cases, and as a Weyl chamber we may choose

a+ := {Ht : t = (t1, . . . tq) ∈ R with t1 > t2 > . . . > tq > 0}.
In our identification of a with Rq, the closed chamber a+ corresponds to the set

C := {t ∈ Rq : t1 ≥ t2 . . . ≥ tq ≥ 0}.
A short calculation gives

A+ =

at =

 cosh t 0q×(p−q) sinh t
0(p−q)×q Ip−q 0(p−q)×q

sinh t 0q×(p−q) cosh t

 ∈Mp+q(F) : t ∈ C
 .

Consider now

g =
(
u 0
0 v

)
at

(
ũ 0
0 ṽ

)
∈ KatK.

To obtain t back from g, we write g in p× q block notation as

g =
(
A(g) B(g)
C(g) D(g)

)
.

A short calculation gives
D(g) = v cosh t ṽ. (2.3)

Let specs(x) denote the singular spectrum of x ∈Mq(F), that is

specs(x) =
√

spec(x∗x) = (λ1, . . . , λq) ∈ Rq

with the singular values λi of x ordered by size: λ1 ≥ . . . ≥ λq ≥ 0. Equation
(2.3) shows that the singular spectrum of D(g) is given by specs(D(g)) =
(cosh t1, . . . cosh tq) =: cosh t . Therefore

t = arcosh
(
specs(D(g)

)
for each g ∈ KatK, t ∈ C (2.4)
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where arcosh is also taken componentwise. (Observe that D(g) ≥ Iq and there-
fore all its singular values are ≥ 1).

Let us now evaluate the product formula (2.1) for the spherical functions
of (G,K) explicitly. As spherical functions are K-biinvariant, it suffices to
calculate the product formula for arguments g = at, h = as ∈ A+. Write
at ∈ A+ in p× q-block notation:

at =
(
At Bt
Ct Dt

)
.

Then for at, as ∈ A+ and k =
(
u 0
0 v

)
∈ K we obtain

atkas =
(∗ ∗
∗ CtuBs +DtvDs

)
and therefore

D(atkas) = CtuBs +DtvDs =
(
sinh t | 0)u(sinh s

0

)
+ cosh t v cosh s.

With the block matrix

σ0 :=
(
Iq
0

)
∈Mp,q(F)

this can be written as

D(atkas) = sinh t σ∗0uσ0 sinh s + cosh t v cosh s.

Notice that σ∗0uσ0 ∈ Mq(F) is a truncation of u given by the upper left q × q-
block of σ.
Let ϕ be a spherical function of (G,K) and put ϕ̃(t) := ϕ(at) for t ∈ C. Then
according to formula (2.4) it satisfies

ϕ̃(t)ϕ̃(s) =
∫
K

ϕ̃
(
arcosh

(
specsD(atkas)

))
dk. (2.5)

In order to achieve a simplification of this formula we first extend the integral
over K to an integral over U(p; F) × U0(q; F) =: K0, where U0(q; F) denotes
the connected component of the identity in U(q; F). If F = H then K = K0,
but in the other cases K is a proper normal subgroup of K0. More precisely,
let T := {z ∈ F : |z| = 1} and H the group of diagonal matrices H = {dz :
z ∈ T} ⊂ Mp+q(F) where the diagonal entries of dz are equal 1 apart from the
entry in position (p, p), which is z. Then K0 = H nK ∼= T nK. Suppose f is
a continuous function on K0 of the form

f(k0) = f̃(σ∗0uσ0, v) for k0 =
(
u 0
0 v

)
.
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Then f(dzk) = f(k) for all z ∈ T and k ∈ K and thus by Weyl’s formula,∫
K0

f(k0)dk0 =
∫

T

(∫
K

f(dzk)dk
)
dz =

∫
K

f(k)dk

where on each of the involved groups, integration is with respect to the normal-
ized Haar measure. Thus

ϕ̃(t)ϕ̃(s) =
∫
U(p,F)

∫
U0(q,F)

ϕ̃
(
arcosh(specs(sinh t σ∗0uσ0 sinh s+ cosh t v cosh s))

)
dudv

with du and dv the normalized Haar measures on U(p,F) and U0(q,F) respec-
tively. Here the integrand depends only on v and the truncation σ∗0uσ0, which
is contained in the closure of the ball

Bq := {w ∈Mq(F) : w∗w < I}.

Under the assumption p ≥ 2q this situation is covered by the following
reduction lemma, which is a consequence of Corollary 3.3. of [R]. Let

γ := d(q − 1
2

) + 1

and for µ ∈ C with Reµ > γ − 1, put

κµ =
∫
Bq

∆(I − w∗w)µ−γdw. (2.6)

Here ∆(x) denotes the determinant of x ∈ Mq(F), which is defined as the
usual determinant for F = R or C, while for F = H we choose the Dieudonné
determinant, i.e. ∆(x) = (detC(x))1/2 when x is considered as a complex matrix
in the ususal way.

2.1 Lemma. Suppose that p ≥ 2q. Then for continuos f : Bq → C,∫
U(p,F)

f(σ∗0uσ0)du =
1

κpd/2

∫
Bq

f(w)∆(I − w∗w)pd/2−γdw.

Proof. Consider the action of the unitary group U(p,F) on Mp,q(F) by left
multiplication, (u, x) 7→ ux. The orbit of the matrix σ0 under this action is the
Stiefel manifold

Σp,q = {x ∈Mp,q(F) : x∗x = Iq}.
Consider further the map U(p,F) → Σp,q, u 7→ uσ0. The image measure of du
under this map coincides with the normalized U(p,F)-invariant measure dσ on
Σp,q. Therefore ∫

U(p,F)

f(σ∗0uσ0)du =
∫

Σp,q

f(σ∗0σ)dσ.
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But σ∗0σ is the q × q matrix given by the first q rows of σ only. According to
Corollary 3.3. of [R],∫

Σp,q

f(σ∗0σ)dσ =
1

κpd/2

∫
Bq

f(w)∆(I − w∗w)pd/2−γdw, (2.7)

which finishes the proof.

We thus obtain

2.2 Proposition. Suppose that p ≥ 2q. Then the spherical functions ϕ̃(t) =
ϕ(at) satisfy the product formula

ϕ̃(t)ϕ̃(s) =
1

κpd/2

∫
Bq

∫
U0(q,F)

ϕ̃
(
arcosh(specs(sinh t w sinh s+ cosh t v cosh s))

)·
·∆(I − w∗w)pd/2−γdvdw.

Notice that the dependence on p now occurs only in the density, not in the
domain of integration.

3 The spherical functions as BCq-hypergeometric
functions

In this section, we first provide the necessary background on hypergeometric
functions associated with root ystems. For an introduction to the subject, we
refer to [O1], [O2] and part I of [HS]. In a second part, we identify the spherical
functions on Grassmann manifolds within this framework.

Let a be a finite-dimensional Euclidean space with inner product 〈 . , . 〉 which
is extended to a complex bilinear form on the complexification aC of a. We
identify a with its dual space a∗ = Hom(a,R) via the given inner product. Let
R ⊂ a be a (not necessarily reduced) root system and let W be the Weyl group
of R. For α ∈ R we write α∨ = 2α/〈α, α〉 and denote by σα(x) = x− 〈x, α∨〉α
the orthogonal reflection in the hyperplane perpendicular to α.

A multiplicity function on R is a function k : R → C which is W -invariant,
i.e. k(wα) = k(α) for all α ∈ R. We denote by K the vector space of multiplicity
functions on R and fix a positive subsystem R+ of R. For k ∈ K we put

ρ(k) :=
1
2

∑
α∈R+

k(α)α.

The Cherednik operator in direction ξ ∈ a is the differential-reflection operator
on aC defined by

Tξ(k) = ∂ξ +
∑
α∈R+

k(α)〈α, ξ〉 1
1− e−α (1− σα)− 〈ρ(k), ξ〉
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where ∂ξ is the usual directional derivative and eλ(ξ) := e〈λ,ξ〉 for λ, ξ ∈ aC.
For fixed multiplicity k, the operators {Tξ(k), ξ ∈ aC} commute. Therefore the
assignment ξ 7→ Tξ(k) uniquely extends to a homomorphism on the symmet-
ric algebra S(aC) over aC, which my be identified with the algebra of complex
polynomials on aC. The differential-reflection operator which in this way cor-
responds to p ∈ S(aC) will be denoted by T (p, k). Let S(aC)W denote the
subalgebra of W -invariant elements in S(aC). Then for each p ∈ S(aC)W , the
Cherednik operator T (p, k) coincides with a W -invariant differential operator
on C∞(a)W , the W -invariant functions from C∞(a). The following theorem es-
tablishes hypergeometric functions associated with root systems. It was proven
by Heckman and Opdam in a series of papers, see [HS] as well as [O1].

3.1 Theorem. There exists an open regular set Kreg ⊆ K with {k ∈ K : Re k ≥
0} ⊆ Kreg such that for each k ∈ Kreg and each spectral parameter λ ∈ aC, the
hypergeometric system

T (p, k)f = p(λ)f ∀p ∈ S(aC)W (3.1)

has a unique W -invariant solution f(t) = F (λ, k; t) which is analytic on a and
satisfies f(0) = 1. Moreover, there is a W -invariant tubular neighborhood U
of a in aC such that F extends to a (single-valued) holomorphic function on
aC ×Kreg × U , which is called the hypergeometric function associated with R.
F (λ, k; t) is W -invariant both in λ and t.

Suppose that k is real. Then for W -invariant polynomials p with real coef-
ficients, we have

T (p, k)F (λ, k; . ) = p(λ)F (λ, k; . )

which shows that
F (λ, k; t) = F (λ, k; t) ∀ t ∈ a. (3.2)

The uniqueness of the solution to the hypergeometric system also implies the
equivalence

F (λ, k; . ) = F (λ′, k; . ) ⇐⇒ λ′ ∈W.λ
Let C∞c (a)W denote the W -invariant functions from C∞c (a). The hypergeo-

metric transform of f ∈ C∞c (a)W is defined by

Ff(λ) =
∫

a

f(t)F (−λ, k; t)dω(t)

where the measure ω = ωk on a is given by

dω(t) =
∏
α∈R
|e〈α,t〉/2 − e−〈α,t〉/2|k(α)dt (3.3)

(dt denotes the Lebesgue measure on a). There are Paley-Wiener and Plancherel
theorems for this transform which are obtained by Weyl-group symmetrization
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of the (non-symmetric) Cherednik transform studied in [O1]; see also [O2]. De-
fine the measure ν = νk on ia by

dν(λ) =
1

|c(λ, k)|2 dλ

where dλ denotes the Lebesgue measure on ia and c( . , k) is the c-function on
aC,

c(λ, k) =
∏
α∈R+

Γ(〈λ, α∨〉+ 1
2k(α2 ))

Γ(〈λ, α∨〉+ 1
2k(α2 ) + k(α))

·
∏
α∈R+

Γ(〈ρ(k), α∨〉+ 1
2k(α2 ) + k(α))

Γ(〈ρ(k), α∨〉+ 1
2k(α2 ))

(3.4)
with the convention that k(α2 ) = 0 if α

2 /∈ R.

3.2 Theorem. ([O1], Theorems 8.6 and 9.13)

(1) The hypergeometric transform F is an isomorphism from C∞c (a)W onto
the W -invariant Paley-Wiener space PW (aC)W , where PW (aC) consists
of all holomorphic functions f on aC satisfying the growth condition

∃R > 0, ∀N ∈ N : sup
λ∈aC

(1 + |λ|)Ne−R|Reλ||f(λ)| < ∞.

The inverse of F : C∞c (a)W → PW (aC)W is given by

F−1h(t) =
∫
ia

h(λ)F (λ, k; t)dν(λ).

(2) Let f, g ∈ C∞c (a)W and let a+ be the Weyl chamber of W corresponding
to R+. Then ∫

a+

f(t)g(t)dω(t) = c

∫
ia+

Ff(λ)Fg(λ)dν(λ)

where c > 0 is a normalization constant.

According to Propos. 6.1 of [O1],

|F (λ, k; t)| ≤ |W |1/2 · e|Reλ||t| for t ∈ a, λ ∈ aC.

Thus for f ∈ C∞c (a)W and fixed s ∈ a, the function λ 7→ Ff(λ)F (λ, k; s)
belongs to PW (aC)W , and we obtain the following

3.3 Corollary. For s ∈ a and f ∈ C∞c (a)W , the generalized translate

τsf(t) :=
∫
ia

Ff(λ)F (λ, k; s)F (λ, k; t)dν(λ)

again belongs to C∞c (a)W . Moreover,

F(τsf)(λ) = F (λ, k; s)Ff(λ).
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Let us now turn to the spherical functions on the Grassmann manifolds
G/K. They are identified with hypergeometric functions of typeBCq, as follows:
Consider a = Rq with the standard inner product 〈 . , . 〉 and regard the restricted
root system of G/K as a subset of Rq as described in Section 2. With our
convention including the case F = R, it is given by

BCq = {±ei, ±2ei, 1 ≤ i ≤ q} ∪ {±ei ± ej , 1 ≤ i < j ≤ q}
where (e1, . . . , eq) denotes the standard basis of Rq. The corresponding Weyl
group W is the hyperoctahedral group, which is generated by permutations and
sign changes of the ei. Put R := {2α : α ∈ BCq} and R+ := {2ei, 4ei, 1 ≤
i ≤ q} ∪ {2(ei ± ej), 1 ≤ i < j ≤ q} and denote the associated hypergeometric
function by FBCq . Let m = mp,d be one of the multiplicity functions on BCq
in the geometric cases according to table (2.2) and define k = kp,d on R by

kp,d(2α) =
1
2
mp,d(α), α ∈ BCq.

Writing k in the form k = (k1, k2, k3) where k1 and k2 are the values on the
roots ±2ei and ±4ei, respectively and k3 is the value on the roots 2(±ei ± ej),
we have

kp,d =
(
d(p− q)/2, (d− 1)/2, d/2

)
.

The spherical functions of G/K are then indexed by spectral parameters λ ∈ Cq
and given by

ϕλ(at) = ϕ̃λ(t) = FBCq (iλ, kp,d; t), t ∈ C.
This follows from the fact that for k = kp,d, the commutative algebra {D(p, k); p ∈
S(Cq)W } just represents the radial parts of the algebra of all invariant differen-
tial operators on G/K, see Remark 2.3. of [H].

3.4 Example. The rank one case. Here R+ = {2, 4} ⊂ R. We have multiplic-
ities k1, k2 and ρ = ρ(k) = k1 + 2k2. According to the example in [O1], p.89f,
the associated hypergeometric function is given by

FBC1(λ, k; t) = 2F1

(λ+ ρ

2
,
−λ+ ρ

2
, k1 + k2 +

1
2

;− sinh2 t
)
.

With α := k1 + k2 − 1
2 , β := k2 − 1

2 and the Jacobi functions ϕ(α,β)
λ as in [K],

this can be written as
FBC1(iλ, k; t) = ϕ

(α,β)
λ (t).

The geometric cases correspond to α = dp
2 − 1, β = d

2 − 1. In Propos. 2.2,
the U0(1)-integral cancels (use the coordinate transform w̃ := v−1w), and the
product formula reduces to

ϕ̃(t)ϕ̃(s) =
1

κpd/2

∫
B1

ϕ̃
(
arcosh|cosh t cosh s + w sinh t sinh s|) · (1− |w|2)

pd
2 −γdw

=
∫

Σp,1

ϕ̃
(
arcosh|cosh t cosh s+ x1 sinh t sinh s|)dσ(x)
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where ϕ̃ = ϕ
(α,β)
λ with α = pd

2 −1, β = d
2−1. The second identity is obtained by

formula (2.7) for the sphere Σp,1 = {x ∈ Fp : |x| = 1}. In view of relation (5.24)
in [K], this formula just coincides with the product formula in rank 1 given in
Section 7 of [K],

ϕ
(α,β)
λ (t)ϕ(α,β)

λ (s) = cα,β

∫ 1

0

∫ π

0

ϕ
(α,β)
λ

(
arcosh|cosh t cosh s + reiψ sinh t sinh s|)·

·(1− r2)α−β−1r2β+1(sinψ)2βrdrdψ (3.5)

which degenerates for β = −1/2 (i.e. F = R) to an integral over [−1, 1] with
respect to (1− r2)α−1/2dr.

In fact, formula (3.5) was established in [FK] for arbitrary α ≥ β ≥ − 1
2 with

(α, β) 6= (− 1
2 ,− 1

2

)
, i.e. arbitrary non-negative root multiplicities different from

zero.

4 Continuation of the product formula

In the following, q and d = dimR(F) are fixed. For µ ∈ C with Reµ > γ− 1 and
spectral parameter λ ∈ Cq define

ϕµλ(t) = FBCq (iλ, kµ; t); t ∈ Rq

with multiplicity
kµ =

(
µ− dq/2, (d− 1)/2, d/2

)
.

If µ = pd/2, then kµ = kp,d as in the previous section.

4.1 Theorem. For µ ∈ C with Reµ > γ − 1, the hypergeometric functions ϕµλ
satisfy the product formula

ϕµλ(t)ϕµλ(s) = (δt ∗µ δs)(ϕµλ)

with the probability measures

(δt ∗µ δs)(f) =
1
κµ

∫
Bq

∫
U0(q,F)

f
(
d(t, s; v, w)

)
∆(I − w∗w)µ−γdvdw

where κµ is given by (2.6) and the argument is

d(t, s; v, w) = arcosh(specs(sinh t w sinh s+ cosh t v cosh s)).

This is a partial generalization of formula (3.5) by Flensted-Jensen and
Koornwinder for BC1 to higher rank.

Proof. The basic idea is analytic continuation with respect to the parameter µ
in the right half plane by use of
Carlson’s Theorem (see e.g. ([T], p.186): Let f be a function which is
holomorphic in a neighbourhood of {z ∈ C : Re z ≥ 0} satisfying f(z) = O(ec|z|)
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for some constant c < π. Suppose that f(n) = 0 for all n ∈ N0. Then f is
identically zero.

A direct application of Carlson’s theorem would require moderate exponential
growth of the hypergeometric function with respect to the relevant multiplicity
parameter k1 in a right half plane. So far however, sufficient exponential esti-
mates are available only for real, non-negative multiplicities (Propos. 6.1. of
[O1], and the results of [Sch]). We therefore proceed in two steps. First, we
restrict to a discrete set of spectral parameters, for which the hypergeometric
function is a Jacobi polynomial and the required growth properties are guaran-
teed. In a second step, we fix a non-negative multiplicity and carry out analytic
continuation with respect to the spectral parameter, using known bounds on
the hypergeometric function for non-negative multiplicities.

To go into detail, let R∨ = {α∨ : α ∈ R} be the root system dual to R,
Q∨ = Z.R∨ the coroot lattice and P = {λ ∈ Rq : 〈λ, α∨〉 ∈ Z ∀α ∈ R} the
weight lattice of R. Further, denote by P+ = {λ ∈ P : 〈λ, α∨〉 ≥ 0 ∀α ∈ R+}
the set of dominant weights associated with R+. Then for k ∈ Kreg and λ ∈ P+,

FBCq (λ+ ρ(k), k; t) = c(λ+ ρ(k), k)Pλ(k; t)

where c(λ, k) is the c-function (3.4) which is meromorphic on Cq ×K, and the
Pλ are the Heckman-Opdam Jacobi polynomials of type BCq; see [HS], equation
(4.4.10). In our case, ρ(k) is given by

ρ(k) = (k1 +2k2)
q∑
i=1

ei+2k3

q∑
i=1

(q−i)ei = (µ− dq
2

+d−1)
q∑
i=1

ei +d
q∑
i=1

(q−i)ei.

Using the asymptotics of the gamma function, one checks that for fixed λ ∈ P+,
the function c(λ+ ρ(kµ), kµ) is bounded away from zero as µ→∞ in the right
half plane

H = {µ ∈ C : Reµ > γ − 1}.
Indeed, for ρ = ρ(k) with k = (k1, k2, k3) one has

c(λ+ ρ, k) =

=
q∏
i=1

Γ(λi + ρi) Γ(ρi + k1)
Γ(λi + ρi + k1) Γ(ρi)

·
q∏
i=1

Γ
(
λi+ρi

2 + 1
2k1

)
Γ(ρi2 + 1

2k1 + k2)

Γ
(
λi+ρi

2 + 1
2k1 + k2

)
Γ(ρi2 + 1

2k1)

·
∏
i<j

Γ
(λi+ρi−λj−ρj

2

)
Γ
(ρi−ρj

2 + k3

)
Γ
(λi+ρi−λj−ρj

2 + k3

)
Γ
(ρi−ρj

2

) · ∏
i<j

Γ
(λi+ρi+λj+ρj

2

)
Γ
(ρi+ρj

2 + k3

)
Γ
(λi+ρi+λj+ρj

2 + k3

)
Γ
(ρi+ρj

2

) .
As k1 →∞ in the half-plane Re k1 > 0, the first product is asymptotically equal
to
∏q
i=1

(
1
2

)λi , the second one is asymptotically equal to 1, the third product is
independent of k1, and the last product is asymptotically equal to 1. Thus for
fixed λ, c(λ+ ρ, k) is bounded away from zero.
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According to Proposition 2.2, the Pλ(kµ; .) with µ = pd/2 (p ≥ 2q) satisfy
the product formula

Pλ(kµ; t)Pλ(kµ; s)

=
1
κµ

∫
Bq

∫
U0(q,F)

1
c(λ+ ρ(kµ), kµ)

Pλ
(
kµ; d(t, s; v, w)

)
∆(I − w∗w)µ−γdvdw

(4.1)

for all t, s ∈ Rq. The Jacobi polynomials Pλ(k; .) have rational coefficients in
k with respect to the monomial basis eν , ν ∈ P . This is shown in Par.11 of
[M], but it also follows from the explicit determinantal construction in [DLM],
Theorem 5.4. Moreover, as derived in the proof of Theorem 3.6 of [R], the
normalized integral

1
|κµ|

∫
Bq

|∆(I − w∗w)µ−γ |dw

converges exactly if Reµ > γ − 1 and is of polynomial growth as µ → ∞ in
H. Thus for fixed t, s, both sides of (4.1) are holomorphic in µ ∈ H and of
polynomial growth as µ→∞ in H. Moreover, they coincide for all half integer
values µ = pd/2, p ≥ 2q. Application of Carlson’s theorem yields that formula
(4.1) holds for all µ ∈ H. This proves the stated result for spectral parameters
λ+ ρ(k) with λ ∈ P+ and k = kµ, µ ∈ H.

Denote again by C ⊂ Rq the closed Weyl chamber associated with R+. In
order to extend the product formula with respect to the spectral parameter,
we fix s, t ∈ C as well as k = kµ and restrict to real µ > γ − 1 first. Then k
is nonnegative, and we have the following exponential estimate for FBCq from
[O1], Proposition 6.1:

|FBCq (λ, k; t)| ≤ |W |1/2emaxw∈WRe〈wλ,t〉.

Let H ′ := {λ ∈ Cq : Reλ ∈ C0} . Then for λ ∈ H ′ and all w ∈W ,

Re〈wλ, t〉 ≤ Re〈λ, t〉.
Choose a constant vector a ∈ C0 so large that d(t, s; v, w) − a is contained in
the negative chamber −C for all v ∈ U(q) and all w ∈ Bq. Then consider

F̃ (λ, k; t) := e−〈λ,a+t〉FBCq (λ, k; t).

The function F̃ is bounded as a function of λ ∈ H ′. If the spectral parameter
is of the form λ = λ̃+ ρ(kµ) with λ̃ ∈ P+, then by our previous results we have
the product formula

F̃ (λ, kµ; t)F̃ (λ, kµ; s) =

=
1
κµ

∫
Bq

∫
U0(q,F)

e〈λ, d(t,s;v,w)−a−s−t〉F̃ (λ, kµ; d(t, s; v, w))∆(I − w∗w)µ−γdvdw.

(4.2)
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Both sides are holomorphic and bounded in λ ∈ H ′. We are now going to
carry out analytic extension with respect to λ. For this, we choose a set of
fundamental weights {λ1, . . . , λq} ⊂ P+ and write λ ∈ H ′ as λ =

∑q
i=1 ziλi

with coefficients zi ∈ {z ∈ C : Rez > 0}. Successive holomorphic extension
with respect to z1, . . . , zq by use of Carlson’s Theorem then yields the validity
of (4.2) for all λ ∈ H ′, and thus, by W -invariance and continuity, for all λ ∈ Cq.
This proves the stated product formula for real µ > γ−1. Analytic continuation
finally gives it for all µ ∈ H, which finishes the proof of Theorem 4.1.

5 Hypergroup algebras associated with FBC

The positive product formula of Theorem 4.1 leads to three continuous series
(d = 1, 2, 4) of positivity-preserving convolution algebras on the Weyl chamber
C which are parametrized by µ. We shall describe them as commutative hy-
pergroups, having Heckman-Opdam hypergeometric functions as characters. In
the group cases, which correspond to the discrete values µ = pd/2, these hyper-
group algebras are just given by the double coset convolutions associated with
the Gelfand pairs (G,K) as in Section 2. In the rank one case, they coincide
with the well-known one-variable Jacobi hypergroups.

Let us first briefly recall some key notions and facts from hypergroup theory.
For a detailed treatment, the reader is referred to [J]. Hypergroups generalize
the convolution algebras of locally compact groups, with the convolution product
of two point measures δx and δy being in general not a point measure again but
a probability measure depending on x and y.

5.1 Definition. A hypergroup is a locally compact Hausdorff space X with
a weakly continuous, associative convolution ∗ on the space Mb(X) of regular
bounded Borel measures on X, satisfying the following properties:

1. The convolution product δx ∗δy of two point measures is a compactly sup-
ported probability measure on X, and supp(δx ∗ δy) depends continuously
on x and y with respect to the so-called Michael topology on the space of
compact subsets of X (see [J]).

2. There is a neutral element δe satisfying δe ∗δx = δx = δx ∗δe for all x ∈ X.
3. There is a continuous involution x 7→ x̄ on X such that for all x, y ∈ X,
e ∈ supp(δx ∗ δy) is equivalent to x = ȳ, and δx̄ ∗ δȳ = (δy ∗ δx)−. Here
for µ ∈Mb(X), the measure µ− is given by µ−(A) = µ(A−) for Borel sets
A ⊂ X.

Due to weak continuity, the convolution of measures on a hypergroup is
uniquely determined by the convolution of point measures.

If the convolution is commutative, then (Mb(X), ∗) becomes a commutative
Banach-∗-algebra with identity δe. Moreover, there exists an (up to a multi-
plicative factor) unique Haar measure ω, that is a positive Radon measure on
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X satisfying∫
X

f(x ∗ y)dω(y) =
∫
X

f(y)dω(y) for all x ∈ X, f ∈ Cc(X),

where f(x ∗ y) = (δx ∗ δy)(f). The multiplicative functions of a commutative
hypergroup X are given by

χ(X) = {ϕ ∈ C(X) : ϕ 6= 0, ϕ(x ∗ y) = ϕ(x)ϕ(y) ∀x, y ∈ X}.

The decisive object for harmonic analysis is the dual space of X, defined by

X̂ := {ϕ ∈ χ(X) : ϕ is bounded and ϕ(x) = ϕ(x) ∀x ∈ X}.

The elements of X̂ are called characters. As in the case of LCA groups, the
dual of a commutative hypergroup is a locally compact Hausdorff space with
the topology of locally uniform convergence. It is naturally identified with the
symmetric part of the spectrum of the convolution algebra L1(X,ω). In contrast
to the group case, X̂ is often a proper subset of χ(X). The Fourier transform
on L1(X,ω) is defined by f̂(ϕ) :=

∫
X
fϕdω. It is injective, and there exists

a unique positive Radon measure π on X̂, called the Plancherel measure of
(X, ∗), such that f 7→ f̂ extends to an isometric isomorphism from L2(X,ω)
onto L2(X̂, π). As for groups, there are convolutions between functions from
various classes of Lp-spaces (or measures) on a hypergroup with Haar measure
ω. For example, if 1 ≤ p ≤ ∞ and f ∈ L1(X,ω), g ∈ Lp(X,ω), then the
convolution product

f ∗ g(x) =
∫
X

f(x ∗ y)g(y)dω(y)

belongs to Lp(X,ω) and satisfies ‖f ∗ g‖p,ω ≤ ‖f‖1,ω‖g‖p,ω.
Let us come back to the situation of Section 3. With the notions from there,

we can now state our main theorem:

5.2 Theorem. (1) Let µ > γ − 1. Then the probability measures given by

(δs ∗µ δt)(f) =
1
κµ

∫
Bq

∫
U0(q,F)

f
(
d(s, t; v, w)

)
∆(I − w∗w)µ−γdvdw (5.1)

for s, t ∈ C define a commutative hypergroup structure Cµ = (C, ∗µ) on
the chamber C ∼= a+. The neutral element is 0 and the involution is the
identity mapping. The support of δs ∗µ δt satisfies

supp(δs ∗µ δt) ⊆ {r ∈ C : ‖r‖∞ ≤ ‖s‖∞ + ‖t‖∞}

where ‖ .‖∞ is the maximum norm in Rq.
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(2) A Haar measure of the hypergroup Cµ is given by the weight function (3.3)
of the corresponding hypergeometric transform,

dωµ(t) = const ·
q∏
i=1

| sinh ti|2µ−d(q−1)−1| cosh ti|d−1 ·

·
∏

1≤i<j≤q
| cosh(2ti)− cosh(2tj)|d dt.

Proof. (1) It is clear that δs ∗µ δt is a probability measure on C with

supp(δs ∗µ δt) = {d(s, t; v, w) = arcosh(specs(sinh sw sinh t+ cosh s v cosh t)),

v ∈ U0(q,F), w ∈ Bq}.

For the support statement, we denote by ‖A‖ the spectral norm of A ∈ Fq×q,
that is ‖A‖ = ‖specs(A)‖∞ (the biggest singular value of A). By the submulti-
plicativity of ‖ . ‖ we obtain for v and w within the relevant range the estimate

‖ sinh sw sinh t+ cosh s v cosh t‖ ≤‖ sinh s‖‖ sinh t‖+ ‖ cosh s‖‖ cosh t‖
= sinh‖s‖∞ · sinh‖t‖∞ + cosh‖s‖∞ · cosh‖t‖∞
= cosh(‖s‖∞ + ‖t‖∞).

This implies the stated support inclusion. For the weak continuity of the convo-
lution ∗µ on Mb(C), it suffices to verify that for each f ∈ Cb(C), the mapping
(s, t) 7→ f(s ∗µ t) is continuous. But this is immediate because d(s, t; v, w) de-
pends continuously on its arguments. To see that ∗µ is commutative, we note
that specs(A) = specs(A∗) for A ∈ Fq×q, and hence d(t, s; v, w) = d(s, t; v∗, w∗).
As the integral in (5.1) is invariant under the substitution v 7→ v∗ = v−1, w 7→
w∗, it follows that δt ∗µ δs = δs ∗µ δt. For the associativity of ∗µ it suffices to
verify that

δr ∗µ (δs ∗µ δt)(f) = (δr ∗µ δs) ∗µ δt(f)

for all f ∈ C∞c (Rq)W and all r, s, t ∈ C. In view of the Paley-Wiener theorem
for the hypergeometric transform, both sides are equal to∫

iRq
Ff(λ)F (λ, k; r)F (λ, k; s)F (λ, k; t)dν(λ).

This proves the assertion.
From the explicit form of the convolution it is obvious that 0 is neutral. In

the discrete cases µ = pd/2 coming from Gelfand pairs, ∗µ is the convolution
of a double coset hypergroup. Moreover, supp(δs ∗µ δt) is independent of µ. In
order to see that the identity mapping is a hypergroup involution for all µ, it
therefore suffices (by uniqueness of an involution) to show that the zero matrix
0 is contained in supp(δt ∗µ δt). But

d(t, t; Iq,−Iq) = arcosh(specs(−(sinh t)2 + (cosh t)2)) = arcosh(Iq) = 0,
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which proves the claim.
(2) Let f, g ∈ C∞c (Rq)W . Notice first that

f(t) =
∫
iRq
Ff(λ)F (λ, k; t)dν(λ)

by the inversion theorem for the hypergeometric transform (Theorem 3.2). As
F (λ, k; s∗µ t) = F (λ, k; s)F (λ, k; t) for all s, t ∈ C we obtain, with the notation
of Corollary 3.3,

f(s ∗µ t) = τsf(t).

The Plancherel formula (Theorem 3.2) further gives∫
C

(τsf)g dωµ = c

∫
iC

F(τsf)Fg dν = c

∫
iC

Ff(λ)F (λ, k; s)Fg(λ) dν(λ)

= c

∫
iC

Ff(λ)F(τsg)(λ) dν(λ) =
∫
C

f(τsg)dωµ

with a constant c > 0. It was used here that F (λ, k; s) = F (−λ, k; s) = F (λ, k; s)
for λ ∈ iC. Choose now a sequence gn ∈ C∞c (Rq)W , n ∈ N such that gn ↑ 1
pointwise. Then also τs(gn) ↑ 1, and the monotonic convergence theorem shows
that ∫

C

(τsf)dωµ =
∫
C

fdωµ.

This proves that ωµ is a Haar measure of Cµ.

5.3 Lemma. Suppose that ϕ : Cµ → C is continuous and multiplicative, i.e.

ϕ(s)ϕ(t) = ϕ(s ∗µ t) for all s, t ∈ C.

Then ϕ = ϕµλ with some λ ∈ Cq.

Proof. The proof follows standard arguments. For abbreviation, we write k =
kµ, ω = ωµ and ∗ = ∗µ. In a first step, consider g ∈ C∞c (Rq)W . Let p ∈ S(Cq)W
be a W -invariant polynomial and T (p) = T (p, kµ) the associated Cherednik
operator. As

g(s ∗ t) =
∫
iRq
Fg(λ)F (λ, k; s)F (λ, k; t)dν(λ)

for all s, t ∈ C, we obtain

T (p)s g(s ∗ t) =
∫
iRq
Fg(λ)p(λ)F (λ, k; s)F (λ, k; t)dν(λ) = T (p)t g(s ∗ t) (5.2)

and
T (p)s g(s ∗ t)|s=0 = T (p)g(t).
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Suppose now ϕ is continuous, non-zero and multiplicative on C. Notice first
that ϕ(0) = 1, because 0 is neutral. We extend ϕ to a W -invariant function on
Rq and choose g ∈ C∞c (Rq) with

∫
C
ϕg dω = 1. Recall that the involution of

the hypergroup Cµ is the identity. Thus

ϕ ∗ g(s) =
∫
C

ϕ(s ∗ t)g(t)dω(t) = ϕ(s)

and therefore
ϕ(s) = ϕ ∗ g(s) =

∫
C

ϕ(t)τtg(s)dω(t),

which belongs to C∞(Rq) because τtg ∈ C∞c (Rq) for all t according to Lemma
3.3. Further,

ϕ(s ∗ t) =
∫
C

ϕ(r)τrg(s ∗ t) dω(r)

and therefore

T (p)s ϕ(s ∗ t) =
∫
C

ϕ(r)T (p)s(τrg(s ∗ t))dω(r) =
∫
C

ϕ(r)T (p)t(τrg(s ∗ t)) dω(r)

= T (p)t ϕ(s ∗ t).
In particular,

T (p)ϕ(t) = T (p)t ϕ(s ∗ t)|s=0 = T (p)s ϕ(s ∗ t)|s=0 = σϕ(p) · ϕ(t)

with σϕ(p) = (T (p)ϕ)(0). The mapping p 7→ σϕ(p) is obviously multiplicative
and linear on S(Cq)W . According to a well-known result form invariant theory
(see e.g. [Hel], Ch. III.4, Lemma 3.11), it coincides with a point evaluation,
that is

∃λ ∈ Cq : σϕ(p) = p(λ) ∀ p ∈ S(Cq)W .

It is thus shown that ϕ satisfies the hypergeometric system (3.1) withspectral
parameter λ, corresponding to R = BCq and k = kµ. By uniqueness of the
solution, it follows that ϕ = FBCq (λ, kµ; .) = ϕµ−iλ.

5.4 Theorem. The set of multiplicative functions and the dual space of the
hypergroup Cµ are given by

χ(Cµ) = {ϕλ = ϕµλ : λ ∈ C + iC};
Ĉµ = {ϕλ ∈ χ(Cµ) : λ ∈W.λ and Imλ ∈ co(W.ρ)}

where ρ = ρ(kµ) and co(W.ρ) denotes the convex hull of the Weyl group orbit
W.ρ.

The second part of this theorem is in accordance with the characterization
of the bounded spherical functions of a Riemannian symmetric space of non-
compact type, see [Hel], Chap. IV, Theorem 8.1. In our more general context,
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we shall not work with an integral representation but proceed by using estimates
on the hypergeometric function given in [Sch] as well as the generalized Harish-
Chandra expansion of [O1]. We mention at this point that for the Grassmann
manifolds over F = R, there is an explicit integral formula for the spherical func-
tions given in [Sa] which could probably also be used after analytic extension.

Proof. (Proof of Theorem 5.4.) The identification of χ(Cµ) is furnished by the
previous lemma. For the identification of the dual space, note first that

ϕλ = ϕλ

as a consequence of (3.2). Thus ϕλ is real if and only if λ ∈ W.λ. It remains
to identify those functions from χ(Cµ) which are bounded. For this, we observe
first that the set A = {λ ∈ Cq : ϕλ ∈ Ĉµ} is closed in Cq. Indeed, suppose that
(λi)i∈N is a sequence in A which converges to λ0 ∈ Cq. As (λ, t) 7→ ϕλ(t) is
continuous, it follows by a standard compactness argument that the sequence
ϕλi converges to ϕλ0 locally uniformly on C (see e.g. [D], Chap.XII, Sec.8). It
is now clear that ϕλ0 belongs to Ĉµ as well.
Next recall that

ϕλ(t) = FBCq (iλ, kµ; t) =: Fiλ(t)

and notice that F−λ = Fλ. We thus have to prove that Fλ is bounded if and
only if Re λ ∈ co(W.ρ). We may assume that λ = ξ+ iη with ξ, η ∈ C. By Cor.
3.1 of [Sch],

|Fλ(t)| ≤ Fξ(t) ∀ t ∈ C. (5.3)

Further, according to Remark 3.1 of [loc.cit], Fξ behaves asymptotically (for
large arguments in C) as

Fξ(t) � e〈ξ−ρ,t〉 ·
∏

α∈R+
0 |〈α,ξ〉=0

(
1 + 〈α, t〉). (5.4)

Here R+
0 are the indivisible positive roots, in our case R+

0 = {2ei, 2(ei±ej), 1 ≤
i < j ≤ q}. Consider now λ = ξ+iη with ξ = Reλ ∈ co(W.ρ). We claim that Fλ
is bounded. By closedness of A, it suffices to assume that ξ is actually contained
in the open interior of co(W.ρ). Then there exists a constant 0 < s < 1, s = 1−ε,
such that ξ ∈ co(W.sρ). We use the characterization

co(W.x) =
⋂
w∈W

w(x− C∗) (5.5)

for x ∈ C, where C∗ = {x ∈ Rq : 〈t, x〉 ≥ 0 ∀t ∈ C} is the closed dual cone of
C; see e.g. [Hel], Lemma IV.8.3. This shows that sρ− ξ ∈ C∗ and therefore

〈ξ − ρ, t〉 = 〈ξ − sρ, t〉 − ε〈ρ, t〉 ≤ −ε〈ρ, t〉 ∀ t ∈ C.
Note that with our parameters kµ, we have 〈ρ, t〉 > 0 for all t ∈ C \ {0}. Hence
〈ρ, t〉 ≥ c|t| for some constant c > 0. Together with estimates (5.3) and (5.4),
this proves boundedness of Fλ as claimed.
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For the converse inclusion, we have to show that Fλ is unbounded if ξ = Reλ /∈
co(W.ρ). For real λ = ξ ∈ C we use again (5.4). According to (5.5), there exists
some t ∈ C such that 〈ξ − ρ, t〉 > 0 (recall that 〈ξ, t〉 ≥ 〈wξ, t〉 for all w ∈ W ).
This implies that Fξ is unbounded in C.
In case η = Imλ 6= 0 we employ the Harish-Chandra expansion of Fλ (see [O1])
in the interior C◦ of C. It is of the form

Fλ(t) =
∑
w∈W

c(wλ)e〈wλ−ρ,t〉
( ∑
q∈Q+

Γq(wλ)e−〈q,t〉
)

with (unique) coefficients Γq(wλ) ∈ C, where Γ0(wλ) = 1. Here Q+ is the
positive lattice generated by R+ and c(λ) = c(λ, kµ) denotes the c-function.
Thus

Fλ(t) �
∑
w∈W

c(wλ)e〈wλ−ρ,t〉 =
∑
w∈W

c(wλ)e〈wξ−ρ,t〉ei〈wη,t〉 as t→∞ in C◦.

As ξ ∈ C \ co(W.ρ), there is some t ∈ C and hence also some t ∈ C◦ such that
〈ξ − ρ, t〉 > 0. Notice that c(λ) 6= 0. Moreover, 〈ξ − ρ, t〉 ≥ 〈wξ − ρ, t〉 for all
w ∈W where equality can only occur if wξ = ξ. Therefore, the leading term of
the last sum is

e〈ξ−ρ,t〉 ·
∑
w∈Wξ

c(wλ)ei〈wη,t〉

with Wξ = {w ∈ W : wξ = ξ}. Application of Lemma 5.5 below now implies
that for fixed t ∈ C◦ and real s > 0, the function s 7→ Fλ(st) is unbounded as
s→∞. This finishes the proof.

5.5 Lemma. Let f(s) = eas · ∑N
k=1 ck e

iλks on R with constants a > 0,
ck ∈ C which are not all zero, and distinct λk ∈ R. Then f is unbounded on
[0,∞).

Proof. Let T > 0. Then according to Corollary 2 of [MV],∫ T

0

∣∣ N∑
k=1

ck e
iλks

∣∣2ds = (T + 2πθδ−1)
N∑
k=1

|ck|2

with a constant δ > 0 depending on the λk and |θ| ≤ 1. If f were bounded on
[0,∞), say |f | ≤M , this would imply that∫ T

0

∣∣ n∑
k=1

ck e
iλks

∣∣2ds ≤M2

∫ T

0

e−2asds ≤ M2

2a
,

a contradiction.

We identify the dual space Ĉµ with a subset of Cq via ϕλ 7→ λ. Due to
the condition λ ∈ {w.λ, w ∈ W} it is contained in the union of finitely many
hyperplanes in Cq ∼= R2q of real dimension q. Notice that the chamber C is a
proper subset of Ĉµ.

The following is an immediate consequence of Opdam’s Plancherel theorem
(Thm. 3.2):
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5.6 Proposition. The Plancherel measure of the hypergroup Cµ is given by the
measure

dπµ(λ) =
1

|c(iλ, kµ)|2 dλ.

on Ĉµ ⊂ Cq. Its support coincides with the chamber C.
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