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Abstract

This note presents how the computation of the spectrum of a mul-
tiple of the Markov operator of the simple random walk on the Cayley
graph of an HNN-extension of the lamp-lighter group from [2] can be
used to obtain new examples that the answer to a strong form of a
question formulated by Atiyah [1] is negative. Apparently there seems
to be only one other known example. A positive answer would have
predicted the values of von Neumann dimensions of the kernels of op-
erators corresponding to multiplication with matrices whose entries
are group algebra elements on powers of Hilbert spaces of square-
summable functions on the group. The original question of Atiyah is
apparently not answered up to now.

For a finitely generated group I' right multiplication with A € CI' on
CT induces a bounded linear operator on the Hilbert space % (T'). Denote
this operator also by A. In the sequel A is self-adjoint. In this case A =
[odFE (o) where E is a spectral measure on R. Then F ({0}) : ¢*(T") —
(% (T) is the orthogonal projection onto ker (A). Let e denote the neutral
group element of I'. Consider e also as the corresponding element of 2 (T').
Let u(B) = (E(B)e,e) then [odu(o) = (eA,e). Define now the von
Neumann dimension:

dimp (ker A) = p ({0})

Let fin (I') = {H < T :|H| < oo} be the set of all finite subgroups of I'
and Fr = 3 gesin(n) |H|71 Z an additive subgroup of Q. If ' is a group that
satisfies the strong form of the question of Atiyah this would imply that for
A € CT holds dimr (ker A) € Fr see for example [5, page 369]. The following
presents new examples for which this does not hold.

Theorem 1 Let ¢ > 2 and the group I' be given by the set of affine matrices
a B
{(x (xo—l— b ch ) ca,f €l fe(Z/qZ) [a:l,(x—l-l)l,x]}
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then T' is metabelian and in particular elementary amenable. The order of
every finite subgroup of I is a divisor of a power of q. There exists an A € CI’
such that:

2(¢—1)

dimp (ker A) = @11 1)

The denominator (¢ + 1) (¢ + 1)* is coprime to ¢. For example for ¢ = 2
the von Neumann dimension in Theorem 1 results in 2/45. Hence these
are examples that do not satisfy the preceding conclusion. The first such
example was presented in [4]. But in contrast to that the spectrum of the
operator A here is determined on ¢?(I') and not only on the canonically
embedded subspace ismorphic to ¢? (H) where H is a subgroup of T.

In [3] values of dimp (ker A) are computed for which it is conceivable but
not proven that they are not rational. In case this is true it would provide a
negative answer to Atiyah’s question from [1].

In terms of analytic L?-Betti numbers b](?) (M, g) introduced by Atiyah
which measure the size of the space of harmonic square-integrable p-forms on
the universal covering M of a closed Riemannian manifold (M, g) the strong
form of the question of Atiyah can be formulated in the following way see for
example [4]: If M has T as its fundamental group then b2 (M, g) € Fy.

As in [4] the following result can be obtained which is proven from The-
orem 1 in exactly the same way as there.

Theorem 2 Let ¢ > 2. There exists a smooth oriented closed Riemannian
manifold (M,g) of dimension 7 with m (M) = T such that for the third
L?-Betti number holds

2(q—1)
(¢ +1) (g +1)°

b (M, g) =

where ng) (M, g) denotes the combinatorial L?-Betti number of a triangula-
tion of M.

The group I' is now described as a presentation in terms of generators
and relations. It is an HNN-extension of the lamp-lighter group see also [2].

Proposition 3 The group I' is isomorphic to the group given by the presen-
tation
<a,t, s:alllt, s, [tat_l, a} ,atat_lsa_ls_1>

where an isomorphism is defined by:

(11 (z+1 0 N
@ 0o1) ° 0o 1) 0 1
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Proof. These matrices fulfill the relations of a, s, and ¢ of the presentation
of this group and they generate I'. Thus this mapping can be extended to
an epimorphism from the three generators onto I.

Let w be an element of the group given by the preceding presentation.
The relations show that w can be written as w = rs® with 3 € Z and r an
element of the subgroup generated by a and t. Suppose that w is mapped to
the identity matrix by the defined homomorphism. This entails that § = 0.

The relations employ that not only tat~! commutes with a but also t/at 7
for all 7 € Z as by induction

e = s|tat™. als ' = [Fsas 't sas”t = |Hatat 7", atat™!
s 7 = b1 ] = [t
= [Pat 7t at 7Y atat | = [t at T d

and e =t [t/at ™ a|t! = [a,t T at?].
Thus 7 can be written as r = t®a*ta*t - - - tak*t*. This is mapped to

< potdtw E;l:o ijj-‘roc >

0 1
and implies that « +d +w =0 and kg = k; = -+ = k; = Omod ¢. Hence
w = r = e. This proves that the mapping is one-to-one and hence an

isomorphism is obtained. O

It is easy to check that I' is metabelian and that the order of every finite
subgroup divides a power of g as claimed in Theorem 1. Indeed let N be
the normal subgroup generated by a. It holds that N = ({#/at™ : j € Z}) =
@®z (Z/qZ) and T'/N = (t, s : [t,s]) = Z*. This proves that I' is metabelian.
If H is a finite subgroup of I' then H must be a subset of N. Thus H is
contained in (Z/qZ)" < N for some h € N which entails that the order of H
divides ¢".

Theorem 4 Let
q—1
A=Y d"(s+t)+ (571 + t*1> a* +t ks + st € ZT
k=0
be a multiple of the Markov operator of the simple random walk on I' given by
the system of generators consisting of a*s,a*t,t"Laks, k € Z/qZ, and their
inverses. Then A, considered as an operator on (* (T'), has eigenvalues

)\ml,mg,namlamQ > 07 my + mo <n
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given by
)\ml,mg,n

= 2q <4 cos (W(ml — m2)> Cos (W(ml + 2m2)> cos <7r(2m1 + m2)> — 1>
3n 3n 3n

and the I'-dimension of the eigenspaces corresponding to the eigenvalue o is
dimp ker (A — oe) = (¢ — 1)° > A(o)g™
n=2

where
An (U) = H(ml?mQ) SMmyp,mg > Oa mp +mg <n, )\ml,mg,n = 0}‘

is the number of pairs (my, ma) for which Apy men = 0.

Proof.  For a proof of the explicit eigenvalues of (6¢)' A see [2, Corol-
lary 5.22] and note [2, Corollary 3.15] and that:

cos 27t (my — my) o 2m(my + 2my) o 27(2my + my)
3n 3n 3n

— 2 (cos (W)f — 1+ 2cos (M) cos (W)

— deos w(my — my) cos m(my + 2my) o w(2my + my) _q
an 3n 3n

Observe that the spectral measure is pure point and its value at ¢ is in
2, Section 5.D] computed to be (g — 1)* 3%, A, (¢) ¢~" as every (my, my, n)
with Ay, m,n = o contributes (¢ — 1)3 g~ ". Since this value is exactly the
(?-dimension of the corresponding eigenspace, the proof of the theorem is
finished. O

In general, it seems not trivial to determine all (uq,ug,v) for which
My usw = Ay ma.ms Where (my, me, n) is given. Obviously A,y mam = Aemy.ema.en
for each ¢ € N and A\, ;o = Ampmin- At least for 0 = —2¢ the value
dimr ker (A — oe) can be computed explicitly.

Corollary 5 There is an A € ZI" such that for A considered as an operator
A:(*(T) — 2(T) holds:

2(¢g—1)

dimp ker (4) = CESNTES:




M. Neuhauser 5

Proof. Initially take A of Theorem 4 and o = —24.

It holds that A, m,n = —2¢ if and only if m; — mq, my + 2mg, or
2my + my € 3n(1/2+ Z). The conditions my,my > 0 and m; + mg < n
imply |my —ma| < n and m; + 2mg, 2m; + ms < 2n. Hence A\, m,n = —2¢

is equivalent to m; +2mg = 3n/2 or 2m; +my = 3n/2. Thus n must be even
and in the first case m; = 3n/2 — 2my and in the second my = 3n/2 — 2m;.
Consider now the first case. From the constraints m; + me < n and m; > 0
follows n/2 < my < 3n/4. This entails 0 < m; < n/2. Interchanging the
indices 1 and 2 yields for the second case n/2 < m; < 3n/4 and 0 < my <
n/2.

The number of pairs (mq,msy) fulfilling these conditions is A, (—2¢) =
n/2 — 2 if n is a multiple of 4 and A,, (—2¢) = n/2 — 1 if n is even but not a
multiple of 4. From

Z A2n (_2q) q—2n — Z 2nq—4n—2 _|_ 2nq—4n—4
n=1

n=1

= 2¢°8 (q2 + 1) i ng

n=1

2(¢* +1) 2

(@ —-1° (¢2+1)(¢2—1)°

follows that:
2(q—1)

(> + 1) (q+1)?

Replace now A by A + 2ge. This implies that 0 is in the spectrum of A
and that dimp (ker 4) = ;201

2 +1)(q+1)"
This finishes the proof of Theorem 1.

dimr ker (A 4 2¢ge) =
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