Numerical Methods for Elliptic and Parabolic Partial Differential Equations

by Peter Knabner and Lutz Angermann, with contributions by Andreas Rupp Second Extended Edition, Springer, Cham, 2021

This is a list of all known errata in the first printing of the book, where corrections or supplements are indicated by (C) or (S), respectively.
Further comments are gratefully welcome.
(C) p. 350, 1. 13:
$v \in V_{h}$ is to be replaced by $v_{h} \in V_{h}$
(C) p. 352, 1. 2:
$\|\cdot\|_{V} \quad$ is to be replaced by $\quad\|\cdot\|_{U}$
(C) p. 354, formula (6.24):
$\|u\|_{Y} \quad$ is to be replaced by $\quad\|u\|_{W}$
(C) p. 354, 1. 5-6:
assuming without loss of generality the same regularity for the original and adjoint problems, in particular $u \in Y$
is to be replaced by
in particular $u \in W$
(C) p. 354, 1. 8:
$C_{c p} C_{\alpha} C_{s} h^{q+\beta} \quad$ is to be replaced by $\quad C_{c p} C_{\alpha} C_{s} h^{q+\beta}\|u\|_{W}$
(C) p. 354, formula (6.25):
$\left\|v_{g}\right\|_{Z} \quad$ is to be replaced by $\quad\left\|v_{g}\right\|_{Y}$
(C) p. 354, formula (6.26):
$a\left(u-u_{h}, v_{g}-v_{g h}\right) \quad$ is to be replaced by $\left(a-a_{h}\right)\left(u-u_{h}, v_{g}-v_{g h}\right)$
(C) p. 355, 1. 5:
$u, v_{g} \in V$ is to be replaced by $u \in U, v_{g} \in V$
(C) p. 355, 1. 5:
$u_{h}, v_{g h} \in V_{h}$ is to be replaced by $u_{h} \in U_{h}, v_{g h} \in V$
(C) p. 400, 1. 10:
$p_{K} \quad$ is to be replaced by $\left.\quad \boldsymbol{p}\right|_{K}$
(C) p. 401, 1. 5:
$L^{2}\left(\mathcal{F}_{1} \cup \mathcal{F}_{2}\right) \quad$ is to be replaced by $\quad L^{2}\left(\widetilde{\Gamma}_{1} \cup \widetilde{\Gamma}_{2}\right)$
(C) p. 401, 1. 8:
$d \sigma$ is to be replaced by $d x$
(C) p. 402, 1. -7 :
$v\left(a_{S, F}\right)$ is to be replaced by $\quad v_{h}\left(a_{S, F}\right)$
(C) p. 403, 1. -4:
$\llbracket u_{h}^{2} \rrbracket \quad$ is to be replaced by $\llbracket u_{h} \rrbracket^{2}$
(C) p. 406, 1. 7:
$\left(\boldsymbol{a}_{K}+\boldsymbol{a}_{K^{\prime}}\right) \cdot\left(b_{K} \boldsymbol{c}_{K}+b_{K^{\prime}} \boldsymbol{c}_{K^{\prime}}\right)+\left(b_{K}+b_{K^{\prime}}\right)\left(\boldsymbol{a}_{K} \cdot \boldsymbol{c}_{K}+\boldsymbol{a}_{K^{\prime}} \cdot \boldsymbol{c}_{K^{\prime}}\right)$
is to be replaced by
$\left(\boldsymbol{a}_{K}+\boldsymbol{a}_{K^{\prime}}\right) \cdot\left(b_{K} \boldsymbol{c}_{K}+b_{K^{\prime}} \boldsymbol{c}_{K^{\prime}}\right)-\left(b_{K}+b_{K^{\prime}}\right)\left(\boldsymbol{a}_{K} \cdot \boldsymbol{c}_{K}+\boldsymbol{a}_{K^{\prime}} \cdot \boldsymbol{c}_{K^{\prime}}\right)$
(C) p. 447, 1. 5:
$C^{0}(\Omega) \quad$ is to be replaced by $C^{0}(\bar{\Omega})$
(C) p. 447, 1. 7 and 1. 9:
test and trial is to be replaced by ansatz and test
(C) p. 452, 1. -2 :
(6.26) is to be replaced by (6.27)
(C) p. 481, formula (7.161):
$L^{2}\left(\mathcal{F} \cup \mathcal{F}_{3}\right) \quad$ is to be replaced by $\quad L^{2}\left(\mathcal{S}^{0} \cup \widetilde{\Gamma}_{3}\right)$
(C) p. 481, 1-6:
and \tilde{a}_{h} as given by a is to be replaced by where $\mathcal{S}^{0}:=\bigcup_{F \in \mathcal{F}} F$, and \tilde{a}_{h} as given by a
(C) p. 629, 1. 5 in Programming project 9.3:
implemantation is to be replaced by implementation

